vm86.c 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844
  1. /*
  2. * linux/kernel/vm86.c
  3. *
  4. * Copyright (C) 1994 Linus Torvalds
  5. *
  6. * 29 dec 2001 - Fixed oopses caused by unchecked access to the vm86
  7. * stack - Manfred Spraul <manfred@colorfullife.com>
  8. *
  9. * 22 mar 2002 - Manfred detected the stackfaults, but didn't handle
  10. * them correctly. Now the emulation will be in a
  11. * consistent state after stackfaults - Kasper Dupont
  12. * <kasperd@daimi.au.dk>
  13. *
  14. * 22 mar 2002 - Added missing clear_IF in set_vflags_* Kasper Dupont
  15. * <kasperd@daimi.au.dk>
  16. *
  17. * ?? ??? 2002 - Fixed premature returns from handle_vm86_fault
  18. * caused by Kasper Dupont's changes - Stas Sergeev
  19. *
  20. * 4 apr 2002 - Fixed CHECK_IF_IN_TRAP broken by Stas' changes.
  21. * Kasper Dupont <kasperd@daimi.au.dk>
  22. *
  23. * 9 apr 2002 - Changed syntax of macros in handle_vm86_fault.
  24. * Kasper Dupont <kasperd@daimi.au.dk>
  25. *
  26. * 9 apr 2002 - Changed stack access macros to jump to a label
  27. * instead of returning to userspace. This simplifies
  28. * do_int, and is needed by handle_vm6_fault. Kasper
  29. * Dupont <kasperd@daimi.au.dk>
  30. *
  31. */
  32. #include <linux/capability.h>
  33. #include <linux/errno.h>
  34. #include <linux/interrupt.h>
  35. #include <linux/sched.h>
  36. #include <linux/kernel.h>
  37. #include <linux/signal.h>
  38. #include <linux/string.h>
  39. #include <linux/mm.h>
  40. #include <linux/smp.h>
  41. #include <linux/smp_lock.h>
  42. #include <linux/highmem.h>
  43. #include <linux/ptrace.h>
  44. #include <linux/audit.h>
  45. #include <linux/stddef.h>
  46. #include <asm/uaccess.h>
  47. #include <asm/io.h>
  48. #include <asm/tlbflush.h>
  49. #include <asm/irq.h>
  50. /*
  51. * Known problems:
  52. *
  53. * Interrupt handling is not guaranteed:
  54. * - a real x86 will disable all interrupts for one instruction
  55. * after a "mov ss,xx" to make stack handling atomic even without
  56. * the 'lss' instruction. We can't guarantee this in v86 mode,
  57. * as the next instruction might result in a page fault or similar.
  58. * - a real x86 will have interrupts disabled for one instruction
  59. * past the 'sti' that enables them. We don't bother with all the
  60. * details yet.
  61. *
  62. * Let's hope these problems do not actually matter for anything.
  63. */
  64. #define KVM86 ((struct kernel_vm86_struct *)regs)
  65. #define VMPI KVM86->vm86plus
  66. /*
  67. * 8- and 16-bit register defines..
  68. */
  69. #define AL(regs) (((unsigned char *)&((regs)->pt.eax))[0])
  70. #define AH(regs) (((unsigned char *)&((regs)->pt.eax))[1])
  71. #define IP(regs) (*(unsigned short *)&((regs)->pt.eip))
  72. #define SP(regs) (*(unsigned short *)&((regs)->pt.esp))
  73. /*
  74. * virtual flags (16 and 32-bit versions)
  75. */
  76. #define VFLAGS (*(unsigned short *)&(current->thread.v86flags))
  77. #define VEFLAGS (current->thread.v86flags)
  78. #define set_flags(X,new,mask) \
  79. ((X) = ((X) & ~(mask)) | ((new) & (mask)))
  80. #define SAFE_MASK (0xDD5)
  81. #define RETURN_MASK (0xDFF)
  82. /* convert kernel_vm86_regs to vm86_regs */
  83. static int copy_vm86_regs_to_user(struct vm86_regs __user *user,
  84. const struct kernel_vm86_regs *regs)
  85. {
  86. int ret = 0;
  87. /* kernel_vm86_regs is missing xgs, so copy everything up to
  88. (but not including) orig_eax, and then rest including orig_eax. */
  89. ret += copy_to_user(user, regs, offsetof(struct kernel_vm86_regs, pt.orig_eax));
  90. ret += copy_to_user(&user->orig_eax, &regs->pt.orig_eax,
  91. sizeof(struct kernel_vm86_regs) -
  92. offsetof(struct kernel_vm86_regs, pt.orig_eax));
  93. return ret;
  94. }
  95. /* convert vm86_regs to kernel_vm86_regs */
  96. static int copy_vm86_regs_from_user(struct kernel_vm86_regs *regs,
  97. const struct vm86_regs __user *user,
  98. unsigned extra)
  99. {
  100. int ret = 0;
  101. /* copy eax-xfs inclusive */
  102. ret += copy_from_user(regs, user, offsetof(struct kernel_vm86_regs, pt.orig_eax));
  103. /* copy orig_eax-__gsh+extra */
  104. ret += copy_from_user(&regs->pt.orig_eax, &user->orig_eax,
  105. sizeof(struct kernel_vm86_regs) -
  106. offsetof(struct kernel_vm86_regs, pt.orig_eax) +
  107. extra);
  108. return ret;
  109. }
  110. struct pt_regs * FASTCALL(save_v86_state(struct kernel_vm86_regs * regs));
  111. struct pt_regs * fastcall save_v86_state(struct kernel_vm86_regs * regs)
  112. {
  113. struct tss_struct *tss;
  114. struct pt_regs *ret;
  115. unsigned long tmp;
  116. /*
  117. * This gets called from entry.S with interrupts disabled, but
  118. * from process context. Enable interrupts here, before trying
  119. * to access user space.
  120. */
  121. local_irq_enable();
  122. if (!current->thread.vm86_info) {
  123. printk("no vm86_info: BAD\n");
  124. do_exit(SIGSEGV);
  125. }
  126. set_flags(regs->pt.eflags, VEFLAGS, VIF_MASK | current->thread.v86mask);
  127. tmp = copy_vm86_regs_to_user(&current->thread.vm86_info->regs,regs);
  128. tmp += put_user(current->thread.screen_bitmap,&current->thread.vm86_info->screen_bitmap);
  129. if (tmp) {
  130. printk("vm86: could not access userspace vm86_info\n");
  131. do_exit(SIGSEGV);
  132. }
  133. tss = &per_cpu(init_tss, get_cpu());
  134. current->thread.esp0 = current->thread.saved_esp0;
  135. current->thread.sysenter_cs = __KERNEL_CS;
  136. load_esp0(tss, &current->thread);
  137. current->thread.saved_esp0 = 0;
  138. put_cpu();
  139. ret = KVM86->regs32;
  140. ret->xfs = current->thread.saved_fs;
  141. loadsegment(gs, current->thread.saved_gs);
  142. return ret;
  143. }
  144. static void mark_screen_rdonly(struct mm_struct *mm)
  145. {
  146. pgd_t *pgd;
  147. pud_t *pud;
  148. pmd_t *pmd;
  149. pte_t *pte;
  150. spinlock_t *ptl;
  151. int i;
  152. pgd = pgd_offset(mm, 0xA0000);
  153. if (pgd_none_or_clear_bad(pgd))
  154. goto out;
  155. pud = pud_offset(pgd, 0xA0000);
  156. if (pud_none_or_clear_bad(pud))
  157. goto out;
  158. pmd = pmd_offset(pud, 0xA0000);
  159. if (pmd_none_or_clear_bad(pmd))
  160. goto out;
  161. pte = pte_offset_map_lock(mm, pmd, 0xA0000, &ptl);
  162. for (i = 0; i < 32; i++) {
  163. if (pte_present(*pte))
  164. set_pte(pte, pte_wrprotect(*pte));
  165. pte++;
  166. }
  167. pte_unmap_unlock(pte, ptl);
  168. out:
  169. flush_tlb();
  170. }
  171. static int do_vm86_irq_handling(int subfunction, int irqnumber);
  172. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk);
  173. asmlinkage int sys_vm86old(struct pt_regs regs)
  174. {
  175. struct vm86_struct __user *v86 = (struct vm86_struct __user *)regs.ebx;
  176. struct kernel_vm86_struct info; /* declare this _on top_,
  177. * this avoids wasting of stack space.
  178. * This remains on the stack until we
  179. * return to 32 bit user space.
  180. */
  181. struct task_struct *tsk;
  182. int tmp, ret = -EPERM;
  183. tsk = current;
  184. if (tsk->thread.saved_esp0)
  185. goto out;
  186. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  187. offsetof(struct kernel_vm86_struct, vm86plus) -
  188. sizeof(info.regs));
  189. ret = -EFAULT;
  190. if (tmp)
  191. goto out;
  192. memset(&info.vm86plus, 0, (int)&info.regs32 - (int)&info.vm86plus);
  193. info.regs32 = &regs;
  194. tsk->thread.vm86_info = v86;
  195. do_sys_vm86(&info, tsk);
  196. ret = 0; /* we never return here */
  197. out:
  198. return ret;
  199. }
  200. asmlinkage int sys_vm86(struct pt_regs regs)
  201. {
  202. struct kernel_vm86_struct info; /* declare this _on top_,
  203. * this avoids wasting of stack space.
  204. * This remains on the stack until we
  205. * return to 32 bit user space.
  206. */
  207. struct task_struct *tsk;
  208. int tmp, ret;
  209. struct vm86plus_struct __user *v86;
  210. tsk = current;
  211. switch (regs.ebx) {
  212. case VM86_REQUEST_IRQ:
  213. case VM86_FREE_IRQ:
  214. case VM86_GET_IRQ_BITS:
  215. case VM86_GET_AND_RESET_IRQ:
  216. ret = do_vm86_irq_handling(regs.ebx, (int)regs.ecx);
  217. goto out;
  218. case VM86_PLUS_INSTALL_CHECK:
  219. /* NOTE: on old vm86 stuff this will return the error
  220. from access_ok(), because the subfunction is
  221. interpreted as (invalid) address to vm86_struct.
  222. So the installation check works.
  223. */
  224. ret = 0;
  225. goto out;
  226. }
  227. /* we come here only for functions VM86_ENTER, VM86_ENTER_NO_BYPASS */
  228. ret = -EPERM;
  229. if (tsk->thread.saved_esp0)
  230. goto out;
  231. v86 = (struct vm86plus_struct __user *)regs.ecx;
  232. tmp = copy_vm86_regs_from_user(&info.regs, &v86->regs,
  233. offsetof(struct kernel_vm86_struct, regs32) -
  234. sizeof(info.regs));
  235. ret = -EFAULT;
  236. if (tmp)
  237. goto out;
  238. info.regs32 = &regs;
  239. info.vm86plus.is_vm86pus = 1;
  240. tsk->thread.vm86_info = (struct vm86_struct __user *)v86;
  241. do_sys_vm86(&info, tsk);
  242. ret = 0; /* we never return here */
  243. out:
  244. return ret;
  245. }
  246. static void do_sys_vm86(struct kernel_vm86_struct *info, struct task_struct *tsk)
  247. {
  248. struct tss_struct *tss;
  249. /*
  250. * make sure the vm86() system call doesn't try to do anything silly
  251. */
  252. info->regs.pt.xds = 0;
  253. info->regs.pt.xes = 0;
  254. info->regs.pt.xfs = 0;
  255. /* we are clearing gs later just before "jmp resume_userspace",
  256. * because it is not saved/restored.
  257. */
  258. /*
  259. * The eflags register is also special: we cannot trust that the user
  260. * has set it up safely, so this makes sure interrupt etc flags are
  261. * inherited from protected mode.
  262. */
  263. VEFLAGS = info->regs.pt.eflags;
  264. info->regs.pt.eflags &= SAFE_MASK;
  265. info->regs.pt.eflags |= info->regs32->eflags & ~SAFE_MASK;
  266. info->regs.pt.eflags |= VM_MASK;
  267. switch (info->cpu_type) {
  268. case CPU_286:
  269. tsk->thread.v86mask = 0;
  270. break;
  271. case CPU_386:
  272. tsk->thread.v86mask = NT_MASK | IOPL_MASK;
  273. break;
  274. case CPU_486:
  275. tsk->thread.v86mask = AC_MASK | NT_MASK | IOPL_MASK;
  276. break;
  277. default:
  278. tsk->thread.v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
  279. break;
  280. }
  281. /*
  282. * Save old state, set default return value (%eax) to 0
  283. */
  284. info->regs32->eax = 0;
  285. tsk->thread.saved_esp0 = tsk->thread.esp0;
  286. tsk->thread.saved_fs = info->regs32->xfs;
  287. savesegment(gs, tsk->thread.saved_gs);
  288. tss = &per_cpu(init_tss, get_cpu());
  289. tsk->thread.esp0 = (unsigned long) &info->VM86_TSS_ESP0;
  290. if (cpu_has_sep)
  291. tsk->thread.sysenter_cs = 0;
  292. load_esp0(tss, &tsk->thread);
  293. put_cpu();
  294. tsk->thread.screen_bitmap = info->screen_bitmap;
  295. if (info->flags & VM86_SCREEN_BITMAP)
  296. mark_screen_rdonly(tsk->mm);
  297. /*call audit_syscall_exit since we do not exit via the normal paths */
  298. if (unlikely(current->audit_context))
  299. audit_syscall_exit(AUDITSC_RESULT(0), 0);
  300. __asm__ __volatile__(
  301. "movl %0,%%esp\n\t"
  302. "movl %1,%%ebp\n\t"
  303. "mov %2, %%gs\n\t"
  304. "jmp resume_userspace"
  305. : /* no outputs */
  306. :"r" (&info->regs), "r" (task_thread_info(tsk)), "r" (0));
  307. /* we never return here */
  308. }
  309. static inline void return_to_32bit(struct kernel_vm86_regs * regs16, int retval)
  310. {
  311. struct pt_regs * regs32;
  312. regs32 = save_v86_state(regs16);
  313. regs32->eax = retval;
  314. __asm__ __volatile__("movl %0,%%esp\n\t"
  315. "movl %1,%%ebp\n\t"
  316. "jmp resume_userspace"
  317. : : "r" (regs32), "r" (current_thread_info()));
  318. }
  319. static inline void set_IF(struct kernel_vm86_regs * regs)
  320. {
  321. VEFLAGS |= VIF_MASK;
  322. if (VEFLAGS & VIP_MASK)
  323. return_to_32bit(regs, VM86_STI);
  324. }
  325. static inline void clear_IF(struct kernel_vm86_regs * regs)
  326. {
  327. VEFLAGS &= ~VIF_MASK;
  328. }
  329. static inline void clear_TF(struct kernel_vm86_regs * regs)
  330. {
  331. regs->pt.eflags &= ~TF_MASK;
  332. }
  333. static inline void clear_AC(struct kernel_vm86_regs * regs)
  334. {
  335. regs->pt.eflags &= ~AC_MASK;
  336. }
  337. /* It is correct to call set_IF(regs) from the set_vflags_*
  338. * functions. However someone forgot to call clear_IF(regs)
  339. * in the opposite case.
  340. * After the command sequence CLI PUSHF STI POPF you should
  341. * end up with interrups disabled, but you ended up with
  342. * interrupts enabled.
  343. * ( I was testing my own changes, but the only bug I
  344. * could find was in a function I had not changed. )
  345. * [KD]
  346. */
  347. static inline void set_vflags_long(unsigned long eflags, struct kernel_vm86_regs * regs)
  348. {
  349. set_flags(VEFLAGS, eflags, current->thread.v86mask);
  350. set_flags(regs->pt.eflags, eflags, SAFE_MASK);
  351. if (eflags & IF_MASK)
  352. set_IF(regs);
  353. else
  354. clear_IF(regs);
  355. }
  356. static inline void set_vflags_short(unsigned short flags, struct kernel_vm86_regs * regs)
  357. {
  358. set_flags(VFLAGS, flags, current->thread.v86mask);
  359. set_flags(regs->pt.eflags, flags, SAFE_MASK);
  360. if (flags & IF_MASK)
  361. set_IF(regs);
  362. else
  363. clear_IF(regs);
  364. }
  365. static inline unsigned long get_vflags(struct kernel_vm86_regs * regs)
  366. {
  367. unsigned long flags = regs->pt.eflags & RETURN_MASK;
  368. if (VEFLAGS & VIF_MASK)
  369. flags |= IF_MASK;
  370. flags |= IOPL_MASK;
  371. return flags | (VEFLAGS & current->thread.v86mask);
  372. }
  373. static inline int is_revectored(int nr, struct revectored_struct * bitmap)
  374. {
  375. __asm__ __volatile__("btl %2,%1\n\tsbbl %0,%0"
  376. :"=r" (nr)
  377. :"m" (*bitmap),"r" (nr));
  378. return nr;
  379. }
  380. #define val_byte(val, n) (((__u8 *)&val)[n])
  381. #define pushb(base, ptr, val, err_label) \
  382. do { \
  383. __u8 __val = val; \
  384. ptr--; \
  385. if (put_user(__val, base + ptr) < 0) \
  386. goto err_label; \
  387. } while(0)
  388. #define pushw(base, ptr, val, err_label) \
  389. do { \
  390. __u16 __val = val; \
  391. ptr--; \
  392. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  393. goto err_label; \
  394. ptr--; \
  395. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  396. goto err_label; \
  397. } while(0)
  398. #define pushl(base, ptr, val, err_label) \
  399. do { \
  400. __u32 __val = val; \
  401. ptr--; \
  402. if (put_user(val_byte(__val, 3), base + ptr) < 0) \
  403. goto err_label; \
  404. ptr--; \
  405. if (put_user(val_byte(__val, 2), base + ptr) < 0) \
  406. goto err_label; \
  407. ptr--; \
  408. if (put_user(val_byte(__val, 1), base + ptr) < 0) \
  409. goto err_label; \
  410. ptr--; \
  411. if (put_user(val_byte(__val, 0), base + ptr) < 0) \
  412. goto err_label; \
  413. } while(0)
  414. #define popb(base, ptr, err_label) \
  415. ({ \
  416. __u8 __res; \
  417. if (get_user(__res, base + ptr) < 0) \
  418. goto err_label; \
  419. ptr++; \
  420. __res; \
  421. })
  422. #define popw(base, ptr, err_label) \
  423. ({ \
  424. __u16 __res; \
  425. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  426. goto err_label; \
  427. ptr++; \
  428. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  429. goto err_label; \
  430. ptr++; \
  431. __res; \
  432. })
  433. #define popl(base, ptr, err_label) \
  434. ({ \
  435. __u32 __res; \
  436. if (get_user(val_byte(__res, 0), base + ptr) < 0) \
  437. goto err_label; \
  438. ptr++; \
  439. if (get_user(val_byte(__res, 1), base + ptr) < 0) \
  440. goto err_label; \
  441. ptr++; \
  442. if (get_user(val_byte(__res, 2), base + ptr) < 0) \
  443. goto err_label; \
  444. ptr++; \
  445. if (get_user(val_byte(__res, 3), base + ptr) < 0) \
  446. goto err_label; \
  447. ptr++; \
  448. __res; \
  449. })
  450. /* There are so many possible reasons for this function to return
  451. * VM86_INTx, so adding another doesn't bother me. We can expect
  452. * userspace programs to be able to handle it. (Getting a problem
  453. * in userspace is always better than an Oops anyway.) [KD]
  454. */
  455. static void do_int(struct kernel_vm86_regs *regs, int i,
  456. unsigned char __user * ssp, unsigned short sp)
  457. {
  458. unsigned long __user *intr_ptr;
  459. unsigned long segoffs;
  460. if (regs->pt.xcs == BIOSSEG)
  461. goto cannot_handle;
  462. if (is_revectored(i, &KVM86->int_revectored))
  463. goto cannot_handle;
  464. if (i==0x21 && is_revectored(AH(regs),&KVM86->int21_revectored))
  465. goto cannot_handle;
  466. intr_ptr = (unsigned long __user *) (i << 2);
  467. if (get_user(segoffs, intr_ptr))
  468. goto cannot_handle;
  469. if ((segoffs >> 16) == BIOSSEG)
  470. goto cannot_handle;
  471. pushw(ssp, sp, get_vflags(regs), cannot_handle);
  472. pushw(ssp, sp, regs->pt.xcs, cannot_handle);
  473. pushw(ssp, sp, IP(regs), cannot_handle);
  474. regs->pt.xcs = segoffs >> 16;
  475. SP(regs) -= 6;
  476. IP(regs) = segoffs & 0xffff;
  477. clear_TF(regs);
  478. clear_IF(regs);
  479. clear_AC(regs);
  480. return;
  481. cannot_handle:
  482. return_to_32bit(regs, VM86_INTx + (i << 8));
  483. }
  484. int handle_vm86_trap(struct kernel_vm86_regs * regs, long error_code, int trapno)
  485. {
  486. if (VMPI.is_vm86pus) {
  487. if ( (trapno==3) || (trapno==1) )
  488. return_to_32bit(regs, VM86_TRAP + (trapno << 8));
  489. do_int(regs, trapno, (unsigned char __user *) (regs->pt.xss << 4), SP(regs));
  490. return 0;
  491. }
  492. if (trapno !=1)
  493. return 1; /* we let this handle by the calling routine */
  494. if (current->ptrace & PT_PTRACED) {
  495. unsigned long flags;
  496. spin_lock_irqsave(&current->sighand->siglock, flags);
  497. sigdelset(&current->blocked, SIGTRAP);
  498. recalc_sigpending();
  499. spin_unlock_irqrestore(&current->sighand->siglock, flags);
  500. }
  501. send_sig(SIGTRAP, current, 1);
  502. current->thread.trap_no = trapno;
  503. current->thread.error_code = error_code;
  504. return 0;
  505. }
  506. void handle_vm86_fault(struct kernel_vm86_regs * regs, long error_code)
  507. {
  508. unsigned char opcode;
  509. unsigned char __user *csp;
  510. unsigned char __user *ssp;
  511. unsigned short ip, sp, orig_flags;
  512. int data32, pref_done;
  513. #define CHECK_IF_IN_TRAP \
  514. if (VMPI.vm86dbg_active && VMPI.vm86dbg_TFpendig) \
  515. newflags |= TF_MASK
  516. #define VM86_FAULT_RETURN do { \
  517. if (VMPI.force_return_for_pic && (VEFLAGS & (IF_MASK | VIF_MASK))) \
  518. return_to_32bit(regs, VM86_PICRETURN); \
  519. if (orig_flags & TF_MASK) \
  520. handle_vm86_trap(regs, 0, 1); \
  521. return; } while (0)
  522. orig_flags = *(unsigned short *)&regs->pt.eflags;
  523. csp = (unsigned char __user *) (regs->pt.xcs << 4);
  524. ssp = (unsigned char __user *) (regs->pt.xss << 4);
  525. sp = SP(regs);
  526. ip = IP(regs);
  527. data32 = 0;
  528. pref_done = 0;
  529. do {
  530. switch (opcode = popb(csp, ip, simulate_sigsegv)) {
  531. case 0x66: /* 32-bit data */ data32=1; break;
  532. case 0x67: /* 32-bit address */ break;
  533. case 0x2e: /* CS */ break;
  534. case 0x3e: /* DS */ break;
  535. case 0x26: /* ES */ break;
  536. case 0x36: /* SS */ break;
  537. case 0x65: /* GS */ break;
  538. case 0x64: /* FS */ break;
  539. case 0xf2: /* repnz */ break;
  540. case 0xf3: /* rep */ break;
  541. default: pref_done = 1;
  542. }
  543. } while (!pref_done);
  544. switch (opcode) {
  545. /* pushf */
  546. case 0x9c:
  547. if (data32) {
  548. pushl(ssp, sp, get_vflags(regs), simulate_sigsegv);
  549. SP(regs) -= 4;
  550. } else {
  551. pushw(ssp, sp, get_vflags(regs), simulate_sigsegv);
  552. SP(regs) -= 2;
  553. }
  554. IP(regs) = ip;
  555. VM86_FAULT_RETURN;
  556. /* popf */
  557. case 0x9d:
  558. {
  559. unsigned long newflags;
  560. if (data32) {
  561. newflags=popl(ssp, sp, simulate_sigsegv);
  562. SP(regs) += 4;
  563. } else {
  564. newflags = popw(ssp, sp, simulate_sigsegv);
  565. SP(regs) += 2;
  566. }
  567. IP(regs) = ip;
  568. CHECK_IF_IN_TRAP;
  569. if (data32) {
  570. set_vflags_long(newflags, regs);
  571. } else {
  572. set_vflags_short(newflags, regs);
  573. }
  574. VM86_FAULT_RETURN;
  575. }
  576. /* int xx */
  577. case 0xcd: {
  578. int intno=popb(csp, ip, simulate_sigsegv);
  579. IP(regs) = ip;
  580. if (VMPI.vm86dbg_active) {
  581. if ( (1 << (intno &7)) & VMPI.vm86dbg_intxxtab[intno >> 3] )
  582. return_to_32bit(regs, VM86_INTx + (intno << 8));
  583. }
  584. do_int(regs, intno, ssp, sp);
  585. return;
  586. }
  587. /* iret */
  588. case 0xcf:
  589. {
  590. unsigned long newip;
  591. unsigned long newcs;
  592. unsigned long newflags;
  593. if (data32) {
  594. newip=popl(ssp, sp, simulate_sigsegv);
  595. newcs=popl(ssp, sp, simulate_sigsegv);
  596. newflags=popl(ssp, sp, simulate_sigsegv);
  597. SP(regs) += 12;
  598. } else {
  599. newip = popw(ssp, sp, simulate_sigsegv);
  600. newcs = popw(ssp, sp, simulate_sigsegv);
  601. newflags = popw(ssp, sp, simulate_sigsegv);
  602. SP(regs) += 6;
  603. }
  604. IP(regs) = newip;
  605. regs->pt.xcs = newcs;
  606. CHECK_IF_IN_TRAP;
  607. if (data32) {
  608. set_vflags_long(newflags, regs);
  609. } else {
  610. set_vflags_short(newflags, regs);
  611. }
  612. VM86_FAULT_RETURN;
  613. }
  614. /* cli */
  615. case 0xfa:
  616. IP(regs) = ip;
  617. clear_IF(regs);
  618. VM86_FAULT_RETURN;
  619. /* sti */
  620. /*
  621. * Damn. This is incorrect: the 'sti' instruction should actually
  622. * enable interrupts after the /next/ instruction. Not good.
  623. *
  624. * Probably needs some horsing around with the TF flag. Aiee..
  625. */
  626. case 0xfb:
  627. IP(regs) = ip;
  628. set_IF(regs);
  629. VM86_FAULT_RETURN;
  630. default:
  631. return_to_32bit(regs, VM86_UNKNOWN);
  632. }
  633. return;
  634. simulate_sigsegv:
  635. /* FIXME: After a long discussion with Stas we finally
  636. * agreed, that this is wrong. Here we should
  637. * really send a SIGSEGV to the user program.
  638. * But how do we create the correct context? We
  639. * are inside a general protection fault handler
  640. * and has just returned from a page fault handler.
  641. * The correct context for the signal handler
  642. * should be a mixture of the two, but how do we
  643. * get the information? [KD]
  644. */
  645. return_to_32bit(regs, VM86_UNKNOWN);
  646. }
  647. /* ---------------- vm86 special IRQ passing stuff ----------------- */
  648. #define VM86_IRQNAME "vm86irq"
  649. static struct vm86_irqs {
  650. struct task_struct *tsk;
  651. int sig;
  652. } vm86_irqs[16];
  653. static DEFINE_SPINLOCK(irqbits_lock);
  654. static int irqbits;
  655. #define ALLOWED_SIGS ( 1 /* 0 = don't send a signal */ \
  656. | (1 << SIGUSR1) | (1 << SIGUSR2) | (1 << SIGIO) | (1 << SIGURG) \
  657. | (1 << SIGUNUSED) )
  658. static irqreturn_t irq_handler(int intno, void *dev_id)
  659. {
  660. int irq_bit;
  661. unsigned long flags;
  662. spin_lock_irqsave(&irqbits_lock, flags);
  663. irq_bit = 1 << intno;
  664. if ((irqbits & irq_bit) || ! vm86_irqs[intno].tsk)
  665. goto out;
  666. irqbits |= irq_bit;
  667. if (vm86_irqs[intno].sig)
  668. send_sig(vm86_irqs[intno].sig, vm86_irqs[intno].tsk, 1);
  669. /*
  670. * IRQ will be re-enabled when user asks for the irq (whether
  671. * polling or as a result of the signal)
  672. */
  673. disable_irq_nosync(intno);
  674. spin_unlock_irqrestore(&irqbits_lock, flags);
  675. return IRQ_HANDLED;
  676. out:
  677. spin_unlock_irqrestore(&irqbits_lock, flags);
  678. return IRQ_NONE;
  679. }
  680. static inline void free_vm86_irq(int irqnumber)
  681. {
  682. unsigned long flags;
  683. free_irq(irqnumber, NULL);
  684. vm86_irqs[irqnumber].tsk = NULL;
  685. spin_lock_irqsave(&irqbits_lock, flags);
  686. irqbits &= ~(1 << irqnumber);
  687. spin_unlock_irqrestore(&irqbits_lock, flags);
  688. }
  689. void release_vm86_irqs(struct task_struct *task)
  690. {
  691. int i;
  692. for (i = FIRST_VM86_IRQ ; i <= LAST_VM86_IRQ; i++)
  693. if (vm86_irqs[i].tsk == task)
  694. free_vm86_irq(i);
  695. }
  696. static inline int get_and_reset_irq(int irqnumber)
  697. {
  698. int bit;
  699. unsigned long flags;
  700. int ret = 0;
  701. if (invalid_vm86_irq(irqnumber)) return 0;
  702. if (vm86_irqs[irqnumber].tsk != current) return 0;
  703. spin_lock_irqsave(&irqbits_lock, flags);
  704. bit = irqbits & (1 << irqnumber);
  705. irqbits &= ~bit;
  706. if (bit) {
  707. enable_irq(irqnumber);
  708. ret = 1;
  709. }
  710. spin_unlock_irqrestore(&irqbits_lock, flags);
  711. return ret;
  712. }
  713. static int do_vm86_irq_handling(int subfunction, int irqnumber)
  714. {
  715. int ret;
  716. switch (subfunction) {
  717. case VM86_GET_AND_RESET_IRQ: {
  718. return get_and_reset_irq(irqnumber);
  719. }
  720. case VM86_GET_IRQ_BITS: {
  721. return irqbits;
  722. }
  723. case VM86_REQUEST_IRQ: {
  724. int sig = irqnumber >> 8;
  725. int irq = irqnumber & 255;
  726. if (!capable(CAP_SYS_ADMIN)) return -EPERM;
  727. if (!((1 << sig) & ALLOWED_SIGS)) return -EPERM;
  728. if (invalid_vm86_irq(irq)) return -EPERM;
  729. if (vm86_irqs[irq].tsk) return -EPERM;
  730. ret = request_irq(irq, &irq_handler, 0, VM86_IRQNAME, NULL);
  731. if (ret) return ret;
  732. vm86_irqs[irq].sig = sig;
  733. vm86_irqs[irq].tsk = current;
  734. return irq;
  735. }
  736. case VM86_FREE_IRQ: {
  737. if (invalid_vm86_irq(irqnumber)) return -EPERM;
  738. if (!vm86_irqs[irqnumber].tsk) return 0;
  739. if (vm86_irqs[irqnumber].tsk != current) return -EPERM;
  740. free_vm86_irq(irqnumber);
  741. return 0;
  742. }
  743. }
  744. return -EINVAL;
  745. }