hrtimer.c 34 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412
  1. /*
  2. * linux/kernel/hrtimer.c
  3. *
  4. * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
  6. * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
  7. *
  8. * High-resolution kernel timers
  9. *
  10. * In contrast to the low-resolution timeout API implemented in
  11. * kernel/timer.c, hrtimers provide finer resolution and accuracy
  12. * depending on system configuration and capabilities.
  13. *
  14. * These timers are currently used for:
  15. * - itimers
  16. * - POSIX timers
  17. * - nanosleep
  18. * - precise in-kernel timing
  19. *
  20. * Started by: Thomas Gleixner and Ingo Molnar
  21. *
  22. * Credits:
  23. * based on kernel/timer.c
  24. *
  25. * Help, testing, suggestions, bugfixes, improvements were
  26. * provided by:
  27. *
  28. * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
  29. * et. al.
  30. *
  31. * For licencing details see kernel-base/COPYING
  32. */
  33. #include <linux/cpu.h>
  34. #include <linux/irq.h>
  35. #include <linux/module.h>
  36. #include <linux/percpu.h>
  37. #include <linux/hrtimer.h>
  38. #include <linux/notifier.h>
  39. #include <linux/syscalls.h>
  40. #include <linux/kallsyms.h>
  41. #include <linux/interrupt.h>
  42. #include <linux/tick.h>
  43. #include <linux/seq_file.h>
  44. #include <linux/err.h>
  45. #include <asm/uaccess.h>
  46. /**
  47. * ktime_get - get the monotonic time in ktime_t format
  48. *
  49. * returns the time in ktime_t format
  50. */
  51. ktime_t ktime_get(void)
  52. {
  53. struct timespec now;
  54. ktime_get_ts(&now);
  55. return timespec_to_ktime(now);
  56. }
  57. /**
  58. * ktime_get_real - get the real (wall-) time in ktime_t format
  59. *
  60. * returns the time in ktime_t format
  61. */
  62. ktime_t ktime_get_real(void)
  63. {
  64. struct timespec now;
  65. getnstimeofday(&now);
  66. return timespec_to_ktime(now);
  67. }
  68. EXPORT_SYMBOL_GPL(ktime_get_real);
  69. /*
  70. * The timer bases:
  71. *
  72. * Note: If we want to add new timer bases, we have to skip the two
  73. * clock ids captured by the cpu-timers. We do this by holding empty
  74. * entries rather than doing math adjustment of the clock ids.
  75. * This ensures that we capture erroneous accesses to these clock ids
  76. * rather than moving them into the range of valid clock id's.
  77. */
  78. DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
  79. {
  80. .clock_base =
  81. {
  82. {
  83. .index = CLOCK_REALTIME,
  84. .get_time = &ktime_get_real,
  85. .resolution = KTIME_LOW_RES,
  86. },
  87. {
  88. .index = CLOCK_MONOTONIC,
  89. .get_time = &ktime_get,
  90. .resolution = KTIME_LOW_RES,
  91. },
  92. }
  93. };
  94. /**
  95. * ktime_get_ts - get the monotonic clock in timespec format
  96. * @ts: pointer to timespec variable
  97. *
  98. * The function calculates the monotonic clock from the realtime
  99. * clock and the wall_to_monotonic offset and stores the result
  100. * in normalized timespec format in the variable pointed to by @ts.
  101. */
  102. void ktime_get_ts(struct timespec *ts)
  103. {
  104. struct timespec tomono;
  105. unsigned long seq;
  106. do {
  107. seq = read_seqbegin(&xtime_lock);
  108. getnstimeofday(ts);
  109. tomono = wall_to_monotonic;
  110. } while (read_seqretry(&xtime_lock, seq));
  111. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  112. ts->tv_nsec + tomono.tv_nsec);
  113. }
  114. EXPORT_SYMBOL_GPL(ktime_get_ts);
  115. /*
  116. * Get the coarse grained time at the softirq based on xtime and
  117. * wall_to_monotonic.
  118. */
  119. static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
  120. {
  121. ktime_t xtim, tomono;
  122. struct timespec xts;
  123. unsigned long seq;
  124. do {
  125. seq = read_seqbegin(&xtime_lock);
  126. #ifdef CONFIG_NO_HZ
  127. getnstimeofday(&xts);
  128. #else
  129. xts = xtime;
  130. #endif
  131. } while (read_seqretry(&xtime_lock, seq));
  132. xtim = timespec_to_ktime(xts);
  133. tomono = timespec_to_ktime(wall_to_monotonic);
  134. base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
  135. base->clock_base[CLOCK_MONOTONIC].softirq_time =
  136. ktime_add(xtim, tomono);
  137. }
  138. /*
  139. * Helper function to check, whether the timer is running the callback
  140. * function
  141. */
  142. static inline int hrtimer_callback_running(struct hrtimer *timer)
  143. {
  144. return timer->state & HRTIMER_STATE_CALLBACK;
  145. }
  146. /*
  147. * Functions and macros which are different for UP/SMP systems are kept in a
  148. * single place
  149. */
  150. #ifdef CONFIG_SMP
  151. /*
  152. * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
  153. * means that all timers which are tied to this base via timer->base are
  154. * locked, and the base itself is locked too.
  155. *
  156. * So __run_timers/migrate_timers can safely modify all timers which could
  157. * be found on the lists/queues.
  158. *
  159. * When the timer's base is locked, and the timer removed from list, it is
  160. * possible to set timer->base = NULL and drop the lock: the timer remains
  161. * locked.
  162. */
  163. static
  164. struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
  165. unsigned long *flags)
  166. {
  167. struct hrtimer_clock_base *base;
  168. for (;;) {
  169. base = timer->base;
  170. if (likely(base != NULL)) {
  171. spin_lock_irqsave(&base->cpu_base->lock, *flags);
  172. if (likely(base == timer->base))
  173. return base;
  174. /* The timer has migrated to another CPU: */
  175. spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
  176. }
  177. cpu_relax();
  178. }
  179. }
  180. /*
  181. * Switch the timer base to the current CPU when possible.
  182. */
  183. static inline struct hrtimer_clock_base *
  184. switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
  185. {
  186. struct hrtimer_clock_base *new_base;
  187. struct hrtimer_cpu_base *new_cpu_base;
  188. new_cpu_base = &__get_cpu_var(hrtimer_bases);
  189. new_base = &new_cpu_base->clock_base[base->index];
  190. if (base != new_base) {
  191. /*
  192. * We are trying to schedule the timer on the local CPU.
  193. * However we can't change timer's base while it is running,
  194. * so we keep it on the same CPU. No hassle vs. reprogramming
  195. * the event source in the high resolution case. The softirq
  196. * code will take care of this when the timer function has
  197. * completed. There is no conflict as we hold the lock until
  198. * the timer is enqueued.
  199. */
  200. if (unlikely(hrtimer_callback_running(timer)))
  201. return base;
  202. /* See the comment in lock_timer_base() */
  203. timer->base = NULL;
  204. spin_unlock(&base->cpu_base->lock);
  205. spin_lock(&new_base->cpu_base->lock);
  206. timer->base = new_base;
  207. }
  208. return new_base;
  209. }
  210. #else /* CONFIG_SMP */
  211. static inline struct hrtimer_clock_base *
  212. lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  213. {
  214. struct hrtimer_clock_base *base = timer->base;
  215. spin_lock_irqsave(&base->cpu_base->lock, *flags);
  216. return base;
  217. }
  218. # define switch_hrtimer_base(t, b) (b)
  219. #endif /* !CONFIG_SMP */
  220. /*
  221. * Functions for the union type storage format of ktime_t which are
  222. * too large for inlining:
  223. */
  224. #if BITS_PER_LONG < 64
  225. # ifndef CONFIG_KTIME_SCALAR
  226. /**
  227. * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
  228. * @kt: addend
  229. * @nsec: the scalar nsec value to add
  230. *
  231. * Returns the sum of kt and nsec in ktime_t format
  232. */
  233. ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
  234. {
  235. ktime_t tmp;
  236. if (likely(nsec < NSEC_PER_SEC)) {
  237. tmp.tv64 = nsec;
  238. } else {
  239. unsigned long rem = do_div(nsec, NSEC_PER_SEC);
  240. tmp = ktime_set((long)nsec, rem);
  241. }
  242. return ktime_add(kt, tmp);
  243. }
  244. # endif /* !CONFIG_KTIME_SCALAR */
  245. /*
  246. * Divide a ktime value by a nanosecond value
  247. */
  248. unsigned long ktime_divns(const ktime_t kt, s64 div)
  249. {
  250. u64 dclc, inc, dns;
  251. int sft = 0;
  252. dclc = dns = ktime_to_ns(kt);
  253. inc = div;
  254. /* Make sure the divisor is less than 2^32: */
  255. while (div >> 32) {
  256. sft++;
  257. div >>= 1;
  258. }
  259. dclc >>= sft;
  260. do_div(dclc, (unsigned long) div);
  261. return (unsigned long) dclc;
  262. }
  263. #endif /* BITS_PER_LONG >= 64 */
  264. /* High resolution timer related functions */
  265. #ifdef CONFIG_HIGH_RES_TIMERS
  266. /*
  267. * High resolution timer enabled ?
  268. */
  269. static int hrtimer_hres_enabled __read_mostly = 1;
  270. /*
  271. * Enable / Disable high resolution mode
  272. */
  273. static int __init setup_hrtimer_hres(char *str)
  274. {
  275. if (!strcmp(str, "off"))
  276. hrtimer_hres_enabled = 0;
  277. else if (!strcmp(str, "on"))
  278. hrtimer_hres_enabled = 1;
  279. else
  280. return 0;
  281. return 1;
  282. }
  283. __setup("highres=", setup_hrtimer_hres);
  284. /*
  285. * hrtimer_high_res_enabled - query, if the highres mode is enabled
  286. */
  287. static inline int hrtimer_is_hres_enabled(void)
  288. {
  289. return hrtimer_hres_enabled;
  290. }
  291. /*
  292. * Is the high resolution mode active ?
  293. */
  294. static inline int hrtimer_hres_active(void)
  295. {
  296. return __get_cpu_var(hrtimer_bases).hres_active;
  297. }
  298. /*
  299. * Reprogram the event source with checking both queues for the
  300. * next event
  301. * Called with interrupts disabled and base->lock held
  302. */
  303. static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
  304. {
  305. int i;
  306. struct hrtimer_clock_base *base = cpu_base->clock_base;
  307. ktime_t expires;
  308. cpu_base->expires_next.tv64 = KTIME_MAX;
  309. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
  310. struct hrtimer *timer;
  311. if (!base->first)
  312. continue;
  313. timer = rb_entry(base->first, struct hrtimer, node);
  314. expires = ktime_sub(timer->expires, base->offset);
  315. if (expires.tv64 < cpu_base->expires_next.tv64)
  316. cpu_base->expires_next = expires;
  317. }
  318. if (cpu_base->expires_next.tv64 != KTIME_MAX)
  319. tick_program_event(cpu_base->expires_next, 1);
  320. }
  321. /*
  322. * Shared reprogramming for clock_realtime and clock_monotonic
  323. *
  324. * When a timer is enqueued and expires earlier than the already enqueued
  325. * timers, we have to check, whether it expires earlier than the timer for
  326. * which the clock event device was armed.
  327. *
  328. * Called with interrupts disabled and base->cpu_base.lock held
  329. */
  330. static int hrtimer_reprogram(struct hrtimer *timer,
  331. struct hrtimer_clock_base *base)
  332. {
  333. ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
  334. ktime_t expires = ktime_sub(timer->expires, base->offset);
  335. int res;
  336. /*
  337. * When the callback is running, we do not reprogram the clock event
  338. * device. The timer callback is either running on a different CPU or
  339. * the callback is executed in the hrtimer_interupt context. The
  340. * reprogramming is handled either by the softirq, which called the
  341. * callback or at the end of the hrtimer_interrupt.
  342. */
  343. if (hrtimer_callback_running(timer))
  344. return 0;
  345. if (expires.tv64 >= expires_next->tv64)
  346. return 0;
  347. /*
  348. * Clockevents returns -ETIME, when the event was in the past.
  349. */
  350. res = tick_program_event(expires, 0);
  351. if (!IS_ERR_VALUE(res))
  352. *expires_next = expires;
  353. return res;
  354. }
  355. /*
  356. * Retrigger next event is called after clock was set
  357. *
  358. * Called with interrupts disabled via on_each_cpu()
  359. */
  360. static void retrigger_next_event(void *arg)
  361. {
  362. struct hrtimer_cpu_base *base;
  363. struct timespec realtime_offset;
  364. unsigned long seq;
  365. if (!hrtimer_hres_active())
  366. return;
  367. do {
  368. seq = read_seqbegin(&xtime_lock);
  369. set_normalized_timespec(&realtime_offset,
  370. -wall_to_monotonic.tv_sec,
  371. -wall_to_monotonic.tv_nsec);
  372. } while (read_seqretry(&xtime_lock, seq));
  373. base = &__get_cpu_var(hrtimer_bases);
  374. /* Adjust CLOCK_REALTIME offset */
  375. spin_lock(&base->lock);
  376. base->clock_base[CLOCK_REALTIME].offset =
  377. timespec_to_ktime(realtime_offset);
  378. hrtimer_force_reprogram(base);
  379. spin_unlock(&base->lock);
  380. }
  381. /*
  382. * Clock realtime was set
  383. *
  384. * Change the offset of the realtime clock vs. the monotonic
  385. * clock.
  386. *
  387. * We might have to reprogram the high resolution timer interrupt. On
  388. * SMP we call the architecture specific code to retrigger _all_ high
  389. * resolution timer interrupts. On UP we just disable interrupts and
  390. * call the high resolution interrupt code.
  391. */
  392. void clock_was_set(void)
  393. {
  394. /* Retrigger the CPU local events everywhere */
  395. on_each_cpu(retrigger_next_event, NULL, 0, 1);
  396. }
  397. /*
  398. * Check, whether the timer is on the callback pending list
  399. */
  400. static inline int hrtimer_cb_pending(const struct hrtimer *timer)
  401. {
  402. return timer->state & HRTIMER_STATE_PENDING;
  403. }
  404. /*
  405. * Remove a timer from the callback pending list
  406. */
  407. static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
  408. {
  409. list_del_init(&timer->cb_entry);
  410. }
  411. /*
  412. * Initialize the high resolution related parts of cpu_base
  413. */
  414. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
  415. {
  416. base->expires_next.tv64 = KTIME_MAX;
  417. base->hres_active = 0;
  418. INIT_LIST_HEAD(&base->cb_pending);
  419. }
  420. /*
  421. * Initialize the high resolution related parts of a hrtimer
  422. */
  423. static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
  424. {
  425. INIT_LIST_HEAD(&timer->cb_entry);
  426. }
  427. /*
  428. * When High resolution timers are active, try to reprogram. Note, that in case
  429. * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
  430. * check happens. The timer gets enqueued into the rbtree. The reprogramming
  431. * and expiry check is done in the hrtimer_interrupt or in the softirq.
  432. */
  433. static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
  434. struct hrtimer_clock_base *base)
  435. {
  436. if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
  437. /* Timer is expired, act upon the callback mode */
  438. switch(timer->cb_mode) {
  439. case HRTIMER_CB_IRQSAFE_NO_RESTART:
  440. /*
  441. * We can call the callback from here. No restart
  442. * happens, so no danger of recursion
  443. */
  444. BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
  445. return 1;
  446. case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
  447. /*
  448. * This is solely for the sched tick emulation with
  449. * dynamic tick support to ensure that we do not
  450. * restart the tick right on the edge and end up with
  451. * the tick timer in the softirq ! The calling site
  452. * takes care of this.
  453. */
  454. return 1;
  455. case HRTIMER_CB_IRQSAFE:
  456. case HRTIMER_CB_SOFTIRQ:
  457. /*
  458. * Move everything else into the softirq pending list !
  459. */
  460. list_add_tail(&timer->cb_entry,
  461. &base->cpu_base->cb_pending);
  462. timer->state = HRTIMER_STATE_PENDING;
  463. raise_softirq(HRTIMER_SOFTIRQ);
  464. return 1;
  465. default:
  466. BUG();
  467. }
  468. }
  469. return 0;
  470. }
  471. /*
  472. * Switch to high resolution mode
  473. */
  474. static void hrtimer_switch_to_hres(void)
  475. {
  476. struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
  477. unsigned long flags;
  478. if (base->hres_active)
  479. return;
  480. local_irq_save(flags);
  481. if (tick_init_highres()) {
  482. local_irq_restore(flags);
  483. return;
  484. }
  485. base->hres_active = 1;
  486. base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
  487. base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
  488. tick_setup_sched_timer();
  489. /* "Retrigger" the interrupt to get things going */
  490. retrigger_next_event(NULL);
  491. local_irq_restore(flags);
  492. printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
  493. smp_processor_id());
  494. }
  495. #else
  496. static inline int hrtimer_hres_active(void) { return 0; }
  497. static inline int hrtimer_is_hres_enabled(void) { return 0; }
  498. static inline void hrtimer_switch_to_hres(void) { }
  499. static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
  500. static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
  501. struct hrtimer_clock_base *base)
  502. {
  503. return 0;
  504. }
  505. static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
  506. static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
  507. static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
  508. static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
  509. #endif /* CONFIG_HIGH_RES_TIMERS */
  510. #ifdef CONFIG_TIMER_STATS
  511. void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
  512. {
  513. if (timer->start_site)
  514. return;
  515. timer->start_site = addr;
  516. memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
  517. timer->start_pid = current->pid;
  518. }
  519. #endif
  520. /*
  521. * Counterpart to lock_timer_base above:
  522. */
  523. static inline
  524. void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
  525. {
  526. spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
  527. }
  528. /**
  529. * hrtimer_forward - forward the timer expiry
  530. * @timer: hrtimer to forward
  531. * @now: forward past this time
  532. * @interval: the interval to forward
  533. *
  534. * Forward the timer expiry so it will expire in the future.
  535. * Returns the number of overruns.
  536. */
  537. unsigned long
  538. hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
  539. {
  540. unsigned long orun = 1;
  541. ktime_t delta;
  542. delta = ktime_sub(now, timer->expires);
  543. if (delta.tv64 < 0)
  544. return 0;
  545. if (interval.tv64 < timer->base->resolution.tv64)
  546. interval.tv64 = timer->base->resolution.tv64;
  547. if (unlikely(delta.tv64 >= interval.tv64)) {
  548. s64 incr = ktime_to_ns(interval);
  549. orun = ktime_divns(delta, incr);
  550. timer->expires = ktime_add_ns(timer->expires, incr * orun);
  551. if (timer->expires.tv64 > now.tv64)
  552. return orun;
  553. /*
  554. * This (and the ktime_add() below) is the
  555. * correction for exact:
  556. */
  557. orun++;
  558. }
  559. timer->expires = ktime_add(timer->expires, interval);
  560. return orun;
  561. }
  562. /*
  563. * enqueue_hrtimer - internal function to (re)start a timer
  564. *
  565. * The timer is inserted in expiry order. Insertion into the
  566. * red black tree is O(log(n)). Must hold the base lock.
  567. */
  568. static void enqueue_hrtimer(struct hrtimer *timer,
  569. struct hrtimer_clock_base *base, int reprogram)
  570. {
  571. struct rb_node **link = &base->active.rb_node;
  572. struct rb_node *parent = NULL;
  573. struct hrtimer *entry;
  574. /*
  575. * Find the right place in the rbtree:
  576. */
  577. while (*link) {
  578. parent = *link;
  579. entry = rb_entry(parent, struct hrtimer, node);
  580. /*
  581. * We dont care about collisions. Nodes with
  582. * the same expiry time stay together.
  583. */
  584. if (timer->expires.tv64 < entry->expires.tv64)
  585. link = &(*link)->rb_left;
  586. else
  587. link = &(*link)->rb_right;
  588. }
  589. /*
  590. * Insert the timer to the rbtree and check whether it
  591. * replaces the first pending timer
  592. */
  593. if (!base->first || timer->expires.tv64 <
  594. rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
  595. /*
  596. * Reprogram the clock event device. When the timer is already
  597. * expired hrtimer_enqueue_reprogram has either called the
  598. * callback or added it to the pending list and raised the
  599. * softirq.
  600. *
  601. * This is a NOP for !HIGHRES
  602. */
  603. if (reprogram && hrtimer_enqueue_reprogram(timer, base))
  604. return;
  605. base->first = &timer->node;
  606. }
  607. rb_link_node(&timer->node, parent, link);
  608. rb_insert_color(&timer->node, &base->active);
  609. /*
  610. * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
  611. * state of a possibly running callback.
  612. */
  613. timer->state |= HRTIMER_STATE_ENQUEUED;
  614. }
  615. /*
  616. * __remove_hrtimer - internal function to remove a timer
  617. *
  618. * Caller must hold the base lock.
  619. *
  620. * High resolution timer mode reprograms the clock event device when the
  621. * timer is the one which expires next. The caller can disable this by setting
  622. * reprogram to zero. This is useful, when the context does a reprogramming
  623. * anyway (e.g. timer interrupt)
  624. */
  625. static void __remove_hrtimer(struct hrtimer *timer,
  626. struct hrtimer_clock_base *base,
  627. unsigned long newstate, int reprogram)
  628. {
  629. /* High res. callback list. NOP for !HIGHRES */
  630. if (hrtimer_cb_pending(timer))
  631. hrtimer_remove_cb_pending(timer);
  632. else {
  633. /*
  634. * Remove the timer from the rbtree and replace the
  635. * first entry pointer if necessary.
  636. */
  637. if (base->first == &timer->node) {
  638. base->first = rb_next(&timer->node);
  639. /* Reprogram the clock event device. if enabled */
  640. if (reprogram && hrtimer_hres_active())
  641. hrtimer_force_reprogram(base->cpu_base);
  642. }
  643. rb_erase(&timer->node, &base->active);
  644. }
  645. timer->state = newstate;
  646. }
  647. /*
  648. * remove hrtimer, called with base lock held
  649. */
  650. static inline int
  651. remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
  652. {
  653. if (hrtimer_is_queued(timer)) {
  654. int reprogram;
  655. /*
  656. * Remove the timer and force reprogramming when high
  657. * resolution mode is active and the timer is on the current
  658. * CPU. If we remove a timer on another CPU, reprogramming is
  659. * skipped. The interrupt event on this CPU is fired and
  660. * reprogramming happens in the interrupt handler. This is a
  661. * rare case and less expensive than a smp call.
  662. */
  663. timer_stats_hrtimer_clear_start_info(timer);
  664. reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
  665. __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
  666. reprogram);
  667. return 1;
  668. }
  669. return 0;
  670. }
  671. /**
  672. * hrtimer_start - (re)start an relative timer on the current CPU
  673. * @timer: the timer to be added
  674. * @tim: expiry time
  675. * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
  676. *
  677. * Returns:
  678. * 0 on success
  679. * 1 when the timer was active
  680. */
  681. int
  682. hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
  683. {
  684. struct hrtimer_clock_base *base, *new_base;
  685. unsigned long flags;
  686. int ret;
  687. base = lock_hrtimer_base(timer, &flags);
  688. /* Remove an active timer from the queue: */
  689. ret = remove_hrtimer(timer, base);
  690. /* Switch the timer base, if necessary: */
  691. new_base = switch_hrtimer_base(timer, base);
  692. if (mode == HRTIMER_MODE_REL) {
  693. tim = ktime_add(tim, new_base->get_time());
  694. /*
  695. * CONFIG_TIME_LOW_RES is a temporary way for architectures
  696. * to signal that they simply return xtime in
  697. * do_gettimeoffset(). In this case we want to round up by
  698. * resolution when starting a relative timer, to avoid short
  699. * timeouts. This will go away with the GTOD framework.
  700. */
  701. #ifdef CONFIG_TIME_LOW_RES
  702. tim = ktime_add(tim, base->resolution);
  703. #endif
  704. }
  705. timer->expires = tim;
  706. timer_stats_hrtimer_set_start_info(timer);
  707. enqueue_hrtimer(timer, new_base, base == new_base);
  708. unlock_hrtimer_base(timer, &flags);
  709. return ret;
  710. }
  711. EXPORT_SYMBOL_GPL(hrtimer_start);
  712. /**
  713. * hrtimer_try_to_cancel - try to deactivate a timer
  714. * @timer: hrtimer to stop
  715. *
  716. * Returns:
  717. * 0 when the timer was not active
  718. * 1 when the timer was active
  719. * -1 when the timer is currently excuting the callback function and
  720. * cannot be stopped
  721. */
  722. int hrtimer_try_to_cancel(struct hrtimer *timer)
  723. {
  724. struct hrtimer_clock_base *base;
  725. unsigned long flags;
  726. int ret = -1;
  727. base = lock_hrtimer_base(timer, &flags);
  728. if (!hrtimer_callback_running(timer))
  729. ret = remove_hrtimer(timer, base);
  730. unlock_hrtimer_base(timer, &flags);
  731. return ret;
  732. }
  733. EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
  734. /**
  735. * hrtimer_cancel - cancel a timer and wait for the handler to finish.
  736. * @timer: the timer to be cancelled
  737. *
  738. * Returns:
  739. * 0 when the timer was not active
  740. * 1 when the timer was active
  741. */
  742. int hrtimer_cancel(struct hrtimer *timer)
  743. {
  744. for (;;) {
  745. int ret = hrtimer_try_to_cancel(timer);
  746. if (ret >= 0)
  747. return ret;
  748. cpu_relax();
  749. }
  750. }
  751. EXPORT_SYMBOL_GPL(hrtimer_cancel);
  752. /**
  753. * hrtimer_get_remaining - get remaining time for the timer
  754. * @timer: the timer to read
  755. */
  756. ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
  757. {
  758. struct hrtimer_clock_base *base;
  759. unsigned long flags;
  760. ktime_t rem;
  761. base = lock_hrtimer_base(timer, &flags);
  762. rem = ktime_sub(timer->expires, base->get_time());
  763. unlock_hrtimer_base(timer, &flags);
  764. return rem;
  765. }
  766. EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
  767. #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
  768. /**
  769. * hrtimer_get_next_event - get the time until next expiry event
  770. *
  771. * Returns the delta to the next expiry event or KTIME_MAX if no timer
  772. * is pending.
  773. */
  774. ktime_t hrtimer_get_next_event(void)
  775. {
  776. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  777. struct hrtimer_clock_base *base = cpu_base->clock_base;
  778. ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
  779. unsigned long flags;
  780. int i;
  781. spin_lock_irqsave(&cpu_base->lock, flags);
  782. if (!hrtimer_hres_active()) {
  783. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
  784. struct hrtimer *timer;
  785. if (!base->first)
  786. continue;
  787. timer = rb_entry(base->first, struct hrtimer, node);
  788. delta.tv64 = timer->expires.tv64;
  789. delta = ktime_sub(delta, base->get_time());
  790. if (delta.tv64 < mindelta.tv64)
  791. mindelta.tv64 = delta.tv64;
  792. }
  793. }
  794. spin_unlock_irqrestore(&cpu_base->lock, flags);
  795. if (mindelta.tv64 < 0)
  796. mindelta.tv64 = 0;
  797. return mindelta;
  798. }
  799. #endif
  800. /**
  801. * hrtimer_init - initialize a timer to the given clock
  802. * @timer: the timer to be initialized
  803. * @clock_id: the clock to be used
  804. * @mode: timer mode abs/rel
  805. */
  806. void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
  807. enum hrtimer_mode mode)
  808. {
  809. struct hrtimer_cpu_base *cpu_base;
  810. memset(timer, 0, sizeof(struct hrtimer));
  811. cpu_base = &__raw_get_cpu_var(hrtimer_bases);
  812. if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
  813. clock_id = CLOCK_MONOTONIC;
  814. timer->base = &cpu_base->clock_base[clock_id];
  815. hrtimer_init_timer_hres(timer);
  816. #ifdef CONFIG_TIMER_STATS
  817. timer->start_site = NULL;
  818. timer->start_pid = -1;
  819. memset(timer->start_comm, 0, TASK_COMM_LEN);
  820. #endif
  821. }
  822. EXPORT_SYMBOL_GPL(hrtimer_init);
  823. /**
  824. * hrtimer_get_res - get the timer resolution for a clock
  825. * @which_clock: which clock to query
  826. * @tp: pointer to timespec variable to store the resolution
  827. *
  828. * Store the resolution of the clock selected by @which_clock in the
  829. * variable pointed to by @tp.
  830. */
  831. int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
  832. {
  833. struct hrtimer_cpu_base *cpu_base;
  834. cpu_base = &__raw_get_cpu_var(hrtimer_bases);
  835. *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
  836. return 0;
  837. }
  838. EXPORT_SYMBOL_GPL(hrtimer_get_res);
  839. #ifdef CONFIG_HIGH_RES_TIMERS
  840. /*
  841. * High resolution timer interrupt
  842. * Called with interrupts disabled
  843. */
  844. void hrtimer_interrupt(struct clock_event_device *dev)
  845. {
  846. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  847. struct hrtimer_clock_base *base;
  848. ktime_t expires_next, now;
  849. int i, raise = 0;
  850. BUG_ON(!cpu_base->hres_active);
  851. cpu_base->nr_events++;
  852. dev->next_event.tv64 = KTIME_MAX;
  853. retry:
  854. now = ktime_get();
  855. expires_next.tv64 = KTIME_MAX;
  856. base = cpu_base->clock_base;
  857. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  858. ktime_t basenow;
  859. struct rb_node *node;
  860. spin_lock(&cpu_base->lock);
  861. basenow = ktime_add(now, base->offset);
  862. while ((node = base->first)) {
  863. struct hrtimer *timer;
  864. timer = rb_entry(node, struct hrtimer, node);
  865. if (basenow.tv64 < timer->expires.tv64) {
  866. ktime_t expires;
  867. expires = ktime_sub(timer->expires,
  868. base->offset);
  869. if (expires.tv64 < expires_next.tv64)
  870. expires_next = expires;
  871. break;
  872. }
  873. /* Move softirq callbacks to the pending list */
  874. if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
  875. __remove_hrtimer(timer, base,
  876. HRTIMER_STATE_PENDING, 0);
  877. list_add_tail(&timer->cb_entry,
  878. &base->cpu_base->cb_pending);
  879. raise = 1;
  880. continue;
  881. }
  882. __remove_hrtimer(timer, base,
  883. HRTIMER_STATE_CALLBACK, 0);
  884. timer_stats_account_hrtimer(timer);
  885. /*
  886. * Note: We clear the CALLBACK bit after
  887. * enqueue_hrtimer to avoid reprogramming of
  888. * the event hardware. This happens at the end
  889. * of this function anyway.
  890. */
  891. if (timer->function(timer) != HRTIMER_NORESTART) {
  892. BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
  893. enqueue_hrtimer(timer, base, 0);
  894. }
  895. timer->state &= ~HRTIMER_STATE_CALLBACK;
  896. }
  897. spin_unlock(&cpu_base->lock);
  898. base++;
  899. }
  900. cpu_base->expires_next = expires_next;
  901. /* Reprogramming necessary ? */
  902. if (expires_next.tv64 != KTIME_MAX) {
  903. if (tick_program_event(expires_next, 0))
  904. goto retry;
  905. }
  906. /* Raise softirq ? */
  907. if (raise)
  908. raise_softirq(HRTIMER_SOFTIRQ);
  909. }
  910. static void run_hrtimer_softirq(struct softirq_action *h)
  911. {
  912. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  913. spin_lock_irq(&cpu_base->lock);
  914. while (!list_empty(&cpu_base->cb_pending)) {
  915. enum hrtimer_restart (*fn)(struct hrtimer *);
  916. struct hrtimer *timer;
  917. int restart;
  918. timer = list_entry(cpu_base->cb_pending.next,
  919. struct hrtimer, cb_entry);
  920. timer_stats_account_hrtimer(timer);
  921. fn = timer->function;
  922. __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
  923. spin_unlock_irq(&cpu_base->lock);
  924. restart = fn(timer);
  925. spin_lock_irq(&cpu_base->lock);
  926. timer->state &= ~HRTIMER_STATE_CALLBACK;
  927. if (restart == HRTIMER_RESTART) {
  928. BUG_ON(hrtimer_active(timer));
  929. /*
  930. * Enqueue the timer, allow reprogramming of the event
  931. * device
  932. */
  933. enqueue_hrtimer(timer, timer->base, 1);
  934. } else if (hrtimer_active(timer)) {
  935. /*
  936. * If the timer was rearmed on another CPU, reprogram
  937. * the event device.
  938. */
  939. if (timer->base->first == &timer->node)
  940. hrtimer_reprogram(timer, timer->base);
  941. }
  942. }
  943. spin_unlock_irq(&cpu_base->lock);
  944. }
  945. #endif /* CONFIG_HIGH_RES_TIMERS */
  946. /*
  947. * Expire the per base hrtimer-queue:
  948. */
  949. static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
  950. int index)
  951. {
  952. struct rb_node *node;
  953. struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
  954. if (!base->first)
  955. return;
  956. if (base->get_softirq_time)
  957. base->softirq_time = base->get_softirq_time();
  958. spin_lock_irq(&cpu_base->lock);
  959. while ((node = base->first)) {
  960. struct hrtimer *timer;
  961. enum hrtimer_restart (*fn)(struct hrtimer *);
  962. int restart;
  963. timer = rb_entry(node, struct hrtimer, node);
  964. if (base->softirq_time.tv64 <= timer->expires.tv64)
  965. break;
  966. timer_stats_account_hrtimer(timer);
  967. fn = timer->function;
  968. __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
  969. spin_unlock_irq(&cpu_base->lock);
  970. restart = fn(timer);
  971. spin_lock_irq(&cpu_base->lock);
  972. timer->state &= ~HRTIMER_STATE_CALLBACK;
  973. if (restart != HRTIMER_NORESTART) {
  974. BUG_ON(hrtimer_active(timer));
  975. enqueue_hrtimer(timer, base, 0);
  976. }
  977. }
  978. spin_unlock_irq(&cpu_base->lock);
  979. }
  980. /*
  981. * Called from timer softirq every jiffy, expire hrtimers:
  982. *
  983. * For HRT its the fall back code to run the softirq in the timer
  984. * softirq context in case the hrtimer initialization failed or has
  985. * not been done yet.
  986. */
  987. void hrtimer_run_queues(void)
  988. {
  989. struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
  990. int i;
  991. if (hrtimer_hres_active())
  992. return;
  993. /*
  994. * This _is_ ugly: We have to check in the softirq context,
  995. * whether we can switch to highres and / or nohz mode. The
  996. * clocksource switch happens in the timer interrupt with
  997. * xtime_lock held. Notification from there only sets the
  998. * check bit in the tick_oneshot code, otherwise we might
  999. * deadlock vs. xtime_lock.
  1000. */
  1001. if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
  1002. hrtimer_switch_to_hres();
  1003. hrtimer_get_softirq_time(cpu_base);
  1004. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
  1005. run_hrtimer_queue(cpu_base, i);
  1006. }
  1007. /*
  1008. * Sleep related functions:
  1009. */
  1010. static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
  1011. {
  1012. struct hrtimer_sleeper *t =
  1013. container_of(timer, struct hrtimer_sleeper, timer);
  1014. struct task_struct *task = t->task;
  1015. t->task = NULL;
  1016. if (task)
  1017. wake_up_process(task);
  1018. return HRTIMER_NORESTART;
  1019. }
  1020. void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
  1021. {
  1022. sl->timer.function = hrtimer_wakeup;
  1023. sl->task = task;
  1024. #ifdef CONFIG_HIGH_RES_TIMERS
  1025. sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
  1026. #endif
  1027. }
  1028. static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
  1029. {
  1030. hrtimer_init_sleeper(t, current);
  1031. do {
  1032. set_current_state(TASK_INTERRUPTIBLE);
  1033. hrtimer_start(&t->timer, t->timer.expires, mode);
  1034. if (likely(t->task))
  1035. schedule();
  1036. hrtimer_cancel(&t->timer);
  1037. mode = HRTIMER_MODE_ABS;
  1038. } while (t->task && !signal_pending(current));
  1039. return t->task == NULL;
  1040. }
  1041. long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
  1042. {
  1043. struct hrtimer_sleeper t;
  1044. struct timespec __user *rmtp;
  1045. struct timespec tu;
  1046. ktime_t time;
  1047. restart->fn = do_no_restart_syscall;
  1048. hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
  1049. t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
  1050. if (do_nanosleep(&t, HRTIMER_MODE_ABS))
  1051. return 0;
  1052. rmtp = (struct timespec __user *) restart->arg1;
  1053. if (rmtp) {
  1054. time = ktime_sub(t.timer.expires, t.timer.base->get_time());
  1055. if (time.tv64 <= 0)
  1056. return 0;
  1057. tu = ktime_to_timespec(time);
  1058. if (copy_to_user(rmtp, &tu, sizeof(tu)))
  1059. return -EFAULT;
  1060. }
  1061. restart->fn = hrtimer_nanosleep_restart;
  1062. /* The other values in restart are already filled in */
  1063. return -ERESTART_RESTARTBLOCK;
  1064. }
  1065. long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
  1066. const enum hrtimer_mode mode, const clockid_t clockid)
  1067. {
  1068. struct restart_block *restart;
  1069. struct hrtimer_sleeper t;
  1070. struct timespec tu;
  1071. ktime_t rem;
  1072. hrtimer_init(&t.timer, clockid, mode);
  1073. t.timer.expires = timespec_to_ktime(*rqtp);
  1074. if (do_nanosleep(&t, mode))
  1075. return 0;
  1076. /* Absolute timers do not update the rmtp value and restart: */
  1077. if (mode == HRTIMER_MODE_ABS)
  1078. return -ERESTARTNOHAND;
  1079. if (rmtp) {
  1080. rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
  1081. if (rem.tv64 <= 0)
  1082. return 0;
  1083. tu = ktime_to_timespec(rem);
  1084. if (copy_to_user(rmtp, &tu, sizeof(tu)))
  1085. return -EFAULT;
  1086. }
  1087. restart = &current_thread_info()->restart_block;
  1088. restart->fn = hrtimer_nanosleep_restart;
  1089. restart->arg0 = (unsigned long) t.timer.base->index;
  1090. restart->arg1 = (unsigned long) rmtp;
  1091. restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
  1092. restart->arg3 = t.timer.expires.tv64 >> 32;
  1093. return -ERESTART_RESTARTBLOCK;
  1094. }
  1095. asmlinkage long
  1096. sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
  1097. {
  1098. struct timespec tu;
  1099. if (copy_from_user(&tu, rqtp, sizeof(tu)))
  1100. return -EFAULT;
  1101. if (!timespec_valid(&tu))
  1102. return -EINVAL;
  1103. return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
  1104. }
  1105. /*
  1106. * Functions related to boot-time initialization:
  1107. */
  1108. static void __devinit init_hrtimers_cpu(int cpu)
  1109. {
  1110. struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
  1111. int i;
  1112. spin_lock_init(&cpu_base->lock);
  1113. lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
  1114. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
  1115. cpu_base->clock_base[i].cpu_base = cpu_base;
  1116. hrtimer_init_hres(cpu_base);
  1117. }
  1118. #ifdef CONFIG_HOTPLUG_CPU
  1119. static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
  1120. struct hrtimer_clock_base *new_base)
  1121. {
  1122. struct hrtimer *timer;
  1123. struct rb_node *node;
  1124. while ((node = rb_first(&old_base->active))) {
  1125. timer = rb_entry(node, struct hrtimer, node);
  1126. BUG_ON(hrtimer_callback_running(timer));
  1127. __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
  1128. timer->base = new_base;
  1129. /*
  1130. * Enqueue the timer. Allow reprogramming of the event device
  1131. */
  1132. enqueue_hrtimer(timer, new_base, 1);
  1133. }
  1134. }
  1135. static void migrate_hrtimers(int cpu)
  1136. {
  1137. struct hrtimer_cpu_base *old_base, *new_base;
  1138. int i;
  1139. BUG_ON(cpu_online(cpu));
  1140. old_base = &per_cpu(hrtimer_bases, cpu);
  1141. new_base = &get_cpu_var(hrtimer_bases);
  1142. tick_cancel_sched_timer(cpu);
  1143. local_irq_disable();
  1144. spin_lock(&new_base->lock);
  1145. spin_lock(&old_base->lock);
  1146. for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
  1147. migrate_hrtimer_list(&old_base->clock_base[i],
  1148. &new_base->clock_base[i]);
  1149. }
  1150. spin_unlock(&old_base->lock);
  1151. spin_unlock(&new_base->lock);
  1152. local_irq_enable();
  1153. put_cpu_var(hrtimer_bases);
  1154. }
  1155. #endif /* CONFIG_HOTPLUG_CPU */
  1156. static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
  1157. unsigned long action, void *hcpu)
  1158. {
  1159. long cpu = (long)hcpu;
  1160. switch (action) {
  1161. case CPU_UP_PREPARE:
  1162. init_hrtimers_cpu(cpu);
  1163. break;
  1164. #ifdef CONFIG_HOTPLUG_CPU
  1165. case CPU_DEAD:
  1166. clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
  1167. migrate_hrtimers(cpu);
  1168. break;
  1169. #endif
  1170. default:
  1171. break;
  1172. }
  1173. return NOTIFY_OK;
  1174. }
  1175. static struct notifier_block __cpuinitdata hrtimers_nb = {
  1176. .notifier_call = hrtimer_cpu_notify,
  1177. };
  1178. void __init hrtimers_init(void)
  1179. {
  1180. hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
  1181. (void *)(long)smp_processor_id());
  1182. register_cpu_notifier(&hrtimers_nb);
  1183. #ifdef CONFIG_HIGH_RES_TIMERS
  1184. open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
  1185. #endif
  1186. }