smp.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732
  1. /*
  2. * Intel SMP support routines.
  3. *
  4. * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
  5. * (c) 1998-99, 2000 Ingo Molnar <mingo@redhat.com>
  6. *
  7. * This code is released under the GNU General Public License version 2 or
  8. * later.
  9. */
  10. #include <linux/init.h>
  11. #include <linux/mm.h>
  12. #include <linux/delay.h>
  13. #include <linux/spinlock.h>
  14. #include <linux/smp_lock.h>
  15. #include <linux/kernel_stat.h>
  16. #include <linux/mc146818rtc.h>
  17. #include <linux/cache.h>
  18. #include <linux/interrupt.h>
  19. #include <linux/cpu.h>
  20. #include <linux/module.h>
  21. #include <asm/mtrr.h>
  22. #include <asm/tlbflush.h>
  23. #include <mach_apic.h>
  24. /*
  25. * Some notes on x86 processor bugs affecting SMP operation:
  26. *
  27. * Pentium, Pentium Pro, II, III (and all CPUs) have bugs.
  28. * The Linux implications for SMP are handled as follows:
  29. *
  30. * Pentium III / [Xeon]
  31. * None of the E1AP-E3AP errata are visible to the user.
  32. *
  33. * E1AP. see PII A1AP
  34. * E2AP. see PII A2AP
  35. * E3AP. see PII A3AP
  36. *
  37. * Pentium II / [Xeon]
  38. * None of the A1AP-A3AP errata are visible to the user.
  39. *
  40. * A1AP. see PPro 1AP
  41. * A2AP. see PPro 2AP
  42. * A3AP. see PPro 7AP
  43. *
  44. * Pentium Pro
  45. * None of 1AP-9AP errata are visible to the normal user,
  46. * except occasional delivery of 'spurious interrupt' as trap #15.
  47. * This is very rare and a non-problem.
  48. *
  49. * 1AP. Linux maps APIC as non-cacheable
  50. * 2AP. worked around in hardware
  51. * 3AP. fixed in C0 and above steppings microcode update.
  52. * Linux does not use excessive STARTUP_IPIs.
  53. * 4AP. worked around in hardware
  54. * 5AP. symmetric IO mode (normal Linux operation) not affected.
  55. * 'noapic' mode has vector 0xf filled out properly.
  56. * 6AP. 'noapic' mode might be affected - fixed in later steppings
  57. * 7AP. We do not assume writes to the LVT deassering IRQs
  58. * 8AP. We do not enable low power mode (deep sleep) during MP bootup
  59. * 9AP. We do not use mixed mode
  60. *
  61. * Pentium
  62. * There is a marginal case where REP MOVS on 100MHz SMP
  63. * machines with B stepping processors can fail. XXX should provide
  64. * an L1cache=Writethrough or L1cache=off option.
  65. *
  66. * B stepping CPUs may hang. There are hardware work arounds
  67. * for this. We warn about it in case your board doesn't have the work
  68. * arounds. Basically thats so I can tell anyone with a B stepping
  69. * CPU and SMP problems "tough".
  70. *
  71. * Specific items [From Pentium Processor Specification Update]
  72. *
  73. * 1AP. Linux doesn't use remote read
  74. * 2AP. Linux doesn't trust APIC errors
  75. * 3AP. We work around this
  76. * 4AP. Linux never generated 3 interrupts of the same priority
  77. * to cause a lost local interrupt.
  78. * 5AP. Remote read is never used
  79. * 6AP. not affected - worked around in hardware
  80. * 7AP. not affected - worked around in hardware
  81. * 8AP. worked around in hardware - we get explicit CS errors if not
  82. * 9AP. only 'noapic' mode affected. Might generate spurious
  83. * interrupts, we log only the first one and count the
  84. * rest silently.
  85. * 10AP. not affected - worked around in hardware
  86. * 11AP. Linux reads the APIC between writes to avoid this, as per
  87. * the documentation. Make sure you preserve this as it affects
  88. * the C stepping chips too.
  89. * 12AP. not affected - worked around in hardware
  90. * 13AP. not affected - worked around in hardware
  91. * 14AP. we always deassert INIT during bootup
  92. * 15AP. not affected - worked around in hardware
  93. * 16AP. not affected - worked around in hardware
  94. * 17AP. not affected - worked around in hardware
  95. * 18AP. not affected - worked around in hardware
  96. * 19AP. not affected - worked around in BIOS
  97. *
  98. * If this sounds worrying believe me these bugs are either ___RARE___,
  99. * or are signal timing bugs worked around in hardware and there's
  100. * about nothing of note with C stepping upwards.
  101. */
  102. DEFINE_PER_CPU(struct tlb_state, cpu_tlbstate) ____cacheline_aligned = { &init_mm, 0, };
  103. /*
  104. * the following functions deal with sending IPIs between CPUs.
  105. *
  106. * We use 'broadcast', CPU->CPU IPIs and self-IPIs too.
  107. */
  108. static inline int __prepare_ICR (unsigned int shortcut, int vector)
  109. {
  110. unsigned int icr = shortcut | APIC_DEST_LOGICAL;
  111. switch (vector) {
  112. default:
  113. icr |= APIC_DM_FIXED | vector;
  114. break;
  115. case NMI_VECTOR:
  116. icr |= APIC_DM_NMI;
  117. break;
  118. }
  119. return icr;
  120. }
  121. static inline int __prepare_ICR2 (unsigned int mask)
  122. {
  123. return SET_APIC_DEST_FIELD(mask);
  124. }
  125. void __send_IPI_shortcut(unsigned int shortcut, int vector)
  126. {
  127. /*
  128. * Subtle. In the case of the 'never do double writes' workaround
  129. * we have to lock out interrupts to be safe. As we don't care
  130. * of the value read we use an atomic rmw access to avoid costly
  131. * cli/sti. Otherwise we use an even cheaper single atomic write
  132. * to the APIC.
  133. */
  134. unsigned int cfg;
  135. /*
  136. * Wait for idle.
  137. */
  138. apic_wait_icr_idle();
  139. /*
  140. * No need to touch the target chip field
  141. */
  142. cfg = __prepare_ICR(shortcut, vector);
  143. /*
  144. * Send the IPI. The write to APIC_ICR fires this off.
  145. */
  146. apic_write_around(APIC_ICR, cfg);
  147. }
  148. void fastcall send_IPI_self(int vector)
  149. {
  150. __send_IPI_shortcut(APIC_DEST_SELF, vector);
  151. }
  152. /*
  153. * This is only used on smaller machines.
  154. */
  155. void send_IPI_mask_bitmask(cpumask_t cpumask, int vector)
  156. {
  157. unsigned long mask = cpus_addr(cpumask)[0];
  158. unsigned long cfg;
  159. unsigned long flags;
  160. local_irq_save(flags);
  161. WARN_ON(mask & ~cpus_addr(cpu_online_map)[0]);
  162. /*
  163. * Wait for idle.
  164. */
  165. apic_wait_icr_idle();
  166. /*
  167. * prepare target chip field
  168. */
  169. cfg = __prepare_ICR2(mask);
  170. apic_write_around(APIC_ICR2, cfg);
  171. /*
  172. * program the ICR
  173. */
  174. cfg = __prepare_ICR(0, vector);
  175. /*
  176. * Send the IPI. The write to APIC_ICR fires this off.
  177. */
  178. apic_write_around(APIC_ICR, cfg);
  179. local_irq_restore(flags);
  180. }
  181. void send_IPI_mask_sequence(cpumask_t mask, int vector)
  182. {
  183. unsigned long cfg, flags;
  184. unsigned int query_cpu;
  185. /*
  186. * Hack. The clustered APIC addressing mode doesn't allow us to send
  187. * to an arbitrary mask, so I do a unicasts to each CPU instead. This
  188. * should be modified to do 1 message per cluster ID - mbligh
  189. */
  190. local_irq_save(flags);
  191. for (query_cpu = 0; query_cpu < NR_CPUS; ++query_cpu) {
  192. if (cpu_isset(query_cpu, mask)) {
  193. /*
  194. * Wait for idle.
  195. */
  196. apic_wait_icr_idle();
  197. /*
  198. * prepare target chip field
  199. */
  200. cfg = __prepare_ICR2(cpu_to_logical_apicid(query_cpu));
  201. apic_write_around(APIC_ICR2, cfg);
  202. /*
  203. * program the ICR
  204. */
  205. cfg = __prepare_ICR(0, vector);
  206. /*
  207. * Send the IPI. The write to APIC_ICR fires this off.
  208. */
  209. apic_write_around(APIC_ICR, cfg);
  210. }
  211. }
  212. local_irq_restore(flags);
  213. }
  214. #include <mach_ipi.h> /* must come after the send_IPI functions above for inlining */
  215. /*
  216. * Smarter SMP flushing macros.
  217. * c/o Linus Torvalds.
  218. *
  219. * These mean you can really definitely utterly forget about
  220. * writing to user space from interrupts. (Its not allowed anyway).
  221. *
  222. * Optimizations Manfred Spraul <manfred@colorfullife.com>
  223. */
  224. static cpumask_t flush_cpumask;
  225. static struct mm_struct * flush_mm;
  226. static unsigned long flush_va;
  227. static DEFINE_SPINLOCK(tlbstate_lock);
  228. #define FLUSH_ALL 0xffffffff
  229. /*
  230. * We cannot call mmdrop() because we are in interrupt context,
  231. * instead update mm->cpu_vm_mask.
  232. *
  233. * We need to reload %cr3 since the page tables may be going
  234. * away from under us..
  235. */
  236. static inline void leave_mm (unsigned long cpu)
  237. {
  238. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK)
  239. BUG();
  240. cpu_clear(cpu, per_cpu(cpu_tlbstate, cpu).active_mm->cpu_vm_mask);
  241. load_cr3(swapper_pg_dir);
  242. }
  243. /*
  244. *
  245. * The flush IPI assumes that a thread switch happens in this order:
  246. * [cpu0: the cpu that switches]
  247. * 1) switch_mm() either 1a) or 1b)
  248. * 1a) thread switch to a different mm
  249. * 1a1) cpu_clear(cpu, old_mm->cpu_vm_mask);
  250. * Stop ipi delivery for the old mm. This is not synchronized with
  251. * the other cpus, but smp_invalidate_interrupt ignore flush ipis
  252. * for the wrong mm, and in the worst case we perform a superflous
  253. * tlb flush.
  254. * 1a2) set cpu_tlbstate to TLBSTATE_OK
  255. * Now the smp_invalidate_interrupt won't call leave_mm if cpu0
  256. * was in lazy tlb mode.
  257. * 1a3) update cpu_tlbstate[].active_mm
  258. * Now cpu0 accepts tlb flushes for the new mm.
  259. * 1a4) cpu_set(cpu, new_mm->cpu_vm_mask);
  260. * Now the other cpus will send tlb flush ipis.
  261. * 1a4) change cr3.
  262. * 1b) thread switch without mm change
  263. * cpu_tlbstate[].active_mm is correct, cpu0 already handles
  264. * flush ipis.
  265. * 1b1) set cpu_tlbstate to TLBSTATE_OK
  266. * 1b2) test_and_set the cpu bit in cpu_vm_mask.
  267. * Atomically set the bit [other cpus will start sending flush ipis],
  268. * and test the bit.
  269. * 1b3) if the bit was 0: leave_mm was called, flush the tlb.
  270. * 2) switch %%esp, ie current
  271. *
  272. * The interrupt must handle 2 special cases:
  273. * - cr3 is changed before %%esp, ie. it cannot use current->{active_,}mm.
  274. * - the cpu performs speculative tlb reads, i.e. even if the cpu only
  275. * runs in kernel space, the cpu could load tlb entries for user space
  276. * pages.
  277. *
  278. * The good news is that cpu_tlbstate is local to each cpu, no
  279. * write/read ordering problems.
  280. */
  281. /*
  282. * TLB flush IPI:
  283. *
  284. * 1) Flush the tlb entries if the cpu uses the mm that's being flushed.
  285. * 2) Leave the mm if we are in the lazy tlb mode.
  286. */
  287. fastcall void smp_invalidate_interrupt(struct pt_regs *regs)
  288. {
  289. unsigned long cpu;
  290. cpu = get_cpu();
  291. if (!cpu_isset(cpu, flush_cpumask))
  292. goto out;
  293. /*
  294. * This was a BUG() but until someone can quote me the
  295. * line from the intel manual that guarantees an IPI to
  296. * multiple CPUs is retried _only_ on the erroring CPUs
  297. * its staying as a return
  298. *
  299. * BUG();
  300. */
  301. if (flush_mm == per_cpu(cpu_tlbstate, cpu).active_mm) {
  302. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_OK) {
  303. if (flush_va == FLUSH_ALL)
  304. local_flush_tlb();
  305. else
  306. __flush_tlb_one(flush_va);
  307. } else
  308. leave_mm(cpu);
  309. }
  310. ack_APIC_irq();
  311. smp_mb__before_clear_bit();
  312. cpu_clear(cpu, flush_cpumask);
  313. smp_mb__after_clear_bit();
  314. out:
  315. put_cpu_no_resched();
  316. }
  317. static void flush_tlb_others(cpumask_t cpumask, struct mm_struct *mm,
  318. unsigned long va)
  319. {
  320. /*
  321. * A couple of (to be removed) sanity checks:
  322. *
  323. * - current CPU must not be in mask
  324. * - mask must exist :)
  325. */
  326. BUG_ON(cpus_empty(cpumask));
  327. BUG_ON(cpu_isset(smp_processor_id(), cpumask));
  328. BUG_ON(!mm);
  329. /* If a CPU which we ran on has gone down, OK. */
  330. cpus_and(cpumask, cpumask, cpu_online_map);
  331. if (cpus_empty(cpumask))
  332. return;
  333. /*
  334. * i'm not happy about this global shared spinlock in the
  335. * MM hot path, but we'll see how contended it is.
  336. * AK: x86-64 has a faster method that could be ported.
  337. */
  338. spin_lock(&tlbstate_lock);
  339. flush_mm = mm;
  340. flush_va = va;
  341. #if NR_CPUS <= BITS_PER_LONG
  342. atomic_set_mask(cpumask, &flush_cpumask);
  343. #else
  344. {
  345. int k;
  346. unsigned long *flush_mask = (unsigned long *)&flush_cpumask;
  347. unsigned long *cpu_mask = (unsigned long *)&cpumask;
  348. for (k = 0; k < BITS_TO_LONGS(NR_CPUS); ++k)
  349. atomic_set_mask(cpu_mask[k], &flush_mask[k]);
  350. }
  351. #endif
  352. /*
  353. * We have to send the IPI only to
  354. * CPUs affected.
  355. */
  356. send_IPI_mask(cpumask, INVALIDATE_TLB_VECTOR);
  357. while (!cpus_empty(flush_cpumask))
  358. /* nothing. lockup detection does not belong here */
  359. cpu_relax();
  360. flush_mm = NULL;
  361. flush_va = 0;
  362. spin_unlock(&tlbstate_lock);
  363. }
  364. void flush_tlb_current_task(void)
  365. {
  366. struct mm_struct *mm = current->mm;
  367. cpumask_t cpu_mask;
  368. preempt_disable();
  369. cpu_mask = mm->cpu_vm_mask;
  370. cpu_clear(smp_processor_id(), cpu_mask);
  371. local_flush_tlb();
  372. if (!cpus_empty(cpu_mask))
  373. flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
  374. preempt_enable();
  375. }
  376. void flush_tlb_mm (struct mm_struct * mm)
  377. {
  378. cpumask_t cpu_mask;
  379. preempt_disable();
  380. cpu_mask = mm->cpu_vm_mask;
  381. cpu_clear(smp_processor_id(), cpu_mask);
  382. if (current->active_mm == mm) {
  383. if (current->mm)
  384. local_flush_tlb();
  385. else
  386. leave_mm(smp_processor_id());
  387. }
  388. if (!cpus_empty(cpu_mask))
  389. flush_tlb_others(cpu_mask, mm, FLUSH_ALL);
  390. preempt_enable();
  391. }
  392. void flush_tlb_page(struct vm_area_struct * vma, unsigned long va)
  393. {
  394. struct mm_struct *mm = vma->vm_mm;
  395. cpumask_t cpu_mask;
  396. preempt_disable();
  397. cpu_mask = mm->cpu_vm_mask;
  398. cpu_clear(smp_processor_id(), cpu_mask);
  399. if (current->active_mm == mm) {
  400. if(current->mm)
  401. __flush_tlb_one(va);
  402. else
  403. leave_mm(smp_processor_id());
  404. }
  405. if (!cpus_empty(cpu_mask))
  406. flush_tlb_others(cpu_mask, mm, va);
  407. preempt_enable();
  408. }
  409. EXPORT_SYMBOL(flush_tlb_page);
  410. static void do_flush_tlb_all(void* info)
  411. {
  412. unsigned long cpu = smp_processor_id();
  413. __flush_tlb_all();
  414. if (per_cpu(cpu_tlbstate, cpu).state == TLBSTATE_LAZY)
  415. leave_mm(cpu);
  416. }
  417. void flush_tlb_all(void)
  418. {
  419. on_each_cpu(do_flush_tlb_all, NULL, 1, 1);
  420. }
  421. /*
  422. * this function sends a 'reschedule' IPI to another CPU.
  423. * it goes straight through and wastes no time serializing
  424. * anything. Worst case is that we lose a reschedule ...
  425. */
  426. void smp_send_reschedule(int cpu)
  427. {
  428. WARN_ON(cpu_is_offline(cpu));
  429. send_IPI_mask(cpumask_of_cpu(cpu), RESCHEDULE_VECTOR);
  430. }
  431. /*
  432. * Structure and data for smp_call_function(). This is designed to minimise
  433. * static memory requirements. It also looks cleaner.
  434. */
  435. static DEFINE_SPINLOCK(call_lock);
  436. struct call_data_struct {
  437. void (*func) (void *info);
  438. void *info;
  439. atomic_t started;
  440. atomic_t finished;
  441. int wait;
  442. };
  443. void lock_ipi_call_lock(void)
  444. {
  445. spin_lock_irq(&call_lock);
  446. }
  447. void unlock_ipi_call_lock(void)
  448. {
  449. spin_unlock_irq(&call_lock);
  450. }
  451. static struct call_data_struct *call_data;
  452. /**
  453. * smp_call_function(): Run a function on all other CPUs.
  454. * @func: The function to run. This must be fast and non-blocking.
  455. * @info: An arbitrary pointer to pass to the function.
  456. * @nonatomic: currently unused.
  457. * @wait: If true, wait (atomically) until function has completed on other CPUs.
  458. *
  459. * Returns 0 on success, else a negative status code. Does not return until
  460. * remote CPUs are nearly ready to execute <<func>> or are or have executed.
  461. *
  462. * You must not call this function with disabled interrupts or from a
  463. * hardware interrupt handler or from a bottom half handler.
  464. */
  465. int smp_call_function (void (*func) (void *info), void *info, int nonatomic,
  466. int wait)
  467. {
  468. struct call_data_struct data;
  469. int cpus;
  470. /* Holding any lock stops cpus from going down. */
  471. spin_lock(&call_lock);
  472. cpus = num_online_cpus() - 1;
  473. if (!cpus) {
  474. spin_unlock(&call_lock);
  475. return 0;
  476. }
  477. /* Can deadlock when called with interrupts disabled */
  478. WARN_ON(irqs_disabled());
  479. data.func = func;
  480. data.info = info;
  481. atomic_set(&data.started, 0);
  482. data.wait = wait;
  483. if (wait)
  484. atomic_set(&data.finished, 0);
  485. call_data = &data;
  486. mb();
  487. /* Send a message to all other CPUs and wait for them to respond */
  488. send_IPI_allbutself(CALL_FUNCTION_VECTOR);
  489. /* Wait for response */
  490. while (atomic_read(&data.started) != cpus)
  491. cpu_relax();
  492. if (wait)
  493. while (atomic_read(&data.finished) != cpus)
  494. cpu_relax();
  495. spin_unlock(&call_lock);
  496. return 0;
  497. }
  498. EXPORT_SYMBOL(smp_call_function);
  499. static void stop_this_cpu (void * dummy)
  500. {
  501. /*
  502. * Remove this CPU:
  503. */
  504. cpu_clear(smp_processor_id(), cpu_online_map);
  505. local_irq_disable();
  506. disable_local_APIC();
  507. if (cpu_data[smp_processor_id()].hlt_works_ok)
  508. for(;;) halt();
  509. for (;;);
  510. }
  511. /*
  512. * this function calls the 'stop' function on all other CPUs in the system.
  513. */
  514. void smp_send_stop(void)
  515. {
  516. smp_call_function(stop_this_cpu, NULL, 1, 0);
  517. local_irq_disable();
  518. disable_local_APIC();
  519. local_irq_enable();
  520. }
  521. /*
  522. * Reschedule call back. Nothing to do,
  523. * all the work is done automatically when
  524. * we return from the interrupt.
  525. */
  526. fastcall void smp_reschedule_interrupt(struct pt_regs *regs)
  527. {
  528. ack_APIC_irq();
  529. }
  530. fastcall void smp_call_function_interrupt(struct pt_regs *regs)
  531. {
  532. void (*func) (void *info) = call_data->func;
  533. void *info = call_data->info;
  534. int wait = call_data->wait;
  535. ack_APIC_irq();
  536. /*
  537. * Notify initiating CPU that I've grabbed the data and am
  538. * about to execute the function
  539. */
  540. mb();
  541. atomic_inc(&call_data->started);
  542. /*
  543. * At this point the info structure may be out of scope unless wait==1
  544. */
  545. irq_enter();
  546. (*func)(info);
  547. irq_exit();
  548. if (wait) {
  549. mb();
  550. atomic_inc(&call_data->finished);
  551. }
  552. }
  553. /*
  554. * this function sends a 'generic call function' IPI to one other CPU
  555. * in the system.
  556. *
  557. * cpu is a standard Linux logical CPU number.
  558. */
  559. static void
  560. __smp_call_function_single(int cpu, void (*func) (void *info), void *info,
  561. int nonatomic, int wait)
  562. {
  563. struct call_data_struct data;
  564. int cpus = 1;
  565. data.func = func;
  566. data.info = info;
  567. atomic_set(&data.started, 0);
  568. data.wait = wait;
  569. if (wait)
  570. atomic_set(&data.finished, 0);
  571. call_data = &data;
  572. wmb();
  573. /* Send a message to all other CPUs and wait for them to respond */
  574. send_IPI_mask(cpumask_of_cpu(cpu), CALL_FUNCTION_VECTOR);
  575. /* Wait for response */
  576. while (atomic_read(&data.started) != cpus)
  577. cpu_relax();
  578. if (!wait)
  579. return;
  580. while (atomic_read(&data.finished) != cpus)
  581. cpu_relax();
  582. }
  583. /*
  584. * smp_call_function_single - Run a function on another CPU
  585. * @func: The function to run. This must be fast and non-blocking.
  586. * @info: An arbitrary pointer to pass to the function.
  587. * @nonatomic: Currently unused.
  588. * @wait: If true, wait until function has completed on other CPUs.
  589. *
  590. * Retrurns 0 on success, else a negative status code.
  591. *
  592. * Does not return until the remote CPU is nearly ready to execute <func>
  593. * or is or has executed.
  594. */
  595. int smp_call_function_single(int cpu, void (*func) (void *info), void *info,
  596. int nonatomic, int wait)
  597. {
  598. /* prevent preemption and reschedule on another processor */
  599. int me = get_cpu();
  600. if (cpu == me) {
  601. WARN_ON(1);
  602. put_cpu();
  603. return -EBUSY;
  604. }
  605. /* Can deadlock when called with interrupts disabled */
  606. WARN_ON(irqs_disabled());
  607. spin_lock_bh(&call_lock);
  608. __smp_call_function_single(cpu, func, info, nonatomic, wait);
  609. spin_unlock_bh(&call_lock);
  610. put_cpu();
  611. return 0;
  612. }
  613. EXPORT_SYMBOL(smp_call_function_single);
  614. static int convert_apicid_to_cpu(int apic_id)
  615. {
  616. int i;
  617. for (i = 0; i < NR_CPUS; i++) {
  618. if (x86_cpu_to_apicid[i] == apic_id)
  619. return i;
  620. }
  621. return -1;
  622. }
  623. int safe_smp_processor_id(void)
  624. {
  625. int apicid, cpuid;
  626. if (!boot_cpu_has(X86_FEATURE_APIC))
  627. return 0;
  628. apicid = hard_smp_processor_id();
  629. if (apicid == BAD_APICID)
  630. return 0;
  631. cpuid = convert_apicid_to_cpu(apicid);
  632. return cpuid >= 0 ? cpuid : 0;
  633. }