request.c 36 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482
  1. /*
  2. * Main bcache entry point - handle a read or a write request and decide what to
  3. * do with it; the make_request functions are called by the block layer.
  4. *
  5. * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
  6. * Copyright 2012 Google, Inc.
  7. */
  8. #include "bcache.h"
  9. #include "btree.h"
  10. #include "debug.h"
  11. #include "request.h"
  12. #include "writeback.h"
  13. #include <linux/cgroup.h>
  14. #include <linux/module.h>
  15. #include <linux/hash.h>
  16. #include <linux/random.h>
  17. #include "blk-cgroup.h"
  18. #include <trace/events/bcache.h>
  19. #define CUTOFF_CACHE_ADD 95
  20. #define CUTOFF_CACHE_READA 90
  21. struct kmem_cache *bch_search_cache;
  22. static void bch_data_insert_start(struct closure *);
  23. /* Cgroup interface */
  24. #ifdef CONFIG_CGROUP_BCACHE
  25. static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
  26. static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
  27. {
  28. struct cgroup_subsys_state *css;
  29. return cgroup &&
  30. (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
  31. ? container_of(css, struct bch_cgroup, css)
  32. : &bcache_default_cgroup;
  33. }
  34. struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
  35. {
  36. struct cgroup_subsys_state *css = bio->bi_css
  37. ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
  38. : task_subsys_state(current, bcache_subsys_id);
  39. return css
  40. ? container_of(css, struct bch_cgroup, css)
  41. : &bcache_default_cgroup;
  42. }
  43. static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
  44. struct file *file,
  45. char __user *buf, size_t nbytes, loff_t *ppos)
  46. {
  47. char tmp[1024];
  48. int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
  49. cgroup_to_bcache(cgrp)->cache_mode + 1);
  50. if (len < 0)
  51. return len;
  52. return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
  53. }
  54. static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
  55. const char *buf)
  56. {
  57. int v = bch_read_string_list(buf, bch_cache_modes);
  58. if (v < 0)
  59. return v;
  60. cgroup_to_bcache(cgrp)->cache_mode = v - 1;
  61. return 0;
  62. }
  63. static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
  64. {
  65. return cgroup_to_bcache(cgrp)->verify;
  66. }
  67. static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
  68. {
  69. cgroup_to_bcache(cgrp)->verify = val;
  70. return 0;
  71. }
  72. static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
  73. {
  74. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  75. return atomic_read(&bcachecg->stats.cache_hits);
  76. }
  77. static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
  78. {
  79. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  80. return atomic_read(&bcachecg->stats.cache_misses);
  81. }
  82. static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
  83. struct cftype *cft)
  84. {
  85. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  86. return atomic_read(&bcachecg->stats.cache_bypass_hits);
  87. }
  88. static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
  89. struct cftype *cft)
  90. {
  91. struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
  92. return atomic_read(&bcachecg->stats.cache_bypass_misses);
  93. }
  94. static struct cftype bch_files[] = {
  95. {
  96. .name = "cache_mode",
  97. .read = cache_mode_read,
  98. .write_string = cache_mode_write,
  99. },
  100. {
  101. .name = "verify",
  102. .read_u64 = bch_verify_read,
  103. .write_u64 = bch_verify_write,
  104. },
  105. {
  106. .name = "cache_hits",
  107. .read_u64 = bch_cache_hits_read,
  108. },
  109. {
  110. .name = "cache_misses",
  111. .read_u64 = bch_cache_misses_read,
  112. },
  113. {
  114. .name = "cache_bypass_hits",
  115. .read_u64 = bch_cache_bypass_hits_read,
  116. },
  117. {
  118. .name = "cache_bypass_misses",
  119. .read_u64 = bch_cache_bypass_misses_read,
  120. },
  121. { } /* terminate */
  122. };
  123. static void init_bch_cgroup(struct bch_cgroup *cg)
  124. {
  125. cg->cache_mode = -1;
  126. }
  127. static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
  128. {
  129. struct bch_cgroup *cg;
  130. cg = kzalloc(sizeof(*cg), GFP_KERNEL);
  131. if (!cg)
  132. return ERR_PTR(-ENOMEM);
  133. init_bch_cgroup(cg);
  134. return &cg->css;
  135. }
  136. static void bcachecg_destroy(struct cgroup *cgroup)
  137. {
  138. struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
  139. free_css_id(&bcache_subsys, &cg->css);
  140. kfree(cg);
  141. }
  142. struct cgroup_subsys bcache_subsys = {
  143. .create = bcachecg_create,
  144. .destroy = bcachecg_destroy,
  145. .subsys_id = bcache_subsys_id,
  146. .name = "bcache",
  147. .module = THIS_MODULE,
  148. };
  149. EXPORT_SYMBOL_GPL(bcache_subsys);
  150. #endif
  151. static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
  152. {
  153. #ifdef CONFIG_CGROUP_BCACHE
  154. int r = bch_bio_to_cgroup(bio)->cache_mode;
  155. if (r >= 0)
  156. return r;
  157. #endif
  158. return BDEV_CACHE_MODE(&dc->sb);
  159. }
  160. static bool verify(struct cached_dev *dc, struct bio *bio)
  161. {
  162. #ifdef CONFIG_CGROUP_BCACHE
  163. if (bch_bio_to_cgroup(bio)->verify)
  164. return true;
  165. #endif
  166. return dc->verify;
  167. }
  168. static void bio_csum(struct bio *bio, struct bkey *k)
  169. {
  170. struct bio_vec *bv;
  171. uint64_t csum = 0;
  172. int i;
  173. bio_for_each_segment(bv, bio, i) {
  174. void *d = kmap(bv->bv_page) + bv->bv_offset;
  175. csum = bch_crc64_update(csum, d, bv->bv_len);
  176. kunmap(bv->bv_page);
  177. }
  178. k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
  179. }
  180. /* Insert data into cache */
  181. static void bch_data_insert_keys(struct closure *cl)
  182. {
  183. struct btree_op *op = container_of(cl, struct btree_op, cl);
  184. struct search *s = container_of(op, struct search, op);
  185. /*
  186. * If we're looping, might already be waiting on
  187. * another journal write - can't wait on more than one journal write at
  188. * a time
  189. *
  190. * XXX: this looks wrong
  191. */
  192. #if 0
  193. while (atomic_read(&s->cl.remaining) & CLOSURE_WAITING)
  194. closure_sync(&s->cl);
  195. #endif
  196. if (s->write)
  197. op->journal = bch_journal(op->c, &s->insert_keys,
  198. op->flush_journal
  199. ? &s->cl : NULL);
  200. if (bch_btree_insert(op, op->c, &s->insert_keys)) {
  201. s->error = -ENOMEM;
  202. op->insert_data_done = true;
  203. }
  204. if (op->journal)
  205. atomic_dec_bug(op->journal);
  206. op->journal = NULL;
  207. if (!op->insert_data_done)
  208. continue_at(cl, bch_data_insert_start, bcache_wq);
  209. bch_keylist_free(&s->insert_keys);
  210. closure_return(cl);
  211. }
  212. struct open_bucket {
  213. struct list_head list;
  214. struct task_struct *last;
  215. unsigned sectors_free;
  216. BKEY_PADDED(key);
  217. };
  218. void bch_open_buckets_free(struct cache_set *c)
  219. {
  220. struct open_bucket *b;
  221. while (!list_empty(&c->data_buckets)) {
  222. b = list_first_entry(&c->data_buckets,
  223. struct open_bucket, list);
  224. list_del(&b->list);
  225. kfree(b);
  226. }
  227. }
  228. int bch_open_buckets_alloc(struct cache_set *c)
  229. {
  230. int i;
  231. spin_lock_init(&c->data_bucket_lock);
  232. for (i = 0; i < 6; i++) {
  233. struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
  234. if (!b)
  235. return -ENOMEM;
  236. list_add(&b->list, &c->data_buckets);
  237. }
  238. return 0;
  239. }
  240. /*
  241. * We keep multiple buckets open for writes, and try to segregate different
  242. * write streams for better cache utilization: first we look for a bucket where
  243. * the last write to it was sequential with the current write, and failing that
  244. * we look for a bucket that was last used by the same task.
  245. *
  246. * The ideas is if you've got multiple tasks pulling data into the cache at the
  247. * same time, you'll get better cache utilization if you try to segregate their
  248. * data and preserve locality.
  249. *
  250. * For example, say you've starting Firefox at the same time you're copying a
  251. * bunch of files. Firefox will likely end up being fairly hot and stay in the
  252. * cache awhile, but the data you copied might not be; if you wrote all that
  253. * data to the same buckets it'd get invalidated at the same time.
  254. *
  255. * Both of those tasks will be doing fairly random IO so we can't rely on
  256. * detecting sequential IO to segregate their data, but going off of the task
  257. * should be a sane heuristic.
  258. */
  259. static struct open_bucket *pick_data_bucket(struct cache_set *c,
  260. const struct bkey *search,
  261. struct task_struct *task,
  262. struct bkey *alloc)
  263. {
  264. struct open_bucket *ret, *ret_task = NULL;
  265. list_for_each_entry_reverse(ret, &c->data_buckets, list)
  266. if (!bkey_cmp(&ret->key, search))
  267. goto found;
  268. else if (ret->last == task)
  269. ret_task = ret;
  270. ret = ret_task ?: list_first_entry(&c->data_buckets,
  271. struct open_bucket, list);
  272. found:
  273. if (!ret->sectors_free && KEY_PTRS(alloc)) {
  274. ret->sectors_free = c->sb.bucket_size;
  275. bkey_copy(&ret->key, alloc);
  276. bkey_init(alloc);
  277. }
  278. if (!ret->sectors_free)
  279. ret = NULL;
  280. return ret;
  281. }
  282. /*
  283. * Allocates some space in the cache to write to, and k to point to the newly
  284. * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
  285. * end of the newly allocated space).
  286. *
  287. * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
  288. * sectors were actually allocated.
  289. *
  290. * If s->writeback is true, will not fail.
  291. */
  292. static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
  293. struct search *s)
  294. {
  295. struct cache_set *c = s->op.c;
  296. struct open_bucket *b;
  297. BKEY_PADDED(key) alloc;
  298. unsigned i;
  299. /*
  300. * We might have to allocate a new bucket, which we can't do with a
  301. * spinlock held. So if we have to allocate, we drop the lock, allocate
  302. * and then retry. KEY_PTRS() indicates whether alloc points to
  303. * allocated bucket(s).
  304. */
  305. bkey_init(&alloc.key);
  306. spin_lock(&c->data_bucket_lock);
  307. while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
  308. unsigned watermark = s->op.write_prio
  309. ? WATERMARK_MOVINGGC
  310. : WATERMARK_NONE;
  311. spin_unlock(&c->data_bucket_lock);
  312. if (bch_bucket_alloc_set(c, watermark, &alloc.key,
  313. 1, s->writeback))
  314. return false;
  315. spin_lock(&c->data_bucket_lock);
  316. }
  317. /*
  318. * If we had to allocate, we might race and not need to allocate the
  319. * second time we call find_data_bucket(). If we allocated a bucket but
  320. * didn't use it, drop the refcount bch_bucket_alloc_set() took:
  321. */
  322. if (KEY_PTRS(&alloc.key))
  323. __bkey_put(c, &alloc.key);
  324. for (i = 0; i < KEY_PTRS(&b->key); i++)
  325. EBUG_ON(ptr_stale(c, &b->key, i));
  326. /* Set up the pointer to the space we're allocating: */
  327. for (i = 0; i < KEY_PTRS(&b->key); i++)
  328. k->ptr[i] = b->key.ptr[i];
  329. sectors = min(sectors, b->sectors_free);
  330. SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
  331. SET_KEY_SIZE(k, sectors);
  332. SET_KEY_PTRS(k, KEY_PTRS(&b->key));
  333. /*
  334. * Move b to the end of the lru, and keep track of what this bucket was
  335. * last used for:
  336. */
  337. list_move_tail(&b->list, &c->data_buckets);
  338. bkey_copy_key(&b->key, k);
  339. b->last = s->task;
  340. b->sectors_free -= sectors;
  341. for (i = 0; i < KEY_PTRS(&b->key); i++) {
  342. SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
  343. atomic_long_add(sectors,
  344. &PTR_CACHE(c, &b->key, i)->sectors_written);
  345. }
  346. if (b->sectors_free < c->sb.block_size)
  347. b->sectors_free = 0;
  348. /*
  349. * k takes refcounts on the buckets it points to until it's inserted
  350. * into the btree, but if we're done with this bucket we just transfer
  351. * get_data_bucket()'s refcount.
  352. */
  353. if (b->sectors_free)
  354. for (i = 0; i < KEY_PTRS(&b->key); i++)
  355. atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
  356. spin_unlock(&c->data_bucket_lock);
  357. return true;
  358. }
  359. static void bch_data_invalidate(struct closure *cl)
  360. {
  361. struct btree_op *op = container_of(cl, struct btree_op, cl);
  362. struct search *s = container_of(op, struct search, op);
  363. struct bio *bio = op->cache_bio;
  364. pr_debug("invalidating %i sectors from %llu",
  365. bio_sectors(bio), (uint64_t) bio->bi_sector);
  366. while (bio_sectors(bio)) {
  367. unsigned len = min(bio_sectors(bio), 1U << 14);
  368. if (bch_keylist_realloc(&s->insert_keys, 0, op->c))
  369. goto out;
  370. bio->bi_sector += len;
  371. bio->bi_size -= len << 9;
  372. bch_keylist_add(&s->insert_keys,
  373. &KEY(op->inode, bio->bi_sector, len));
  374. }
  375. op->insert_data_done = true;
  376. bio_put(bio);
  377. out:
  378. continue_at(cl, bch_data_insert_keys, bcache_wq);
  379. }
  380. static void bch_data_insert_error(struct closure *cl)
  381. {
  382. struct btree_op *op = container_of(cl, struct btree_op, cl);
  383. struct search *s = container_of(op, struct search, op);
  384. /*
  385. * Our data write just errored, which means we've got a bunch of keys to
  386. * insert that point to data that wasn't succesfully written.
  387. *
  388. * We don't have to insert those keys but we still have to invalidate
  389. * that region of the cache - so, if we just strip off all the pointers
  390. * from the keys we'll accomplish just that.
  391. */
  392. struct bkey *src = s->insert_keys.keys, *dst = s->insert_keys.keys;
  393. while (src != s->insert_keys.top) {
  394. struct bkey *n = bkey_next(src);
  395. SET_KEY_PTRS(src, 0);
  396. memmove(dst, src, bkey_bytes(src));
  397. dst = bkey_next(dst);
  398. src = n;
  399. }
  400. s->insert_keys.top = dst;
  401. bch_data_insert_keys(cl);
  402. }
  403. static void bch_data_insert_endio(struct bio *bio, int error)
  404. {
  405. struct closure *cl = bio->bi_private;
  406. struct btree_op *op = container_of(cl, struct btree_op, cl);
  407. struct search *s = container_of(op, struct search, op);
  408. if (error) {
  409. /* TODO: We could try to recover from this. */
  410. if (s->writeback)
  411. s->error = error;
  412. else if (s->write)
  413. set_closure_fn(cl, bch_data_insert_error, bcache_wq);
  414. else
  415. set_closure_fn(cl, NULL, NULL);
  416. }
  417. bch_bbio_endio(op->c, bio, error, "writing data to cache");
  418. }
  419. static void bch_data_insert_start(struct closure *cl)
  420. {
  421. struct btree_op *op = container_of(cl, struct btree_op, cl);
  422. struct search *s = container_of(op, struct search, op);
  423. struct bio *bio = op->cache_bio, *n;
  424. if (op->bypass)
  425. return bch_data_invalidate(cl);
  426. if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
  427. set_gc_sectors(op->c);
  428. wake_up_gc(op->c);
  429. }
  430. /*
  431. * Journal writes are marked REQ_FLUSH; if the original write was a
  432. * flush, it'll wait on the journal write.
  433. */
  434. bio->bi_rw &= ~(REQ_FLUSH|REQ_FUA);
  435. do {
  436. unsigned i;
  437. struct bkey *k;
  438. struct bio_set *split = s->d
  439. ? s->d->bio_split : op->c->bio_split;
  440. /* 1 for the device pointer and 1 for the chksum */
  441. if (bch_keylist_realloc(&s->insert_keys,
  442. 1 + (op->csum ? 1 : 0),
  443. op->c))
  444. continue_at(cl, bch_data_insert_keys, bcache_wq);
  445. k = s->insert_keys.top;
  446. bkey_init(k);
  447. SET_KEY_INODE(k, op->inode);
  448. SET_KEY_OFFSET(k, bio->bi_sector);
  449. if (!bch_alloc_sectors(k, bio_sectors(bio), s))
  450. goto err;
  451. n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
  452. n->bi_end_io = bch_data_insert_endio;
  453. n->bi_private = cl;
  454. if (s->writeback) {
  455. SET_KEY_DIRTY(k, true);
  456. for (i = 0; i < KEY_PTRS(k); i++)
  457. SET_GC_MARK(PTR_BUCKET(op->c, k, i),
  458. GC_MARK_DIRTY);
  459. }
  460. SET_KEY_CSUM(k, op->csum);
  461. if (KEY_CSUM(k))
  462. bio_csum(n, k);
  463. trace_bcache_cache_insert(k);
  464. bch_keylist_push(&s->insert_keys);
  465. n->bi_rw |= REQ_WRITE;
  466. bch_submit_bbio(n, op->c, k, 0);
  467. } while (n != bio);
  468. op->insert_data_done = true;
  469. continue_at(cl, bch_data_insert_keys, bcache_wq);
  470. err:
  471. /* bch_alloc_sectors() blocks if s->writeback = true */
  472. BUG_ON(s->writeback);
  473. /*
  474. * But if it's not a writeback write we'd rather just bail out if
  475. * there aren't any buckets ready to write to - it might take awhile and
  476. * we might be starving btree writes for gc or something.
  477. */
  478. if (s->write) {
  479. /*
  480. * Writethrough write: We can't complete the write until we've
  481. * updated the index. But we don't want to delay the write while
  482. * we wait for buckets to be freed up, so just invalidate the
  483. * rest of the write.
  484. */
  485. op->bypass = true;
  486. return bch_data_invalidate(cl);
  487. } else {
  488. /*
  489. * From a cache miss, we can just insert the keys for the data
  490. * we have written or bail out if we didn't do anything.
  491. */
  492. op->insert_data_done = true;
  493. bio_put(bio);
  494. if (!bch_keylist_empty(&s->insert_keys))
  495. continue_at(cl, bch_data_insert_keys, bcache_wq);
  496. else
  497. closure_return(cl);
  498. }
  499. }
  500. /**
  501. * bch_data_insert - stick some data in the cache
  502. *
  503. * This is the starting point for any data to end up in a cache device; it could
  504. * be from a normal write, or a writeback write, or a write to a flash only
  505. * volume - it's also used by the moving garbage collector to compact data in
  506. * mostly empty buckets.
  507. *
  508. * It first writes the data to the cache, creating a list of keys to be inserted
  509. * (if the data had to be fragmented there will be multiple keys); after the
  510. * data is written it calls bch_journal, and after the keys have been added to
  511. * the next journal write they're inserted into the btree.
  512. *
  513. * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
  514. * and op->inode is used for the key inode.
  515. *
  516. * If op->bypass is true, instead of inserting the data it invalidates the
  517. * region of the cache represented by op->cache_bio and op->inode.
  518. */
  519. void bch_data_insert(struct closure *cl)
  520. {
  521. struct btree_op *op = container_of(cl, struct btree_op, cl);
  522. struct search *s = container_of(op, struct search, op);
  523. bch_keylist_init(&s->insert_keys);
  524. bio_get(op->cache_bio);
  525. bch_data_insert_start(cl);
  526. }
  527. /* Cache lookup */
  528. static void bch_cache_read_endio(struct bio *bio, int error)
  529. {
  530. struct bbio *b = container_of(bio, struct bbio, bio);
  531. struct closure *cl = bio->bi_private;
  532. struct search *s = container_of(cl, struct search, cl);
  533. /*
  534. * If the bucket was reused while our bio was in flight, we might have
  535. * read the wrong data. Set s->error but not error so it doesn't get
  536. * counted against the cache device, but we'll still reread the data
  537. * from the backing device.
  538. */
  539. if (error)
  540. s->error = error;
  541. else if (ptr_stale(s->op.c, &b->key, 0)) {
  542. atomic_long_inc(&s->op.c->cache_read_races);
  543. s->error = -EINTR;
  544. }
  545. bch_bbio_endio(s->op.c, bio, error, "reading from cache");
  546. }
  547. /*
  548. * Read from a single key, handling the initial cache miss if the key starts in
  549. * the middle of the bio
  550. */
  551. static int cache_lookup_fn(struct btree_op *op, struct btree *b, struct bkey *k)
  552. {
  553. struct search *s = container_of(op, struct search, op);
  554. struct bio *n, *bio = &s->bio.bio;
  555. struct bkey *bio_key;
  556. unsigned ptr;
  557. if (bkey_cmp(k, &KEY(op->inode, bio->bi_sector, 0)) <= 0)
  558. return MAP_CONTINUE;
  559. if (KEY_INODE(k) != s->op.inode ||
  560. KEY_START(k) > bio->bi_sector) {
  561. unsigned bio_sectors = bio_sectors(bio);
  562. unsigned sectors = KEY_INODE(k) == s->op.inode
  563. ? min_t(uint64_t, INT_MAX,
  564. KEY_START(k) - bio->bi_sector)
  565. : INT_MAX;
  566. int ret = s->d->cache_miss(b, s, bio, sectors);
  567. if (ret != MAP_CONTINUE)
  568. return ret;
  569. /* if this was a complete miss we shouldn't get here */
  570. BUG_ON(bio_sectors <= sectors);
  571. }
  572. if (!KEY_SIZE(k))
  573. return MAP_CONTINUE;
  574. /* XXX: figure out best pointer - for multiple cache devices */
  575. ptr = 0;
  576. PTR_BUCKET(b->c, k, ptr)->prio = INITIAL_PRIO;
  577. n = bch_bio_split(bio, min_t(uint64_t, INT_MAX,
  578. KEY_OFFSET(k) - bio->bi_sector),
  579. GFP_NOIO, s->d->bio_split);
  580. bio_key = &container_of(n, struct bbio, bio)->key;
  581. bch_bkey_copy_single_ptr(bio_key, k, ptr);
  582. bch_cut_front(&KEY(s->op.inode, n->bi_sector, 0), bio_key);
  583. bch_cut_back(&KEY(s->op.inode, bio_end_sector(n), 0), bio_key);
  584. n->bi_end_io = bch_cache_read_endio;
  585. n->bi_private = &s->cl;
  586. /*
  587. * The bucket we're reading from might be reused while our bio
  588. * is in flight, and we could then end up reading the wrong
  589. * data.
  590. *
  591. * We guard against this by checking (in cache_read_endio()) if
  592. * the pointer is stale again; if so, we treat it as an error
  593. * and reread from the backing device (but we don't pass that
  594. * error up anywhere).
  595. */
  596. __bch_submit_bbio(n, b->c);
  597. return n == bio ? MAP_DONE : MAP_CONTINUE;
  598. }
  599. static void cache_lookup(struct closure *cl)
  600. {
  601. struct btree_op *op = container_of(cl, struct btree_op, cl);
  602. struct search *s = container_of(op, struct search, op);
  603. struct bio *bio = &s->bio.bio;
  604. int ret = bch_btree_map_keys(op, op->c,
  605. &KEY(op->inode, bio->bi_sector, 0),
  606. cache_lookup_fn, MAP_END_KEY);
  607. if (ret == -EAGAIN)
  608. continue_at(cl, cache_lookup, bcache_wq);
  609. closure_return(cl);
  610. }
  611. /* Common code for the make_request functions */
  612. static void request_endio(struct bio *bio, int error)
  613. {
  614. struct closure *cl = bio->bi_private;
  615. if (error) {
  616. struct search *s = container_of(cl, struct search, cl);
  617. s->error = error;
  618. /* Only cache read errors are recoverable */
  619. s->recoverable = false;
  620. }
  621. bio_put(bio);
  622. closure_put(cl);
  623. }
  624. static void bio_complete(struct search *s)
  625. {
  626. if (s->orig_bio) {
  627. int cpu, rw = bio_data_dir(s->orig_bio);
  628. unsigned long duration = jiffies - s->start_time;
  629. cpu = part_stat_lock();
  630. part_round_stats(cpu, &s->d->disk->part0);
  631. part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
  632. part_stat_unlock();
  633. trace_bcache_request_end(s, s->orig_bio);
  634. bio_endio(s->orig_bio, s->error);
  635. s->orig_bio = NULL;
  636. }
  637. }
  638. static void do_bio_hook(struct search *s)
  639. {
  640. struct bio *bio = &s->bio.bio;
  641. memcpy(bio, s->orig_bio, sizeof(struct bio));
  642. bio->bi_end_io = request_endio;
  643. bio->bi_private = &s->cl;
  644. atomic_set(&bio->bi_cnt, 3);
  645. }
  646. static void search_free(struct closure *cl)
  647. {
  648. struct search *s = container_of(cl, struct search, cl);
  649. bio_complete(s);
  650. if (s->op.cache_bio)
  651. bio_put(s->op.cache_bio);
  652. if (s->unaligned_bvec)
  653. mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
  654. closure_debug_destroy(cl);
  655. mempool_free(s, s->d->c->search);
  656. }
  657. static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
  658. {
  659. struct search *s;
  660. struct bio_vec *bv;
  661. s = mempool_alloc(d->c->search, GFP_NOIO);
  662. memset(s, 0, offsetof(struct search, insert_keys));
  663. __closure_init(&s->cl, NULL);
  664. s->op.inode = d->id;
  665. s->op.c = d->c;
  666. s->d = d;
  667. s->op.lock = -1;
  668. s->task = current;
  669. s->orig_bio = bio;
  670. s->write = (bio->bi_rw & REQ_WRITE) != 0;
  671. s->op.flush_journal = (bio->bi_rw & (REQ_FLUSH|REQ_FUA)) != 0;
  672. s->recoverable = 1;
  673. s->start_time = jiffies;
  674. do_bio_hook(s);
  675. if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
  676. bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
  677. memcpy(bv, bio_iovec(bio),
  678. sizeof(struct bio_vec) * bio_segments(bio));
  679. s->bio.bio.bi_io_vec = bv;
  680. s->unaligned_bvec = 1;
  681. }
  682. return s;
  683. }
  684. /* Cached devices */
  685. static void cached_dev_bio_complete(struct closure *cl)
  686. {
  687. struct search *s = container_of(cl, struct search, cl);
  688. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  689. search_free(cl);
  690. cached_dev_put(dc);
  691. }
  692. unsigned bch_get_congested(struct cache_set *c)
  693. {
  694. int i;
  695. long rand;
  696. if (!c->congested_read_threshold_us &&
  697. !c->congested_write_threshold_us)
  698. return 0;
  699. i = (local_clock_us() - c->congested_last_us) / 1024;
  700. if (i < 0)
  701. return 0;
  702. i += atomic_read(&c->congested);
  703. if (i >= 0)
  704. return 0;
  705. i += CONGESTED_MAX;
  706. if (i > 0)
  707. i = fract_exp_two(i, 6);
  708. rand = get_random_int();
  709. i -= bitmap_weight(&rand, BITS_PER_LONG);
  710. return i > 0 ? i : 1;
  711. }
  712. static void add_sequential(struct task_struct *t)
  713. {
  714. ewma_add(t->sequential_io_avg,
  715. t->sequential_io, 8, 0);
  716. t->sequential_io = 0;
  717. }
  718. static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
  719. {
  720. return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
  721. }
  722. static bool check_should_bypass(struct cached_dev *dc, struct search *s)
  723. {
  724. struct cache_set *c = s->op.c;
  725. struct bio *bio = &s->bio.bio;
  726. unsigned mode = cache_mode(dc, bio);
  727. unsigned sectors, congested = bch_get_congested(c);
  728. if (atomic_read(&dc->disk.detaching) ||
  729. c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
  730. (bio->bi_rw & REQ_DISCARD))
  731. goto skip;
  732. if (mode == CACHE_MODE_NONE ||
  733. (mode == CACHE_MODE_WRITEAROUND &&
  734. (bio->bi_rw & REQ_WRITE)))
  735. goto skip;
  736. if (bio->bi_sector & (c->sb.block_size - 1) ||
  737. bio_sectors(bio) & (c->sb.block_size - 1)) {
  738. pr_debug("skipping unaligned io");
  739. goto skip;
  740. }
  741. if (!congested && !dc->sequential_cutoff)
  742. goto rescale;
  743. if (!congested &&
  744. mode == CACHE_MODE_WRITEBACK &&
  745. (bio->bi_rw & REQ_WRITE) &&
  746. (bio->bi_rw & REQ_SYNC))
  747. goto rescale;
  748. if (dc->sequential_merge) {
  749. struct io *i;
  750. spin_lock(&dc->io_lock);
  751. hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
  752. if (i->last == bio->bi_sector &&
  753. time_before(jiffies, i->jiffies))
  754. goto found;
  755. i = list_first_entry(&dc->io_lru, struct io, lru);
  756. add_sequential(s->task);
  757. i->sequential = 0;
  758. found:
  759. if (i->sequential + bio->bi_size > i->sequential)
  760. i->sequential += bio->bi_size;
  761. i->last = bio_end_sector(bio);
  762. i->jiffies = jiffies + msecs_to_jiffies(5000);
  763. s->task->sequential_io = i->sequential;
  764. hlist_del(&i->hash);
  765. hlist_add_head(&i->hash, iohash(dc, i->last));
  766. list_move_tail(&i->lru, &dc->io_lru);
  767. spin_unlock(&dc->io_lock);
  768. } else {
  769. s->task->sequential_io = bio->bi_size;
  770. add_sequential(s->task);
  771. }
  772. sectors = max(s->task->sequential_io,
  773. s->task->sequential_io_avg) >> 9;
  774. if (dc->sequential_cutoff &&
  775. sectors >= dc->sequential_cutoff >> 9) {
  776. trace_bcache_bypass_sequential(s->orig_bio);
  777. goto skip;
  778. }
  779. if (congested && sectors >= congested) {
  780. trace_bcache_bypass_congested(s->orig_bio);
  781. goto skip;
  782. }
  783. rescale:
  784. bch_rescale_priorities(c, bio_sectors(bio));
  785. return false;
  786. skip:
  787. bch_mark_sectors_bypassed(s, bio_sectors(bio));
  788. return true;
  789. }
  790. /* Process reads */
  791. static void cached_dev_cache_miss_done(struct closure *cl)
  792. {
  793. struct search *s = container_of(cl, struct search, cl);
  794. if (s->op.insert_collision)
  795. bch_mark_cache_miss_collision(s);
  796. if (s->op.cache_bio) {
  797. int i;
  798. struct bio_vec *bv;
  799. __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
  800. __free_page(bv->bv_page);
  801. }
  802. cached_dev_bio_complete(cl);
  803. }
  804. static void cached_dev_read_error(struct closure *cl)
  805. {
  806. struct search *s = container_of(cl, struct search, cl);
  807. struct bio *bio = &s->bio.bio;
  808. struct bio_vec *bv;
  809. int i;
  810. if (s->recoverable) {
  811. /* Retry from the backing device: */
  812. trace_bcache_read_retry(s->orig_bio);
  813. s->error = 0;
  814. bv = s->bio.bio.bi_io_vec;
  815. do_bio_hook(s);
  816. s->bio.bio.bi_io_vec = bv;
  817. if (!s->unaligned_bvec)
  818. bio_for_each_segment(bv, s->orig_bio, i)
  819. bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
  820. else
  821. memcpy(s->bio.bio.bi_io_vec,
  822. bio_iovec(s->orig_bio),
  823. sizeof(struct bio_vec) *
  824. bio_segments(s->orig_bio));
  825. /* XXX: invalidate cache */
  826. closure_bio_submit(bio, cl, s->d);
  827. }
  828. continue_at(cl, cached_dev_cache_miss_done, NULL);
  829. }
  830. static void cached_dev_read_done(struct closure *cl)
  831. {
  832. struct search *s = container_of(cl, struct search, cl);
  833. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  834. /*
  835. * We had a cache miss; cache_bio now contains data ready to be inserted
  836. * into the cache.
  837. *
  838. * First, we copy the data we just read from cache_bio's bounce buffers
  839. * to the buffers the original bio pointed to:
  840. */
  841. if (s->op.cache_bio) {
  842. bio_reset(s->op.cache_bio);
  843. s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
  844. s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
  845. s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
  846. bch_bio_map(s->op.cache_bio, NULL);
  847. bio_copy_data(s->cache_miss, s->op.cache_bio);
  848. bio_put(s->cache_miss);
  849. s->cache_miss = NULL;
  850. }
  851. if (verify(dc, &s->bio.bio) && s->recoverable)
  852. bch_data_verify(s);
  853. bio_complete(s);
  854. if (s->op.cache_bio &&
  855. !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
  856. s->op.type = BTREE_REPLACE;
  857. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  858. }
  859. continue_at(cl, cached_dev_cache_miss_done, NULL);
  860. }
  861. static void cached_dev_read_done_bh(struct closure *cl)
  862. {
  863. struct search *s = container_of(cl, struct search, cl);
  864. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  865. bch_mark_cache_accounting(s, !s->cache_miss, s->op.bypass);
  866. trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.bypass);
  867. if (s->error)
  868. continue_at_nobarrier(cl, cached_dev_read_error, bcache_wq);
  869. else if (s->op.cache_bio || verify(dc, &s->bio.bio))
  870. continue_at_nobarrier(cl, cached_dev_read_done, bcache_wq);
  871. else
  872. continue_at_nobarrier(cl, cached_dev_bio_complete, NULL);
  873. }
  874. static int cached_dev_cache_miss(struct btree *b, struct search *s,
  875. struct bio *bio, unsigned sectors)
  876. {
  877. int ret = MAP_CONTINUE;
  878. unsigned reada = 0;
  879. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  880. struct bio *miss, *cache_bio;
  881. if (s->cache_miss || s->op.bypass) {
  882. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  883. ret = miss == bio ? MAP_DONE : MAP_CONTINUE;
  884. goto out_submit;
  885. }
  886. if (!(bio->bi_rw & REQ_RAHEAD) &&
  887. !(bio->bi_rw & REQ_META) &&
  888. s->op.c->gc_stats.in_use < CUTOFF_CACHE_READA)
  889. reada = min_t(sector_t, dc->readahead >> 9,
  890. bdev_sectors(bio->bi_bdev) - bio_end_sector(bio));
  891. s->cache_bio_sectors = min(sectors, bio_sectors(bio) + reada);
  892. s->op.replace = KEY(s->op.inode, bio->bi_sector +
  893. s->cache_bio_sectors, s->cache_bio_sectors);
  894. ret = bch_btree_insert_check_key(b, &s->op, &s->op.replace);
  895. if (ret)
  896. return ret;
  897. miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
  898. /* btree_search_recurse()'s btree iterator is no good anymore */
  899. ret = miss == bio ? MAP_DONE : -EINTR;
  900. cache_bio = bio_alloc_bioset(GFP_NOWAIT,
  901. DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
  902. dc->disk.bio_split);
  903. if (!cache_bio)
  904. goto out_submit;
  905. cache_bio->bi_sector = miss->bi_sector;
  906. cache_bio->bi_bdev = miss->bi_bdev;
  907. cache_bio->bi_size = s->cache_bio_sectors << 9;
  908. cache_bio->bi_end_io = request_endio;
  909. cache_bio->bi_private = &s->cl;
  910. bch_bio_map(cache_bio, NULL);
  911. if (bio_alloc_pages(cache_bio, __GFP_NOWARN|GFP_NOIO))
  912. goto out_put;
  913. s->cache_miss = miss;
  914. s->op.cache_bio = cache_bio;
  915. bio_get(cache_bio);
  916. closure_bio_submit(cache_bio, &s->cl, s->d);
  917. return ret;
  918. out_put:
  919. bio_put(cache_bio);
  920. out_submit:
  921. miss->bi_end_io = request_endio;
  922. miss->bi_private = &s->cl;
  923. closure_bio_submit(miss, &s->cl, s->d);
  924. return ret;
  925. }
  926. static void cached_dev_read(struct cached_dev *dc, struct search *s)
  927. {
  928. struct closure *cl = &s->cl;
  929. closure_call(&s->op.cl, cache_lookup, NULL, cl);
  930. continue_at(cl, cached_dev_read_done_bh, NULL);
  931. }
  932. /* Process writes */
  933. static void cached_dev_write_complete(struct closure *cl)
  934. {
  935. struct search *s = container_of(cl, struct search, cl);
  936. struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
  937. up_read_non_owner(&dc->writeback_lock);
  938. cached_dev_bio_complete(cl);
  939. }
  940. static void cached_dev_write(struct cached_dev *dc, struct search *s)
  941. {
  942. struct closure *cl = &s->cl;
  943. struct bio *bio = &s->bio.bio;
  944. struct bkey start = KEY(dc->disk.id, bio->bi_sector, 0);
  945. struct bkey end = KEY(dc->disk.id, bio_end_sector(bio), 0);
  946. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
  947. down_read_non_owner(&dc->writeback_lock);
  948. if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
  949. /*
  950. * We overlap with some dirty data undergoing background
  951. * writeback, force this write to writeback
  952. */
  953. s->op.bypass = false;
  954. s->writeback = true;
  955. }
  956. /*
  957. * Discards aren't _required_ to do anything, so skipping if
  958. * check_overlapping returned true is ok
  959. *
  960. * But check_overlapping drops dirty keys for which io hasn't started,
  961. * so we still want to call it.
  962. */
  963. if (bio->bi_rw & REQ_DISCARD)
  964. s->op.bypass = true;
  965. if (should_writeback(dc, s->orig_bio,
  966. cache_mode(dc, bio),
  967. s->op.bypass)) {
  968. s->op.bypass = false;
  969. s->writeback = true;
  970. }
  971. trace_bcache_write(s->orig_bio, s->writeback, s->op.bypass);
  972. if (s->op.bypass) {
  973. s->op.cache_bio = s->orig_bio;
  974. bio_get(s->op.cache_bio);
  975. if (!(bio->bi_rw & REQ_DISCARD) ||
  976. blk_queue_discard(bdev_get_queue(dc->bdev)))
  977. closure_bio_submit(bio, cl, s->d);
  978. } else if (s->writeback) {
  979. bch_writeback_add(dc);
  980. s->op.cache_bio = bio;
  981. if (bio->bi_rw & REQ_FLUSH) {
  982. /* Also need to send a flush to the backing device */
  983. struct bio *flush = bio_alloc_bioset(GFP_NOIO, 0,
  984. dc->disk.bio_split);
  985. flush->bi_rw = WRITE_FLUSH;
  986. flush->bi_bdev = bio->bi_bdev;
  987. flush->bi_end_io = request_endio;
  988. flush->bi_private = cl;
  989. closure_bio_submit(flush, cl, s->d);
  990. }
  991. } else {
  992. s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
  993. dc->disk.bio_split);
  994. closure_bio_submit(bio, cl, s->d);
  995. }
  996. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  997. continue_at(cl, cached_dev_write_complete, NULL);
  998. }
  999. static void cached_dev_nodata(struct closure *cl)
  1000. {
  1001. struct search *s = container_of(cl, struct search, cl);
  1002. struct bio *bio = &s->bio.bio;
  1003. if (s->op.flush_journal)
  1004. bch_journal_meta(s->op.c, cl);
  1005. /* If it's a flush, we send the flush to the backing device too */
  1006. closure_bio_submit(bio, cl, s->d);
  1007. continue_at(cl, cached_dev_bio_complete, NULL);
  1008. }
  1009. /* Cached devices - read & write stuff */
  1010. static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
  1011. {
  1012. struct search *s;
  1013. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  1014. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  1015. int cpu, rw = bio_data_dir(bio);
  1016. cpu = part_stat_lock();
  1017. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  1018. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  1019. part_stat_unlock();
  1020. bio->bi_bdev = dc->bdev;
  1021. bio->bi_sector += dc->sb.data_offset;
  1022. if (cached_dev_get(dc)) {
  1023. s = search_alloc(bio, d);
  1024. trace_bcache_request_start(s, bio);
  1025. if (!bio->bi_size) {
  1026. /*
  1027. * can't call bch_journal_meta from under
  1028. * generic_make_request
  1029. */
  1030. continue_at_nobarrier(&s->cl,
  1031. cached_dev_nodata,
  1032. bcache_wq);
  1033. } else {
  1034. s->op.bypass = check_should_bypass(dc, s);
  1035. if (rw)
  1036. cached_dev_write(dc, s);
  1037. else
  1038. cached_dev_read(dc, s);
  1039. }
  1040. } else {
  1041. if ((bio->bi_rw & REQ_DISCARD) &&
  1042. !blk_queue_discard(bdev_get_queue(dc->bdev)))
  1043. bio_endio(bio, 0);
  1044. else
  1045. bch_generic_make_request(bio, &d->bio_split_hook);
  1046. }
  1047. }
  1048. static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
  1049. unsigned int cmd, unsigned long arg)
  1050. {
  1051. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  1052. return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
  1053. }
  1054. static int cached_dev_congested(void *data, int bits)
  1055. {
  1056. struct bcache_device *d = data;
  1057. struct cached_dev *dc = container_of(d, struct cached_dev, disk);
  1058. struct request_queue *q = bdev_get_queue(dc->bdev);
  1059. int ret = 0;
  1060. if (bdi_congested(&q->backing_dev_info, bits))
  1061. return 1;
  1062. if (cached_dev_get(dc)) {
  1063. unsigned i;
  1064. struct cache *ca;
  1065. for_each_cache(ca, d->c, i) {
  1066. q = bdev_get_queue(ca->bdev);
  1067. ret |= bdi_congested(&q->backing_dev_info, bits);
  1068. }
  1069. cached_dev_put(dc);
  1070. }
  1071. return ret;
  1072. }
  1073. void bch_cached_dev_request_init(struct cached_dev *dc)
  1074. {
  1075. struct gendisk *g = dc->disk.disk;
  1076. g->queue->make_request_fn = cached_dev_make_request;
  1077. g->queue->backing_dev_info.congested_fn = cached_dev_congested;
  1078. dc->disk.cache_miss = cached_dev_cache_miss;
  1079. dc->disk.ioctl = cached_dev_ioctl;
  1080. }
  1081. /* Flash backed devices */
  1082. static int flash_dev_cache_miss(struct btree *b, struct search *s,
  1083. struct bio *bio, unsigned sectors)
  1084. {
  1085. struct bio_vec *bv;
  1086. int i;
  1087. /* Zero fill bio */
  1088. bio_for_each_segment(bv, bio, i) {
  1089. unsigned j = min(bv->bv_len >> 9, sectors);
  1090. void *p = kmap(bv->bv_page);
  1091. memset(p + bv->bv_offset, 0, j << 9);
  1092. kunmap(bv->bv_page);
  1093. sectors -= j;
  1094. }
  1095. bio_advance(bio, min(sectors << 9, bio->bi_size));
  1096. if (!bio->bi_size)
  1097. return MAP_DONE;
  1098. return MAP_CONTINUE;
  1099. }
  1100. static void flash_dev_nodata(struct closure *cl)
  1101. {
  1102. struct search *s = container_of(cl, struct search, cl);
  1103. if (s->op.flush_journal)
  1104. bch_journal_meta(s->op.c, cl);
  1105. continue_at(cl, search_free, NULL);
  1106. }
  1107. static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
  1108. {
  1109. struct search *s;
  1110. struct closure *cl;
  1111. struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
  1112. int cpu, rw = bio_data_dir(bio);
  1113. cpu = part_stat_lock();
  1114. part_stat_inc(cpu, &d->disk->part0, ios[rw]);
  1115. part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
  1116. part_stat_unlock();
  1117. s = search_alloc(bio, d);
  1118. cl = &s->cl;
  1119. bio = &s->bio.bio;
  1120. trace_bcache_request_start(s, bio);
  1121. if (!bio->bi_size) {
  1122. /*
  1123. * can't call bch_journal_meta from under
  1124. * generic_make_request
  1125. */
  1126. continue_at_nobarrier(&s->cl,
  1127. flash_dev_nodata,
  1128. bcache_wq);
  1129. } else if (rw) {
  1130. bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
  1131. &KEY(d->id, bio->bi_sector, 0),
  1132. &KEY(d->id, bio_end_sector(bio), 0));
  1133. s->op.bypass = (bio->bi_rw & REQ_DISCARD) != 0;
  1134. s->writeback = true;
  1135. s->op.cache_bio = bio;
  1136. closure_call(&s->op.cl, bch_data_insert, NULL, cl);
  1137. } else {
  1138. closure_call(&s->op.cl, cache_lookup, NULL, cl);
  1139. }
  1140. continue_at(cl, search_free, NULL);
  1141. }
  1142. static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
  1143. unsigned int cmd, unsigned long arg)
  1144. {
  1145. return -ENOTTY;
  1146. }
  1147. static int flash_dev_congested(void *data, int bits)
  1148. {
  1149. struct bcache_device *d = data;
  1150. struct request_queue *q;
  1151. struct cache *ca;
  1152. unsigned i;
  1153. int ret = 0;
  1154. for_each_cache(ca, d->c, i) {
  1155. q = bdev_get_queue(ca->bdev);
  1156. ret |= bdi_congested(&q->backing_dev_info, bits);
  1157. }
  1158. return ret;
  1159. }
  1160. void bch_flash_dev_request_init(struct bcache_device *d)
  1161. {
  1162. struct gendisk *g = d->disk;
  1163. g->queue->make_request_fn = flash_dev_make_request;
  1164. g->queue->backing_dev_info.congested_fn = flash_dev_congested;
  1165. d->cache_miss = flash_dev_cache_miss;
  1166. d->ioctl = flash_dev_ioctl;
  1167. }
  1168. void bch_request_exit(void)
  1169. {
  1170. #ifdef CONFIG_CGROUP_BCACHE
  1171. cgroup_unload_subsys(&bcache_subsys);
  1172. #endif
  1173. if (bch_search_cache)
  1174. kmem_cache_destroy(bch_search_cache);
  1175. }
  1176. int __init bch_request_init(void)
  1177. {
  1178. bch_search_cache = KMEM_CACHE(search, 0);
  1179. if (!bch_search_cache)
  1180. return -ENOMEM;
  1181. #ifdef CONFIG_CGROUP_BCACHE
  1182. cgroup_load_subsys(&bcache_subsys);
  1183. init_bch_cgroup(&bcache_default_cgroup);
  1184. cgroup_add_cftypes(&bcache_subsys, bch_files);
  1185. #endif
  1186. return 0;
  1187. }