rmap.c 35 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246
  1. /*
  2. * mm/rmap.c - physical to virtual reverse mappings
  3. *
  4. * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
  5. * Released under the General Public License (GPL).
  6. *
  7. * Simple, low overhead reverse mapping scheme.
  8. * Please try to keep this thing as modular as possible.
  9. *
  10. * Provides methods for unmapping each kind of mapped page:
  11. * the anon methods track anonymous pages, and
  12. * the file methods track pages belonging to an inode.
  13. *
  14. * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15. * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16. * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17. * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
  18. */
  19. /*
  20. * Lock ordering in mm:
  21. *
  22. * inode->i_mutex (while writing or truncating, not reading or faulting)
  23. * inode->i_alloc_sem (vmtruncate_range)
  24. * mm->mmap_sem
  25. * page->flags PG_locked (lock_page)
  26. * mapping->i_mmap_lock
  27. * anon_vma->lock
  28. * mm->page_table_lock or pte_lock
  29. * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
  30. * swap_lock (in swap_duplicate, swap_info_get)
  31. * mmlist_lock (in mmput, drain_mmlist and others)
  32. * mapping->private_lock (in __set_page_dirty_buffers)
  33. * inode_lock (in set_page_dirty's __mark_inode_dirty)
  34. * sb_lock (within inode_lock in fs/fs-writeback.c)
  35. * mapping->tree_lock (widely used, in set_page_dirty,
  36. * in arch-dependent flush_dcache_mmap_lock,
  37. * within inode_lock in __sync_single_inode)
  38. */
  39. #include <linux/mm.h>
  40. #include <linux/pagemap.h>
  41. #include <linux/swap.h>
  42. #include <linux/swapops.h>
  43. #include <linux/slab.h>
  44. #include <linux/init.h>
  45. #include <linux/rmap.h>
  46. #include <linux/rcupdate.h>
  47. #include <linux/module.h>
  48. #include <linux/kallsyms.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/migrate.h>
  52. #include <asm/tlbflush.h>
  53. #include "internal.h"
  54. static struct kmem_cache *anon_vma_cachep;
  55. static inline struct anon_vma *anon_vma_alloc(void)
  56. {
  57. return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  58. }
  59. static inline void anon_vma_free(struct anon_vma *anon_vma)
  60. {
  61. kmem_cache_free(anon_vma_cachep, anon_vma);
  62. }
  63. /**
  64. * anon_vma_prepare - attach an anon_vma to a memory region
  65. * @vma: the memory region in question
  66. *
  67. * This makes sure the memory mapping described by 'vma' has
  68. * an 'anon_vma' attached to it, so that we can associate the
  69. * anonymous pages mapped into it with that anon_vma.
  70. *
  71. * The common case will be that we already have one, but if
  72. * if not we either need to find an adjacent mapping that we
  73. * can re-use the anon_vma from (very common when the only
  74. * reason for splitting a vma has been mprotect()), or we
  75. * allocate a new one.
  76. *
  77. * Anon-vma allocations are very subtle, because we may have
  78. * optimistically looked up an anon_vma in page_lock_anon_vma()
  79. * and that may actually touch the spinlock even in the newly
  80. * allocated vma (it depends on RCU to make sure that the
  81. * anon_vma isn't actually destroyed).
  82. *
  83. * As a result, we need to do proper anon_vma locking even
  84. * for the new allocation. At the same time, we do not want
  85. * to do any locking for the common case of already having
  86. * an anon_vma.
  87. *
  88. * This must be called with the mmap_sem held for reading.
  89. */
  90. int anon_vma_prepare(struct vm_area_struct *vma)
  91. {
  92. struct anon_vma *anon_vma = vma->anon_vma;
  93. might_sleep();
  94. if (unlikely(!anon_vma)) {
  95. struct mm_struct *mm = vma->vm_mm;
  96. struct anon_vma *allocated;
  97. anon_vma = find_mergeable_anon_vma(vma);
  98. allocated = NULL;
  99. if (!anon_vma) {
  100. anon_vma = anon_vma_alloc();
  101. if (unlikely(!anon_vma))
  102. return -ENOMEM;
  103. allocated = anon_vma;
  104. }
  105. spin_lock(&anon_vma->lock);
  106. /* page_table_lock to protect against threads */
  107. spin_lock(&mm->page_table_lock);
  108. if (likely(!vma->anon_vma)) {
  109. vma->anon_vma = anon_vma;
  110. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  111. allocated = NULL;
  112. }
  113. spin_unlock(&mm->page_table_lock);
  114. spin_unlock(&anon_vma->lock);
  115. if (unlikely(allocated))
  116. anon_vma_free(allocated);
  117. }
  118. return 0;
  119. }
  120. void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
  121. {
  122. BUG_ON(vma->anon_vma != next->anon_vma);
  123. list_del(&next->anon_vma_node);
  124. }
  125. void __anon_vma_link(struct vm_area_struct *vma)
  126. {
  127. struct anon_vma *anon_vma = vma->anon_vma;
  128. if (anon_vma)
  129. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  130. }
  131. void anon_vma_link(struct vm_area_struct *vma)
  132. {
  133. struct anon_vma *anon_vma = vma->anon_vma;
  134. if (anon_vma) {
  135. spin_lock(&anon_vma->lock);
  136. list_add_tail(&vma->anon_vma_node, &anon_vma->head);
  137. spin_unlock(&anon_vma->lock);
  138. }
  139. }
  140. void anon_vma_unlink(struct vm_area_struct *vma)
  141. {
  142. struct anon_vma *anon_vma = vma->anon_vma;
  143. int empty;
  144. if (!anon_vma)
  145. return;
  146. spin_lock(&anon_vma->lock);
  147. list_del(&vma->anon_vma_node);
  148. /* We must garbage collect the anon_vma if it's empty */
  149. empty = list_empty(&anon_vma->head);
  150. spin_unlock(&anon_vma->lock);
  151. if (empty)
  152. anon_vma_free(anon_vma);
  153. }
  154. static void anon_vma_ctor(void *data)
  155. {
  156. struct anon_vma *anon_vma = data;
  157. spin_lock_init(&anon_vma->lock);
  158. INIT_LIST_HEAD(&anon_vma->head);
  159. }
  160. void __init anon_vma_init(void)
  161. {
  162. anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
  163. 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
  164. }
  165. /*
  166. * Getting a lock on a stable anon_vma from a page off the LRU is
  167. * tricky: page_lock_anon_vma rely on RCU to guard against the races.
  168. */
  169. static struct anon_vma *page_lock_anon_vma(struct page *page)
  170. {
  171. struct anon_vma *anon_vma;
  172. unsigned long anon_mapping;
  173. rcu_read_lock();
  174. anon_mapping = (unsigned long) page->mapping;
  175. if (!(anon_mapping & PAGE_MAPPING_ANON))
  176. goto out;
  177. if (!page_mapped(page))
  178. goto out;
  179. anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
  180. spin_lock(&anon_vma->lock);
  181. return anon_vma;
  182. out:
  183. rcu_read_unlock();
  184. return NULL;
  185. }
  186. static void page_unlock_anon_vma(struct anon_vma *anon_vma)
  187. {
  188. spin_unlock(&anon_vma->lock);
  189. rcu_read_unlock();
  190. }
  191. /*
  192. * At what user virtual address is page expected in @vma?
  193. * Returns virtual address or -EFAULT if page's index/offset is not
  194. * within the range mapped the @vma.
  195. */
  196. static inline unsigned long
  197. vma_address(struct page *page, struct vm_area_struct *vma)
  198. {
  199. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  200. unsigned long address;
  201. address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
  202. if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
  203. /* page should be within @vma mapping range */
  204. return -EFAULT;
  205. }
  206. return address;
  207. }
  208. /*
  209. * At what user virtual address is page expected in vma? checking that the
  210. * page matches the vma: currently only used on anon pages, by unuse_vma;
  211. */
  212. unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
  213. {
  214. if (PageAnon(page)) {
  215. if ((void *)vma->anon_vma !=
  216. (void *)page->mapping - PAGE_MAPPING_ANON)
  217. return -EFAULT;
  218. } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
  219. if (!vma->vm_file ||
  220. vma->vm_file->f_mapping != page->mapping)
  221. return -EFAULT;
  222. } else
  223. return -EFAULT;
  224. return vma_address(page, vma);
  225. }
  226. /*
  227. * Check that @page is mapped at @address into @mm.
  228. *
  229. * If @sync is false, page_check_address may perform a racy check to avoid
  230. * the page table lock when the pte is not present (helpful when reclaiming
  231. * highly shared pages).
  232. *
  233. * On success returns with pte mapped and locked.
  234. */
  235. pte_t *page_check_address(struct page *page, struct mm_struct *mm,
  236. unsigned long address, spinlock_t **ptlp, int sync)
  237. {
  238. pgd_t *pgd;
  239. pud_t *pud;
  240. pmd_t *pmd;
  241. pte_t *pte;
  242. spinlock_t *ptl;
  243. pgd = pgd_offset(mm, address);
  244. if (!pgd_present(*pgd))
  245. return NULL;
  246. pud = pud_offset(pgd, address);
  247. if (!pud_present(*pud))
  248. return NULL;
  249. pmd = pmd_offset(pud, address);
  250. if (!pmd_present(*pmd))
  251. return NULL;
  252. pte = pte_offset_map(pmd, address);
  253. /* Make a quick check before getting the lock */
  254. if (!sync && !pte_present(*pte)) {
  255. pte_unmap(pte);
  256. return NULL;
  257. }
  258. ptl = pte_lockptr(mm, pmd);
  259. spin_lock(ptl);
  260. if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
  261. *ptlp = ptl;
  262. return pte;
  263. }
  264. pte_unmap_unlock(pte, ptl);
  265. return NULL;
  266. }
  267. /**
  268. * page_mapped_in_vma - check whether a page is really mapped in a VMA
  269. * @page: the page to test
  270. * @vma: the VMA to test
  271. *
  272. * Returns 1 if the page is mapped into the page tables of the VMA, 0
  273. * if the page is not mapped into the page tables of this VMA. Only
  274. * valid for normal file or anonymous VMAs.
  275. */
  276. static int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
  277. {
  278. unsigned long address;
  279. pte_t *pte;
  280. spinlock_t *ptl;
  281. address = vma_address(page, vma);
  282. if (address == -EFAULT) /* out of vma range */
  283. return 0;
  284. pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
  285. if (!pte) /* the page is not in this mm */
  286. return 0;
  287. pte_unmap_unlock(pte, ptl);
  288. return 1;
  289. }
  290. /*
  291. * Subfunctions of page_referenced: page_referenced_one called
  292. * repeatedly from either page_referenced_anon or page_referenced_file.
  293. */
  294. static int page_referenced_one(struct page *page,
  295. struct vm_area_struct *vma, unsigned int *mapcount)
  296. {
  297. struct mm_struct *mm = vma->vm_mm;
  298. unsigned long address;
  299. pte_t *pte;
  300. spinlock_t *ptl;
  301. int referenced = 0;
  302. address = vma_address(page, vma);
  303. if (address == -EFAULT)
  304. goto out;
  305. pte = page_check_address(page, mm, address, &ptl, 0);
  306. if (!pte)
  307. goto out;
  308. /*
  309. * Don't want to elevate referenced for mlocked page that gets this far,
  310. * in order that it progresses to try_to_unmap and is moved to the
  311. * unevictable list.
  312. */
  313. if (vma->vm_flags & VM_LOCKED) {
  314. *mapcount = 1; /* break early from loop */
  315. goto out_unmap;
  316. }
  317. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  318. /*
  319. * Don't treat a reference through a sequentially read
  320. * mapping as such. If the page has been used in
  321. * another mapping, we will catch it; if this other
  322. * mapping is already gone, the unmap path will have
  323. * set PG_referenced or activated the page.
  324. */
  325. if (likely(!VM_SequentialReadHint(vma)))
  326. referenced++;
  327. }
  328. /* Pretend the page is referenced if the task has the
  329. swap token and is in the middle of a page fault. */
  330. if (mm != current->mm && has_swap_token(mm) &&
  331. rwsem_is_locked(&mm->mmap_sem))
  332. referenced++;
  333. out_unmap:
  334. (*mapcount)--;
  335. pte_unmap_unlock(pte, ptl);
  336. out:
  337. return referenced;
  338. }
  339. static int page_referenced_anon(struct page *page,
  340. struct mem_cgroup *mem_cont)
  341. {
  342. unsigned int mapcount;
  343. struct anon_vma *anon_vma;
  344. struct vm_area_struct *vma;
  345. int referenced = 0;
  346. anon_vma = page_lock_anon_vma(page);
  347. if (!anon_vma)
  348. return referenced;
  349. mapcount = page_mapcount(page);
  350. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  351. /*
  352. * If we are reclaiming on behalf of a cgroup, skip
  353. * counting on behalf of references from different
  354. * cgroups
  355. */
  356. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  357. continue;
  358. referenced += page_referenced_one(page, vma, &mapcount);
  359. if (!mapcount)
  360. break;
  361. }
  362. page_unlock_anon_vma(anon_vma);
  363. return referenced;
  364. }
  365. /**
  366. * page_referenced_file - referenced check for object-based rmap
  367. * @page: the page we're checking references on.
  368. * @mem_cont: target memory controller
  369. *
  370. * For an object-based mapped page, find all the places it is mapped and
  371. * check/clear the referenced flag. This is done by following the page->mapping
  372. * pointer, then walking the chain of vmas it holds. It returns the number
  373. * of references it found.
  374. *
  375. * This function is only called from page_referenced for object-based pages.
  376. */
  377. static int page_referenced_file(struct page *page,
  378. struct mem_cgroup *mem_cont)
  379. {
  380. unsigned int mapcount;
  381. struct address_space *mapping = page->mapping;
  382. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  383. struct vm_area_struct *vma;
  384. struct prio_tree_iter iter;
  385. int referenced = 0;
  386. /*
  387. * The caller's checks on page->mapping and !PageAnon have made
  388. * sure that this is a file page: the check for page->mapping
  389. * excludes the case just before it gets set on an anon page.
  390. */
  391. BUG_ON(PageAnon(page));
  392. /*
  393. * The page lock not only makes sure that page->mapping cannot
  394. * suddenly be NULLified by truncation, it makes sure that the
  395. * structure at mapping cannot be freed and reused yet,
  396. * so we can safely take mapping->i_mmap_lock.
  397. */
  398. BUG_ON(!PageLocked(page));
  399. spin_lock(&mapping->i_mmap_lock);
  400. /*
  401. * i_mmap_lock does not stabilize mapcount at all, but mapcount
  402. * is more likely to be accurate if we note it after spinning.
  403. */
  404. mapcount = page_mapcount(page);
  405. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  406. /*
  407. * If we are reclaiming on behalf of a cgroup, skip
  408. * counting on behalf of references from different
  409. * cgroups
  410. */
  411. if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
  412. continue;
  413. referenced += page_referenced_one(page, vma, &mapcount);
  414. if (!mapcount)
  415. break;
  416. }
  417. spin_unlock(&mapping->i_mmap_lock);
  418. return referenced;
  419. }
  420. /**
  421. * page_referenced - test if the page was referenced
  422. * @page: the page to test
  423. * @is_locked: caller holds lock on the page
  424. * @mem_cont: target memory controller
  425. *
  426. * Quick test_and_clear_referenced for all mappings to a page,
  427. * returns the number of ptes which referenced the page.
  428. */
  429. int page_referenced(struct page *page, int is_locked,
  430. struct mem_cgroup *mem_cont)
  431. {
  432. int referenced = 0;
  433. if (TestClearPageReferenced(page))
  434. referenced++;
  435. if (page_mapped(page) && page->mapping) {
  436. if (PageAnon(page))
  437. referenced += page_referenced_anon(page, mem_cont);
  438. else if (is_locked)
  439. referenced += page_referenced_file(page, mem_cont);
  440. else if (!trylock_page(page))
  441. referenced++;
  442. else {
  443. if (page->mapping)
  444. referenced +=
  445. page_referenced_file(page, mem_cont);
  446. unlock_page(page);
  447. }
  448. }
  449. if (page_test_and_clear_young(page))
  450. referenced++;
  451. return referenced;
  452. }
  453. static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
  454. {
  455. struct mm_struct *mm = vma->vm_mm;
  456. unsigned long address;
  457. pte_t *pte;
  458. spinlock_t *ptl;
  459. int ret = 0;
  460. address = vma_address(page, vma);
  461. if (address == -EFAULT)
  462. goto out;
  463. pte = page_check_address(page, mm, address, &ptl, 1);
  464. if (!pte)
  465. goto out;
  466. if (pte_dirty(*pte) || pte_write(*pte)) {
  467. pte_t entry;
  468. flush_cache_page(vma, address, pte_pfn(*pte));
  469. entry = ptep_clear_flush_notify(vma, address, pte);
  470. entry = pte_wrprotect(entry);
  471. entry = pte_mkclean(entry);
  472. set_pte_at(mm, address, pte, entry);
  473. ret = 1;
  474. }
  475. pte_unmap_unlock(pte, ptl);
  476. out:
  477. return ret;
  478. }
  479. static int page_mkclean_file(struct address_space *mapping, struct page *page)
  480. {
  481. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  482. struct vm_area_struct *vma;
  483. struct prio_tree_iter iter;
  484. int ret = 0;
  485. BUG_ON(PageAnon(page));
  486. spin_lock(&mapping->i_mmap_lock);
  487. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  488. if (vma->vm_flags & VM_SHARED)
  489. ret += page_mkclean_one(page, vma);
  490. }
  491. spin_unlock(&mapping->i_mmap_lock);
  492. return ret;
  493. }
  494. int page_mkclean(struct page *page)
  495. {
  496. int ret = 0;
  497. BUG_ON(!PageLocked(page));
  498. if (page_mapped(page)) {
  499. struct address_space *mapping = page_mapping(page);
  500. if (mapping) {
  501. ret = page_mkclean_file(mapping, page);
  502. if (page_test_dirty(page)) {
  503. page_clear_dirty(page);
  504. ret = 1;
  505. }
  506. }
  507. }
  508. return ret;
  509. }
  510. EXPORT_SYMBOL_GPL(page_mkclean);
  511. /**
  512. * __page_set_anon_rmap - setup new anonymous rmap
  513. * @page: the page to add the mapping to
  514. * @vma: the vm area in which the mapping is added
  515. * @address: the user virtual address mapped
  516. */
  517. static void __page_set_anon_rmap(struct page *page,
  518. struct vm_area_struct *vma, unsigned long address)
  519. {
  520. struct anon_vma *anon_vma = vma->anon_vma;
  521. BUG_ON(!anon_vma);
  522. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  523. page->mapping = (struct address_space *) anon_vma;
  524. page->index = linear_page_index(vma, address);
  525. /*
  526. * nr_mapped state can be updated without turning off
  527. * interrupts because it is not modified via interrupt.
  528. */
  529. __inc_zone_page_state(page, NR_ANON_PAGES);
  530. }
  531. /**
  532. * __page_check_anon_rmap - sanity check anonymous rmap addition
  533. * @page: the page to add the mapping to
  534. * @vma: the vm area in which the mapping is added
  535. * @address: the user virtual address mapped
  536. */
  537. static void __page_check_anon_rmap(struct page *page,
  538. struct vm_area_struct *vma, unsigned long address)
  539. {
  540. #ifdef CONFIG_DEBUG_VM
  541. /*
  542. * The page's anon-rmap details (mapping and index) are guaranteed to
  543. * be set up correctly at this point.
  544. *
  545. * We have exclusion against page_add_anon_rmap because the caller
  546. * always holds the page locked, except if called from page_dup_rmap,
  547. * in which case the page is already known to be setup.
  548. *
  549. * We have exclusion against page_add_new_anon_rmap because those pages
  550. * are initially only visible via the pagetables, and the pte is locked
  551. * over the call to page_add_new_anon_rmap.
  552. */
  553. struct anon_vma *anon_vma = vma->anon_vma;
  554. anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
  555. BUG_ON(page->mapping != (struct address_space *)anon_vma);
  556. BUG_ON(page->index != linear_page_index(vma, address));
  557. #endif
  558. }
  559. /**
  560. * page_add_anon_rmap - add pte mapping to an anonymous page
  561. * @page: the page to add the mapping to
  562. * @vma: the vm area in which the mapping is added
  563. * @address: the user virtual address mapped
  564. *
  565. * The caller needs to hold the pte lock and the page must be locked.
  566. */
  567. void page_add_anon_rmap(struct page *page,
  568. struct vm_area_struct *vma, unsigned long address)
  569. {
  570. VM_BUG_ON(!PageLocked(page));
  571. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  572. if (atomic_inc_and_test(&page->_mapcount))
  573. __page_set_anon_rmap(page, vma, address);
  574. else
  575. __page_check_anon_rmap(page, vma, address);
  576. }
  577. /**
  578. * page_add_new_anon_rmap - add pte mapping to a new anonymous page
  579. * @page: the page to add the mapping to
  580. * @vma: the vm area in which the mapping is added
  581. * @address: the user virtual address mapped
  582. *
  583. * Same as page_add_anon_rmap but must only be called on *new* pages.
  584. * This means the inc-and-test can be bypassed.
  585. * Page does not have to be locked.
  586. */
  587. void page_add_new_anon_rmap(struct page *page,
  588. struct vm_area_struct *vma, unsigned long address)
  589. {
  590. VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
  591. SetPageSwapBacked(page);
  592. atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
  593. __page_set_anon_rmap(page, vma, address);
  594. if (page_evictable(page, vma))
  595. lru_cache_add_lru(page, LRU_ACTIVE_ANON);
  596. else
  597. add_page_to_unevictable_list(page);
  598. }
  599. /**
  600. * page_add_file_rmap - add pte mapping to a file page
  601. * @page: the page to add the mapping to
  602. *
  603. * The caller needs to hold the pte lock.
  604. */
  605. void page_add_file_rmap(struct page *page)
  606. {
  607. if (atomic_inc_and_test(&page->_mapcount))
  608. __inc_zone_page_state(page, NR_FILE_MAPPED);
  609. }
  610. #ifdef CONFIG_DEBUG_VM
  611. /**
  612. * page_dup_rmap - duplicate pte mapping to a page
  613. * @page: the page to add the mapping to
  614. * @vma: the vm area being duplicated
  615. * @address: the user virtual address mapped
  616. *
  617. * For copy_page_range only: minimal extract from page_add_file_rmap /
  618. * page_add_anon_rmap, avoiding unnecessary tests (already checked) so it's
  619. * quicker.
  620. *
  621. * The caller needs to hold the pte lock.
  622. */
  623. void page_dup_rmap(struct page *page, struct vm_area_struct *vma, unsigned long address)
  624. {
  625. BUG_ON(page_mapcount(page) == 0);
  626. if (PageAnon(page))
  627. __page_check_anon_rmap(page, vma, address);
  628. atomic_inc(&page->_mapcount);
  629. }
  630. #endif
  631. /**
  632. * page_remove_rmap - take down pte mapping from a page
  633. * @page: page to remove mapping from
  634. * @vma: the vm area in which the mapping is removed
  635. *
  636. * The caller needs to hold the pte lock.
  637. */
  638. void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
  639. {
  640. if (atomic_add_negative(-1, &page->_mapcount)) {
  641. if (unlikely(page_mapcount(page) < 0)) {
  642. printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
  643. printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
  644. printk (KERN_EMERG " page->flags = %lx\n", page->flags);
  645. printk (KERN_EMERG " page->count = %x\n", page_count(page));
  646. printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
  647. print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
  648. if (vma->vm_ops) {
  649. print_symbol (KERN_EMERG " vma->vm_ops->fault = %s\n", (unsigned long)vma->vm_ops->fault);
  650. }
  651. if (vma->vm_file && vma->vm_file->f_op)
  652. print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
  653. BUG();
  654. }
  655. /*
  656. * Now that the last pte has gone, s390 must transfer dirty
  657. * flag from storage key to struct page. We can usually skip
  658. * this if the page is anon, so about to be freed; but perhaps
  659. * not if it's in swapcache - there might be another pte slot
  660. * containing the swap entry, but page not yet written to swap.
  661. */
  662. if ((!PageAnon(page) || PageSwapCache(page)) &&
  663. page_test_dirty(page)) {
  664. page_clear_dirty(page);
  665. set_page_dirty(page);
  666. }
  667. if (PageAnon(page))
  668. mem_cgroup_uncharge_page(page);
  669. __dec_zone_page_state(page,
  670. PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
  671. /*
  672. * It would be tidy to reset the PageAnon mapping here,
  673. * but that might overwrite a racing page_add_anon_rmap
  674. * which increments mapcount after us but sets mapping
  675. * before us: so leave the reset to free_hot_cold_page,
  676. * and remember that it's only reliable while mapped.
  677. * Leaving it set also helps swapoff to reinstate ptes
  678. * faster for those pages still in swapcache.
  679. */
  680. }
  681. }
  682. /*
  683. * Subfunctions of try_to_unmap: try_to_unmap_one called
  684. * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
  685. */
  686. static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
  687. int migration)
  688. {
  689. struct mm_struct *mm = vma->vm_mm;
  690. unsigned long address;
  691. pte_t *pte;
  692. pte_t pteval;
  693. spinlock_t *ptl;
  694. int ret = SWAP_AGAIN;
  695. address = vma_address(page, vma);
  696. if (address == -EFAULT)
  697. goto out;
  698. pte = page_check_address(page, mm, address, &ptl, 0);
  699. if (!pte)
  700. goto out;
  701. /*
  702. * If the page is mlock()d, we cannot swap it out.
  703. * If it's recently referenced (perhaps page_referenced
  704. * skipped over this mm) then we should reactivate it.
  705. */
  706. if (!migration) {
  707. if (vma->vm_flags & VM_LOCKED) {
  708. ret = SWAP_MLOCK;
  709. goto out_unmap;
  710. }
  711. if (ptep_clear_flush_young_notify(vma, address, pte)) {
  712. ret = SWAP_FAIL;
  713. goto out_unmap;
  714. }
  715. }
  716. /* Nuke the page table entry. */
  717. flush_cache_page(vma, address, page_to_pfn(page));
  718. pteval = ptep_clear_flush_notify(vma, address, pte);
  719. /* Move the dirty bit to the physical page now the pte is gone. */
  720. if (pte_dirty(pteval))
  721. set_page_dirty(page);
  722. /* Update high watermark before we lower rss */
  723. update_hiwater_rss(mm);
  724. if (PageAnon(page)) {
  725. swp_entry_t entry = { .val = page_private(page) };
  726. if (PageSwapCache(page)) {
  727. /*
  728. * Store the swap location in the pte.
  729. * See handle_pte_fault() ...
  730. */
  731. swap_duplicate(entry);
  732. if (list_empty(&mm->mmlist)) {
  733. spin_lock(&mmlist_lock);
  734. if (list_empty(&mm->mmlist))
  735. list_add(&mm->mmlist, &init_mm.mmlist);
  736. spin_unlock(&mmlist_lock);
  737. }
  738. dec_mm_counter(mm, anon_rss);
  739. } else if (PAGE_MIGRATION) {
  740. /*
  741. * Store the pfn of the page in a special migration
  742. * pte. do_swap_page() will wait until the migration
  743. * pte is removed and then restart fault handling.
  744. */
  745. BUG_ON(!migration);
  746. entry = make_migration_entry(page, pte_write(pteval));
  747. }
  748. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  749. BUG_ON(pte_file(*pte));
  750. } else if (PAGE_MIGRATION && migration) {
  751. /* Establish migration entry for a file page */
  752. swp_entry_t entry;
  753. entry = make_migration_entry(page, pte_write(pteval));
  754. set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
  755. } else
  756. dec_mm_counter(mm, file_rss);
  757. page_remove_rmap(page, vma);
  758. page_cache_release(page);
  759. out_unmap:
  760. pte_unmap_unlock(pte, ptl);
  761. out:
  762. return ret;
  763. }
  764. /*
  765. * objrmap doesn't work for nonlinear VMAs because the assumption that
  766. * offset-into-file correlates with offset-into-virtual-addresses does not hold.
  767. * Consequently, given a particular page and its ->index, we cannot locate the
  768. * ptes which are mapping that page without an exhaustive linear search.
  769. *
  770. * So what this code does is a mini "virtual scan" of each nonlinear VMA which
  771. * maps the file to which the target page belongs. The ->vm_private_data field
  772. * holds the current cursor into that scan. Successive searches will circulate
  773. * around the vma's virtual address space.
  774. *
  775. * So as more replacement pressure is applied to the pages in a nonlinear VMA,
  776. * more scanning pressure is placed against them as well. Eventually pages
  777. * will become fully unmapped and are eligible for eviction.
  778. *
  779. * For very sparsely populated VMAs this is a little inefficient - chances are
  780. * there there won't be many ptes located within the scan cluster. In this case
  781. * maybe we could scan further - to the end of the pte page, perhaps.
  782. *
  783. * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
  784. * acquire it without blocking. If vma locked, mlock the pages in the cluster,
  785. * rather than unmapping them. If we encounter the "check_page" that vmscan is
  786. * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
  787. */
  788. #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
  789. #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
  790. static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
  791. struct vm_area_struct *vma, struct page *check_page)
  792. {
  793. struct mm_struct *mm = vma->vm_mm;
  794. pgd_t *pgd;
  795. pud_t *pud;
  796. pmd_t *pmd;
  797. pte_t *pte;
  798. pte_t pteval;
  799. spinlock_t *ptl;
  800. struct page *page;
  801. unsigned long address;
  802. unsigned long end;
  803. int ret = SWAP_AGAIN;
  804. int locked_vma = 0;
  805. address = (vma->vm_start + cursor) & CLUSTER_MASK;
  806. end = address + CLUSTER_SIZE;
  807. if (address < vma->vm_start)
  808. address = vma->vm_start;
  809. if (end > vma->vm_end)
  810. end = vma->vm_end;
  811. pgd = pgd_offset(mm, address);
  812. if (!pgd_present(*pgd))
  813. return ret;
  814. pud = pud_offset(pgd, address);
  815. if (!pud_present(*pud))
  816. return ret;
  817. pmd = pmd_offset(pud, address);
  818. if (!pmd_present(*pmd))
  819. return ret;
  820. /*
  821. * MLOCK_PAGES => feature is configured.
  822. * if we can acquire the mmap_sem for read, and vma is VM_LOCKED,
  823. * keep the sem while scanning the cluster for mlocking pages.
  824. */
  825. if (MLOCK_PAGES && down_read_trylock(&vma->vm_mm->mmap_sem)) {
  826. locked_vma = (vma->vm_flags & VM_LOCKED);
  827. if (!locked_vma)
  828. up_read(&vma->vm_mm->mmap_sem); /* don't need it */
  829. }
  830. pte = pte_offset_map_lock(mm, pmd, address, &ptl);
  831. /* Update high watermark before we lower rss */
  832. update_hiwater_rss(mm);
  833. for (; address < end; pte++, address += PAGE_SIZE) {
  834. if (!pte_present(*pte))
  835. continue;
  836. page = vm_normal_page(vma, address, *pte);
  837. BUG_ON(!page || PageAnon(page));
  838. if (locked_vma) {
  839. mlock_vma_page(page); /* no-op if already mlocked */
  840. if (page == check_page)
  841. ret = SWAP_MLOCK;
  842. continue; /* don't unmap */
  843. }
  844. if (ptep_clear_flush_young_notify(vma, address, pte))
  845. continue;
  846. /* Nuke the page table entry. */
  847. flush_cache_page(vma, address, pte_pfn(*pte));
  848. pteval = ptep_clear_flush_notify(vma, address, pte);
  849. /* If nonlinear, store the file page offset in the pte. */
  850. if (page->index != linear_page_index(vma, address))
  851. set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
  852. /* Move the dirty bit to the physical page now the pte is gone. */
  853. if (pte_dirty(pteval))
  854. set_page_dirty(page);
  855. page_remove_rmap(page, vma);
  856. page_cache_release(page);
  857. dec_mm_counter(mm, file_rss);
  858. (*mapcount)--;
  859. }
  860. pte_unmap_unlock(pte - 1, ptl);
  861. if (locked_vma)
  862. up_read(&vma->vm_mm->mmap_sem);
  863. return ret;
  864. }
  865. /*
  866. * common handling for pages mapped in VM_LOCKED vmas
  867. */
  868. static int try_to_mlock_page(struct page *page, struct vm_area_struct *vma)
  869. {
  870. int mlocked = 0;
  871. if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
  872. if (vma->vm_flags & VM_LOCKED) {
  873. mlock_vma_page(page);
  874. mlocked++; /* really mlocked the page */
  875. }
  876. up_read(&vma->vm_mm->mmap_sem);
  877. }
  878. return mlocked;
  879. }
  880. /**
  881. * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
  882. * rmap method
  883. * @page: the page to unmap/unlock
  884. * @unlock: request for unlock rather than unmap [unlikely]
  885. * @migration: unmapping for migration - ignored if @unlock
  886. *
  887. * Find all the mappings of a page using the mapping pointer and the vma chains
  888. * contained in the anon_vma struct it points to.
  889. *
  890. * This function is only called from try_to_unmap/try_to_munlock for
  891. * anonymous pages.
  892. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  893. * where the page was found will be held for write. So, we won't recheck
  894. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  895. * 'LOCKED.
  896. */
  897. static int try_to_unmap_anon(struct page *page, int unlock, int migration)
  898. {
  899. struct anon_vma *anon_vma;
  900. struct vm_area_struct *vma;
  901. unsigned int mlocked = 0;
  902. int ret = SWAP_AGAIN;
  903. if (MLOCK_PAGES && unlikely(unlock))
  904. ret = SWAP_SUCCESS; /* default for try_to_munlock() */
  905. anon_vma = page_lock_anon_vma(page);
  906. if (!anon_vma)
  907. return ret;
  908. list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
  909. if (MLOCK_PAGES && unlikely(unlock)) {
  910. if (!((vma->vm_flags & VM_LOCKED) &&
  911. page_mapped_in_vma(page, vma)))
  912. continue; /* must visit all unlocked vmas */
  913. ret = SWAP_MLOCK; /* saw at least one mlocked vma */
  914. } else {
  915. ret = try_to_unmap_one(page, vma, migration);
  916. if (ret == SWAP_FAIL || !page_mapped(page))
  917. break;
  918. }
  919. if (ret == SWAP_MLOCK) {
  920. mlocked = try_to_mlock_page(page, vma);
  921. if (mlocked)
  922. break; /* stop if actually mlocked page */
  923. }
  924. }
  925. page_unlock_anon_vma(anon_vma);
  926. if (mlocked)
  927. ret = SWAP_MLOCK; /* actually mlocked the page */
  928. else if (ret == SWAP_MLOCK)
  929. ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
  930. return ret;
  931. }
  932. /**
  933. * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
  934. * @page: the page to unmap/unlock
  935. * @unlock: request for unlock rather than unmap [unlikely]
  936. * @migration: unmapping for migration - ignored if @unlock
  937. *
  938. * Find all the mappings of a page using the mapping pointer and the vma chains
  939. * contained in the address_space struct it points to.
  940. *
  941. * This function is only called from try_to_unmap/try_to_munlock for
  942. * object-based pages.
  943. * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
  944. * where the page was found will be held for write. So, we won't recheck
  945. * vm_flags for that VMA. That should be OK, because that vma shouldn't be
  946. * 'LOCKED.
  947. */
  948. static int try_to_unmap_file(struct page *page, int unlock, int migration)
  949. {
  950. struct address_space *mapping = page->mapping;
  951. pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
  952. struct vm_area_struct *vma;
  953. struct prio_tree_iter iter;
  954. int ret = SWAP_AGAIN;
  955. unsigned long cursor;
  956. unsigned long max_nl_cursor = 0;
  957. unsigned long max_nl_size = 0;
  958. unsigned int mapcount;
  959. unsigned int mlocked = 0;
  960. if (MLOCK_PAGES && unlikely(unlock))
  961. ret = SWAP_SUCCESS; /* default for try_to_munlock() */
  962. spin_lock(&mapping->i_mmap_lock);
  963. vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
  964. if (MLOCK_PAGES && unlikely(unlock)) {
  965. if (!(vma->vm_flags & VM_LOCKED))
  966. continue; /* must visit all vmas */
  967. ret = SWAP_MLOCK;
  968. } else {
  969. ret = try_to_unmap_one(page, vma, migration);
  970. if (ret == SWAP_FAIL || !page_mapped(page))
  971. goto out;
  972. }
  973. if (ret == SWAP_MLOCK) {
  974. mlocked = try_to_mlock_page(page, vma);
  975. if (mlocked)
  976. break; /* stop if actually mlocked page */
  977. }
  978. }
  979. if (mlocked)
  980. goto out;
  981. if (list_empty(&mapping->i_mmap_nonlinear))
  982. goto out;
  983. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  984. shared.vm_set.list) {
  985. if (MLOCK_PAGES && unlikely(unlock)) {
  986. if (!(vma->vm_flags & VM_LOCKED))
  987. continue; /* must visit all vmas */
  988. ret = SWAP_MLOCK; /* leave mlocked == 0 */
  989. goto out; /* no need to look further */
  990. }
  991. if (!MLOCK_PAGES && !migration && (vma->vm_flags & VM_LOCKED))
  992. continue;
  993. cursor = (unsigned long) vma->vm_private_data;
  994. if (cursor > max_nl_cursor)
  995. max_nl_cursor = cursor;
  996. cursor = vma->vm_end - vma->vm_start;
  997. if (cursor > max_nl_size)
  998. max_nl_size = cursor;
  999. }
  1000. if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
  1001. ret = SWAP_FAIL;
  1002. goto out;
  1003. }
  1004. /*
  1005. * We don't try to search for this page in the nonlinear vmas,
  1006. * and page_referenced wouldn't have found it anyway. Instead
  1007. * just walk the nonlinear vmas trying to age and unmap some.
  1008. * The mapcount of the page we came in with is irrelevant,
  1009. * but even so use it as a guide to how hard we should try?
  1010. */
  1011. mapcount = page_mapcount(page);
  1012. if (!mapcount)
  1013. goto out;
  1014. cond_resched_lock(&mapping->i_mmap_lock);
  1015. max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
  1016. if (max_nl_cursor == 0)
  1017. max_nl_cursor = CLUSTER_SIZE;
  1018. do {
  1019. list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
  1020. shared.vm_set.list) {
  1021. if (!MLOCK_PAGES && !migration &&
  1022. (vma->vm_flags & VM_LOCKED))
  1023. continue;
  1024. cursor = (unsigned long) vma->vm_private_data;
  1025. while ( cursor < max_nl_cursor &&
  1026. cursor < vma->vm_end - vma->vm_start) {
  1027. ret = try_to_unmap_cluster(cursor, &mapcount,
  1028. vma, page);
  1029. if (ret == SWAP_MLOCK)
  1030. mlocked = 2; /* to return below */
  1031. cursor += CLUSTER_SIZE;
  1032. vma->vm_private_data = (void *) cursor;
  1033. if ((int)mapcount <= 0)
  1034. goto out;
  1035. }
  1036. vma->vm_private_data = (void *) max_nl_cursor;
  1037. }
  1038. cond_resched_lock(&mapping->i_mmap_lock);
  1039. max_nl_cursor += CLUSTER_SIZE;
  1040. } while (max_nl_cursor <= max_nl_size);
  1041. /*
  1042. * Don't loop forever (perhaps all the remaining pages are
  1043. * in locked vmas). Reset cursor on all unreserved nonlinear
  1044. * vmas, now forgetting on which ones it had fallen behind.
  1045. */
  1046. list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
  1047. vma->vm_private_data = NULL;
  1048. out:
  1049. spin_unlock(&mapping->i_mmap_lock);
  1050. if (mlocked)
  1051. ret = SWAP_MLOCK; /* actually mlocked the page */
  1052. else if (ret == SWAP_MLOCK)
  1053. ret = SWAP_AGAIN; /* saw VM_LOCKED vma */
  1054. return ret;
  1055. }
  1056. /**
  1057. * try_to_unmap - try to remove all page table mappings to a page
  1058. * @page: the page to get unmapped
  1059. * @migration: migration flag
  1060. *
  1061. * Tries to remove all the page table entries which are mapping this
  1062. * page, used in the pageout path. Caller must hold the page lock.
  1063. * Return values are:
  1064. *
  1065. * SWAP_SUCCESS - we succeeded in removing all mappings
  1066. * SWAP_AGAIN - we missed a mapping, try again later
  1067. * SWAP_FAIL - the page is unswappable
  1068. * SWAP_MLOCK - page is mlocked.
  1069. */
  1070. int try_to_unmap(struct page *page, int migration)
  1071. {
  1072. int ret;
  1073. BUG_ON(!PageLocked(page));
  1074. if (PageAnon(page))
  1075. ret = try_to_unmap_anon(page, 0, migration);
  1076. else
  1077. ret = try_to_unmap_file(page, 0, migration);
  1078. if (ret != SWAP_MLOCK && !page_mapped(page))
  1079. ret = SWAP_SUCCESS;
  1080. return ret;
  1081. }
  1082. #ifdef CONFIG_UNEVICTABLE_LRU
  1083. /**
  1084. * try_to_munlock - try to munlock a page
  1085. * @page: the page to be munlocked
  1086. *
  1087. * Called from munlock code. Checks all of the VMAs mapping the page
  1088. * to make sure nobody else has this page mlocked. The page will be
  1089. * returned with PG_mlocked cleared if no other vmas have it mlocked.
  1090. *
  1091. * Return values are:
  1092. *
  1093. * SWAP_SUCCESS - no vma's holding page mlocked.
  1094. * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
  1095. * SWAP_MLOCK - page is now mlocked.
  1096. */
  1097. int try_to_munlock(struct page *page)
  1098. {
  1099. VM_BUG_ON(!PageLocked(page) || PageLRU(page));
  1100. if (PageAnon(page))
  1101. return try_to_unmap_anon(page, 1, 0);
  1102. else
  1103. return try_to_unmap_file(page, 1, 0);
  1104. }
  1105. #endif