i8253.c 5.2 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198
  1. /*
  2. * i8253.c 8253/PIT functions
  3. *
  4. */
  5. #include <linux/clockchips.h>
  6. #include <linux/spinlock.h>
  7. #include <linux/jiffies.h>
  8. #include <linux/sysdev.h>
  9. #include <linux/module.h>
  10. #include <linux/init.h>
  11. #include <asm/smp.h>
  12. #include <asm/delay.h>
  13. #include <asm/i8253.h>
  14. #include <asm/io.h>
  15. #include "io_ports.h"
  16. DEFINE_SPINLOCK(i8253_lock);
  17. EXPORT_SYMBOL(i8253_lock);
  18. /*
  19. * HPET replaces the PIT, when enabled. So we need to know, which of
  20. * the two timers is used
  21. */
  22. struct clock_event_device *global_clock_event;
  23. /*
  24. * Initialize the PIT timer.
  25. *
  26. * This is also called after resume to bring the PIT into operation again.
  27. */
  28. static void init_pit_timer(enum clock_event_mode mode,
  29. struct clock_event_device *evt)
  30. {
  31. unsigned long flags;
  32. spin_lock_irqsave(&i8253_lock, flags);
  33. switch(mode) {
  34. case CLOCK_EVT_MODE_PERIODIC:
  35. /* binary, mode 2, LSB/MSB, ch 0 */
  36. outb_p(0x34, PIT_MODE);
  37. udelay(10);
  38. outb_p(LATCH & 0xff , PIT_CH0); /* LSB */
  39. udelay(10);
  40. outb(LATCH >> 8 , PIT_CH0); /* MSB */
  41. break;
  42. case CLOCK_EVT_MODE_ONESHOT:
  43. case CLOCK_EVT_MODE_SHUTDOWN:
  44. case CLOCK_EVT_MODE_UNUSED:
  45. /* One shot setup */
  46. outb_p(0x38, PIT_MODE);
  47. udelay(10);
  48. break;
  49. }
  50. spin_unlock_irqrestore(&i8253_lock, flags);
  51. }
  52. /*
  53. * Program the next event in oneshot mode
  54. *
  55. * Delta is given in PIT ticks
  56. */
  57. static int pit_next_event(unsigned long delta, struct clock_event_device *evt)
  58. {
  59. unsigned long flags;
  60. spin_lock_irqsave(&i8253_lock, flags);
  61. outb_p(delta & 0xff , PIT_CH0); /* LSB */
  62. outb(delta >> 8 , PIT_CH0); /* MSB */
  63. spin_unlock_irqrestore(&i8253_lock, flags);
  64. return 0;
  65. }
  66. /*
  67. * On UP the PIT can serve all of the possible timer functions. On SMP systems
  68. * it can be solely used for the global tick.
  69. *
  70. * The profiling and update capabilites are switched off once the local apic is
  71. * registered. This mechanism replaces the previous #ifdef LOCAL_APIC -
  72. * !using_apic_timer decisions in do_timer_interrupt_hook()
  73. */
  74. struct clock_event_device pit_clockevent = {
  75. .name = "pit",
  76. .features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
  77. .set_mode = init_pit_timer,
  78. .set_next_event = pit_next_event,
  79. .shift = 32,
  80. .irq = 0,
  81. };
  82. /*
  83. * Initialize the conversion factor and the min/max deltas of the clock event
  84. * structure and register the clock event source with the framework.
  85. */
  86. void __init setup_pit_timer(void)
  87. {
  88. /*
  89. * Start pit with the boot cpu mask and make it global after the
  90. * IO_APIC has been initialized.
  91. */
  92. pit_clockevent.cpumask = cpumask_of_cpu(0);
  93. pit_clockevent.mult = div_sc(CLOCK_TICK_RATE, NSEC_PER_SEC, 32);
  94. pit_clockevent.max_delta_ns =
  95. clockevent_delta2ns(0x7FFF, &pit_clockevent);
  96. pit_clockevent.min_delta_ns =
  97. clockevent_delta2ns(0xF, &pit_clockevent);
  98. clockevents_register_device(&pit_clockevent);
  99. global_clock_event = &pit_clockevent;
  100. }
  101. /*
  102. * Since the PIT overflows every tick, its not very useful
  103. * to just read by itself. So use jiffies to emulate a free
  104. * running counter:
  105. */
  106. static cycle_t pit_read(void)
  107. {
  108. unsigned long flags;
  109. int count;
  110. u32 jifs;
  111. static int old_count;
  112. static u32 old_jifs;
  113. spin_lock_irqsave(&i8253_lock, flags);
  114. /*
  115. * Although our caller may have the read side of xtime_lock,
  116. * this is now a seqlock, and we are cheating in this routine
  117. * by having side effects on state that we cannot undo if
  118. * there is a collision on the seqlock and our caller has to
  119. * retry. (Namely, old_jifs and old_count.) So we must treat
  120. * jiffies as volatile despite the lock. We read jiffies
  121. * before latching the timer count to guarantee that although
  122. * the jiffies value might be older than the count (that is,
  123. * the counter may underflow between the last point where
  124. * jiffies was incremented and the point where we latch the
  125. * count), it cannot be newer.
  126. */
  127. jifs = jiffies;
  128. outb_p(0x00, PIT_MODE); /* latch the count ASAP */
  129. count = inb_p(PIT_CH0); /* read the latched count */
  130. count |= inb_p(PIT_CH0) << 8;
  131. /* VIA686a test code... reset the latch if count > max + 1 */
  132. if (count > LATCH) {
  133. outb_p(0x34, PIT_MODE);
  134. outb_p(LATCH & 0xff, PIT_CH0);
  135. outb(LATCH >> 8, PIT_CH0);
  136. count = LATCH - 1;
  137. }
  138. /*
  139. * It's possible for count to appear to go the wrong way for a
  140. * couple of reasons:
  141. *
  142. * 1. The timer counter underflows, but we haven't handled the
  143. * resulting interrupt and incremented jiffies yet.
  144. * 2. Hardware problem with the timer, not giving us continuous time,
  145. * the counter does small "jumps" upwards on some Pentium systems,
  146. * (see c't 95/10 page 335 for Neptun bug.)
  147. *
  148. * Previous attempts to handle these cases intelligently were
  149. * buggy, so we just do the simple thing now.
  150. */
  151. if (count > old_count && jifs == old_jifs) {
  152. count = old_count;
  153. }
  154. old_count = count;
  155. old_jifs = jifs;
  156. spin_unlock_irqrestore(&i8253_lock, flags);
  157. count = (LATCH - 1) - count;
  158. return (cycle_t)(jifs * LATCH) + count;
  159. }
  160. static struct clocksource clocksource_pit = {
  161. .name = "pit",
  162. .rating = 110,
  163. .read = pit_read,
  164. .mask = CLOCKSOURCE_MASK(32),
  165. .mult = 0,
  166. .shift = 20,
  167. };
  168. static int __init init_pit_clocksource(void)
  169. {
  170. if (num_possible_cpus() > 1) /* PIT does not scale! */
  171. return 0;
  172. clocksource_pit.mult = clocksource_hz2mult(CLOCK_TICK_RATE, 20);
  173. return clocksource_register(&clocksource_pit);
  174. }
  175. module_init(init_pit_clocksource);