perf_event.c 37 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716
  1. /*
  2. * Performance events x86 architecture code
  3. *
  4. * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
  5. * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
  6. * Copyright (C) 2009 Jaswinder Singh Rajput
  7. * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
  8. * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
  9. * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
  10. * Copyright (C) 2009 Google, Inc., Stephane Eranian
  11. *
  12. * For licencing details see kernel-base/COPYING
  13. */
  14. #include <linux/perf_event.h>
  15. #include <linux/capability.h>
  16. #include <linux/notifier.h>
  17. #include <linux/hardirq.h>
  18. #include <linux/kprobes.h>
  19. #include <linux/module.h>
  20. #include <linux/kdebug.h>
  21. #include <linux/sched.h>
  22. #include <linux/uaccess.h>
  23. #include <linux/highmem.h>
  24. #include <linux/cpu.h>
  25. #include <linux/bitops.h>
  26. #include <asm/apic.h>
  27. #include <asm/stacktrace.h>
  28. #include <asm/nmi.h>
  29. static u64 perf_event_mask __read_mostly;
  30. /* The maximal number of PEBS events: */
  31. #define MAX_PEBS_EVENTS 4
  32. /* The size of a BTS record in bytes: */
  33. #define BTS_RECORD_SIZE 24
  34. /* The size of a per-cpu BTS buffer in bytes: */
  35. #define BTS_BUFFER_SIZE (BTS_RECORD_SIZE * 2048)
  36. /* The BTS overflow threshold in bytes from the end of the buffer: */
  37. #define BTS_OVFL_TH (BTS_RECORD_SIZE * 128)
  38. /*
  39. * Bits in the debugctlmsr controlling branch tracing.
  40. */
  41. #define X86_DEBUGCTL_TR (1 << 6)
  42. #define X86_DEBUGCTL_BTS (1 << 7)
  43. #define X86_DEBUGCTL_BTINT (1 << 8)
  44. #define X86_DEBUGCTL_BTS_OFF_OS (1 << 9)
  45. #define X86_DEBUGCTL_BTS_OFF_USR (1 << 10)
  46. /*
  47. * A debug store configuration.
  48. *
  49. * We only support architectures that use 64bit fields.
  50. */
  51. struct debug_store {
  52. u64 bts_buffer_base;
  53. u64 bts_index;
  54. u64 bts_absolute_maximum;
  55. u64 bts_interrupt_threshold;
  56. u64 pebs_buffer_base;
  57. u64 pebs_index;
  58. u64 pebs_absolute_maximum;
  59. u64 pebs_interrupt_threshold;
  60. u64 pebs_event_reset[MAX_PEBS_EVENTS];
  61. };
  62. struct event_constraint {
  63. union {
  64. unsigned long idxmsk[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  65. u64 idxmsk64;
  66. };
  67. u64 code;
  68. u64 cmask;
  69. int weight;
  70. };
  71. struct amd_nb {
  72. int nb_id; /* NorthBridge id */
  73. int refcnt; /* reference count */
  74. struct perf_event *owners[X86_PMC_IDX_MAX];
  75. struct event_constraint event_constraints[X86_PMC_IDX_MAX];
  76. };
  77. struct cpu_hw_events {
  78. struct perf_event *events[X86_PMC_IDX_MAX]; /* in counter order */
  79. unsigned long active_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  80. unsigned long interrupts;
  81. int enabled;
  82. struct debug_store *ds;
  83. int n_events;
  84. int n_added;
  85. int assign[X86_PMC_IDX_MAX]; /* event to counter assignment */
  86. u64 tags[X86_PMC_IDX_MAX];
  87. struct perf_event *event_list[X86_PMC_IDX_MAX]; /* in enabled order */
  88. struct amd_nb *amd_nb;
  89. };
  90. #define __EVENT_CONSTRAINT(c, n, m, w) {\
  91. { .idxmsk64 = (n) }, \
  92. .code = (c), \
  93. .cmask = (m), \
  94. .weight = (w), \
  95. }
  96. #define EVENT_CONSTRAINT(c, n, m) \
  97. __EVENT_CONSTRAINT(c, n, m, HWEIGHT(n))
  98. #define INTEL_EVENT_CONSTRAINT(c, n) \
  99. EVENT_CONSTRAINT(c, n, INTEL_ARCH_EVTSEL_MASK)
  100. #define FIXED_EVENT_CONSTRAINT(c, n) \
  101. EVENT_CONSTRAINT(c, (1ULL << (32+n)), INTEL_ARCH_FIXED_MASK)
  102. #define EVENT_CONSTRAINT_END \
  103. EVENT_CONSTRAINT(0, 0, 0)
  104. #define for_each_event_constraint(e, c) \
  105. for ((e) = (c); (e)->cmask; (e)++)
  106. /*
  107. * struct x86_pmu - generic x86 pmu
  108. */
  109. struct x86_pmu {
  110. const char *name;
  111. int version;
  112. int (*handle_irq)(struct pt_regs *);
  113. void (*disable_all)(void);
  114. void (*enable_all)(void);
  115. void (*enable)(struct hw_perf_event *, int);
  116. void (*disable)(struct hw_perf_event *, int);
  117. unsigned eventsel;
  118. unsigned perfctr;
  119. u64 (*event_map)(int);
  120. u64 (*raw_event)(u64);
  121. int max_events;
  122. int num_events;
  123. int num_events_fixed;
  124. int event_bits;
  125. u64 event_mask;
  126. int apic;
  127. u64 max_period;
  128. u64 intel_ctrl;
  129. void (*enable_bts)(u64 config);
  130. void (*disable_bts)(void);
  131. struct event_constraint *
  132. (*get_event_constraints)(struct cpu_hw_events *cpuc,
  133. struct perf_event *event);
  134. void (*put_event_constraints)(struct cpu_hw_events *cpuc,
  135. struct perf_event *event);
  136. struct event_constraint *event_constraints;
  137. void (*cpu_prepare)(int cpu);
  138. void (*cpu_starting)(int cpu);
  139. void (*cpu_dying)(int cpu);
  140. void (*cpu_dead)(int cpu);
  141. };
  142. static struct x86_pmu x86_pmu __read_mostly;
  143. static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
  144. .enabled = 1,
  145. };
  146. static int x86_perf_event_set_period(struct perf_event *event);
  147. /*
  148. * Generalized hw caching related hw_event table, filled
  149. * in on a per model basis. A value of 0 means
  150. * 'not supported', -1 means 'hw_event makes no sense on
  151. * this CPU', any other value means the raw hw_event
  152. * ID.
  153. */
  154. #define C(x) PERF_COUNT_HW_CACHE_##x
  155. static u64 __read_mostly hw_cache_event_ids
  156. [PERF_COUNT_HW_CACHE_MAX]
  157. [PERF_COUNT_HW_CACHE_OP_MAX]
  158. [PERF_COUNT_HW_CACHE_RESULT_MAX];
  159. /*
  160. * Propagate event elapsed time into the generic event.
  161. * Can only be executed on the CPU where the event is active.
  162. * Returns the delta events processed.
  163. */
  164. static u64
  165. x86_perf_event_update(struct perf_event *event)
  166. {
  167. struct hw_perf_event *hwc = &event->hw;
  168. int shift = 64 - x86_pmu.event_bits;
  169. u64 prev_raw_count, new_raw_count;
  170. int idx = hwc->idx;
  171. s64 delta;
  172. if (idx == X86_PMC_IDX_FIXED_BTS)
  173. return 0;
  174. /*
  175. * Careful: an NMI might modify the previous event value.
  176. *
  177. * Our tactic to handle this is to first atomically read and
  178. * exchange a new raw count - then add that new-prev delta
  179. * count to the generic event atomically:
  180. */
  181. again:
  182. prev_raw_count = atomic64_read(&hwc->prev_count);
  183. rdmsrl(hwc->event_base + idx, new_raw_count);
  184. if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
  185. new_raw_count) != prev_raw_count)
  186. goto again;
  187. /*
  188. * Now we have the new raw value and have updated the prev
  189. * timestamp already. We can now calculate the elapsed delta
  190. * (event-)time and add that to the generic event.
  191. *
  192. * Careful, not all hw sign-extends above the physical width
  193. * of the count.
  194. */
  195. delta = (new_raw_count << shift) - (prev_raw_count << shift);
  196. delta >>= shift;
  197. atomic64_add(delta, &event->count);
  198. atomic64_sub(delta, &hwc->period_left);
  199. return new_raw_count;
  200. }
  201. static atomic_t active_events;
  202. static DEFINE_MUTEX(pmc_reserve_mutex);
  203. static bool reserve_pmc_hardware(void)
  204. {
  205. #ifdef CONFIG_X86_LOCAL_APIC
  206. int i;
  207. if (nmi_watchdog == NMI_LOCAL_APIC)
  208. disable_lapic_nmi_watchdog();
  209. for (i = 0; i < x86_pmu.num_events; i++) {
  210. if (!reserve_perfctr_nmi(x86_pmu.perfctr + i))
  211. goto perfctr_fail;
  212. }
  213. for (i = 0; i < x86_pmu.num_events; i++) {
  214. if (!reserve_evntsel_nmi(x86_pmu.eventsel + i))
  215. goto eventsel_fail;
  216. }
  217. #endif
  218. return true;
  219. #ifdef CONFIG_X86_LOCAL_APIC
  220. eventsel_fail:
  221. for (i--; i >= 0; i--)
  222. release_evntsel_nmi(x86_pmu.eventsel + i);
  223. i = x86_pmu.num_events;
  224. perfctr_fail:
  225. for (i--; i >= 0; i--)
  226. release_perfctr_nmi(x86_pmu.perfctr + i);
  227. if (nmi_watchdog == NMI_LOCAL_APIC)
  228. enable_lapic_nmi_watchdog();
  229. return false;
  230. #endif
  231. }
  232. static void release_pmc_hardware(void)
  233. {
  234. #ifdef CONFIG_X86_LOCAL_APIC
  235. int i;
  236. for (i = 0; i < x86_pmu.num_events; i++) {
  237. release_perfctr_nmi(x86_pmu.perfctr + i);
  238. release_evntsel_nmi(x86_pmu.eventsel + i);
  239. }
  240. if (nmi_watchdog == NMI_LOCAL_APIC)
  241. enable_lapic_nmi_watchdog();
  242. #endif
  243. }
  244. static inline bool bts_available(void)
  245. {
  246. return x86_pmu.enable_bts != NULL;
  247. }
  248. static void init_debug_store_on_cpu(int cpu)
  249. {
  250. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  251. if (!ds)
  252. return;
  253. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA,
  254. (u32)((u64)(unsigned long)ds),
  255. (u32)((u64)(unsigned long)ds >> 32));
  256. }
  257. static void fini_debug_store_on_cpu(int cpu)
  258. {
  259. if (!per_cpu(cpu_hw_events, cpu).ds)
  260. return;
  261. wrmsr_on_cpu(cpu, MSR_IA32_DS_AREA, 0, 0);
  262. }
  263. static void release_bts_hardware(void)
  264. {
  265. int cpu;
  266. if (!bts_available())
  267. return;
  268. get_online_cpus();
  269. for_each_online_cpu(cpu)
  270. fini_debug_store_on_cpu(cpu);
  271. for_each_possible_cpu(cpu) {
  272. struct debug_store *ds = per_cpu(cpu_hw_events, cpu).ds;
  273. if (!ds)
  274. continue;
  275. per_cpu(cpu_hw_events, cpu).ds = NULL;
  276. kfree((void *)(unsigned long)ds->bts_buffer_base);
  277. kfree(ds);
  278. }
  279. put_online_cpus();
  280. }
  281. static int reserve_bts_hardware(void)
  282. {
  283. int cpu, err = 0;
  284. if (!bts_available())
  285. return 0;
  286. get_online_cpus();
  287. for_each_possible_cpu(cpu) {
  288. struct debug_store *ds;
  289. void *buffer;
  290. err = -ENOMEM;
  291. buffer = kzalloc(BTS_BUFFER_SIZE, GFP_KERNEL);
  292. if (unlikely(!buffer))
  293. break;
  294. ds = kzalloc(sizeof(*ds), GFP_KERNEL);
  295. if (unlikely(!ds)) {
  296. kfree(buffer);
  297. break;
  298. }
  299. ds->bts_buffer_base = (u64)(unsigned long)buffer;
  300. ds->bts_index = ds->bts_buffer_base;
  301. ds->bts_absolute_maximum =
  302. ds->bts_buffer_base + BTS_BUFFER_SIZE;
  303. ds->bts_interrupt_threshold =
  304. ds->bts_absolute_maximum - BTS_OVFL_TH;
  305. per_cpu(cpu_hw_events, cpu).ds = ds;
  306. err = 0;
  307. }
  308. if (err)
  309. release_bts_hardware();
  310. else {
  311. for_each_online_cpu(cpu)
  312. init_debug_store_on_cpu(cpu);
  313. }
  314. put_online_cpus();
  315. return err;
  316. }
  317. static void hw_perf_event_destroy(struct perf_event *event)
  318. {
  319. if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
  320. release_pmc_hardware();
  321. release_bts_hardware();
  322. mutex_unlock(&pmc_reserve_mutex);
  323. }
  324. }
  325. static inline int x86_pmu_initialized(void)
  326. {
  327. return x86_pmu.handle_irq != NULL;
  328. }
  329. static inline int
  330. set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event_attr *attr)
  331. {
  332. unsigned int cache_type, cache_op, cache_result;
  333. u64 config, val;
  334. config = attr->config;
  335. cache_type = (config >> 0) & 0xff;
  336. if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
  337. return -EINVAL;
  338. cache_op = (config >> 8) & 0xff;
  339. if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
  340. return -EINVAL;
  341. cache_result = (config >> 16) & 0xff;
  342. if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
  343. return -EINVAL;
  344. val = hw_cache_event_ids[cache_type][cache_op][cache_result];
  345. if (val == 0)
  346. return -ENOENT;
  347. if (val == -1)
  348. return -EINVAL;
  349. hwc->config |= val;
  350. return 0;
  351. }
  352. /*
  353. * Setup the hardware configuration for a given attr_type
  354. */
  355. static int __hw_perf_event_init(struct perf_event *event)
  356. {
  357. struct perf_event_attr *attr = &event->attr;
  358. struct hw_perf_event *hwc = &event->hw;
  359. u64 config;
  360. int err;
  361. if (!x86_pmu_initialized())
  362. return -ENODEV;
  363. err = 0;
  364. if (!atomic_inc_not_zero(&active_events)) {
  365. mutex_lock(&pmc_reserve_mutex);
  366. if (atomic_read(&active_events) == 0) {
  367. if (!reserve_pmc_hardware())
  368. err = -EBUSY;
  369. else
  370. err = reserve_bts_hardware();
  371. }
  372. if (!err)
  373. atomic_inc(&active_events);
  374. mutex_unlock(&pmc_reserve_mutex);
  375. }
  376. if (err)
  377. return err;
  378. event->destroy = hw_perf_event_destroy;
  379. /*
  380. * Generate PMC IRQs:
  381. * (keep 'enabled' bit clear for now)
  382. */
  383. hwc->config = ARCH_PERFMON_EVENTSEL_INT;
  384. hwc->idx = -1;
  385. hwc->last_cpu = -1;
  386. hwc->last_tag = ~0ULL;
  387. /*
  388. * Count user and OS events unless requested not to.
  389. */
  390. if (!attr->exclude_user)
  391. hwc->config |= ARCH_PERFMON_EVENTSEL_USR;
  392. if (!attr->exclude_kernel)
  393. hwc->config |= ARCH_PERFMON_EVENTSEL_OS;
  394. if (!hwc->sample_period) {
  395. hwc->sample_period = x86_pmu.max_period;
  396. hwc->last_period = hwc->sample_period;
  397. atomic64_set(&hwc->period_left, hwc->sample_period);
  398. } else {
  399. /*
  400. * If we have a PMU initialized but no APIC
  401. * interrupts, we cannot sample hardware
  402. * events (user-space has to fall back and
  403. * sample via a hrtimer based software event):
  404. */
  405. if (!x86_pmu.apic)
  406. return -EOPNOTSUPP;
  407. }
  408. /*
  409. * Raw hw_event type provide the config in the hw_event structure
  410. */
  411. if (attr->type == PERF_TYPE_RAW) {
  412. hwc->config |= x86_pmu.raw_event(attr->config);
  413. if ((hwc->config & ARCH_PERFMON_EVENTSEL_ANY) &&
  414. perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
  415. return -EACCES;
  416. return 0;
  417. }
  418. if (attr->type == PERF_TYPE_HW_CACHE)
  419. return set_ext_hw_attr(hwc, attr);
  420. if (attr->config >= x86_pmu.max_events)
  421. return -EINVAL;
  422. /*
  423. * The generic map:
  424. */
  425. config = x86_pmu.event_map(attr->config);
  426. if (config == 0)
  427. return -ENOENT;
  428. if (config == -1LL)
  429. return -EINVAL;
  430. /*
  431. * Branch tracing:
  432. */
  433. if ((attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS) &&
  434. (hwc->sample_period == 1)) {
  435. /* BTS is not supported by this architecture. */
  436. if (!bts_available())
  437. return -EOPNOTSUPP;
  438. /* BTS is currently only allowed for user-mode. */
  439. if (hwc->config & ARCH_PERFMON_EVENTSEL_OS)
  440. return -EOPNOTSUPP;
  441. }
  442. hwc->config |= config;
  443. return 0;
  444. }
  445. static void x86_pmu_disable_all(void)
  446. {
  447. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  448. int idx;
  449. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  450. u64 val;
  451. if (!test_bit(idx, cpuc->active_mask))
  452. continue;
  453. rdmsrl(x86_pmu.eventsel + idx, val);
  454. if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
  455. continue;
  456. val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
  457. wrmsrl(x86_pmu.eventsel + idx, val);
  458. }
  459. }
  460. void hw_perf_disable(void)
  461. {
  462. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  463. if (!x86_pmu_initialized())
  464. return;
  465. if (!cpuc->enabled)
  466. return;
  467. cpuc->n_added = 0;
  468. cpuc->enabled = 0;
  469. barrier();
  470. x86_pmu.disable_all();
  471. }
  472. static void x86_pmu_enable_all(void)
  473. {
  474. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  475. int idx;
  476. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  477. struct perf_event *event = cpuc->events[idx];
  478. u64 val;
  479. if (!test_bit(idx, cpuc->active_mask))
  480. continue;
  481. val = event->hw.config;
  482. val |= ARCH_PERFMON_EVENTSEL_ENABLE;
  483. wrmsrl(x86_pmu.eventsel + idx, val);
  484. }
  485. }
  486. static const struct pmu pmu;
  487. static inline int is_x86_event(struct perf_event *event)
  488. {
  489. return event->pmu == &pmu;
  490. }
  491. static int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
  492. {
  493. struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
  494. unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
  495. int i, j, w, wmax, num = 0;
  496. struct hw_perf_event *hwc;
  497. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  498. for (i = 0; i < n; i++) {
  499. c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
  500. constraints[i] = c;
  501. }
  502. /*
  503. * fastpath, try to reuse previous register
  504. */
  505. for (i = 0; i < n; i++) {
  506. hwc = &cpuc->event_list[i]->hw;
  507. c = constraints[i];
  508. /* never assigned */
  509. if (hwc->idx == -1)
  510. break;
  511. /* constraint still honored */
  512. if (!test_bit(hwc->idx, c->idxmsk))
  513. break;
  514. /* not already used */
  515. if (test_bit(hwc->idx, used_mask))
  516. break;
  517. set_bit(hwc->idx, used_mask);
  518. if (assign)
  519. assign[i] = hwc->idx;
  520. }
  521. if (i == n)
  522. goto done;
  523. /*
  524. * begin slow path
  525. */
  526. bitmap_zero(used_mask, X86_PMC_IDX_MAX);
  527. /*
  528. * weight = number of possible counters
  529. *
  530. * 1 = most constrained, only works on one counter
  531. * wmax = least constrained, works on any counter
  532. *
  533. * assign events to counters starting with most
  534. * constrained events.
  535. */
  536. wmax = x86_pmu.num_events;
  537. /*
  538. * when fixed event counters are present,
  539. * wmax is incremented by 1 to account
  540. * for one more choice
  541. */
  542. if (x86_pmu.num_events_fixed)
  543. wmax++;
  544. for (w = 1, num = n; num && w <= wmax; w++) {
  545. /* for each event */
  546. for (i = 0; num && i < n; i++) {
  547. c = constraints[i];
  548. hwc = &cpuc->event_list[i]->hw;
  549. if (c->weight != w)
  550. continue;
  551. for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
  552. if (!test_bit(j, used_mask))
  553. break;
  554. }
  555. if (j == X86_PMC_IDX_MAX)
  556. break;
  557. set_bit(j, used_mask);
  558. if (assign)
  559. assign[i] = j;
  560. num--;
  561. }
  562. }
  563. done:
  564. /*
  565. * scheduling failed or is just a simulation,
  566. * free resources if necessary
  567. */
  568. if (!assign || num) {
  569. for (i = 0; i < n; i++) {
  570. if (x86_pmu.put_event_constraints)
  571. x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
  572. }
  573. }
  574. return num ? -ENOSPC : 0;
  575. }
  576. /*
  577. * dogrp: true if must collect siblings events (group)
  578. * returns total number of events and error code
  579. */
  580. static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
  581. {
  582. struct perf_event *event;
  583. int n, max_count;
  584. max_count = x86_pmu.num_events + x86_pmu.num_events_fixed;
  585. /* current number of events already accepted */
  586. n = cpuc->n_events;
  587. if (is_x86_event(leader)) {
  588. if (n >= max_count)
  589. return -ENOSPC;
  590. cpuc->event_list[n] = leader;
  591. n++;
  592. }
  593. if (!dogrp)
  594. return n;
  595. list_for_each_entry(event, &leader->sibling_list, group_entry) {
  596. if (!is_x86_event(event) ||
  597. event->state <= PERF_EVENT_STATE_OFF)
  598. continue;
  599. if (n >= max_count)
  600. return -ENOSPC;
  601. cpuc->event_list[n] = event;
  602. n++;
  603. }
  604. return n;
  605. }
  606. static inline void x86_assign_hw_event(struct perf_event *event,
  607. struct cpu_hw_events *cpuc, int i)
  608. {
  609. struct hw_perf_event *hwc = &event->hw;
  610. hwc->idx = cpuc->assign[i];
  611. hwc->last_cpu = smp_processor_id();
  612. hwc->last_tag = ++cpuc->tags[i];
  613. if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
  614. hwc->config_base = 0;
  615. hwc->event_base = 0;
  616. } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
  617. hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
  618. /*
  619. * We set it so that event_base + idx in wrmsr/rdmsr maps to
  620. * MSR_ARCH_PERFMON_FIXED_CTR0 ... CTR2:
  621. */
  622. hwc->event_base =
  623. MSR_ARCH_PERFMON_FIXED_CTR0 - X86_PMC_IDX_FIXED;
  624. } else {
  625. hwc->config_base = x86_pmu.eventsel;
  626. hwc->event_base = x86_pmu.perfctr;
  627. }
  628. }
  629. static inline int match_prev_assignment(struct hw_perf_event *hwc,
  630. struct cpu_hw_events *cpuc,
  631. int i)
  632. {
  633. return hwc->idx == cpuc->assign[i] &&
  634. hwc->last_cpu == smp_processor_id() &&
  635. hwc->last_tag == cpuc->tags[i];
  636. }
  637. static void x86_pmu_stop(struct perf_event *event);
  638. void hw_perf_enable(void)
  639. {
  640. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  641. struct perf_event *event;
  642. struct hw_perf_event *hwc;
  643. int i;
  644. if (!x86_pmu_initialized())
  645. return;
  646. if (cpuc->enabled)
  647. return;
  648. if (cpuc->n_added) {
  649. /*
  650. * apply assignment obtained either from
  651. * hw_perf_group_sched_in() or x86_pmu_enable()
  652. *
  653. * step1: save events moving to new counters
  654. * step2: reprogram moved events into new counters
  655. */
  656. for (i = 0; i < cpuc->n_events; i++) {
  657. event = cpuc->event_list[i];
  658. hwc = &event->hw;
  659. /*
  660. * we can avoid reprogramming counter if:
  661. * - assigned same counter as last time
  662. * - running on same CPU as last time
  663. * - no other event has used the counter since
  664. */
  665. if (hwc->idx == -1 ||
  666. match_prev_assignment(hwc, cpuc, i))
  667. continue;
  668. x86_pmu_stop(event);
  669. hwc->idx = -1;
  670. }
  671. for (i = 0; i < cpuc->n_events; i++) {
  672. event = cpuc->event_list[i];
  673. hwc = &event->hw;
  674. if (hwc->idx == -1) {
  675. x86_assign_hw_event(event, cpuc, i);
  676. x86_perf_event_set_period(event);
  677. }
  678. /*
  679. * need to mark as active because x86_pmu_disable()
  680. * clear active_mask and events[] yet it preserves
  681. * idx
  682. */
  683. set_bit(hwc->idx, cpuc->active_mask);
  684. cpuc->events[hwc->idx] = event;
  685. x86_pmu.enable(hwc, hwc->idx);
  686. perf_event_update_userpage(event);
  687. }
  688. cpuc->n_added = 0;
  689. perf_events_lapic_init();
  690. }
  691. cpuc->enabled = 1;
  692. barrier();
  693. x86_pmu.enable_all();
  694. }
  695. static inline void __x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
  696. {
  697. (void)checking_wrmsrl(hwc->config_base + idx,
  698. hwc->config | ARCH_PERFMON_EVENTSEL_ENABLE);
  699. }
  700. static inline void x86_pmu_disable_event(struct hw_perf_event *hwc, int idx)
  701. {
  702. (void)checking_wrmsrl(hwc->config_base + idx, hwc->config);
  703. }
  704. static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
  705. /*
  706. * Set the next IRQ period, based on the hwc->period_left value.
  707. * To be called with the event disabled in hw:
  708. */
  709. static int
  710. x86_perf_event_set_period(struct perf_event *event)
  711. {
  712. struct hw_perf_event *hwc = &event->hw;
  713. s64 left = atomic64_read(&hwc->period_left);
  714. s64 period = hwc->sample_period;
  715. int err, ret = 0, idx = hwc->idx;
  716. if (idx == X86_PMC_IDX_FIXED_BTS)
  717. return 0;
  718. /*
  719. * If we are way outside a reasonable range then just skip forward:
  720. */
  721. if (unlikely(left <= -period)) {
  722. left = period;
  723. atomic64_set(&hwc->period_left, left);
  724. hwc->last_period = period;
  725. ret = 1;
  726. }
  727. if (unlikely(left <= 0)) {
  728. left += period;
  729. atomic64_set(&hwc->period_left, left);
  730. hwc->last_period = period;
  731. ret = 1;
  732. }
  733. /*
  734. * Quirk: certain CPUs dont like it if just 1 hw_event is left:
  735. */
  736. if (unlikely(left < 2))
  737. left = 2;
  738. if (left > x86_pmu.max_period)
  739. left = x86_pmu.max_period;
  740. per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
  741. /*
  742. * The hw event starts counting from this event offset,
  743. * mark it to be able to extra future deltas:
  744. */
  745. atomic64_set(&hwc->prev_count, (u64)-left);
  746. err = checking_wrmsrl(hwc->event_base + idx,
  747. (u64)(-left) & x86_pmu.event_mask);
  748. perf_event_update_userpage(event);
  749. return ret;
  750. }
  751. static void x86_pmu_enable_event(struct hw_perf_event *hwc, int idx)
  752. {
  753. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  754. if (cpuc->enabled)
  755. __x86_pmu_enable_event(hwc, idx);
  756. }
  757. /*
  758. * activate a single event
  759. *
  760. * The event is added to the group of enabled events
  761. * but only if it can be scehduled with existing events.
  762. *
  763. * Called with PMU disabled. If successful and return value 1,
  764. * then guaranteed to call perf_enable() and hw_perf_enable()
  765. */
  766. static int x86_pmu_enable(struct perf_event *event)
  767. {
  768. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  769. struct hw_perf_event *hwc;
  770. int assign[X86_PMC_IDX_MAX];
  771. int n, n0, ret;
  772. hwc = &event->hw;
  773. n0 = cpuc->n_events;
  774. n = collect_events(cpuc, event, false);
  775. if (n < 0)
  776. return n;
  777. ret = x86_schedule_events(cpuc, n, assign);
  778. if (ret)
  779. return ret;
  780. /*
  781. * copy new assignment, now we know it is possible
  782. * will be used by hw_perf_enable()
  783. */
  784. memcpy(cpuc->assign, assign, n*sizeof(int));
  785. cpuc->n_events = n;
  786. cpuc->n_added = n - n0;
  787. return 0;
  788. }
  789. static int x86_pmu_start(struct perf_event *event)
  790. {
  791. struct hw_perf_event *hwc = &event->hw;
  792. if (hwc->idx == -1)
  793. return -EAGAIN;
  794. x86_perf_event_set_period(event);
  795. x86_pmu.enable(hwc, hwc->idx);
  796. return 0;
  797. }
  798. static void x86_pmu_unthrottle(struct perf_event *event)
  799. {
  800. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  801. struct hw_perf_event *hwc = &event->hw;
  802. if (WARN_ON_ONCE(hwc->idx >= X86_PMC_IDX_MAX ||
  803. cpuc->events[hwc->idx] != event))
  804. return;
  805. x86_pmu.enable(hwc, hwc->idx);
  806. }
  807. void perf_event_print_debug(void)
  808. {
  809. u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
  810. struct cpu_hw_events *cpuc;
  811. unsigned long flags;
  812. int cpu, idx;
  813. if (!x86_pmu.num_events)
  814. return;
  815. local_irq_save(flags);
  816. cpu = smp_processor_id();
  817. cpuc = &per_cpu(cpu_hw_events, cpu);
  818. if (x86_pmu.version >= 2) {
  819. rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
  820. rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
  821. rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
  822. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
  823. pr_info("\n");
  824. pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
  825. pr_info("CPU#%d: status: %016llx\n", cpu, status);
  826. pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
  827. pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
  828. }
  829. pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
  830. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  831. rdmsrl(x86_pmu.eventsel + idx, pmc_ctrl);
  832. rdmsrl(x86_pmu.perfctr + idx, pmc_count);
  833. prev_left = per_cpu(pmc_prev_left[idx], cpu);
  834. pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
  835. cpu, idx, pmc_ctrl);
  836. pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
  837. cpu, idx, pmc_count);
  838. pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
  839. cpu, idx, prev_left);
  840. }
  841. for (idx = 0; idx < x86_pmu.num_events_fixed; idx++) {
  842. rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
  843. pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
  844. cpu, idx, pmc_count);
  845. }
  846. local_irq_restore(flags);
  847. }
  848. static void x86_pmu_stop(struct perf_event *event)
  849. {
  850. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  851. struct hw_perf_event *hwc = &event->hw;
  852. int idx = hwc->idx;
  853. /*
  854. * Must be done before we disable, otherwise the nmi handler
  855. * could reenable again:
  856. */
  857. clear_bit(idx, cpuc->active_mask);
  858. x86_pmu.disable(hwc, idx);
  859. /*
  860. * Drain the remaining delta count out of a event
  861. * that we are disabling:
  862. */
  863. x86_perf_event_update(event);
  864. cpuc->events[idx] = NULL;
  865. }
  866. static void x86_pmu_disable(struct perf_event *event)
  867. {
  868. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  869. int i;
  870. x86_pmu_stop(event);
  871. for (i = 0; i < cpuc->n_events; i++) {
  872. if (event == cpuc->event_list[i]) {
  873. if (x86_pmu.put_event_constraints)
  874. x86_pmu.put_event_constraints(cpuc, event);
  875. while (++i < cpuc->n_events)
  876. cpuc->event_list[i-1] = cpuc->event_list[i];
  877. --cpuc->n_events;
  878. break;
  879. }
  880. }
  881. perf_event_update_userpage(event);
  882. }
  883. static int x86_pmu_handle_irq(struct pt_regs *regs)
  884. {
  885. struct perf_sample_data data;
  886. struct cpu_hw_events *cpuc;
  887. struct perf_event *event;
  888. struct hw_perf_event *hwc;
  889. int idx, handled = 0;
  890. u64 val;
  891. perf_sample_data_init(&data, 0);
  892. cpuc = &__get_cpu_var(cpu_hw_events);
  893. for (idx = 0; idx < x86_pmu.num_events; idx++) {
  894. if (!test_bit(idx, cpuc->active_mask))
  895. continue;
  896. event = cpuc->events[idx];
  897. hwc = &event->hw;
  898. val = x86_perf_event_update(event);
  899. if (val & (1ULL << (x86_pmu.event_bits - 1)))
  900. continue;
  901. /*
  902. * event overflow
  903. */
  904. handled = 1;
  905. data.period = event->hw.last_period;
  906. if (!x86_perf_event_set_period(event))
  907. continue;
  908. if (perf_event_overflow(event, 1, &data, regs))
  909. x86_pmu.disable(hwc, idx);
  910. }
  911. if (handled)
  912. inc_irq_stat(apic_perf_irqs);
  913. return handled;
  914. }
  915. void smp_perf_pending_interrupt(struct pt_regs *regs)
  916. {
  917. irq_enter();
  918. ack_APIC_irq();
  919. inc_irq_stat(apic_pending_irqs);
  920. perf_event_do_pending();
  921. irq_exit();
  922. }
  923. void set_perf_event_pending(void)
  924. {
  925. #ifdef CONFIG_X86_LOCAL_APIC
  926. if (!x86_pmu.apic || !x86_pmu_initialized())
  927. return;
  928. apic->send_IPI_self(LOCAL_PENDING_VECTOR);
  929. #endif
  930. }
  931. void perf_events_lapic_init(void)
  932. {
  933. #ifdef CONFIG_X86_LOCAL_APIC
  934. if (!x86_pmu.apic || !x86_pmu_initialized())
  935. return;
  936. /*
  937. * Always use NMI for PMU
  938. */
  939. apic_write(APIC_LVTPC, APIC_DM_NMI);
  940. #endif
  941. }
  942. static int __kprobes
  943. perf_event_nmi_handler(struct notifier_block *self,
  944. unsigned long cmd, void *__args)
  945. {
  946. struct die_args *args = __args;
  947. struct pt_regs *regs;
  948. if (!atomic_read(&active_events))
  949. return NOTIFY_DONE;
  950. switch (cmd) {
  951. case DIE_NMI:
  952. case DIE_NMI_IPI:
  953. break;
  954. default:
  955. return NOTIFY_DONE;
  956. }
  957. regs = args->regs;
  958. #ifdef CONFIG_X86_LOCAL_APIC
  959. apic_write(APIC_LVTPC, APIC_DM_NMI);
  960. #endif
  961. /*
  962. * Can't rely on the handled return value to say it was our NMI, two
  963. * events could trigger 'simultaneously' raising two back-to-back NMIs.
  964. *
  965. * If the first NMI handles both, the latter will be empty and daze
  966. * the CPU.
  967. */
  968. x86_pmu.handle_irq(regs);
  969. return NOTIFY_STOP;
  970. }
  971. static __read_mostly struct notifier_block perf_event_nmi_notifier = {
  972. .notifier_call = perf_event_nmi_handler,
  973. .next = NULL,
  974. .priority = 1
  975. };
  976. static struct event_constraint unconstrained;
  977. static struct event_constraint emptyconstraint;
  978. static struct event_constraint *
  979. x86_get_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event)
  980. {
  981. struct event_constraint *c;
  982. if (x86_pmu.event_constraints) {
  983. for_each_event_constraint(c, x86_pmu.event_constraints) {
  984. if ((event->hw.config & c->cmask) == c->code)
  985. return c;
  986. }
  987. }
  988. return &unconstrained;
  989. }
  990. static int x86_event_sched_in(struct perf_event *event,
  991. struct perf_cpu_context *cpuctx)
  992. {
  993. int ret = 0;
  994. event->state = PERF_EVENT_STATE_ACTIVE;
  995. event->oncpu = smp_processor_id();
  996. event->tstamp_running += event->ctx->time - event->tstamp_stopped;
  997. if (!is_x86_event(event))
  998. ret = event->pmu->enable(event);
  999. if (!ret && !is_software_event(event))
  1000. cpuctx->active_oncpu++;
  1001. if (!ret && event->attr.exclusive)
  1002. cpuctx->exclusive = 1;
  1003. return ret;
  1004. }
  1005. static void x86_event_sched_out(struct perf_event *event,
  1006. struct perf_cpu_context *cpuctx)
  1007. {
  1008. event->state = PERF_EVENT_STATE_INACTIVE;
  1009. event->oncpu = -1;
  1010. if (!is_x86_event(event))
  1011. event->pmu->disable(event);
  1012. event->tstamp_running -= event->ctx->time - event->tstamp_stopped;
  1013. if (!is_software_event(event))
  1014. cpuctx->active_oncpu--;
  1015. if (event->attr.exclusive || !cpuctx->active_oncpu)
  1016. cpuctx->exclusive = 0;
  1017. }
  1018. /*
  1019. * Called to enable a whole group of events.
  1020. * Returns 1 if the group was enabled, or -EAGAIN if it could not be.
  1021. * Assumes the caller has disabled interrupts and has
  1022. * frozen the PMU with hw_perf_save_disable.
  1023. *
  1024. * called with PMU disabled. If successful and return value 1,
  1025. * then guaranteed to call perf_enable() and hw_perf_enable()
  1026. */
  1027. int hw_perf_group_sched_in(struct perf_event *leader,
  1028. struct perf_cpu_context *cpuctx,
  1029. struct perf_event_context *ctx)
  1030. {
  1031. struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
  1032. struct perf_event *sub;
  1033. int assign[X86_PMC_IDX_MAX];
  1034. int n0, n1, ret;
  1035. /* n0 = total number of events */
  1036. n0 = collect_events(cpuc, leader, true);
  1037. if (n0 < 0)
  1038. return n0;
  1039. ret = x86_schedule_events(cpuc, n0, assign);
  1040. if (ret)
  1041. return ret;
  1042. ret = x86_event_sched_in(leader, cpuctx);
  1043. if (ret)
  1044. return ret;
  1045. n1 = 1;
  1046. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1047. if (sub->state > PERF_EVENT_STATE_OFF) {
  1048. ret = x86_event_sched_in(sub, cpuctx);
  1049. if (ret)
  1050. goto undo;
  1051. ++n1;
  1052. }
  1053. }
  1054. /*
  1055. * copy new assignment, now we know it is possible
  1056. * will be used by hw_perf_enable()
  1057. */
  1058. memcpy(cpuc->assign, assign, n0*sizeof(int));
  1059. cpuc->n_events = n0;
  1060. cpuc->n_added = n1;
  1061. ctx->nr_active += n1;
  1062. /*
  1063. * 1 means successful and events are active
  1064. * This is not quite true because we defer
  1065. * actual activation until hw_perf_enable() but
  1066. * this way we* ensure caller won't try to enable
  1067. * individual events
  1068. */
  1069. return 1;
  1070. undo:
  1071. x86_event_sched_out(leader, cpuctx);
  1072. n0 = 1;
  1073. list_for_each_entry(sub, &leader->sibling_list, group_entry) {
  1074. if (sub->state == PERF_EVENT_STATE_ACTIVE) {
  1075. x86_event_sched_out(sub, cpuctx);
  1076. if (++n0 == n1)
  1077. break;
  1078. }
  1079. }
  1080. return ret;
  1081. }
  1082. #include "perf_event_amd.c"
  1083. #include "perf_event_p6.c"
  1084. #include "perf_event_intel.c"
  1085. static int __cpuinit
  1086. x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
  1087. {
  1088. unsigned int cpu = (long)hcpu;
  1089. switch (action & ~CPU_TASKS_FROZEN) {
  1090. case CPU_UP_PREPARE:
  1091. if (x86_pmu.cpu_prepare)
  1092. x86_pmu.cpu_prepare(cpu);
  1093. break;
  1094. case CPU_STARTING:
  1095. if (x86_pmu.cpu_starting)
  1096. x86_pmu.cpu_starting(cpu);
  1097. break;
  1098. case CPU_DYING:
  1099. if (x86_pmu.cpu_dying)
  1100. x86_pmu.cpu_dying(cpu);
  1101. break;
  1102. case CPU_DEAD:
  1103. if (x86_pmu.cpu_dead)
  1104. x86_pmu.cpu_dead(cpu);
  1105. break;
  1106. default:
  1107. break;
  1108. }
  1109. return NOTIFY_OK;
  1110. }
  1111. static void __init pmu_check_apic(void)
  1112. {
  1113. if (cpu_has_apic)
  1114. return;
  1115. x86_pmu.apic = 0;
  1116. pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
  1117. pr_info("no hardware sampling interrupt available.\n");
  1118. }
  1119. void __init init_hw_perf_events(void)
  1120. {
  1121. struct event_constraint *c;
  1122. int err;
  1123. pr_info("Performance Events: ");
  1124. switch (boot_cpu_data.x86_vendor) {
  1125. case X86_VENDOR_INTEL:
  1126. err = intel_pmu_init();
  1127. break;
  1128. case X86_VENDOR_AMD:
  1129. err = amd_pmu_init();
  1130. break;
  1131. default:
  1132. return;
  1133. }
  1134. if (err != 0) {
  1135. pr_cont("no PMU driver, software events only.\n");
  1136. return;
  1137. }
  1138. pmu_check_apic();
  1139. pr_cont("%s PMU driver.\n", x86_pmu.name);
  1140. if (x86_pmu.num_events > X86_PMC_MAX_GENERIC) {
  1141. WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
  1142. x86_pmu.num_events, X86_PMC_MAX_GENERIC);
  1143. x86_pmu.num_events = X86_PMC_MAX_GENERIC;
  1144. }
  1145. perf_event_mask = (1 << x86_pmu.num_events) - 1;
  1146. perf_max_events = x86_pmu.num_events;
  1147. if (x86_pmu.num_events_fixed > X86_PMC_MAX_FIXED) {
  1148. WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
  1149. x86_pmu.num_events_fixed, X86_PMC_MAX_FIXED);
  1150. x86_pmu.num_events_fixed = X86_PMC_MAX_FIXED;
  1151. }
  1152. perf_event_mask |=
  1153. ((1LL << x86_pmu.num_events_fixed)-1) << X86_PMC_IDX_FIXED;
  1154. x86_pmu.intel_ctrl = perf_event_mask;
  1155. perf_events_lapic_init();
  1156. register_die_notifier(&perf_event_nmi_notifier);
  1157. unconstrained = (struct event_constraint)
  1158. __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_events) - 1,
  1159. 0, x86_pmu.num_events);
  1160. if (x86_pmu.event_constraints) {
  1161. for_each_event_constraint(c, x86_pmu.event_constraints) {
  1162. if (c->cmask != INTEL_ARCH_FIXED_MASK)
  1163. continue;
  1164. c->idxmsk64 |= (1ULL << x86_pmu.num_events) - 1;
  1165. c->weight += x86_pmu.num_events;
  1166. }
  1167. }
  1168. pr_info("... version: %d\n", x86_pmu.version);
  1169. pr_info("... bit width: %d\n", x86_pmu.event_bits);
  1170. pr_info("... generic registers: %d\n", x86_pmu.num_events);
  1171. pr_info("... value mask: %016Lx\n", x86_pmu.event_mask);
  1172. pr_info("... max period: %016Lx\n", x86_pmu.max_period);
  1173. pr_info("... fixed-purpose events: %d\n", x86_pmu.num_events_fixed);
  1174. pr_info("... event mask: %016Lx\n", perf_event_mask);
  1175. perf_cpu_notifier(x86_pmu_notifier);
  1176. }
  1177. static inline void x86_pmu_read(struct perf_event *event)
  1178. {
  1179. x86_perf_event_update(event);
  1180. }
  1181. static const struct pmu pmu = {
  1182. .enable = x86_pmu_enable,
  1183. .disable = x86_pmu_disable,
  1184. .start = x86_pmu_start,
  1185. .stop = x86_pmu_stop,
  1186. .read = x86_pmu_read,
  1187. .unthrottle = x86_pmu_unthrottle,
  1188. };
  1189. /*
  1190. * validate a single event group
  1191. *
  1192. * validation include:
  1193. * - check events are compatible which each other
  1194. * - events do not compete for the same counter
  1195. * - number of events <= number of counters
  1196. *
  1197. * validation ensures the group can be loaded onto the
  1198. * PMU if it was the only group available.
  1199. */
  1200. static int validate_group(struct perf_event *event)
  1201. {
  1202. struct perf_event *leader = event->group_leader;
  1203. struct cpu_hw_events *fake_cpuc;
  1204. int ret, n;
  1205. ret = -ENOMEM;
  1206. fake_cpuc = kmalloc(sizeof(*fake_cpuc), GFP_KERNEL | __GFP_ZERO);
  1207. if (!fake_cpuc)
  1208. goto out;
  1209. /*
  1210. * the event is not yet connected with its
  1211. * siblings therefore we must first collect
  1212. * existing siblings, then add the new event
  1213. * before we can simulate the scheduling
  1214. */
  1215. ret = -ENOSPC;
  1216. n = collect_events(fake_cpuc, leader, true);
  1217. if (n < 0)
  1218. goto out_free;
  1219. fake_cpuc->n_events = n;
  1220. n = collect_events(fake_cpuc, event, false);
  1221. if (n < 0)
  1222. goto out_free;
  1223. fake_cpuc->n_events = n;
  1224. ret = x86_schedule_events(fake_cpuc, n, NULL);
  1225. out_free:
  1226. kfree(fake_cpuc);
  1227. out:
  1228. return ret;
  1229. }
  1230. const struct pmu *hw_perf_event_init(struct perf_event *event)
  1231. {
  1232. const struct pmu *tmp;
  1233. int err;
  1234. err = __hw_perf_event_init(event);
  1235. if (!err) {
  1236. /*
  1237. * we temporarily connect event to its pmu
  1238. * such that validate_group() can classify
  1239. * it as an x86 event using is_x86_event()
  1240. */
  1241. tmp = event->pmu;
  1242. event->pmu = &pmu;
  1243. if (event->group_leader != event)
  1244. err = validate_group(event);
  1245. event->pmu = tmp;
  1246. }
  1247. if (err) {
  1248. if (event->destroy)
  1249. event->destroy(event);
  1250. return ERR_PTR(err);
  1251. }
  1252. return &pmu;
  1253. }
  1254. /*
  1255. * callchain support
  1256. */
  1257. static inline
  1258. void callchain_store(struct perf_callchain_entry *entry, u64 ip)
  1259. {
  1260. if (entry->nr < PERF_MAX_STACK_DEPTH)
  1261. entry->ip[entry->nr++] = ip;
  1262. }
  1263. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
  1264. static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_nmi_entry);
  1265. static void
  1266. backtrace_warning_symbol(void *data, char *msg, unsigned long symbol)
  1267. {
  1268. /* Ignore warnings */
  1269. }
  1270. static void backtrace_warning(void *data, char *msg)
  1271. {
  1272. /* Ignore warnings */
  1273. }
  1274. static int backtrace_stack(void *data, char *name)
  1275. {
  1276. return 0;
  1277. }
  1278. static void backtrace_address(void *data, unsigned long addr, int reliable)
  1279. {
  1280. struct perf_callchain_entry *entry = data;
  1281. if (reliable)
  1282. callchain_store(entry, addr);
  1283. }
  1284. static const struct stacktrace_ops backtrace_ops = {
  1285. .warning = backtrace_warning,
  1286. .warning_symbol = backtrace_warning_symbol,
  1287. .stack = backtrace_stack,
  1288. .address = backtrace_address,
  1289. .walk_stack = print_context_stack_bp,
  1290. };
  1291. #include "../dumpstack.h"
  1292. static void
  1293. perf_callchain_kernel(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1294. {
  1295. callchain_store(entry, PERF_CONTEXT_KERNEL);
  1296. callchain_store(entry, regs->ip);
  1297. dump_trace(NULL, regs, NULL, regs->bp, &backtrace_ops, entry);
  1298. }
  1299. /*
  1300. * best effort, GUP based copy_from_user() that assumes IRQ or NMI context
  1301. */
  1302. static unsigned long
  1303. copy_from_user_nmi(void *to, const void __user *from, unsigned long n)
  1304. {
  1305. unsigned long offset, addr = (unsigned long)from;
  1306. int type = in_nmi() ? KM_NMI : KM_IRQ0;
  1307. unsigned long size, len = 0;
  1308. struct page *page;
  1309. void *map;
  1310. int ret;
  1311. do {
  1312. ret = __get_user_pages_fast(addr, 1, 0, &page);
  1313. if (!ret)
  1314. break;
  1315. offset = addr & (PAGE_SIZE - 1);
  1316. size = min(PAGE_SIZE - offset, n - len);
  1317. map = kmap_atomic(page, type);
  1318. memcpy(to, map+offset, size);
  1319. kunmap_atomic(map, type);
  1320. put_page(page);
  1321. len += size;
  1322. to += size;
  1323. addr += size;
  1324. } while (len < n);
  1325. return len;
  1326. }
  1327. static int copy_stack_frame(const void __user *fp, struct stack_frame *frame)
  1328. {
  1329. unsigned long bytes;
  1330. bytes = copy_from_user_nmi(frame, fp, sizeof(*frame));
  1331. return bytes == sizeof(*frame);
  1332. }
  1333. static void
  1334. perf_callchain_user(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1335. {
  1336. struct stack_frame frame;
  1337. const void __user *fp;
  1338. if (!user_mode(regs))
  1339. regs = task_pt_regs(current);
  1340. fp = (void __user *)regs->bp;
  1341. callchain_store(entry, PERF_CONTEXT_USER);
  1342. callchain_store(entry, regs->ip);
  1343. while (entry->nr < PERF_MAX_STACK_DEPTH) {
  1344. frame.next_frame = NULL;
  1345. frame.return_address = 0;
  1346. if (!copy_stack_frame(fp, &frame))
  1347. break;
  1348. if ((unsigned long)fp < regs->sp)
  1349. break;
  1350. callchain_store(entry, frame.return_address);
  1351. fp = frame.next_frame;
  1352. }
  1353. }
  1354. static void
  1355. perf_do_callchain(struct pt_regs *regs, struct perf_callchain_entry *entry)
  1356. {
  1357. int is_user;
  1358. if (!regs)
  1359. return;
  1360. is_user = user_mode(regs);
  1361. if (is_user && current->state != TASK_RUNNING)
  1362. return;
  1363. if (!is_user)
  1364. perf_callchain_kernel(regs, entry);
  1365. if (current->mm)
  1366. perf_callchain_user(regs, entry);
  1367. }
  1368. struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
  1369. {
  1370. struct perf_callchain_entry *entry;
  1371. if (in_nmi())
  1372. entry = &__get_cpu_var(pmc_nmi_entry);
  1373. else
  1374. entry = &__get_cpu_var(pmc_irq_entry);
  1375. entry->nr = 0;
  1376. perf_do_callchain(regs, entry);
  1377. return entry;
  1378. }