at32ap7000.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041
  1. /*
  2. * Copyright (C) 2005-2006 Atmel Corporation
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License version 2 as
  6. * published by the Free Software Foundation.
  7. */
  8. #include <linux/clk.h>
  9. #include <linux/init.h>
  10. #include <linux/platform_device.h>
  11. #include <linux/spi/spi.h>
  12. #include <asm/io.h>
  13. #include <asm/arch/at32ap7000.h>
  14. #include <asm/arch/board.h>
  15. #include <asm/arch/portmux.h>
  16. #include <asm/arch/sm.h>
  17. #include "clock.h"
  18. #include "pio.h"
  19. #include "sm.h"
  20. #define PBMEM(base) \
  21. { \
  22. .start = base, \
  23. .end = base + 0x3ff, \
  24. .flags = IORESOURCE_MEM, \
  25. }
  26. #define IRQ(num) \
  27. { \
  28. .start = num, \
  29. .end = num, \
  30. .flags = IORESOURCE_IRQ, \
  31. }
  32. #define NAMED_IRQ(num, _name) \
  33. { \
  34. .start = num, \
  35. .end = num, \
  36. .name = _name, \
  37. .flags = IORESOURCE_IRQ, \
  38. }
  39. #define DEFINE_DEV(_name, _id) \
  40. static struct platform_device _name##_id##_device = { \
  41. .name = #_name, \
  42. .id = _id, \
  43. .resource = _name##_id##_resource, \
  44. .num_resources = ARRAY_SIZE(_name##_id##_resource), \
  45. }
  46. #define DEFINE_DEV_DATA(_name, _id) \
  47. static struct platform_device _name##_id##_device = { \
  48. .name = #_name, \
  49. .id = _id, \
  50. .dev = { \
  51. .platform_data = &_name##_id##_data, \
  52. }, \
  53. .resource = _name##_id##_resource, \
  54. .num_resources = ARRAY_SIZE(_name##_id##_resource), \
  55. }
  56. #define select_peripheral(pin, periph, flags) \
  57. at32_select_periph(GPIO_PIN_##pin, GPIO_##periph, flags)
  58. #define DEV_CLK(_name, devname, bus, _index) \
  59. static struct clk devname##_##_name = { \
  60. .name = #_name, \
  61. .dev = &devname##_device.dev, \
  62. .parent = &bus##_clk, \
  63. .mode = bus##_clk_mode, \
  64. .get_rate = bus##_clk_get_rate, \
  65. .index = _index, \
  66. }
  67. unsigned long at32ap7000_osc_rates[3] = {
  68. [0] = 32768,
  69. /* FIXME: these are ATSTK1002-specific */
  70. [1] = 20000000,
  71. [2] = 12000000,
  72. };
  73. static unsigned long osc_get_rate(struct clk *clk)
  74. {
  75. return at32ap7000_osc_rates[clk->index];
  76. }
  77. static unsigned long pll_get_rate(struct clk *clk, unsigned long control)
  78. {
  79. unsigned long div, mul, rate;
  80. if (!(control & SM_BIT(PLLEN)))
  81. return 0;
  82. div = SM_BFEXT(PLLDIV, control) + 1;
  83. mul = SM_BFEXT(PLLMUL, control) + 1;
  84. rate = clk->parent->get_rate(clk->parent);
  85. rate = (rate + div / 2) / div;
  86. rate *= mul;
  87. return rate;
  88. }
  89. static unsigned long pll0_get_rate(struct clk *clk)
  90. {
  91. u32 control;
  92. control = sm_readl(&system_manager, PM_PLL0);
  93. return pll_get_rate(clk, control);
  94. }
  95. static unsigned long pll1_get_rate(struct clk *clk)
  96. {
  97. u32 control;
  98. control = sm_readl(&system_manager, PM_PLL1);
  99. return pll_get_rate(clk, control);
  100. }
  101. /*
  102. * The AT32AP7000 has five primary clock sources: One 32kHz
  103. * oscillator, two crystal oscillators and two PLLs.
  104. */
  105. static struct clk osc32k = {
  106. .name = "osc32k",
  107. .get_rate = osc_get_rate,
  108. .users = 1,
  109. .index = 0,
  110. };
  111. static struct clk osc0 = {
  112. .name = "osc0",
  113. .get_rate = osc_get_rate,
  114. .users = 1,
  115. .index = 1,
  116. };
  117. static struct clk osc1 = {
  118. .name = "osc1",
  119. .get_rate = osc_get_rate,
  120. .index = 2,
  121. };
  122. static struct clk pll0 = {
  123. .name = "pll0",
  124. .get_rate = pll0_get_rate,
  125. .parent = &osc0,
  126. };
  127. static struct clk pll1 = {
  128. .name = "pll1",
  129. .get_rate = pll1_get_rate,
  130. .parent = &osc0,
  131. };
  132. /*
  133. * The main clock can be either osc0 or pll0. The boot loader may
  134. * have chosen one for us, so we don't really know which one until we
  135. * have a look at the SM.
  136. */
  137. static struct clk *main_clock;
  138. /*
  139. * Synchronous clocks are generated from the main clock. The clocks
  140. * must satisfy the constraint
  141. * fCPU >= fHSB >= fPB
  142. * i.e. each clock must not be faster than its parent.
  143. */
  144. static unsigned long bus_clk_get_rate(struct clk *clk, unsigned int shift)
  145. {
  146. return main_clock->get_rate(main_clock) >> shift;
  147. };
  148. static void cpu_clk_mode(struct clk *clk, int enabled)
  149. {
  150. struct at32_sm *sm = &system_manager;
  151. unsigned long flags;
  152. u32 mask;
  153. spin_lock_irqsave(&sm->lock, flags);
  154. mask = sm_readl(sm, PM_CPU_MASK);
  155. if (enabled)
  156. mask |= 1 << clk->index;
  157. else
  158. mask &= ~(1 << clk->index);
  159. sm_writel(sm, PM_CPU_MASK, mask);
  160. spin_unlock_irqrestore(&sm->lock, flags);
  161. }
  162. static unsigned long cpu_clk_get_rate(struct clk *clk)
  163. {
  164. unsigned long cksel, shift = 0;
  165. cksel = sm_readl(&system_manager, PM_CKSEL);
  166. if (cksel & SM_BIT(CPUDIV))
  167. shift = SM_BFEXT(CPUSEL, cksel) + 1;
  168. return bus_clk_get_rate(clk, shift);
  169. }
  170. static void hsb_clk_mode(struct clk *clk, int enabled)
  171. {
  172. struct at32_sm *sm = &system_manager;
  173. unsigned long flags;
  174. u32 mask;
  175. spin_lock_irqsave(&sm->lock, flags);
  176. mask = sm_readl(sm, PM_HSB_MASK);
  177. if (enabled)
  178. mask |= 1 << clk->index;
  179. else
  180. mask &= ~(1 << clk->index);
  181. sm_writel(sm, PM_HSB_MASK, mask);
  182. spin_unlock_irqrestore(&sm->lock, flags);
  183. }
  184. static unsigned long hsb_clk_get_rate(struct clk *clk)
  185. {
  186. unsigned long cksel, shift = 0;
  187. cksel = sm_readl(&system_manager, PM_CKSEL);
  188. if (cksel & SM_BIT(HSBDIV))
  189. shift = SM_BFEXT(HSBSEL, cksel) + 1;
  190. return bus_clk_get_rate(clk, shift);
  191. }
  192. static void pba_clk_mode(struct clk *clk, int enabled)
  193. {
  194. struct at32_sm *sm = &system_manager;
  195. unsigned long flags;
  196. u32 mask;
  197. spin_lock_irqsave(&sm->lock, flags);
  198. mask = sm_readl(sm, PM_PBA_MASK);
  199. if (enabled)
  200. mask |= 1 << clk->index;
  201. else
  202. mask &= ~(1 << clk->index);
  203. sm_writel(sm, PM_PBA_MASK, mask);
  204. spin_unlock_irqrestore(&sm->lock, flags);
  205. }
  206. static unsigned long pba_clk_get_rate(struct clk *clk)
  207. {
  208. unsigned long cksel, shift = 0;
  209. cksel = sm_readl(&system_manager, PM_CKSEL);
  210. if (cksel & SM_BIT(PBADIV))
  211. shift = SM_BFEXT(PBASEL, cksel) + 1;
  212. return bus_clk_get_rate(clk, shift);
  213. }
  214. static void pbb_clk_mode(struct clk *clk, int enabled)
  215. {
  216. struct at32_sm *sm = &system_manager;
  217. unsigned long flags;
  218. u32 mask;
  219. spin_lock_irqsave(&sm->lock, flags);
  220. mask = sm_readl(sm, PM_PBB_MASK);
  221. if (enabled)
  222. mask |= 1 << clk->index;
  223. else
  224. mask &= ~(1 << clk->index);
  225. sm_writel(sm, PM_PBB_MASK, mask);
  226. spin_unlock_irqrestore(&sm->lock, flags);
  227. }
  228. static unsigned long pbb_clk_get_rate(struct clk *clk)
  229. {
  230. unsigned long cksel, shift = 0;
  231. cksel = sm_readl(&system_manager, PM_CKSEL);
  232. if (cksel & SM_BIT(PBBDIV))
  233. shift = SM_BFEXT(PBBSEL, cksel) + 1;
  234. return bus_clk_get_rate(clk, shift);
  235. }
  236. static struct clk cpu_clk = {
  237. .name = "cpu",
  238. .get_rate = cpu_clk_get_rate,
  239. .users = 1,
  240. };
  241. static struct clk hsb_clk = {
  242. .name = "hsb",
  243. .parent = &cpu_clk,
  244. .get_rate = hsb_clk_get_rate,
  245. };
  246. static struct clk pba_clk = {
  247. .name = "pba",
  248. .parent = &hsb_clk,
  249. .mode = hsb_clk_mode,
  250. .get_rate = pba_clk_get_rate,
  251. .index = 1,
  252. };
  253. static struct clk pbb_clk = {
  254. .name = "pbb",
  255. .parent = &hsb_clk,
  256. .mode = hsb_clk_mode,
  257. .get_rate = pbb_clk_get_rate,
  258. .users = 1,
  259. .index = 2,
  260. };
  261. /* --------------------------------------------------------------------
  262. * Generic Clock operations
  263. * -------------------------------------------------------------------- */
  264. static void genclk_mode(struct clk *clk, int enabled)
  265. {
  266. u32 control;
  267. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  268. if (enabled)
  269. control |= SM_BIT(CEN);
  270. else
  271. control &= ~SM_BIT(CEN);
  272. sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control);
  273. }
  274. static unsigned long genclk_get_rate(struct clk *clk)
  275. {
  276. u32 control;
  277. unsigned long div = 1;
  278. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  279. if (control & SM_BIT(DIVEN))
  280. div = 2 * (SM_BFEXT(DIV, control) + 1);
  281. return clk->parent->get_rate(clk->parent) / div;
  282. }
  283. static long genclk_set_rate(struct clk *clk, unsigned long rate, int apply)
  284. {
  285. u32 control;
  286. unsigned long parent_rate, actual_rate, div;
  287. parent_rate = clk->parent->get_rate(clk->parent);
  288. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  289. if (rate > 3 * parent_rate / 4) {
  290. actual_rate = parent_rate;
  291. control &= ~SM_BIT(DIVEN);
  292. } else {
  293. div = (parent_rate + rate) / (2 * rate) - 1;
  294. control = SM_BFINS(DIV, div, control) | SM_BIT(DIVEN);
  295. actual_rate = parent_rate / (2 * (div + 1));
  296. }
  297. printk("clk %s: new rate %lu (actual rate %lu)\n",
  298. clk->name, rate, actual_rate);
  299. if (apply)
  300. sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index,
  301. control);
  302. return actual_rate;
  303. }
  304. int genclk_set_parent(struct clk *clk, struct clk *parent)
  305. {
  306. u32 control;
  307. printk("clk %s: new parent %s (was %s)\n",
  308. clk->name, parent->name, clk->parent->name);
  309. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  310. if (parent == &osc1 || parent == &pll1)
  311. control |= SM_BIT(OSCSEL);
  312. else if (parent == &osc0 || parent == &pll0)
  313. control &= ~SM_BIT(OSCSEL);
  314. else
  315. return -EINVAL;
  316. if (parent == &pll0 || parent == &pll1)
  317. control |= SM_BIT(PLLSEL);
  318. else
  319. control &= ~SM_BIT(PLLSEL);
  320. sm_writel(&system_manager, PM_GCCTRL + 4 * clk->index, control);
  321. clk->parent = parent;
  322. return 0;
  323. }
  324. static void __init genclk_init_parent(struct clk *clk)
  325. {
  326. u32 control;
  327. struct clk *parent;
  328. BUG_ON(clk->index > 7);
  329. control = sm_readl(&system_manager, PM_GCCTRL + 4 * clk->index);
  330. if (control & SM_BIT(OSCSEL))
  331. parent = (control & SM_BIT(PLLSEL)) ? &pll1 : &osc1;
  332. else
  333. parent = (control & SM_BIT(PLLSEL)) ? &pll0 : &osc0;
  334. clk->parent = parent;
  335. }
  336. /* --------------------------------------------------------------------
  337. * System peripherals
  338. * -------------------------------------------------------------------- */
  339. static struct resource sm_resource[] = {
  340. PBMEM(0xfff00000),
  341. NAMED_IRQ(19, "eim"),
  342. NAMED_IRQ(20, "pm"),
  343. NAMED_IRQ(21, "rtc"),
  344. };
  345. struct platform_device at32_sm_device = {
  346. .name = "sm",
  347. .id = 0,
  348. .resource = sm_resource,
  349. .num_resources = ARRAY_SIZE(sm_resource),
  350. };
  351. DEV_CLK(pclk, at32_sm, pbb, 0);
  352. static struct resource intc0_resource[] = {
  353. PBMEM(0xfff00400),
  354. };
  355. struct platform_device at32_intc0_device = {
  356. .name = "intc",
  357. .id = 0,
  358. .resource = intc0_resource,
  359. .num_resources = ARRAY_SIZE(intc0_resource),
  360. };
  361. DEV_CLK(pclk, at32_intc0, pbb, 1);
  362. static struct clk ebi_clk = {
  363. .name = "ebi",
  364. .parent = &hsb_clk,
  365. .mode = hsb_clk_mode,
  366. .get_rate = hsb_clk_get_rate,
  367. .users = 1,
  368. };
  369. static struct clk hramc_clk = {
  370. .name = "hramc",
  371. .parent = &hsb_clk,
  372. .mode = hsb_clk_mode,
  373. .get_rate = hsb_clk_get_rate,
  374. .users = 1,
  375. };
  376. static struct resource smc0_resource[] = {
  377. PBMEM(0xfff03400),
  378. };
  379. DEFINE_DEV(smc, 0);
  380. DEV_CLK(pclk, smc0, pbb, 13);
  381. DEV_CLK(mck, smc0, hsb, 0);
  382. static struct platform_device pdc_device = {
  383. .name = "pdc",
  384. .id = 0,
  385. };
  386. DEV_CLK(hclk, pdc, hsb, 4);
  387. DEV_CLK(pclk, pdc, pba, 16);
  388. static struct clk pico_clk = {
  389. .name = "pico",
  390. .parent = &cpu_clk,
  391. .mode = cpu_clk_mode,
  392. .get_rate = cpu_clk_get_rate,
  393. .users = 1,
  394. };
  395. /* --------------------------------------------------------------------
  396. * PIO
  397. * -------------------------------------------------------------------- */
  398. static struct resource pio0_resource[] = {
  399. PBMEM(0xffe02800),
  400. IRQ(13),
  401. };
  402. DEFINE_DEV(pio, 0);
  403. DEV_CLK(mck, pio0, pba, 10);
  404. static struct resource pio1_resource[] = {
  405. PBMEM(0xffe02c00),
  406. IRQ(14),
  407. };
  408. DEFINE_DEV(pio, 1);
  409. DEV_CLK(mck, pio1, pba, 11);
  410. static struct resource pio2_resource[] = {
  411. PBMEM(0xffe03000),
  412. IRQ(15),
  413. };
  414. DEFINE_DEV(pio, 2);
  415. DEV_CLK(mck, pio2, pba, 12);
  416. static struct resource pio3_resource[] = {
  417. PBMEM(0xffe03400),
  418. IRQ(16),
  419. };
  420. DEFINE_DEV(pio, 3);
  421. DEV_CLK(mck, pio3, pba, 13);
  422. static struct resource pio4_resource[] = {
  423. PBMEM(0xffe03800),
  424. IRQ(17),
  425. };
  426. DEFINE_DEV(pio, 4);
  427. DEV_CLK(mck, pio4, pba, 14);
  428. void __init at32_add_system_devices(void)
  429. {
  430. system_manager.eim_first_irq = EIM_IRQ_BASE;
  431. platform_device_register(&at32_sm_device);
  432. platform_device_register(&at32_intc0_device);
  433. platform_device_register(&smc0_device);
  434. platform_device_register(&pdc_device);
  435. platform_device_register(&pio0_device);
  436. platform_device_register(&pio1_device);
  437. platform_device_register(&pio2_device);
  438. platform_device_register(&pio3_device);
  439. platform_device_register(&pio4_device);
  440. }
  441. /* --------------------------------------------------------------------
  442. * USART
  443. * -------------------------------------------------------------------- */
  444. static struct atmel_uart_data atmel_usart0_data = {
  445. .use_dma_tx = 1,
  446. .use_dma_rx = 1,
  447. };
  448. static struct resource atmel_usart0_resource[] = {
  449. PBMEM(0xffe00c00),
  450. IRQ(6),
  451. };
  452. DEFINE_DEV_DATA(atmel_usart, 0);
  453. DEV_CLK(usart, atmel_usart0, pba, 4);
  454. static struct atmel_uart_data atmel_usart1_data = {
  455. .use_dma_tx = 1,
  456. .use_dma_rx = 1,
  457. };
  458. static struct resource atmel_usart1_resource[] = {
  459. PBMEM(0xffe01000),
  460. IRQ(7),
  461. };
  462. DEFINE_DEV_DATA(atmel_usart, 1);
  463. DEV_CLK(usart, atmel_usart1, pba, 4);
  464. static struct atmel_uart_data atmel_usart2_data = {
  465. .use_dma_tx = 1,
  466. .use_dma_rx = 1,
  467. };
  468. static struct resource atmel_usart2_resource[] = {
  469. PBMEM(0xffe01400),
  470. IRQ(8),
  471. };
  472. DEFINE_DEV_DATA(atmel_usart, 2);
  473. DEV_CLK(usart, atmel_usart2, pba, 5);
  474. static struct atmel_uart_data atmel_usart3_data = {
  475. .use_dma_tx = 1,
  476. .use_dma_rx = 1,
  477. };
  478. static struct resource atmel_usart3_resource[] = {
  479. PBMEM(0xffe01800),
  480. IRQ(9),
  481. };
  482. DEFINE_DEV_DATA(atmel_usart, 3);
  483. DEV_CLK(usart, atmel_usart3, pba, 6);
  484. static inline void configure_usart0_pins(void)
  485. {
  486. select_peripheral(PA(8), PERIPH_B, 0); /* RXD */
  487. select_peripheral(PA(9), PERIPH_B, 0); /* TXD */
  488. }
  489. static inline void configure_usart1_pins(void)
  490. {
  491. select_peripheral(PA(17), PERIPH_A, 0); /* RXD */
  492. select_peripheral(PA(18), PERIPH_A, 0); /* TXD */
  493. }
  494. static inline void configure_usart2_pins(void)
  495. {
  496. select_peripheral(PB(26), PERIPH_B, 0); /* RXD */
  497. select_peripheral(PB(27), PERIPH_B, 0); /* TXD */
  498. }
  499. static inline void configure_usart3_pins(void)
  500. {
  501. select_peripheral(PB(18), PERIPH_B, 0); /* RXD */
  502. select_peripheral(PB(17), PERIPH_B, 0); /* TXD */
  503. }
  504. static struct platform_device *__initdata at32_usarts[4];
  505. void __init at32_map_usart(unsigned int hw_id, unsigned int line)
  506. {
  507. struct platform_device *pdev;
  508. switch (hw_id) {
  509. case 0:
  510. pdev = &atmel_usart0_device;
  511. configure_usart0_pins();
  512. break;
  513. case 1:
  514. pdev = &atmel_usart1_device;
  515. configure_usart1_pins();
  516. break;
  517. case 2:
  518. pdev = &atmel_usart2_device;
  519. configure_usart2_pins();
  520. break;
  521. case 3:
  522. pdev = &atmel_usart3_device;
  523. configure_usart3_pins();
  524. break;
  525. default:
  526. return;
  527. }
  528. if (PXSEG(pdev->resource[0].start) == P4SEG) {
  529. /* Addresses in the P4 segment are permanently mapped 1:1 */
  530. struct atmel_uart_data *data = pdev->dev.platform_data;
  531. data->regs = (void __iomem *)pdev->resource[0].start;
  532. }
  533. pdev->id = line;
  534. at32_usarts[line] = pdev;
  535. }
  536. struct platform_device *__init at32_add_device_usart(unsigned int id)
  537. {
  538. platform_device_register(at32_usarts[id]);
  539. return at32_usarts[id];
  540. }
  541. struct platform_device *atmel_default_console_device;
  542. void __init at32_setup_serial_console(unsigned int usart_id)
  543. {
  544. atmel_default_console_device = at32_usarts[usart_id];
  545. }
  546. /* --------------------------------------------------------------------
  547. * Ethernet
  548. * -------------------------------------------------------------------- */
  549. static struct eth_platform_data macb0_data;
  550. static struct resource macb0_resource[] = {
  551. PBMEM(0xfff01800),
  552. IRQ(25),
  553. };
  554. DEFINE_DEV_DATA(macb, 0);
  555. DEV_CLK(hclk, macb0, hsb, 8);
  556. DEV_CLK(pclk, macb0, pbb, 6);
  557. static struct eth_platform_data macb1_data;
  558. static struct resource macb1_resource[] = {
  559. PBMEM(0xfff01c00),
  560. IRQ(26),
  561. };
  562. DEFINE_DEV_DATA(macb, 1);
  563. DEV_CLK(hclk, macb1, hsb, 9);
  564. DEV_CLK(pclk, macb1, pbb, 7);
  565. struct platform_device *__init
  566. at32_add_device_eth(unsigned int id, struct eth_platform_data *data)
  567. {
  568. struct platform_device *pdev;
  569. switch (id) {
  570. case 0:
  571. pdev = &macb0_device;
  572. select_peripheral(PC(3), PERIPH_A, 0); /* TXD0 */
  573. select_peripheral(PC(4), PERIPH_A, 0); /* TXD1 */
  574. select_peripheral(PC(7), PERIPH_A, 0); /* TXEN */
  575. select_peripheral(PC(8), PERIPH_A, 0); /* TXCK */
  576. select_peripheral(PC(9), PERIPH_A, 0); /* RXD0 */
  577. select_peripheral(PC(10), PERIPH_A, 0); /* RXD1 */
  578. select_peripheral(PC(13), PERIPH_A, 0); /* RXER */
  579. select_peripheral(PC(15), PERIPH_A, 0); /* RXDV */
  580. select_peripheral(PC(16), PERIPH_A, 0); /* MDC */
  581. select_peripheral(PC(17), PERIPH_A, 0); /* MDIO */
  582. if (!data->is_rmii) {
  583. select_peripheral(PC(0), PERIPH_A, 0); /* COL */
  584. select_peripheral(PC(1), PERIPH_A, 0); /* CRS */
  585. select_peripheral(PC(2), PERIPH_A, 0); /* TXER */
  586. select_peripheral(PC(5), PERIPH_A, 0); /* TXD2 */
  587. select_peripheral(PC(6), PERIPH_A, 0); /* TXD3 */
  588. select_peripheral(PC(11), PERIPH_A, 0); /* RXD2 */
  589. select_peripheral(PC(12), PERIPH_A, 0); /* RXD3 */
  590. select_peripheral(PC(14), PERIPH_A, 0); /* RXCK */
  591. select_peripheral(PC(18), PERIPH_A, 0); /* SPD */
  592. }
  593. break;
  594. case 1:
  595. pdev = &macb1_device;
  596. select_peripheral(PD(13), PERIPH_B, 0); /* TXD0 */
  597. select_peripheral(PD(14), PERIPH_B, 0); /* TXD1 */
  598. select_peripheral(PD(11), PERIPH_B, 0); /* TXEN */
  599. select_peripheral(PD(12), PERIPH_B, 0); /* TXCK */
  600. select_peripheral(PD(10), PERIPH_B, 0); /* RXD0 */
  601. select_peripheral(PD(6), PERIPH_B, 0); /* RXD1 */
  602. select_peripheral(PD(5), PERIPH_B, 0); /* RXER */
  603. select_peripheral(PD(4), PERIPH_B, 0); /* RXDV */
  604. select_peripheral(PD(3), PERIPH_B, 0); /* MDC */
  605. select_peripheral(PD(2), PERIPH_B, 0); /* MDIO */
  606. if (!data->is_rmii) {
  607. select_peripheral(PC(19), PERIPH_B, 0); /* COL */
  608. select_peripheral(PC(23), PERIPH_B, 0); /* CRS */
  609. select_peripheral(PC(26), PERIPH_B, 0); /* TXER */
  610. select_peripheral(PC(27), PERIPH_B, 0); /* TXD2 */
  611. select_peripheral(PC(28), PERIPH_B, 0); /* TXD3 */
  612. select_peripheral(PC(29), PERIPH_B, 0); /* RXD2 */
  613. select_peripheral(PC(30), PERIPH_B, 0); /* RXD3 */
  614. select_peripheral(PC(24), PERIPH_B, 0); /* RXCK */
  615. select_peripheral(PD(15), PERIPH_B, 0); /* SPD */
  616. }
  617. break;
  618. default:
  619. return NULL;
  620. }
  621. memcpy(pdev->dev.platform_data, data, sizeof(struct eth_platform_data));
  622. platform_device_register(pdev);
  623. return pdev;
  624. }
  625. /* --------------------------------------------------------------------
  626. * SPI
  627. * -------------------------------------------------------------------- */
  628. static struct resource atmel_spi0_resource[] = {
  629. PBMEM(0xffe00000),
  630. IRQ(3),
  631. };
  632. DEFINE_DEV(atmel_spi, 0);
  633. DEV_CLK(spi_clk, atmel_spi0, pba, 0);
  634. static struct resource atmel_spi1_resource[] = {
  635. PBMEM(0xffe00400),
  636. IRQ(4),
  637. };
  638. DEFINE_DEV(atmel_spi, 1);
  639. DEV_CLK(spi_clk, atmel_spi1, pba, 1);
  640. static void
  641. at32_spi_setup_slaves(unsigned int bus_num, struct spi_board_info *b,
  642. unsigned int n, const u8 *pins)
  643. {
  644. unsigned int pin, mode;
  645. for (; n; n--, b++) {
  646. b->bus_num = bus_num;
  647. if (b->chip_select >= 4)
  648. continue;
  649. pin = (unsigned)b->controller_data;
  650. if (!pin) {
  651. pin = pins[b->chip_select];
  652. b->controller_data = (void *)pin;
  653. }
  654. mode = AT32_GPIOF_OUTPUT;
  655. if (!(b->mode & SPI_CS_HIGH))
  656. mode |= AT32_GPIOF_HIGH;
  657. at32_select_gpio(pin, mode);
  658. }
  659. }
  660. struct platform_device *__init
  661. at32_add_device_spi(unsigned int id, struct spi_board_info *b, unsigned int n)
  662. {
  663. /*
  664. * Manage the chipselects as GPIOs, normally using the same pins
  665. * the SPI controller expects; but boards can use other pins.
  666. */
  667. static u8 __initdata spi0_pins[] =
  668. { GPIO_PIN_PA(3), GPIO_PIN_PA(4),
  669. GPIO_PIN_PA(5), GPIO_PIN_PA(20), };
  670. static u8 __initdata spi1_pins[] =
  671. { GPIO_PIN_PB(2), GPIO_PIN_PB(3),
  672. GPIO_PIN_PB(4), GPIO_PIN_PA(27), };
  673. struct platform_device *pdev;
  674. switch (id) {
  675. case 0:
  676. pdev = &atmel_spi0_device;
  677. select_peripheral(PA(0), PERIPH_A, 0); /* MISO */
  678. select_peripheral(PA(1), PERIPH_A, 0); /* MOSI */
  679. select_peripheral(PA(2), PERIPH_A, 0); /* SCK */
  680. at32_spi_setup_slaves(0, b, n, spi0_pins);
  681. break;
  682. case 1:
  683. pdev = &atmel_spi1_device;
  684. select_peripheral(PB(0), PERIPH_B, 0); /* MISO */
  685. select_peripheral(PB(1), PERIPH_B, 0); /* MOSI */
  686. select_peripheral(PB(5), PERIPH_B, 0); /* SCK */
  687. at32_spi_setup_slaves(1, b, n, spi1_pins);
  688. break;
  689. default:
  690. return NULL;
  691. }
  692. spi_register_board_info(b, n);
  693. platform_device_register(pdev);
  694. return pdev;
  695. }
  696. /* --------------------------------------------------------------------
  697. * LCDC
  698. * -------------------------------------------------------------------- */
  699. static struct lcdc_platform_data lcdc0_data;
  700. static struct resource lcdc0_resource[] = {
  701. {
  702. .start = 0xff000000,
  703. .end = 0xff000fff,
  704. .flags = IORESOURCE_MEM,
  705. },
  706. IRQ(1),
  707. };
  708. DEFINE_DEV_DATA(lcdc, 0);
  709. DEV_CLK(hclk, lcdc0, hsb, 7);
  710. static struct clk lcdc0_pixclk = {
  711. .name = "pixclk",
  712. .dev = &lcdc0_device.dev,
  713. .mode = genclk_mode,
  714. .get_rate = genclk_get_rate,
  715. .set_rate = genclk_set_rate,
  716. .set_parent = genclk_set_parent,
  717. .index = 7,
  718. };
  719. struct platform_device *__init
  720. at32_add_device_lcdc(unsigned int id, struct lcdc_platform_data *data)
  721. {
  722. struct platform_device *pdev;
  723. switch (id) {
  724. case 0:
  725. pdev = &lcdc0_device;
  726. select_peripheral(PC(19), PERIPH_A, 0); /* CC */
  727. select_peripheral(PC(20), PERIPH_A, 0); /* HSYNC */
  728. select_peripheral(PC(21), PERIPH_A, 0); /* PCLK */
  729. select_peripheral(PC(22), PERIPH_A, 0); /* VSYNC */
  730. select_peripheral(PC(23), PERIPH_A, 0); /* DVAL */
  731. select_peripheral(PC(24), PERIPH_A, 0); /* MODE */
  732. select_peripheral(PC(25), PERIPH_A, 0); /* PWR */
  733. select_peripheral(PC(26), PERIPH_A, 0); /* DATA0 */
  734. select_peripheral(PC(27), PERIPH_A, 0); /* DATA1 */
  735. select_peripheral(PC(28), PERIPH_A, 0); /* DATA2 */
  736. select_peripheral(PC(29), PERIPH_A, 0); /* DATA3 */
  737. select_peripheral(PC(30), PERIPH_A, 0); /* DATA4 */
  738. select_peripheral(PC(31), PERIPH_A, 0); /* DATA5 */
  739. select_peripheral(PD(0), PERIPH_A, 0); /* DATA6 */
  740. select_peripheral(PD(1), PERIPH_A, 0); /* DATA7 */
  741. select_peripheral(PD(2), PERIPH_A, 0); /* DATA8 */
  742. select_peripheral(PD(3), PERIPH_A, 0); /* DATA9 */
  743. select_peripheral(PD(4), PERIPH_A, 0); /* DATA10 */
  744. select_peripheral(PD(5), PERIPH_A, 0); /* DATA11 */
  745. select_peripheral(PD(6), PERIPH_A, 0); /* DATA12 */
  746. select_peripheral(PD(7), PERIPH_A, 0); /* DATA13 */
  747. select_peripheral(PD(8), PERIPH_A, 0); /* DATA14 */
  748. select_peripheral(PD(9), PERIPH_A, 0); /* DATA15 */
  749. select_peripheral(PD(10), PERIPH_A, 0); /* DATA16 */
  750. select_peripheral(PD(11), PERIPH_A, 0); /* DATA17 */
  751. select_peripheral(PD(12), PERIPH_A, 0); /* DATA18 */
  752. select_peripheral(PD(13), PERIPH_A, 0); /* DATA19 */
  753. select_peripheral(PD(14), PERIPH_A, 0); /* DATA20 */
  754. select_peripheral(PD(15), PERIPH_A, 0); /* DATA21 */
  755. select_peripheral(PD(16), PERIPH_A, 0); /* DATA22 */
  756. select_peripheral(PD(17), PERIPH_A, 0); /* DATA23 */
  757. clk_set_parent(&lcdc0_pixclk, &pll0);
  758. clk_set_rate(&lcdc0_pixclk, clk_get_rate(&pll0));
  759. break;
  760. default:
  761. return NULL;
  762. }
  763. memcpy(pdev->dev.platform_data, data,
  764. sizeof(struct lcdc_platform_data));
  765. platform_device_register(pdev);
  766. return pdev;
  767. }
  768. /* --------------------------------------------------------------------
  769. * GCLK
  770. * -------------------------------------------------------------------- */
  771. static struct clk gclk0 = {
  772. .name = "gclk0",
  773. .mode = genclk_mode,
  774. .get_rate = genclk_get_rate,
  775. .set_rate = genclk_set_rate,
  776. .set_parent = genclk_set_parent,
  777. .index = 0,
  778. };
  779. static struct clk gclk1 = {
  780. .name = "gclk1",
  781. .mode = genclk_mode,
  782. .get_rate = genclk_get_rate,
  783. .set_rate = genclk_set_rate,
  784. .set_parent = genclk_set_parent,
  785. .index = 1,
  786. };
  787. static struct clk gclk2 = {
  788. .name = "gclk2",
  789. .mode = genclk_mode,
  790. .get_rate = genclk_get_rate,
  791. .set_rate = genclk_set_rate,
  792. .set_parent = genclk_set_parent,
  793. .index = 2,
  794. };
  795. static struct clk gclk3 = {
  796. .name = "gclk3",
  797. .mode = genclk_mode,
  798. .get_rate = genclk_get_rate,
  799. .set_rate = genclk_set_rate,
  800. .set_parent = genclk_set_parent,
  801. .index = 3,
  802. };
  803. static struct clk gclk4 = {
  804. .name = "gclk4",
  805. .mode = genclk_mode,
  806. .get_rate = genclk_get_rate,
  807. .set_rate = genclk_set_rate,
  808. .set_parent = genclk_set_parent,
  809. .index = 4,
  810. };
  811. struct clk *at32_clock_list[] = {
  812. &osc32k,
  813. &osc0,
  814. &osc1,
  815. &pll0,
  816. &pll1,
  817. &cpu_clk,
  818. &hsb_clk,
  819. &pba_clk,
  820. &pbb_clk,
  821. &at32_sm_pclk,
  822. &at32_intc0_pclk,
  823. &ebi_clk,
  824. &hramc_clk,
  825. &smc0_pclk,
  826. &smc0_mck,
  827. &pdc_hclk,
  828. &pdc_pclk,
  829. &pico_clk,
  830. &pio0_mck,
  831. &pio1_mck,
  832. &pio2_mck,
  833. &pio3_mck,
  834. &pio4_mck,
  835. &atmel_usart0_usart,
  836. &atmel_usart1_usart,
  837. &atmel_usart2_usart,
  838. &atmel_usart3_usart,
  839. &macb0_hclk,
  840. &macb0_pclk,
  841. &macb1_hclk,
  842. &macb1_pclk,
  843. &atmel_spi0_spi_clk,
  844. &atmel_spi1_spi_clk,
  845. &lcdc0_hclk,
  846. &lcdc0_pixclk,
  847. &gclk0,
  848. &gclk1,
  849. &gclk2,
  850. &gclk3,
  851. &gclk4,
  852. };
  853. unsigned int at32_nr_clocks = ARRAY_SIZE(at32_clock_list);
  854. void __init at32_portmux_init(void)
  855. {
  856. at32_init_pio(&pio0_device);
  857. at32_init_pio(&pio1_device);
  858. at32_init_pio(&pio2_device);
  859. at32_init_pio(&pio3_device);
  860. at32_init_pio(&pio4_device);
  861. }
  862. void __init at32_clock_init(void)
  863. {
  864. struct at32_sm *sm = &system_manager;
  865. u32 cpu_mask = 0, hsb_mask = 0, pba_mask = 0, pbb_mask = 0;
  866. int i;
  867. if (sm_readl(sm, PM_MCCTRL) & SM_BIT(PLLSEL))
  868. main_clock = &pll0;
  869. else
  870. main_clock = &osc0;
  871. if (sm_readl(sm, PM_PLL0) & SM_BIT(PLLOSC))
  872. pll0.parent = &osc1;
  873. if (sm_readl(sm, PM_PLL1) & SM_BIT(PLLOSC))
  874. pll1.parent = &osc1;
  875. genclk_init_parent(&gclk0);
  876. genclk_init_parent(&gclk1);
  877. genclk_init_parent(&gclk2);
  878. genclk_init_parent(&gclk3);
  879. genclk_init_parent(&gclk4);
  880. genclk_init_parent(&lcdc0_pixclk);
  881. /*
  882. * Turn on all clocks that have at least one user already, and
  883. * turn off everything else. We only do this for module
  884. * clocks, and even though it isn't particularly pretty to
  885. * check the address of the mode function, it should do the
  886. * trick...
  887. */
  888. for (i = 0; i < ARRAY_SIZE(at32_clock_list); i++) {
  889. struct clk *clk = at32_clock_list[i];
  890. if (clk->mode == &cpu_clk_mode)
  891. cpu_mask |= 1 << clk->index;
  892. else if (clk->mode == &hsb_clk_mode)
  893. hsb_mask |= 1 << clk->index;
  894. else if (clk->mode == &pba_clk_mode)
  895. pba_mask |= 1 << clk->index;
  896. else if (clk->mode == &pbb_clk_mode)
  897. pbb_mask |= 1 << clk->index;
  898. }
  899. sm_writel(sm, PM_CPU_MASK, cpu_mask);
  900. sm_writel(sm, PM_HSB_MASK, hsb_mask);
  901. sm_writel(sm, PM_PBA_MASK, pba_mask);
  902. sm_writel(sm, PM_PBB_MASK, pbb_mask);
  903. }