mmu.c 28 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include <linux/types.h>
  20. #include <linux/string.h>
  21. #include <asm/page.h>
  22. #include <linux/mm.h>
  23. #include <linux/highmem.h>
  24. #include <linux/module.h>
  25. #include "vmx.h"
  26. #include "kvm.h"
  27. #define pgprintk(x...) do { printk(x); } while (0)
  28. #define rmap_printk(x...) do { printk(x); } while (0)
  29. #define ASSERT(x) \
  30. if (!(x)) { \
  31. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  32. __FILE__, __LINE__, #x); \
  33. }
  34. #define PT64_PT_BITS 9
  35. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  36. #define PT32_PT_BITS 10
  37. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  38. #define PT_WRITABLE_SHIFT 1
  39. #define PT_PRESENT_MASK (1ULL << 0)
  40. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  41. #define PT_USER_MASK (1ULL << 2)
  42. #define PT_PWT_MASK (1ULL << 3)
  43. #define PT_PCD_MASK (1ULL << 4)
  44. #define PT_ACCESSED_MASK (1ULL << 5)
  45. #define PT_DIRTY_MASK (1ULL << 6)
  46. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  47. #define PT_PAT_MASK (1ULL << 7)
  48. #define PT_GLOBAL_MASK (1ULL << 8)
  49. #define PT64_NX_MASK (1ULL << 63)
  50. #define PT_PAT_SHIFT 7
  51. #define PT_DIR_PAT_SHIFT 12
  52. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  53. #define PT32_DIR_PSE36_SIZE 4
  54. #define PT32_DIR_PSE36_SHIFT 13
  55. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  56. #define PT32_PTE_COPY_MASK \
  57. (PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK)
  58. #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK)
  59. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  60. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  61. #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  62. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  63. #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1)
  64. #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT)
  65. #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1)
  66. #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT))
  67. #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT)
  68. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  69. #define PT64_LEVEL_BITS 9
  70. #define PT64_LEVEL_SHIFT(level) \
  71. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  72. #define PT64_LEVEL_MASK(level) \
  73. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  74. #define PT64_INDEX(address, level)\
  75. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  76. #define PT32_LEVEL_BITS 10
  77. #define PT32_LEVEL_SHIFT(level) \
  78. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  79. #define PT32_LEVEL_MASK(level) \
  80. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  81. #define PT32_INDEX(address, level)\
  82. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  83. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & PAGE_MASK)
  84. #define PT64_DIR_BASE_ADDR_MASK \
  85. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  86. #define PT32_BASE_ADDR_MASK PAGE_MASK
  87. #define PT32_DIR_BASE_ADDR_MASK \
  88. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  89. #define PFERR_PRESENT_MASK (1U << 0)
  90. #define PFERR_WRITE_MASK (1U << 1)
  91. #define PFERR_USER_MASK (1U << 2)
  92. #define PT64_ROOT_LEVEL 4
  93. #define PT32_ROOT_LEVEL 2
  94. #define PT32E_ROOT_LEVEL 3
  95. #define PT_DIRECTORY_LEVEL 2
  96. #define PT_PAGE_TABLE_LEVEL 1
  97. #define RMAP_EXT 4
  98. struct kvm_rmap_desc {
  99. u64 *shadow_ptes[RMAP_EXT];
  100. struct kvm_rmap_desc *more;
  101. };
  102. static int is_write_protection(struct kvm_vcpu *vcpu)
  103. {
  104. return vcpu->cr0 & CR0_WP_MASK;
  105. }
  106. static int is_cpuid_PSE36(void)
  107. {
  108. return 1;
  109. }
  110. static int is_present_pte(unsigned long pte)
  111. {
  112. return pte & PT_PRESENT_MASK;
  113. }
  114. static int is_writeble_pte(unsigned long pte)
  115. {
  116. return pte & PT_WRITABLE_MASK;
  117. }
  118. static int is_io_pte(unsigned long pte)
  119. {
  120. return pte & PT_SHADOW_IO_MARK;
  121. }
  122. static int is_rmap_pte(u64 pte)
  123. {
  124. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  125. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  126. }
  127. /*
  128. * Reverse mapping data structures:
  129. *
  130. * If page->private bit zero is zero, then page->private points to the
  131. * shadow page table entry that points to page_address(page).
  132. *
  133. * If page->private bit zero is one, (then page->private & ~1) points
  134. * to a struct kvm_rmap_desc containing more mappings.
  135. */
  136. static void rmap_add(struct kvm *kvm, u64 *spte)
  137. {
  138. struct page *page;
  139. struct kvm_rmap_desc *desc;
  140. int i;
  141. if (!is_rmap_pte(*spte))
  142. return;
  143. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  144. if (!page->private) {
  145. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  146. page->private = (unsigned long)spte;
  147. } else if (!(page->private & 1)) {
  148. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  149. desc = kzalloc(sizeof *desc, GFP_NOWAIT);
  150. if (!desc)
  151. BUG(); /* FIXME: return error */
  152. desc->shadow_ptes[0] = (u64 *)page->private;
  153. desc->shadow_ptes[1] = spte;
  154. page->private = (unsigned long)desc | 1;
  155. } else {
  156. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  157. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  158. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  159. desc = desc->more;
  160. if (desc->shadow_ptes[RMAP_EXT-1]) {
  161. desc->more = kzalloc(sizeof *desc->more, GFP_NOWAIT);
  162. if (!desc->more)
  163. BUG(); /* FIXME: return error */
  164. desc = desc->more;
  165. }
  166. for (i = 0; desc->shadow_ptes[i]; ++i)
  167. ;
  168. desc->shadow_ptes[i] = spte;
  169. }
  170. }
  171. static void rmap_desc_remove_entry(struct page *page,
  172. struct kvm_rmap_desc *desc,
  173. int i,
  174. struct kvm_rmap_desc *prev_desc)
  175. {
  176. int j;
  177. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  178. ;
  179. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  180. desc->shadow_ptes[j] = 0;
  181. if (j != 0)
  182. return;
  183. if (!prev_desc && !desc->more)
  184. page->private = (unsigned long)desc->shadow_ptes[0];
  185. else
  186. if (prev_desc)
  187. prev_desc->more = desc->more;
  188. else
  189. page->private = (unsigned long)desc->more | 1;
  190. kfree(desc);
  191. }
  192. static void rmap_remove(struct kvm *kvm, u64 *spte)
  193. {
  194. struct page *page;
  195. struct kvm_rmap_desc *desc;
  196. struct kvm_rmap_desc *prev_desc;
  197. int i;
  198. if (!is_rmap_pte(*spte))
  199. return;
  200. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  201. if (!page->private) {
  202. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  203. BUG();
  204. } else if (!(page->private & 1)) {
  205. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  206. if ((u64 *)page->private != spte) {
  207. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  208. spte, *spte);
  209. BUG();
  210. }
  211. page->private = 0;
  212. } else {
  213. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  214. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  215. prev_desc = NULL;
  216. while (desc) {
  217. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  218. if (desc->shadow_ptes[i] == spte) {
  219. rmap_desc_remove_entry(page, desc, i,
  220. prev_desc);
  221. return;
  222. }
  223. prev_desc = desc;
  224. desc = desc->more;
  225. }
  226. BUG();
  227. }
  228. }
  229. static void rmap_write_protect(struct kvm *kvm, u64 gfn)
  230. {
  231. struct page *page;
  232. struct kvm_memory_slot *slot;
  233. struct kvm_rmap_desc *desc;
  234. u64 *spte;
  235. slot = gfn_to_memslot(kvm, gfn);
  236. BUG_ON(!slot);
  237. page = gfn_to_page(slot, gfn);
  238. while (page->private) {
  239. if (!(page->private & 1))
  240. spte = (u64 *)page->private;
  241. else {
  242. desc = (struct kvm_rmap_desc *)(page->private & ~1ul);
  243. spte = desc->shadow_ptes[0];
  244. }
  245. BUG_ON(!spte);
  246. BUG_ON((*spte & PT64_BASE_ADDR_MASK) !=
  247. page_to_pfn(page) << PAGE_SHIFT);
  248. BUG_ON(!(*spte & PT_PRESENT_MASK));
  249. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  250. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  251. rmap_remove(kvm, spte);
  252. *spte &= ~(u64)PT_WRITABLE_MASK;
  253. }
  254. }
  255. static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa)
  256. {
  257. struct kvm_mmu_page *page_head = page_header(page_hpa);
  258. list_del(&page_head->link);
  259. page_head->page_hpa = page_hpa;
  260. list_add(&page_head->link, &vcpu->free_pages);
  261. }
  262. static int is_empty_shadow_page(hpa_t page_hpa)
  263. {
  264. u32 *pos;
  265. u32 *end;
  266. for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u32);
  267. pos != end; pos++)
  268. if (*pos != 0)
  269. return 0;
  270. return 1;
  271. }
  272. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  273. {
  274. return gfn;
  275. }
  276. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  277. u64 *parent_pte)
  278. {
  279. struct kvm_mmu_page *page;
  280. if (list_empty(&vcpu->free_pages))
  281. return NULL;
  282. page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link);
  283. list_del(&page->link);
  284. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  285. ASSERT(is_empty_shadow_page(page->page_hpa));
  286. page->slot_bitmap = 0;
  287. page->global = 1;
  288. page->multimapped = 0;
  289. page->parent_pte = parent_pte;
  290. return page;
  291. }
  292. static void mmu_page_add_parent_pte(struct kvm_mmu_page *page, u64 *parent_pte)
  293. {
  294. struct kvm_pte_chain *pte_chain;
  295. struct hlist_node *node;
  296. int i;
  297. if (!parent_pte)
  298. return;
  299. if (!page->multimapped) {
  300. u64 *old = page->parent_pte;
  301. if (!old) {
  302. page->parent_pte = parent_pte;
  303. return;
  304. }
  305. page->multimapped = 1;
  306. pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
  307. BUG_ON(!pte_chain);
  308. INIT_HLIST_HEAD(&page->parent_ptes);
  309. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  310. pte_chain->parent_ptes[0] = old;
  311. }
  312. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  313. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  314. continue;
  315. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  316. if (!pte_chain->parent_ptes[i]) {
  317. pte_chain->parent_ptes[i] = parent_pte;
  318. return;
  319. }
  320. }
  321. pte_chain = kzalloc(sizeof(struct kvm_pte_chain), GFP_NOWAIT);
  322. BUG_ON(!pte_chain);
  323. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  324. pte_chain->parent_ptes[0] = parent_pte;
  325. }
  326. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  327. u64 *parent_pte)
  328. {
  329. struct kvm_pte_chain *pte_chain;
  330. struct hlist_node *node;
  331. int i;
  332. if (!page->multimapped) {
  333. BUG_ON(page->parent_pte != parent_pte);
  334. page->parent_pte = NULL;
  335. return;
  336. }
  337. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  338. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  339. if (!pte_chain->parent_ptes[i])
  340. break;
  341. if (pte_chain->parent_ptes[i] != parent_pte)
  342. continue;
  343. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  344. && pte_chain->parent_ptes[i + 1]) {
  345. pte_chain->parent_ptes[i]
  346. = pte_chain->parent_ptes[i + 1];
  347. ++i;
  348. }
  349. pte_chain->parent_ptes[i] = NULL;
  350. if (i == 0) {
  351. hlist_del(&pte_chain->link);
  352. kfree(pte_chain);
  353. if (hlist_empty(&page->parent_ptes)) {
  354. page->multimapped = 0;
  355. page->parent_pte = NULL;
  356. }
  357. }
  358. return;
  359. }
  360. BUG();
  361. }
  362. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  363. gfn_t gfn)
  364. {
  365. unsigned index;
  366. struct hlist_head *bucket;
  367. struct kvm_mmu_page *page;
  368. struct hlist_node *node;
  369. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  370. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  371. bucket = &vcpu->kvm->mmu_page_hash[index];
  372. hlist_for_each_entry(page, node, bucket, hash_link)
  373. if (page->gfn == gfn && !page->role.metaphysical) {
  374. pgprintk("%s: found role %x\n",
  375. __FUNCTION__, page->role.word);
  376. return page;
  377. }
  378. return NULL;
  379. }
  380. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  381. gfn_t gfn,
  382. gva_t gaddr,
  383. unsigned level,
  384. int metaphysical,
  385. u64 *parent_pte)
  386. {
  387. union kvm_mmu_page_role role;
  388. unsigned index;
  389. unsigned quadrant;
  390. struct hlist_head *bucket;
  391. struct kvm_mmu_page *page;
  392. struct hlist_node *node;
  393. role.word = 0;
  394. role.glevels = vcpu->mmu.root_level;
  395. role.level = level;
  396. role.metaphysical = metaphysical;
  397. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  398. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  399. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  400. role.quadrant = quadrant;
  401. }
  402. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  403. gfn, role.word);
  404. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  405. bucket = &vcpu->kvm->mmu_page_hash[index];
  406. hlist_for_each_entry(page, node, bucket, hash_link)
  407. if (page->gfn == gfn && page->role.word == role.word) {
  408. mmu_page_add_parent_pte(page, parent_pte);
  409. pgprintk("%s: found\n", __FUNCTION__);
  410. return page;
  411. }
  412. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  413. if (!page)
  414. return page;
  415. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  416. page->gfn = gfn;
  417. page->role = role;
  418. hlist_add_head(&page->hash_link, bucket);
  419. if (!metaphysical)
  420. rmap_write_protect(vcpu->kvm, gfn);
  421. return page;
  422. }
  423. static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu,
  424. struct kvm_mmu_page *page)
  425. {
  426. unsigned i;
  427. u64 *pt;
  428. u64 ent;
  429. pt = __va(page->page_hpa);
  430. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  431. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  432. if (pt[i] & PT_PRESENT_MASK)
  433. rmap_remove(vcpu->kvm, &pt[i]);
  434. pt[i] = 0;
  435. }
  436. return;
  437. }
  438. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  439. ent = pt[i];
  440. pt[i] = 0;
  441. if (!(ent & PT_PRESENT_MASK))
  442. continue;
  443. ent &= PT64_BASE_ADDR_MASK;
  444. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  445. }
  446. }
  447. static void kvm_mmu_put_page(struct kvm_vcpu *vcpu,
  448. struct kvm_mmu_page *page,
  449. u64 *parent_pte)
  450. {
  451. mmu_page_remove_parent_pte(page, parent_pte);
  452. }
  453. static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu,
  454. struct kvm_mmu_page *page)
  455. {
  456. u64 *parent_pte;
  457. while (page->multimapped || page->parent_pte) {
  458. if (!page->multimapped)
  459. parent_pte = page->parent_pte;
  460. else {
  461. struct kvm_pte_chain *chain;
  462. chain = container_of(page->parent_ptes.first,
  463. struct kvm_pte_chain, link);
  464. parent_pte = chain->parent_ptes[0];
  465. }
  466. BUG_ON(!parent_pte);
  467. kvm_mmu_put_page(vcpu, page, parent_pte);
  468. *parent_pte = 0;
  469. }
  470. kvm_mmu_page_unlink_children(vcpu, page);
  471. hlist_del(&page->hash_link);
  472. list_del(&page->link);
  473. list_add(&page->link, &vcpu->free_pages);
  474. }
  475. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  476. {
  477. unsigned index;
  478. struct hlist_head *bucket;
  479. struct kvm_mmu_page *page;
  480. struct hlist_node *node, *n;
  481. int r;
  482. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  483. r = 0;
  484. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  485. bucket = &vcpu->kvm->mmu_page_hash[index];
  486. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  487. if (page->gfn == gfn && !page->role.metaphysical) {
  488. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  489. page->role.word);
  490. kvm_mmu_zap_page(vcpu, page);
  491. r = 1;
  492. }
  493. return r;
  494. }
  495. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  496. {
  497. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  498. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  499. __set_bit(slot, &page_head->slot_bitmap);
  500. }
  501. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  502. {
  503. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  504. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  505. }
  506. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  507. {
  508. struct kvm_memory_slot *slot;
  509. struct page *page;
  510. ASSERT((gpa & HPA_ERR_MASK) == 0);
  511. slot = gfn_to_memslot(vcpu->kvm, gpa >> PAGE_SHIFT);
  512. if (!slot)
  513. return gpa | HPA_ERR_MASK;
  514. page = gfn_to_page(slot, gpa >> PAGE_SHIFT);
  515. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  516. | (gpa & (PAGE_SIZE-1));
  517. }
  518. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  519. {
  520. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  521. if (gpa == UNMAPPED_GVA)
  522. return UNMAPPED_GVA;
  523. return gpa_to_hpa(vcpu, gpa);
  524. }
  525. static void release_pt_page_64(struct kvm_vcpu *vcpu, hpa_t page_hpa,
  526. int level)
  527. {
  528. u64 *pos;
  529. u64 *end;
  530. ASSERT(vcpu);
  531. ASSERT(VALID_PAGE(page_hpa));
  532. ASSERT(level <= PT64_ROOT_LEVEL && level > 0);
  533. for (pos = __va(page_hpa), end = pos + PT64_ENT_PER_PAGE;
  534. pos != end; pos++) {
  535. u64 current_ent = *pos;
  536. if (is_present_pte(current_ent)) {
  537. if (level != 1)
  538. release_pt_page_64(vcpu,
  539. current_ent &
  540. PT64_BASE_ADDR_MASK,
  541. level - 1);
  542. else
  543. rmap_remove(vcpu->kvm, pos);
  544. }
  545. *pos = 0;
  546. }
  547. kvm_mmu_free_page(vcpu, page_hpa);
  548. }
  549. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  550. {
  551. }
  552. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  553. {
  554. int level = PT32E_ROOT_LEVEL;
  555. hpa_t table_addr = vcpu->mmu.root_hpa;
  556. for (; ; level--) {
  557. u32 index = PT64_INDEX(v, level);
  558. u64 *table;
  559. u64 pte;
  560. ASSERT(VALID_PAGE(table_addr));
  561. table = __va(table_addr);
  562. if (level == 1) {
  563. pte = table[index];
  564. if (is_present_pte(pte) && is_writeble_pte(pte))
  565. return 0;
  566. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  567. page_header_update_slot(vcpu->kvm, table, v);
  568. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  569. PT_USER_MASK;
  570. rmap_add(vcpu->kvm, &table[index]);
  571. return 0;
  572. }
  573. if (table[index] == 0) {
  574. struct kvm_mmu_page *new_table;
  575. gfn_t pseudo_gfn;
  576. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  577. >> PAGE_SHIFT;
  578. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  579. v, level - 1,
  580. 1, &table[index]);
  581. if (!new_table) {
  582. pgprintk("nonpaging_map: ENOMEM\n");
  583. return -ENOMEM;
  584. }
  585. table[index] = new_table->page_hpa | PT_PRESENT_MASK
  586. | PT_WRITABLE_MASK | PT_USER_MASK;
  587. }
  588. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  589. }
  590. }
  591. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  592. {
  593. int i;
  594. #ifdef CONFIG_X86_64
  595. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  596. hpa_t root = vcpu->mmu.root_hpa;
  597. ASSERT(VALID_PAGE(root));
  598. vcpu->mmu.root_hpa = INVALID_PAGE;
  599. return;
  600. }
  601. #endif
  602. for (i = 0; i < 4; ++i) {
  603. hpa_t root = vcpu->mmu.pae_root[i];
  604. ASSERT(VALID_PAGE(root));
  605. root &= PT64_BASE_ADDR_MASK;
  606. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  607. }
  608. vcpu->mmu.root_hpa = INVALID_PAGE;
  609. }
  610. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  611. {
  612. int i;
  613. gfn_t root_gfn;
  614. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  615. #ifdef CONFIG_X86_64
  616. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  617. hpa_t root = vcpu->mmu.root_hpa;
  618. ASSERT(!VALID_PAGE(root));
  619. root = kvm_mmu_get_page(vcpu, root_gfn, 0,
  620. PT64_ROOT_LEVEL, 0, NULL)->page_hpa;
  621. vcpu->mmu.root_hpa = root;
  622. return;
  623. }
  624. #endif
  625. for (i = 0; i < 4; ++i) {
  626. hpa_t root = vcpu->mmu.pae_root[i];
  627. ASSERT(!VALID_PAGE(root));
  628. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL)
  629. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  630. else if (vcpu->mmu.root_level == 0)
  631. root_gfn = 0;
  632. root = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  633. PT32_ROOT_LEVEL, !is_paging(vcpu),
  634. NULL)->page_hpa;
  635. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  636. }
  637. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  638. }
  639. static void nonpaging_flush(struct kvm_vcpu *vcpu)
  640. {
  641. hpa_t root = vcpu->mmu.root_hpa;
  642. ++kvm_stat.tlb_flush;
  643. pgprintk("nonpaging_flush\n");
  644. mmu_free_roots(vcpu);
  645. mmu_alloc_roots(vcpu);
  646. kvm_arch_ops->set_cr3(vcpu, root);
  647. kvm_arch_ops->tlb_flush(vcpu);
  648. }
  649. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  650. {
  651. return vaddr;
  652. }
  653. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  654. u32 error_code)
  655. {
  656. int ret;
  657. gpa_t addr = gva;
  658. ASSERT(vcpu);
  659. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  660. for (;;) {
  661. hpa_t paddr;
  662. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  663. if (is_error_hpa(paddr))
  664. return 1;
  665. ret = nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  666. if (ret) {
  667. nonpaging_flush(vcpu);
  668. continue;
  669. }
  670. break;
  671. }
  672. return ret;
  673. }
  674. static void nonpaging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
  675. {
  676. }
  677. static void nonpaging_free(struct kvm_vcpu *vcpu)
  678. {
  679. mmu_free_roots(vcpu);
  680. }
  681. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  682. {
  683. struct kvm_mmu *context = &vcpu->mmu;
  684. context->new_cr3 = nonpaging_new_cr3;
  685. context->page_fault = nonpaging_page_fault;
  686. context->inval_page = nonpaging_inval_page;
  687. context->gva_to_gpa = nonpaging_gva_to_gpa;
  688. context->free = nonpaging_free;
  689. context->root_level = 0;
  690. context->shadow_root_level = PT32E_ROOT_LEVEL;
  691. mmu_alloc_roots(vcpu);
  692. ASSERT(VALID_PAGE(context->root_hpa));
  693. kvm_arch_ops->set_cr3(vcpu, context->root_hpa);
  694. return 0;
  695. }
  696. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  697. {
  698. ++kvm_stat.tlb_flush;
  699. kvm_arch_ops->tlb_flush(vcpu);
  700. }
  701. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  702. {
  703. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  704. mmu_free_roots(vcpu);
  705. mmu_alloc_roots(vcpu);
  706. kvm_mmu_flush_tlb(vcpu);
  707. kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  708. }
  709. static void mark_pagetable_nonglobal(void *shadow_pte)
  710. {
  711. page_header(__pa(shadow_pte))->global = 0;
  712. }
  713. static inline void set_pte_common(struct kvm_vcpu *vcpu,
  714. u64 *shadow_pte,
  715. gpa_t gaddr,
  716. int dirty,
  717. u64 access_bits,
  718. gfn_t gfn)
  719. {
  720. hpa_t paddr;
  721. *shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET;
  722. if (!dirty)
  723. access_bits &= ~PT_WRITABLE_MASK;
  724. paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK);
  725. *shadow_pte |= access_bits;
  726. if (!(*shadow_pte & PT_GLOBAL_MASK))
  727. mark_pagetable_nonglobal(shadow_pte);
  728. if (is_error_hpa(paddr)) {
  729. *shadow_pte |= gaddr;
  730. *shadow_pte |= PT_SHADOW_IO_MARK;
  731. *shadow_pte &= ~PT_PRESENT_MASK;
  732. return;
  733. }
  734. *shadow_pte |= paddr;
  735. if (access_bits & PT_WRITABLE_MASK) {
  736. struct kvm_mmu_page *shadow;
  737. shadow = kvm_mmu_lookup_page(vcpu, gfn);
  738. if (shadow) {
  739. pgprintk("%s: found shadow page for %lx, marking ro\n",
  740. __FUNCTION__, gfn);
  741. access_bits &= ~PT_WRITABLE_MASK;
  742. *shadow_pte &= ~PT_WRITABLE_MASK;
  743. }
  744. }
  745. if (access_bits & PT_WRITABLE_MASK)
  746. mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT);
  747. page_header_update_slot(vcpu->kvm, shadow_pte, gaddr);
  748. rmap_add(vcpu->kvm, shadow_pte);
  749. }
  750. static void inject_page_fault(struct kvm_vcpu *vcpu,
  751. u64 addr,
  752. u32 err_code)
  753. {
  754. kvm_arch_ops->inject_page_fault(vcpu, addr, err_code);
  755. }
  756. static inline int fix_read_pf(u64 *shadow_ent)
  757. {
  758. if ((*shadow_ent & PT_SHADOW_USER_MASK) &&
  759. !(*shadow_ent & PT_USER_MASK)) {
  760. /*
  761. * If supervisor write protect is disabled, we shadow kernel
  762. * pages as user pages so we can trap the write access.
  763. */
  764. *shadow_ent |= PT_USER_MASK;
  765. *shadow_ent &= ~PT_WRITABLE_MASK;
  766. return 1;
  767. }
  768. return 0;
  769. }
  770. static int may_access(u64 pte, int write, int user)
  771. {
  772. if (user && !(pte & PT_USER_MASK))
  773. return 0;
  774. if (write && !(pte & PT_WRITABLE_MASK))
  775. return 0;
  776. return 1;
  777. }
  778. /*
  779. * Remove a shadow pte.
  780. */
  781. static void paging_inval_page(struct kvm_vcpu *vcpu, gva_t addr)
  782. {
  783. hpa_t page_addr = vcpu->mmu.root_hpa;
  784. int level = vcpu->mmu.shadow_root_level;
  785. ++kvm_stat.invlpg;
  786. for (; ; level--) {
  787. u32 index = PT64_INDEX(addr, level);
  788. u64 *table = __va(page_addr);
  789. if (level == PT_PAGE_TABLE_LEVEL ) {
  790. rmap_remove(vcpu->kvm, &table[index]);
  791. table[index] = 0;
  792. return;
  793. }
  794. if (!is_present_pte(table[index]))
  795. return;
  796. page_addr = table[index] & PT64_BASE_ADDR_MASK;
  797. if (level == PT_DIRECTORY_LEVEL &&
  798. (table[index] & PT_SHADOW_PS_MARK)) {
  799. table[index] = 0;
  800. release_pt_page_64(vcpu, page_addr, PT_PAGE_TABLE_LEVEL);
  801. kvm_arch_ops->tlb_flush(vcpu);
  802. return;
  803. }
  804. }
  805. }
  806. static void paging_free(struct kvm_vcpu *vcpu)
  807. {
  808. nonpaging_free(vcpu);
  809. }
  810. #define PTTYPE 64
  811. #include "paging_tmpl.h"
  812. #undef PTTYPE
  813. #define PTTYPE 32
  814. #include "paging_tmpl.h"
  815. #undef PTTYPE
  816. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  817. {
  818. struct kvm_mmu *context = &vcpu->mmu;
  819. ASSERT(is_pae(vcpu));
  820. context->new_cr3 = paging_new_cr3;
  821. context->page_fault = paging64_page_fault;
  822. context->inval_page = paging_inval_page;
  823. context->gva_to_gpa = paging64_gva_to_gpa;
  824. context->free = paging_free;
  825. context->root_level = level;
  826. context->shadow_root_level = level;
  827. mmu_alloc_roots(vcpu);
  828. ASSERT(VALID_PAGE(context->root_hpa));
  829. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  830. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  831. return 0;
  832. }
  833. static int paging64_init_context(struct kvm_vcpu *vcpu)
  834. {
  835. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  836. }
  837. static int paging32_init_context(struct kvm_vcpu *vcpu)
  838. {
  839. struct kvm_mmu *context = &vcpu->mmu;
  840. context->new_cr3 = paging_new_cr3;
  841. context->page_fault = paging32_page_fault;
  842. context->inval_page = paging_inval_page;
  843. context->gva_to_gpa = paging32_gva_to_gpa;
  844. context->free = paging_free;
  845. context->root_level = PT32_ROOT_LEVEL;
  846. context->shadow_root_level = PT32E_ROOT_LEVEL;
  847. mmu_alloc_roots(vcpu);
  848. ASSERT(VALID_PAGE(context->root_hpa));
  849. kvm_arch_ops->set_cr3(vcpu, context->root_hpa |
  850. (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK)));
  851. return 0;
  852. }
  853. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  854. {
  855. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  856. }
  857. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  858. {
  859. ASSERT(vcpu);
  860. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  861. if (!is_paging(vcpu))
  862. return nonpaging_init_context(vcpu);
  863. else if (is_long_mode(vcpu))
  864. return paging64_init_context(vcpu);
  865. else if (is_pae(vcpu))
  866. return paging32E_init_context(vcpu);
  867. else
  868. return paging32_init_context(vcpu);
  869. }
  870. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  871. {
  872. ASSERT(vcpu);
  873. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  874. vcpu->mmu.free(vcpu);
  875. vcpu->mmu.root_hpa = INVALID_PAGE;
  876. }
  877. }
  878. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  879. {
  880. destroy_kvm_mmu(vcpu);
  881. return init_kvm_mmu(vcpu);
  882. }
  883. void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  884. {
  885. gfn_t gfn = gpa >> PAGE_SHIFT;
  886. struct kvm_mmu_page *page;
  887. struct kvm_mmu_page *child;
  888. struct hlist_node *node;
  889. struct hlist_head *bucket;
  890. unsigned index;
  891. u64 *spte;
  892. u64 pte;
  893. unsigned offset = offset_in_page(gpa);
  894. unsigned page_offset;
  895. int level;
  896. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  897. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  898. bucket = &vcpu->kvm->mmu_page_hash[index];
  899. hlist_for_each_entry(page, node, bucket, hash_link) {
  900. if (page->gfn != gfn || page->role.metaphysical)
  901. continue;
  902. page_offset = offset;
  903. level = page->role.level;
  904. if (page->role.glevels == PT32_ROOT_LEVEL) {
  905. page_offset <<= 1; /* 32->64 */
  906. page_offset &= ~PAGE_MASK;
  907. }
  908. spte = __va(page->page_hpa);
  909. spte += page_offset / sizeof(*spte);
  910. pte = *spte;
  911. if (is_present_pte(pte)) {
  912. if (level == PT_PAGE_TABLE_LEVEL)
  913. rmap_remove(vcpu->kvm, spte);
  914. else {
  915. child = page_header(pte & PT64_BASE_ADDR_MASK);
  916. mmu_page_remove_parent_pte(child, spte);
  917. }
  918. }
  919. *spte = 0;
  920. }
  921. }
  922. void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes)
  923. {
  924. }
  925. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  926. {
  927. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  928. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  929. }
  930. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  931. {
  932. while (!list_empty(&vcpu->free_pages)) {
  933. struct kvm_mmu_page *page;
  934. page = list_entry(vcpu->free_pages.next,
  935. struct kvm_mmu_page, link);
  936. list_del(&page->link);
  937. __free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT));
  938. page->page_hpa = INVALID_PAGE;
  939. }
  940. free_page((unsigned long)vcpu->mmu.pae_root);
  941. }
  942. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  943. {
  944. struct page *page;
  945. int i;
  946. ASSERT(vcpu);
  947. for (i = 0; i < KVM_NUM_MMU_PAGES; i++) {
  948. struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i];
  949. INIT_LIST_HEAD(&page_header->link);
  950. if ((page = alloc_page(GFP_KERNEL)) == NULL)
  951. goto error_1;
  952. page->private = (unsigned long)page_header;
  953. page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT;
  954. memset(__va(page_header->page_hpa), 0, PAGE_SIZE);
  955. list_add(&page_header->link, &vcpu->free_pages);
  956. }
  957. /*
  958. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  959. * Therefore we need to allocate shadow page tables in the first
  960. * 4GB of memory, which happens to fit the DMA32 zone.
  961. */
  962. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  963. if (!page)
  964. goto error_1;
  965. vcpu->mmu.pae_root = page_address(page);
  966. for (i = 0; i < 4; ++i)
  967. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  968. return 0;
  969. error_1:
  970. free_mmu_pages(vcpu);
  971. return -ENOMEM;
  972. }
  973. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  974. {
  975. ASSERT(vcpu);
  976. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  977. ASSERT(list_empty(&vcpu->free_pages));
  978. return alloc_mmu_pages(vcpu);
  979. }
  980. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  981. {
  982. ASSERT(vcpu);
  983. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  984. ASSERT(!list_empty(&vcpu->free_pages));
  985. return init_kvm_mmu(vcpu);
  986. }
  987. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  988. {
  989. ASSERT(vcpu);
  990. destroy_kvm_mmu(vcpu);
  991. free_mmu_pages(vcpu);
  992. }
  993. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  994. {
  995. struct kvm_mmu_page *page;
  996. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  997. int i;
  998. u64 *pt;
  999. if (!test_bit(slot, &page->slot_bitmap))
  1000. continue;
  1001. pt = __va(page->page_hpa);
  1002. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1003. /* avoid RMW */
  1004. if (pt[i] & PT_WRITABLE_MASK) {
  1005. rmap_remove(kvm, &pt[i]);
  1006. pt[i] &= ~PT_WRITABLE_MASK;
  1007. }
  1008. }
  1009. }