memory.c 113 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211
  1. /*
  2. * linux/mm/memory.c
  3. *
  4. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  5. */
  6. /*
  7. * demand-loading started 01.12.91 - seems it is high on the list of
  8. * things wanted, and it should be easy to implement. - Linus
  9. */
  10. /*
  11. * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  12. * pages started 02.12.91, seems to work. - Linus.
  13. *
  14. * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  15. * would have taken more than the 6M I have free, but it worked well as
  16. * far as I could see.
  17. *
  18. * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  19. */
  20. /*
  21. * Real VM (paging to/from disk) started 18.12.91. Much more work and
  22. * thought has to go into this. Oh, well..
  23. * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
  24. * Found it. Everything seems to work now.
  25. * 20.12.91 - Ok, making the swap-device changeable like the root.
  26. */
  27. /*
  28. * 05.04.94 - Multi-page memory management added for v1.1.
  29. * Idea by Alex Bligh (alex@cconcepts.co.uk)
  30. *
  31. * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
  32. * (Gerhard.Wichert@pdb.siemens.de)
  33. *
  34. * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  35. */
  36. #include <linux/kernel_stat.h>
  37. #include <linux/mm.h>
  38. #include <linux/hugetlb.h>
  39. #include <linux/mman.h>
  40. #include <linux/swap.h>
  41. #include <linux/highmem.h>
  42. #include <linux/pagemap.h>
  43. #include <linux/ksm.h>
  44. #include <linux/rmap.h>
  45. #include <linux/export.h>
  46. #include <linux/delayacct.h>
  47. #include <linux/init.h>
  48. #include <linux/writeback.h>
  49. #include <linux/memcontrol.h>
  50. #include <linux/mmu_notifier.h>
  51. #include <linux/kallsyms.h>
  52. #include <linux/swapops.h>
  53. #include <linux/elf.h>
  54. #include <linux/gfp.h>
  55. #include <linux/migrate.h>
  56. #include <asm/io.h>
  57. #include <asm/pgalloc.h>
  58. #include <asm/uaccess.h>
  59. #include <asm/tlb.h>
  60. #include <asm/tlbflush.h>
  61. #include <asm/pgtable.h>
  62. #include "internal.h"
  63. #ifndef CONFIG_NEED_MULTIPLE_NODES
  64. /* use the per-pgdat data instead for discontigmem - mbligh */
  65. unsigned long max_mapnr;
  66. struct page *mem_map;
  67. EXPORT_SYMBOL(max_mapnr);
  68. EXPORT_SYMBOL(mem_map);
  69. #endif
  70. unsigned long num_physpages;
  71. /*
  72. * A number of key systems in x86 including ioremap() rely on the assumption
  73. * that high_memory defines the upper bound on direct map memory, then end
  74. * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
  75. * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
  76. * and ZONE_HIGHMEM.
  77. */
  78. void * high_memory;
  79. EXPORT_SYMBOL(num_physpages);
  80. EXPORT_SYMBOL(high_memory);
  81. /*
  82. * Randomize the address space (stacks, mmaps, brk, etc.).
  83. *
  84. * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
  85. * as ancient (libc5 based) binaries can segfault. )
  86. */
  87. int randomize_va_space __read_mostly =
  88. #ifdef CONFIG_COMPAT_BRK
  89. 1;
  90. #else
  91. 2;
  92. #endif
  93. static int __init disable_randmaps(char *s)
  94. {
  95. randomize_va_space = 0;
  96. return 1;
  97. }
  98. __setup("norandmaps", disable_randmaps);
  99. unsigned long zero_pfn __read_mostly;
  100. unsigned long highest_memmap_pfn __read_mostly;
  101. /*
  102. * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
  103. */
  104. static int __init init_zero_pfn(void)
  105. {
  106. zero_pfn = page_to_pfn(ZERO_PAGE(0));
  107. return 0;
  108. }
  109. core_initcall(init_zero_pfn);
  110. #if defined(SPLIT_RSS_COUNTING)
  111. void sync_mm_rss(struct mm_struct *mm)
  112. {
  113. int i;
  114. for (i = 0; i < NR_MM_COUNTERS; i++) {
  115. if (current->rss_stat.count[i]) {
  116. add_mm_counter(mm, i, current->rss_stat.count[i]);
  117. current->rss_stat.count[i] = 0;
  118. }
  119. }
  120. current->rss_stat.events = 0;
  121. }
  122. static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
  123. {
  124. struct task_struct *task = current;
  125. if (likely(task->mm == mm))
  126. task->rss_stat.count[member] += val;
  127. else
  128. add_mm_counter(mm, member, val);
  129. }
  130. #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
  131. #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
  132. /* sync counter once per 64 page faults */
  133. #define TASK_RSS_EVENTS_THRESH (64)
  134. static void check_sync_rss_stat(struct task_struct *task)
  135. {
  136. if (unlikely(task != current))
  137. return;
  138. if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
  139. sync_mm_rss(task->mm);
  140. }
  141. #else /* SPLIT_RSS_COUNTING */
  142. #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
  143. #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
  144. static void check_sync_rss_stat(struct task_struct *task)
  145. {
  146. }
  147. #endif /* SPLIT_RSS_COUNTING */
  148. #ifdef HAVE_GENERIC_MMU_GATHER
  149. static int tlb_next_batch(struct mmu_gather *tlb)
  150. {
  151. struct mmu_gather_batch *batch;
  152. batch = tlb->active;
  153. if (batch->next) {
  154. tlb->active = batch->next;
  155. return 1;
  156. }
  157. batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
  158. if (!batch)
  159. return 0;
  160. batch->next = NULL;
  161. batch->nr = 0;
  162. batch->max = MAX_GATHER_BATCH;
  163. tlb->active->next = batch;
  164. tlb->active = batch;
  165. return 1;
  166. }
  167. /* tlb_gather_mmu
  168. * Called to initialize an (on-stack) mmu_gather structure for page-table
  169. * tear-down from @mm. The @fullmm argument is used when @mm is without
  170. * users and we're going to destroy the full address space (exit/execve).
  171. */
  172. void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, bool fullmm)
  173. {
  174. tlb->mm = mm;
  175. tlb->fullmm = fullmm;
  176. tlb->start = -1UL;
  177. tlb->end = 0;
  178. tlb->need_flush = 0;
  179. tlb->fast_mode = (num_possible_cpus() == 1);
  180. tlb->local.next = NULL;
  181. tlb->local.nr = 0;
  182. tlb->local.max = ARRAY_SIZE(tlb->__pages);
  183. tlb->active = &tlb->local;
  184. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  185. tlb->batch = NULL;
  186. #endif
  187. }
  188. void tlb_flush_mmu(struct mmu_gather *tlb)
  189. {
  190. struct mmu_gather_batch *batch;
  191. if (!tlb->need_flush)
  192. return;
  193. tlb->need_flush = 0;
  194. tlb_flush(tlb);
  195. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  196. tlb_table_flush(tlb);
  197. #endif
  198. if (tlb_fast_mode(tlb))
  199. return;
  200. for (batch = &tlb->local; batch; batch = batch->next) {
  201. free_pages_and_swap_cache(batch->pages, batch->nr);
  202. batch->nr = 0;
  203. }
  204. tlb->active = &tlb->local;
  205. }
  206. /* tlb_finish_mmu
  207. * Called at the end of the shootdown operation to free up any resources
  208. * that were required.
  209. */
  210. void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
  211. {
  212. struct mmu_gather_batch *batch, *next;
  213. tlb->start = start;
  214. tlb->end = end;
  215. tlb_flush_mmu(tlb);
  216. /* keep the page table cache within bounds */
  217. check_pgt_cache();
  218. for (batch = tlb->local.next; batch; batch = next) {
  219. next = batch->next;
  220. free_pages((unsigned long)batch, 0);
  221. }
  222. tlb->local.next = NULL;
  223. }
  224. /* __tlb_remove_page
  225. * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
  226. * handling the additional races in SMP caused by other CPUs caching valid
  227. * mappings in their TLBs. Returns the number of free page slots left.
  228. * When out of page slots we must call tlb_flush_mmu().
  229. */
  230. int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
  231. {
  232. struct mmu_gather_batch *batch;
  233. VM_BUG_ON(!tlb->need_flush);
  234. if (tlb_fast_mode(tlb)) {
  235. free_page_and_swap_cache(page);
  236. return 1; /* avoid calling tlb_flush_mmu() */
  237. }
  238. batch = tlb->active;
  239. batch->pages[batch->nr++] = page;
  240. if (batch->nr == batch->max) {
  241. if (!tlb_next_batch(tlb))
  242. return 0;
  243. batch = tlb->active;
  244. }
  245. VM_BUG_ON(batch->nr > batch->max);
  246. return batch->max - batch->nr;
  247. }
  248. #endif /* HAVE_GENERIC_MMU_GATHER */
  249. #ifdef CONFIG_HAVE_RCU_TABLE_FREE
  250. /*
  251. * See the comment near struct mmu_table_batch.
  252. */
  253. static void tlb_remove_table_smp_sync(void *arg)
  254. {
  255. /* Simply deliver the interrupt */
  256. }
  257. static void tlb_remove_table_one(void *table)
  258. {
  259. /*
  260. * This isn't an RCU grace period and hence the page-tables cannot be
  261. * assumed to be actually RCU-freed.
  262. *
  263. * It is however sufficient for software page-table walkers that rely on
  264. * IRQ disabling. See the comment near struct mmu_table_batch.
  265. */
  266. smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
  267. __tlb_remove_table(table);
  268. }
  269. static void tlb_remove_table_rcu(struct rcu_head *head)
  270. {
  271. struct mmu_table_batch *batch;
  272. int i;
  273. batch = container_of(head, struct mmu_table_batch, rcu);
  274. for (i = 0; i < batch->nr; i++)
  275. __tlb_remove_table(batch->tables[i]);
  276. free_page((unsigned long)batch);
  277. }
  278. void tlb_table_flush(struct mmu_gather *tlb)
  279. {
  280. struct mmu_table_batch **batch = &tlb->batch;
  281. if (*batch) {
  282. call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
  283. *batch = NULL;
  284. }
  285. }
  286. void tlb_remove_table(struct mmu_gather *tlb, void *table)
  287. {
  288. struct mmu_table_batch **batch = &tlb->batch;
  289. tlb->need_flush = 1;
  290. /*
  291. * When there's less then two users of this mm there cannot be a
  292. * concurrent page-table walk.
  293. */
  294. if (atomic_read(&tlb->mm->mm_users) < 2) {
  295. __tlb_remove_table(table);
  296. return;
  297. }
  298. if (*batch == NULL) {
  299. *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
  300. if (*batch == NULL) {
  301. tlb_remove_table_one(table);
  302. return;
  303. }
  304. (*batch)->nr = 0;
  305. }
  306. (*batch)->tables[(*batch)->nr++] = table;
  307. if ((*batch)->nr == MAX_TABLE_BATCH)
  308. tlb_table_flush(tlb);
  309. }
  310. #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
  311. /*
  312. * If a p?d_bad entry is found while walking page tables, report
  313. * the error, before resetting entry to p?d_none. Usually (but
  314. * very seldom) called out from the p?d_none_or_clear_bad macros.
  315. */
  316. void pgd_clear_bad(pgd_t *pgd)
  317. {
  318. pgd_ERROR(*pgd);
  319. pgd_clear(pgd);
  320. }
  321. void pud_clear_bad(pud_t *pud)
  322. {
  323. pud_ERROR(*pud);
  324. pud_clear(pud);
  325. }
  326. void pmd_clear_bad(pmd_t *pmd)
  327. {
  328. pmd_ERROR(*pmd);
  329. pmd_clear(pmd);
  330. }
  331. /*
  332. * Note: this doesn't free the actual pages themselves. That
  333. * has been handled earlier when unmapping all the memory regions.
  334. */
  335. static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
  336. unsigned long addr)
  337. {
  338. pgtable_t token = pmd_pgtable(*pmd);
  339. pmd_clear(pmd);
  340. pte_free_tlb(tlb, token, addr);
  341. tlb->mm->nr_ptes--;
  342. }
  343. static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
  344. unsigned long addr, unsigned long end,
  345. unsigned long floor, unsigned long ceiling)
  346. {
  347. pmd_t *pmd;
  348. unsigned long next;
  349. unsigned long start;
  350. start = addr;
  351. pmd = pmd_offset(pud, addr);
  352. do {
  353. next = pmd_addr_end(addr, end);
  354. if (pmd_none_or_clear_bad(pmd))
  355. continue;
  356. free_pte_range(tlb, pmd, addr);
  357. } while (pmd++, addr = next, addr != end);
  358. start &= PUD_MASK;
  359. if (start < floor)
  360. return;
  361. if (ceiling) {
  362. ceiling &= PUD_MASK;
  363. if (!ceiling)
  364. return;
  365. }
  366. if (end - 1 > ceiling - 1)
  367. return;
  368. pmd = pmd_offset(pud, start);
  369. pud_clear(pud);
  370. pmd_free_tlb(tlb, pmd, start);
  371. }
  372. static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
  373. unsigned long addr, unsigned long end,
  374. unsigned long floor, unsigned long ceiling)
  375. {
  376. pud_t *pud;
  377. unsigned long next;
  378. unsigned long start;
  379. start = addr;
  380. pud = pud_offset(pgd, addr);
  381. do {
  382. next = pud_addr_end(addr, end);
  383. if (pud_none_or_clear_bad(pud))
  384. continue;
  385. free_pmd_range(tlb, pud, addr, next, floor, ceiling);
  386. } while (pud++, addr = next, addr != end);
  387. start &= PGDIR_MASK;
  388. if (start < floor)
  389. return;
  390. if (ceiling) {
  391. ceiling &= PGDIR_MASK;
  392. if (!ceiling)
  393. return;
  394. }
  395. if (end - 1 > ceiling - 1)
  396. return;
  397. pud = pud_offset(pgd, start);
  398. pgd_clear(pgd);
  399. pud_free_tlb(tlb, pud, start);
  400. }
  401. /*
  402. * This function frees user-level page tables of a process.
  403. *
  404. * Must be called with pagetable lock held.
  405. */
  406. void free_pgd_range(struct mmu_gather *tlb,
  407. unsigned long addr, unsigned long end,
  408. unsigned long floor, unsigned long ceiling)
  409. {
  410. pgd_t *pgd;
  411. unsigned long next;
  412. /*
  413. * The next few lines have given us lots of grief...
  414. *
  415. * Why are we testing PMD* at this top level? Because often
  416. * there will be no work to do at all, and we'd prefer not to
  417. * go all the way down to the bottom just to discover that.
  418. *
  419. * Why all these "- 1"s? Because 0 represents both the bottom
  420. * of the address space and the top of it (using -1 for the
  421. * top wouldn't help much: the masks would do the wrong thing).
  422. * The rule is that addr 0 and floor 0 refer to the bottom of
  423. * the address space, but end 0 and ceiling 0 refer to the top
  424. * Comparisons need to use "end - 1" and "ceiling - 1" (though
  425. * that end 0 case should be mythical).
  426. *
  427. * Wherever addr is brought up or ceiling brought down, we must
  428. * be careful to reject "the opposite 0" before it confuses the
  429. * subsequent tests. But what about where end is brought down
  430. * by PMD_SIZE below? no, end can't go down to 0 there.
  431. *
  432. * Whereas we round start (addr) and ceiling down, by different
  433. * masks at different levels, in order to test whether a table
  434. * now has no other vmas using it, so can be freed, we don't
  435. * bother to round floor or end up - the tests don't need that.
  436. */
  437. addr &= PMD_MASK;
  438. if (addr < floor) {
  439. addr += PMD_SIZE;
  440. if (!addr)
  441. return;
  442. }
  443. if (ceiling) {
  444. ceiling &= PMD_MASK;
  445. if (!ceiling)
  446. return;
  447. }
  448. if (end - 1 > ceiling - 1)
  449. end -= PMD_SIZE;
  450. if (addr > end - 1)
  451. return;
  452. pgd = pgd_offset(tlb->mm, addr);
  453. do {
  454. next = pgd_addr_end(addr, end);
  455. if (pgd_none_or_clear_bad(pgd))
  456. continue;
  457. free_pud_range(tlb, pgd, addr, next, floor, ceiling);
  458. } while (pgd++, addr = next, addr != end);
  459. }
  460. void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
  461. unsigned long floor, unsigned long ceiling)
  462. {
  463. while (vma) {
  464. struct vm_area_struct *next = vma->vm_next;
  465. unsigned long addr = vma->vm_start;
  466. /*
  467. * Hide vma from rmap and truncate_pagecache before freeing
  468. * pgtables
  469. */
  470. unlink_anon_vmas(vma);
  471. unlink_file_vma(vma);
  472. if (is_vm_hugetlb_page(vma)) {
  473. hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
  474. floor, next? next->vm_start: ceiling);
  475. } else {
  476. /*
  477. * Optimization: gather nearby vmas into one call down
  478. */
  479. while (next && next->vm_start <= vma->vm_end + PMD_SIZE
  480. && !is_vm_hugetlb_page(next)) {
  481. vma = next;
  482. next = vma->vm_next;
  483. unlink_anon_vmas(vma);
  484. unlink_file_vma(vma);
  485. }
  486. free_pgd_range(tlb, addr, vma->vm_end,
  487. floor, next? next->vm_start: ceiling);
  488. }
  489. vma = next;
  490. }
  491. }
  492. int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
  493. pmd_t *pmd, unsigned long address)
  494. {
  495. pgtable_t new = pte_alloc_one(mm, address);
  496. int wait_split_huge_page;
  497. if (!new)
  498. return -ENOMEM;
  499. /*
  500. * Ensure all pte setup (eg. pte page lock and page clearing) are
  501. * visible before the pte is made visible to other CPUs by being
  502. * put into page tables.
  503. *
  504. * The other side of the story is the pointer chasing in the page
  505. * table walking code (when walking the page table without locking;
  506. * ie. most of the time). Fortunately, these data accesses consist
  507. * of a chain of data-dependent loads, meaning most CPUs (alpha
  508. * being the notable exception) will already guarantee loads are
  509. * seen in-order. See the alpha page table accessors for the
  510. * smp_read_barrier_depends() barriers in page table walking code.
  511. */
  512. smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
  513. spin_lock(&mm->page_table_lock);
  514. wait_split_huge_page = 0;
  515. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  516. mm->nr_ptes++;
  517. pmd_populate(mm, pmd, new);
  518. new = NULL;
  519. } else if (unlikely(pmd_trans_splitting(*pmd)))
  520. wait_split_huge_page = 1;
  521. spin_unlock(&mm->page_table_lock);
  522. if (new)
  523. pte_free(mm, new);
  524. if (wait_split_huge_page)
  525. wait_split_huge_page(vma->anon_vma, pmd);
  526. return 0;
  527. }
  528. int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
  529. {
  530. pte_t *new = pte_alloc_one_kernel(&init_mm, address);
  531. if (!new)
  532. return -ENOMEM;
  533. smp_wmb(); /* See comment in __pte_alloc */
  534. spin_lock(&init_mm.page_table_lock);
  535. if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
  536. pmd_populate_kernel(&init_mm, pmd, new);
  537. new = NULL;
  538. } else
  539. VM_BUG_ON(pmd_trans_splitting(*pmd));
  540. spin_unlock(&init_mm.page_table_lock);
  541. if (new)
  542. pte_free_kernel(&init_mm, new);
  543. return 0;
  544. }
  545. static inline void init_rss_vec(int *rss)
  546. {
  547. memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
  548. }
  549. static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
  550. {
  551. int i;
  552. if (current->mm == mm)
  553. sync_mm_rss(mm);
  554. for (i = 0; i < NR_MM_COUNTERS; i++)
  555. if (rss[i])
  556. add_mm_counter(mm, i, rss[i]);
  557. }
  558. /*
  559. * This function is called to print an error when a bad pte
  560. * is found. For example, we might have a PFN-mapped pte in
  561. * a region that doesn't allow it.
  562. *
  563. * The calling function must still handle the error.
  564. */
  565. static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
  566. pte_t pte, struct page *page)
  567. {
  568. pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
  569. pud_t *pud = pud_offset(pgd, addr);
  570. pmd_t *pmd = pmd_offset(pud, addr);
  571. struct address_space *mapping;
  572. pgoff_t index;
  573. static unsigned long resume;
  574. static unsigned long nr_shown;
  575. static unsigned long nr_unshown;
  576. /*
  577. * Allow a burst of 60 reports, then keep quiet for that minute;
  578. * or allow a steady drip of one report per second.
  579. */
  580. if (nr_shown == 60) {
  581. if (time_before(jiffies, resume)) {
  582. nr_unshown++;
  583. return;
  584. }
  585. if (nr_unshown) {
  586. printk(KERN_ALERT
  587. "BUG: Bad page map: %lu messages suppressed\n",
  588. nr_unshown);
  589. nr_unshown = 0;
  590. }
  591. nr_shown = 0;
  592. }
  593. if (nr_shown++ == 0)
  594. resume = jiffies + 60 * HZ;
  595. mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
  596. index = linear_page_index(vma, addr);
  597. printk(KERN_ALERT
  598. "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
  599. current->comm,
  600. (long long)pte_val(pte), (long long)pmd_val(*pmd));
  601. if (page)
  602. dump_page(page);
  603. printk(KERN_ALERT
  604. "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
  605. (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
  606. /*
  607. * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
  608. */
  609. if (vma->vm_ops)
  610. print_symbol(KERN_ALERT "vma->vm_ops->fault: %s\n",
  611. (unsigned long)vma->vm_ops->fault);
  612. if (vma->vm_file && vma->vm_file->f_op)
  613. print_symbol(KERN_ALERT "vma->vm_file->f_op->mmap: %s\n",
  614. (unsigned long)vma->vm_file->f_op->mmap);
  615. dump_stack();
  616. add_taint(TAINT_BAD_PAGE);
  617. }
  618. static inline bool is_cow_mapping(vm_flags_t flags)
  619. {
  620. return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
  621. }
  622. #ifndef is_zero_pfn
  623. static inline int is_zero_pfn(unsigned long pfn)
  624. {
  625. return pfn == zero_pfn;
  626. }
  627. #endif
  628. #ifndef my_zero_pfn
  629. static inline unsigned long my_zero_pfn(unsigned long addr)
  630. {
  631. return zero_pfn;
  632. }
  633. #endif
  634. /*
  635. * vm_normal_page -- This function gets the "struct page" associated with a pte.
  636. *
  637. * "Special" mappings do not wish to be associated with a "struct page" (either
  638. * it doesn't exist, or it exists but they don't want to touch it). In this
  639. * case, NULL is returned here. "Normal" mappings do have a struct page.
  640. *
  641. * There are 2 broad cases. Firstly, an architecture may define a pte_special()
  642. * pte bit, in which case this function is trivial. Secondly, an architecture
  643. * may not have a spare pte bit, which requires a more complicated scheme,
  644. * described below.
  645. *
  646. * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
  647. * special mapping (even if there are underlying and valid "struct pages").
  648. * COWed pages of a VM_PFNMAP are always normal.
  649. *
  650. * The way we recognize COWed pages within VM_PFNMAP mappings is through the
  651. * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
  652. * set, and the vm_pgoff will point to the first PFN mapped: thus every special
  653. * mapping will always honor the rule
  654. *
  655. * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
  656. *
  657. * And for normal mappings this is false.
  658. *
  659. * This restricts such mappings to be a linear translation from virtual address
  660. * to pfn. To get around this restriction, we allow arbitrary mappings so long
  661. * as the vma is not a COW mapping; in that case, we know that all ptes are
  662. * special (because none can have been COWed).
  663. *
  664. *
  665. * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
  666. *
  667. * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
  668. * page" backing, however the difference is that _all_ pages with a struct
  669. * page (that is, those where pfn_valid is true) are refcounted and considered
  670. * normal pages by the VM. The disadvantage is that pages are refcounted
  671. * (which can be slower and simply not an option for some PFNMAP users). The
  672. * advantage is that we don't have to follow the strict linearity rule of
  673. * PFNMAP mappings in order to support COWable mappings.
  674. *
  675. */
  676. #ifdef __HAVE_ARCH_PTE_SPECIAL
  677. # define HAVE_PTE_SPECIAL 1
  678. #else
  679. # define HAVE_PTE_SPECIAL 0
  680. #endif
  681. struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
  682. pte_t pte)
  683. {
  684. unsigned long pfn = pte_pfn(pte);
  685. if (HAVE_PTE_SPECIAL) {
  686. if (likely(!pte_special(pte)))
  687. goto check_pfn;
  688. if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
  689. return NULL;
  690. if (!is_zero_pfn(pfn))
  691. print_bad_pte(vma, addr, pte, NULL);
  692. return NULL;
  693. }
  694. /* !HAVE_PTE_SPECIAL case follows: */
  695. if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
  696. if (vma->vm_flags & VM_MIXEDMAP) {
  697. if (!pfn_valid(pfn))
  698. return NULL;
  699. goto out;
  700. } else {
  701. unsigned long off;
  702. off = (addr - vma->vm_start) >> PAGE_SHIFT;
  703. if (pfn == vma->vm_pgoff + off)
  704. return NULL;
  705. if (!is_cow_mapping(vma->vm_flags))
  706. return NULL;
  707. }
  708. }
  709. if (is_zero_pfn(pfn))
  710. return NULL;
  711. check_pfn:
  712. if (unlikely(pfn > highest_memmap_pfn)) {
  713. print_bad_pte(vma, addr, pte, NULL);
  714. return NULL;
  715. }
  716. /*
  717. * NOTE! We still have PageReserved() pages in the page tables.
  718. * eg. VDSO mappings can cause them to exist.
  719. */
  720. out:
  721. return pfn_to_page(pfn);
  722. }
  723. /*
  724. * copy one vm_area from one task to the other. Assumes the page tables
  725. * already present in the new task to be cleared in the whole range
  726. * covered by this vma.
  727. */
  728. static inline unsigned long
  729. copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  730. pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
  731. unsigned long addr, int *rss)
  732. {
  733. unsigned long vm_flags = vma->vm_flags;
  734. pte_t pte = *src_pte;
  735. struct page *page;
  736. /* pte contains position in swap or file, so copy. */
  737. if (unlikely(!pte_present(pte))) {
  738. if (!pte_file(pte)) {
  739. swp_entry_t entry = pte_to_swp_entry(pte);
  740. if (swap_duplicate(entry) < 0)
  741. return entry.val;
  742. /* make sure dst_mm is on swapoff's mmlist. */
  743. if (unlikely(list_empty(&dst_mm->mmlist))) {
  744. spin_lock(&mmlist_lock);
  745. if (list_empty(&dst_mm->mmlist))
  746. list_add(&dst_mm->mmlist,
  747. &src_mm->mmlist);
  748. spin_unlock(&mmlist_lock);
  749. }
  750. if (likely(!non_swap_entry(entry)))
  751. rss[MM_SWAPENTS]++;
  752. else if (is_migration_entry(entry)) {
  753. page = migration_entry_to_page(entry);
  754. if (PageAnon(page))
  755. rss[MM_ANONPAGES]++;
  756. else
  757. rss[MM_FILEPAGES]++;
  758. if (is_write_migration_entry(entry) &&
  759. is_cow_mapping(vm_flags)) {
  760. /*
  761. * COW mappings require pages in both
  762. * parent and child to be set to read.
  763. */
  764. make_migration_entry_read(&entry);
  765. pte = swp_entry_to_pte(entry);
  766. set_pte_at(src_mm, addr, src_pte, pte);
  767. }
  768. }
  769. }
  770. goto out_set_pte;
  771. }
  772. /*
  773. * If it's a COW mapping, write protect it both
  774. * in the parent and the child
  775. */
  776. if (is_cow_mapping(vm_flags)) {
  777. ptep_set_wrprotect(src_mm, addr, src_pte);
  778. pte = pte_wrprotect(pte);
  779. }
  780. /*
  781. * If it's a shared mapping, mark it clean in
  782. * the child
  783. */
  784. if (vm_flags & VM_SHARED)
  785. pte = pte_mkclean(pte);
  786. pte = pte_mkold(pte);
  787. page = vm_normal_page(vma, addr, pte);
  788. if (page) {
  789. get_page(page);
  790. page_dup_rmap(page);
  791. if (PageAnon(page))
  792. rss[MM_ANONPAGES]++;
  793. else
  794. rss[MM_FILEPAGES]++;
  795. }
  796. out_set_pte:
  797. set_pte_at(dst_mm, addr, dst_pte, pte);
  798. return 0;
  799. }
  800. int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  801. pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
  802. unsigned long addr, unsigned long end)
  803. {
  804. pte_t *orig_src_pte, *orig_dst_pte;
  805. pte_t *src_pte, *dst_pte;
  806. spinlock_t *src_ptl, *dst_ptl;
  807. int progress = 0;
  808. int rss[NR_MM_COUNTERS];
  809. swp_entry_t entry = (swp_entry_t){0};
  810. again:
  811. init_rss_vec(rss);
  812. dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
  813. if (!dst_pte)
  814. return -ENOMEM;
  815. src_pte = pte_offset_map(src_pmd, addr);
  816. src_ptl = pte_lockptr(src_mm, src_pmd);
  817. spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
  818. orig_src_pte = src_pte;
  819. orig_dst_pte = dst_pte;
  820. arch_enter_lazy_mmu_mode();
  821. do {
  822. /*
  823. * We are holding two locks at this point - either of them
  824. * could generate latencies in another task on another CPU.
  825. */
  826. if (progress >= 32) {
  827. progress = 0;
  828. if (need_resched() ||
  829. spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
  830. break;
  831. }
  832. if (pte_none(*src_pte)) {
  833. progress++;
  834. continue;
  835. }
  836. entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
  837. vma, addr, rss);
  838. if (entry.val)
  839. break;
  840. progress += 8;
  841. } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
  842. arch_leave_lazy_mmu_mode();
  843. spin_unlock(src_ptl);
  844. pte_unmap(orig_src_pte);
  845. add_mm_rss_vec(dst_mm, rss);
  846. pte_unmap_unlock(orig_dst_pte, dst_ptl);
  847. cond_resched();
  848. if (entry.val) {
  849. if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
  850. return -ENOMEM;
  851. progress = 0;
  852. }
  853. if (addr != end)
  854. goto again;
  855. return 0;
  856. }
  857. static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  858. pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
  859. unsigned long addr, unsigned long end)
  860. {
  861. pmd_t *src_pmd, *dst_pmd;
  862. unsigned long next;
  863. dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
  864. if (!dst_pmd)
  865. return -ENOMEM;
  866. src_pmd = pmd_offset(src_pud, addr);
  867. do {
  868. next = pmd_addr_end(addr, end);
  869. if (pmd_trans_huge(*src_pmd)) {
  870. int err;
  871. VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
  872. err = copy_huge_pmd(dst_mm, src_mm,
  873. dst_pmd, src_pmd, addr, vma);
  874. if (err == -ENOMEM)
  875. return -ENOMEM;
  876. if (!err)
  877. continue;
  878. /* fall through */
  879. }
  880. if (pmd_none_or_clear_bad(src_pmd))
  881. continue;
  882. if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
  883. vma, addr, next))
  884. return -ENOMEM;
  885. } while (dst_pmd++, src_pmd++, addr = next, addr != end);
  886. return 0;
  887. }
  888. static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  889. pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
  890. unsigned long addr, unsigned long end)
  891. {
  892. pud_t *src_pud, *dst_pud;
  893. unsigned long next;
  894. dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
  895. if (!dst_pud)
  896. return -ENOMEM;
  897. src_pud = pud_offset(src_pgd, addr);
  898. do {
  899. next = pud_addr_end(addr, end);
  900. if (pud_none_or_clear_bad(src_pud))
  901. continue;
  902. if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
  903. vma, addr, next))
  904. return -ENOMEM;
  905. } while (dst_pud++, src_pud++, addr = next, addr != end);
  906. return 0;
  907. }
  908. int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
  909. struct vm_area_struct *vma)
  910. {
  911. pgd_t *src_pgd, *dst_pgd;
  912. unsigned long next;
  913. unsigned long addr = vma->vm_start;
  914. unsigned long end = vma->vm_end;
  915. unsigned long mmun_start; /* For mmu_notifiers */
  916. unsigned long mmun_end; /* For mmu_notifiers */
  917. bool is_cow;
  918. int ret;
  919. /*
  920. * Don't copy ptes where a page fault will fill them correctly.
  921. * Fork becomes much lighter when there are big shared or private
  922. * readonly mappings. The tradeoff is that copy_page_range is more
  923. * efficient than faulting.
  924. */
  925. if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
  926. VM_PFNMAP | VM_MIXEDMAP))) {
  927. if (!vma->anon_vma)
  928. return 0;
  929. }
  930. if (is_vm_hugetlb_page(vma))
  931. return copy_hugetlb_page_range(dst_mm, src_mm, vma);
  932. if (unlikely(vma->vm_flags & VM_PFNMAP)) {
  933. /*
  934. * We do not free on error cases below as remove_vma
  935. * gets called on error from higher level routine
  936. */
  937. ret = track_pfn_copy(vma);
  938. if (ret)
  939. return ret;
  940. }
  941. /*
  942. * We need to invalidate the secondary MMU mappings only when
  943. * there could be a permission downgrade on the ptes of the
  944. * parent mm. And a permission downgrade will only happen if
  945. * is_cow_mapping() returns true.
  946. */
  947. is_cow = is_cow_mapping(vma->vm_flags);
  948. mmun_start = addr;
  949. mmun_end = end;
  950. if (is_cow)
  951. mmu_notifier_invalidate_range_start(src_mm, mmun_start,
  952. mmun_end);
  953. ret = 0;
  954. dst_pgd = pgd_offset(dst_mm, addr);
  955. src_pgd = pgd_offset(src_mm, addr);
  956. do {
  957. next = pgd_addr_end(addr, end);
  958. if (pgd_none_or_clear_bad(src_pgd))
  959. continue;
  960. if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
  961. vma, addr, next))) {
  962. ret = -ENOMEM;
  963. break;
  964. }
  965. } while (dst_pgd++, src_pgd++, addr = next, addr != end);
  966. if (is_cow)
  967. mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
  968. return ret;
  969. }
  970. static unsigned long zap_pte_range(struct mmu_gather *tlb,
  971. struct vm_area_struct *vma, pmd_t *pmd,
  972. unsigned long addr, unsigned long end,
  973. struct zap_details *details)
  974. {
  975. struct mm_struct *mm = tlb->mm;
  976. int force_flush = 0;
  977. int rss[NR_MM_COUNTERS];
  978. spinlock_t *ptl;
  979. pte_t *start_pte;
  980. pte_t *pte;
  981. again:
  982. init_rss_vec(rss);
  983. start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
  984. pte = start_pte;
  985. arch_enter_lazy_mmu_mode();
  986. do {
  987. pte_t ptent = *pte;
  988. if (pte_none(ptent)) {
  989. continue;
  990. }
  991. if (pte_present(ptent)) {
  992. struct page *page;
  993. page = vm_normal_page(vma, addr, ptent);
  994. if (unlikely(details) && page) {
  995. /*
  996. * unmap_shared_mapping_pages() wants to
  997. * invalidate cache without truncating:
  998. * unmap shared but keep private pages.
  999. */
  1000. if (details->check_mapping &&
  1001. details->check_mapping != page->mapping)
  1002. continue;
  1003. /*
  1004. * Each page->index must be checked when
  1005. * invalidating or truncating nonlinear.
  1006. */
  1007. if (details->nonlinear_vma &&
  1008. (page->index < details->first_index ||
  1009. page->index > details->last_index))
  1010. continue;
  1011. }
  1012. ptent = ptep_get_and_clear_full(mm, addr, pte,
  1013. tlb->fullmm);
  1014. tlb_remove_tlb_entry(tlb, pte, addr);
  1015. if (unlikely(!page))
  1016. continue;
  1017. if (unlikely(details) && details->nonlinear_vma
  1018. && linear_page_index(details->nonlinear_vma,
  1019. addr) != page->index)
  1020. set_pte_at(mm, addr, pte,
  1021. pgoff_to_pte(page->index));
  1022. if (PageAnon(page))
  1023. rss[MM_ANONPAGES]--;
  1024. else {
  1025. if (pte_dirty(ptent))
  1026. set_page_dirty(page);
  1027. if (pte_young(ptent) &&
  1028. likely(!VM_SequentialReadHint(vma)))
  1029. mark_page_accessed(page);
  1030. rss[MM_FILEPAGES]--;
  1031. }
  1032. page_remove_rmap(page);
  1033. if (unlikely(page_mapcount(page) < 0))
  1034. print_bad_pte(vma, addr, ptent, page);
  1035. force_flush = !__tlb_remove_page(tlb, page);
  1036. if (force_flush)
  1037. break;
  1038. continue;
  1039. }
  1040. /*
  1041. * If details->check_mapping, we leave swap entries;
  1042. * if details->nonlinear_vma, we leave file entries.
  1043. */
  1044. if (unlikely(details))
  1045. continue;
  1046. if (pte_file(ptent)) {
  1047. if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
  1048. print_bad_pte(vma, addr, ptent, NULL);
  1049. } else {
  1050. swp_entry_t entry = pte_to_swp_entry(ptent);
  1051. if (!non_swap_entry(entry))
  1052. rss[MM_SWAPENTS]--;
  1053. else if (is_migration_entry(entry)) {
  1054. struct page *page;
  1055. page = migration_entry_to_page(entry);
  1056. if (PageAnon(page))
  1057. rss[MM_ANONPAGES]--;
  1058. else
  1059. rss[MM_FILEPAGES]--;
  1060. }
  1061. if (unlikely(!free_swap_and_cache(entry)))
  1062. print_bad_pte(vma, addr, ptent, NULL);
  1063. }
  1064. pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
  1065. } while (pte++, addr += PAGE_SIZE, addr != end);
  1066. add_mm_rss_vec(mm, rss);
  1067. arch_leave_lazy_mmu_mode();
  1068. pte_unmap_unlock(start_pte, ptl);
  1069. /*
  1070. * mmu_gather ran out of room to batch pages, we break out of
  1071. * the PTE lock to avoid doing the potential expensive TLB invalidate
  1072. * and page-free while holding it.
  1073. */
  1074. if (force_flush) {
  1075. force_flush = 0;
  1076. #ifdef HAVE_GENERIC_MMU_GATHER
  1077. tlb->start = addr;
  1078. tlb->end = end;
  1079. #endif
  1080. tlb_flush_mmu(tlb);
  1081. if (addr != end)
  1082. goto again;
  1083. }
  1084. return addr;
  1085. }
  1086. static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
  1087. struct vm_area_struct *vma, pud_t *pud,
  1088. unsigned long addr, unsigned long end,
  1089. struct zap_details *details)
  1090. {
  1091. pmd_t *pmd;
  1092. unsigned long next;
  1093. pmd = pmd_offset(pud, addr);
  1094. do {
  1095. next = pmd_addr_end(addr, end);
  1096. if (pmd_trans_huge(*pmd)) {
  1097. if (next - addr != HPAGE_PMD_SIZE) {
  1098. #ifdef CONFIG_DEBUG_VM
  1099. if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
  1100. pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
  1101. __func__, addr, end,
  1102. vma->vm_start,
  1103. vma->vm_end);
  1104. BUG();
  1105. }
  1106. #endif
  1107. split_huge_page_pmd(vma->vm_mm, pmd);
  1108. } else if (zap_huge_pmd(tlb, vma, pmd, addr))
  1109. goto next;
  1110. /* fall through */
  1111. }
  1112. /*
  1113. * Here there can be other concurrent MADV_DONTNEED or
  1114. * trans huge page faults running, and if the pmd is
  1115. * none or trans huge it can change under us. This is
  1116. * because MADV_DONTNEED holds the mmap_sem in read
  1117. * mode.
  1118. */
  1119. if (pmd_none_or_trans_huge_or_clear_bad(pmd))
  1120. goto next;
  1121. next = zap_pte_range(tlb, vma, pmd, addr, next, details);
  1122. next:
  1123. cond_resched();
  1124. } while (pmd++, addr = next, addr != end);
  1125. return addr;
  1126. }
  1127. static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
  1128. struct vm_area_struct *vma, pgd_t *pgd,
  1129. unsigned long addr, unsigned long end,
  1130. struct zap_details *details)
  1131. {
  1132. pud_t *pud;
  1133. unsigned long next;
  1134. pud = pud_offset(pgd, addr);
  1135. do {
  1136. next = pud_addr_end(addr, end);
  1137. if (pud_none_or_clear_bad(pud))
  1138. continue;
  1139. next = zap_pmd_range(tlb, vma, pud, addr, next, details);
  1140. } while (pud++, addr = next, addr != end);
  1141. return addr;
  1142. }
  1143. static void unmap_page_range(struct mmu_gather *tlb,
  1144. struct vm_area_struct *vma,
  1145. unsigned long addr, unsigned long end,
  1146. struct zap_details *details)
  1147. {
  1148. pgd_t *pgd;
  1149. unsigned long next;
  1150. if (details && !details->check_mapping && !details->nonlinear_vma)
  1151. details = NULL;
  1152. BUG_ON(addr >= end);
  1153. mem_cgroup_uncharge_start();
  1154. tlb_start_vma(tlb, vma);
  1155. pgd = pgd_offset(vma->vm_mm, addr);
  1156. do {
  1157. next = pgd_addr_end(addr, end);
  1158. if (pgd_none_or_clear_bad(pgd))
  1159. continue;
  1160. next = zap_pud_range(tlb, vma, pgd, addr, next, details);
  1161. } while (pgd++, addr = next, addr != end);
  1162. tlb_end_vma(tlb, vma);
  1163. mem_cgroup_uncharge_end();
  1164. }
  1165. static void unmap_single_vma(struct mmu_gather *tlb,
  1166. struct vm_area_struct *vma, unsigned long start_addr,
  1167. unsigned long end_addr,
  1168. struct zap_details *details)
  1169. {
  1170. unsigned long start = max(vma->vm_start, start_addr);
  1171. unsigned long end;
  1172. if (start >= vma->vm_end)
  1173. return;
  1174. end = min(vma->vm_end, end_addr);
  1175. if (end <= vma->vm_start)
  1176. return;
  1177. if (vma->vm_file)
  1178. uprobe_munmap(vma, start, end);
  1179. if (unlikely(vma->vm_flags & VM_PFNMAP))
  1180. untrack_pfn(vma, 0, 0);
  1181. if (start != end) {
  1182. if (unlikely(is_vm_hugetlb_page(vma))) {
  1183. /*
  1184. * It is undesirable to test vma->vm_file as it
  1185. * should be non-null for valid hugetlb area.
  1186. * However, vm_file will be NULL in the error
  1187. * cleanup path of do_mmap_pgoff. When
  1188. * hugetlbfs ->mmap method fails,
  1189. * do_mmap_pgoff() nullifies vma->vm_file
  1190. * before calling this function to clean up.
  1191. * Since no pte has actually been setup, it is
  1192. * safe to do nothing in this case.
  1193. */
  1194. if (vma->vm_file) {
  1195. mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1196. __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
  1197. mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
  1198. }
  1199. } else
  1200. unmap_page_range(tlb, vma, start, end, details);
  1201. }
  1202. }
  1203. /**
  1204. * unmap_vmas - unmap a range of memory covered by a list of vma's
  1205. * @tlb: address of the caller's struct mmu_gather
  1206. * @vma: the starting vma
  1207. * @start_addr: virtual address at which to start unmapping
  1208. * @end_addr: virtual address at which to end unmapping
  1209. *
  1210. * Unmap all pages in the vma list.
  1211. *
  1212. * Only addresses between `start' and `end' will be unmapped.
  1213. *
  1214. * The VMA list must be sorted in ascending virtual address order.
  1215. *
  1216. * unmap_vmas() assumes that the caller will flush the whole unmapped address
  1217. * range after unmap_vmas() returns. So the only responsibility here is to
  1218. * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
  1219. * drops the lock and schedules.
  1220. */
  1221. void unmap_vmas(struct mmu_gather *tlb,
  1222. struct vm_area_struct *vma, unsigned long start_addr,
  1223. unsigned long end_addr)
  1224. {
  1225. struct mm_struct *mm = vma->vm_mm;
  1226. mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
  1227. for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
  1228. unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
  1229. mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
  1230. }
  1231. /**
  1232. * zap_page_range - remove user pages in a given range
  1233. * @vma: vm_area_struct holding the applicable pages
  1234. * @start: starting address of pages to zap
  1235. * @size: number of bytes to zap
  1236. * @details: details of nonlinear truncation or shared cache invalidation
  1237. *
  1238. * Caller must protect the VMA list
  1239. */
  1240. void zap_page_range(struct vm_area_struct *vma, unsigned long start,
  1241. unsigned long size, struct zap_details *details)
  1242. {
  1243. struct mm_struct *mm = vma->vm_mm;
  1244. struct mmu_gather tlb;
  1245. unsigned long end = start + size;
  1246. lru_add_drain();
  1247. tlb_gather_mmu(&tlb, mm, 0);
  1248. update_hiwater_rss(mm);
  1249. mmu_notifier_invalidate_range_start(mm, start, end);
  1250. for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
  1251. unmap_single_vma(&tlb, vma, start, end, details);
  1252. mmu_notifier_invalidate_range_end(mm, start, end);
  1253. tlb_finish_mmu(&tlb, start, end);
  1254. }
  1255. /**
  1256. * zap_page_range_single - remove user pages in a given range
  1257. * @vma: vm_area_struct holding the applicable pages
  1258. * @address: starting address of pages to zap
  1259. * @size: number of bytes to zap
  1260. * @details: details of nonlinear truncation or shared cache invalidation
  1261. *
  1262. * The range must fit into one VMA.
  1263. */
  1264. static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
  1265. unsigned long size, struct zap_details *details)
  1266. {
  1267. struct mm_struct *mm = vma->vm_mm;
  1268. struct mmu_gather tlb;
  1269. unsigned long end = address + size;
  1270. lru_add_drain();
  1271. tlb_gather_mmu(&tlb, mm, 0);
  1272. update_hiwater_rss(mm);
  1273. mmu_notifier_invalidate_range_start(mm, address, end);
  1274. unmap_single_vma(&tlb, vma, address, end, details);
  1275. mmu_notifier_invalidate_range_end(mm, address, end);
  1276. tlb_finish_mmu(&tlb, address, end);
  1277. }
  1278. /**
  1279. * zap_vma_ptes - remove ptes mapping the vma
  1280. * @vma: vm_area_struct holding ptes to be zapped
  1281. * @address: starting address of pages to zap
  1282. * @size: number of bytes to zap
  1283. *
  1284. * This function only unmaps ptes assigned to VM_PFNMAP vmas.
  1285. *
  1286. * The entire address range must be fully contained within the vma.
  1287. *
  1288. * Returns 0 if successful.
  1289. */
  1290. int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
  1291. unsigned long size)
  1292. {
  1293. if (address < vma->vm_start || address + size > vma->vm_end ||
  1294. !(vma->vm_flags & VM_PFNMAP))
  1295. return -1;
  1296. zap_page_range_single(vma, address, size, NULL);
  1297. return 0;
  1298. }
  1299. EXPORT_SYMBOL_GPL(zap_vma_ptes);
  1300. /**
  1301. * follow_page - look up a page descriptor from a user-virtual address
  1302. * @vma: vm_area_struct mapping @address
  1303. * @address: virtual address to look up
  1304. * @flags: flags modifying lookup behaviour
  1305. *
  1306. * @flags can have FOLL_ flags set, defined in <linux/mm.h>
  1307. *
  1308. * Returns the mapped (struct page *), %NULL if no mapping exists, or
  1309. * an error pointer if there is a mapping to something not represented
  1310. * by a page descriptor (see also vm_normal_page()).
  1311. */
  1312. struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
  1313. unsigned int flags)
  1314. {
  1315. pgd_t *pgd;
  1316. pud_t *pud;
  1317. pmd_t *pmd;
  1318. pte_t *ptep, pte;
  1319. spinlock_t *ptl;
  1320. struct page *page;
  1321. struct mm_struct *mm = vma->vm_mm;
  1322. page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
  1323. if (!IS_ERR(page)) {
  1324. BUG_ON(flags & FOLL_GET);
  1325. goto out;
  1326. }
  1327. page = NULL;
  1328. pgd = pgd_offset(mm, address);
  1329. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  1330. goto no_page_table;
  1331. pud = pud_offset(pgd, address);
  1332. if (pud_none(*pud))
  1333. goto no_page_table;
  1334. if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
  1335. BUG_ON(flags & FOLL_GET);
  1336. page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
  1337. goto out;
  1338. }
  1339. if (unlikely(pud_bad(*pud)))
  1340. goto no_page_table;
  1341. pmd = pmd_offset(pud, address);
  1342. if (pmd_none(*pmd))
  1343. goto no_page_table;
  1344. if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
  1345. BUG_ON(flags & FOLL_GET);
  1346. page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
  1347. goto out;
  1348. }
  1349. if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
  1350. goto no_page_table;
  1351. if (pmd_trans_huge(*pmd)) {
  1352. if (flags & FOLL_SPLIT) {
  1353. split_huge_page_pmd(mm, pmd);
  1354. goto split_fallthrough;
  1355. }
  1356. spin_lock(&mm->page_table_lock);
  1357. if (likely(pmd_trans_huge(*pmd))) {
  1358. if (unlikely(pmd_trans_splitting(*pmd))) {
  1359. spin_unlock(&mm->page_table_lock);
  1360. wait_split_huge_page(vma->anon_vma, pmd);
  1361. } else {
  1362. page = follow_trans_huge_pmd(vma, address,
  1363. pmd, flags);
  1364. spin_unlock(&mm->page_table_lock);
  1365. goto out;
  1366. }
  1367. } else
  1368. spin_unlock(&mm->page_table_lock);
  1369. /* fall through */
  1370. }
  1371. split_fallthrough:
  1372. if (unlikely(pmd_bad(*pmd)))
  1373. goto no_page_table;
  1374. ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  1375. pte = *ptep;
  1376. if (!pte_present(pte))
  1377. goto no_page;
  1378. if ((flags & FOLL_NUMA) && pte_numa(pte))
  1379. goto no_page;
  1380. if ((flags & FOLL_WRITE) && !pte_write(pte))
  1381. goto unlock;
  1382. page = vm_normal_page(vma, address, pte);
  1383. if (unlikely(!page)) {
  1384. if ((flags & FOLL_DUMP) ||
  1385. !is_zero_pfn(pte_pfn(pte)))
  1386. goto bad_page;
  1387. page = pte_page(pte);
  1388. }
  1389. if (flags & FOLL_GET)
  1390. get_page_foll(page);
  1391. if (flags & FOLL_TOUCH) {
  1392. if ((flags & FOLL_WRITE) &&
  1393. !pte_dirty(pte) && !PageDirty(page))
  1394. set_page_dirty(page);
  1395. /*
  1396. * pte_mkyoung() would be more correct here, but atomic care
  1397. * is needed to avoid losing the dirty bit: it is easier to use
  1398. * mark_page_accessed().
  1399. */
  1400. mark_page_accessed(page);
  1401. }
  1402. if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
  1403. /*
  1404. * The preliminary mapping check is mainly to avoid the
  1405. * pointless overhead of lock_page on the ZERO_PAGE
  1406. * which might bounce very badly if there is contention.
  1407. *
  1408. * If the page is already locked, we don't need to
  1409. * handle it now - vmscan will handle it later if and
  1410. * when it attempts to reclaim the page.
  1411. */
  1412. if (page->mapping && trylock_page(page)) {
  1413. lru_add_drain(); /* push cached pages to LRU */
  1414. /*
  1415. * Because we lock page here, and migration is
  1416. * blocked by the pte's page reference, and we
  1417. * know the page is still mapped, we don't even
  1418. * need to check for file-cache page truncation.
  1419. */
  1420. mlock_vma_page(page);
  1421. unlock_page(page);
  1422. }
  1423. }
  1424. unlock:
  1425. pte_unmap_unlock(ptep, ptl);
  1426. out:
  1427. return page;
  1428. bad_page:
  1429. pte_unmap_unlock(ptep, ptl);
  1430. return ERR_PTR(-EFAULT);
  1431. no_page:
  1432. pte_unmap_unlock(ptep, ptl);
  1433. if (!pte_none(pte))
  1434. return page;
  1435. no_page_table:
  1436. /*
  1437. * When core dumping an enormous anonymous area that nobody
  1438. * has touched so far, we don't want to allocate unnecessary pages or
  1439. * page tables. Return error instead of NULL to skip handle_mm_fault,
  1440. * then get_dump_page() will return NULL to leave a hole in the dump.
  1441. * But we can only make this optimization where a hole would surely
  1442. * be zero-filled if handle_mm_fault() actually did handle it.
  1443. */
  1444. if ((flags & FOLL_DUMP) &&
  1445. (!vma->vm_ops || !vma->vm_ops->fault))
  1446. return ERR_PTR(-EFAULT);
  1447. return page;
  1448. }
  1449. static inline int stack_guard_page(struct vm_area_struct *vma, unsigned long addr)
  1450. {
  1451. return stack_guard_page_start(vma, addr) ||
  1452. stack_guard_page_end(vma, addr+PAGE_SIZE);
  1453. }
  1454. /**
  1455. * __get_user_pages() - pin user pages in memory
  1456. * @tsk: task_struct of target task
  1457. * @mm: mm_struct of target mm
  1458. * @start: starting user address
  1459. * @nr_pages: number of pages from start to pin
  1460. * @gup_flags: flags modifying pin behaviour
  1461. * @pages: array that receives pointers to the pages pinned.
  1462. * Should be at least nr_pages long. Or NULL, if caller
  1463. * only intends to ensure the pages are faulted in.
  1464. * @vmas: array of pointers to vmas corresponding to each page.
  1465. * Or NULL if the caller does not require them.
  1466. * @nonblocking: whether waiting for disk IO or mmap_sem contention
  1467. *
  1468. * Returns number of pages pinned. This may be fewer than the number
  1469. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1470. * were pinned, returns -errno. Each page returned must be released
  1471. * with a put_page() call when it is finished with. vmas will only
  1472. * remain valid while mmap_sem is held.
  1473. *
  1474. * Must be called with mmap_sem held for read or write.
  1475. *
  1476. * __get_user_pages walks a process's page tables and takes a reference to
  1477. * each struct page that each user address corresponds to at a given
  1478. * instant. That is, it takes the page that would be accessed if a user
  1479. * thread accesses the given user virtual address at that instant.
  1480. *
  1481. * This does not guarantee that the page exists in the user mappings when
  1482. * __get_user_pages returns, and there may even be a completely different
  1483. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1484. * and subsequently re faulted). However it does guarantee that the page
  1485. * won't be freed completely. And mostly callers simply care that the page
  1486. * contains data that was valid *at some point in time*. Typically, an IO
  1487. * or similar operation cannot guarantee anything stronger anyway because
  1488. * locks can't be held over the syscall boundary.
  1489. *
  1490. * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
  1491. * the page is written to, set_page_dirty (or set_page_dirty_lock, as
  1492. * appropriate) must be called after the page is finished with, and
  1493. * before put_page is called.
  1494. *
  1495. * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
  1496. * or mmap_sem contention, and if waiting is needed to pin all pages,
  1497. * *@nonblocking will be set to 0.
  1498. *
  1499. * In most cases, get_user_pages or get_user_pages_fast should be used
  1500. * instead of __get_user_pages. __get_user_pages should be used only if
  1501. * you need some special @gup_flags.
  1502. */
  1503. int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1504. unsigned long start, int nr_pages, unsigned int gup_flags,
  1505. struct page **pages, struct vm_area_struct **vmas,
  1506. int *nonblocking)
  1507. {
  1508. int i;
  1509. unsigned long vm_flags;
  1510. if (nr_pages <= 0)
  1511. return 0;
  1512. VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
  1513. /*
  1514. * Require read or write permissions.
  1515. * If FOLL_FORCE is set, we only require the "MAY" flags.
  1516. */
  1517. vm_flags = (gup_flags & FOLL_WRITE) ?
  1518. (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
  1519. vm_flags &= (gup_flags & FOLL_FORCE) ?
  1520. (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
  1521. /*
  1522. * If FOLL_FORCE and FOLL_NUMA are both set, handle_mm_fault
  1523. * would be called on PROT_NONE ranges. We must never invoke
  1524. * handle_mm_fault on PROT_NONE ranges or the NUMA hinting
  1525. * page faults would unprotect the PROT_NONE ranges if
  1526. * _PAGE_NUMA and _PAGE_PROTNONE are sharing the same pte/pmd
  1527. * bitflag. So to avoid that, don't set FOLL_NUMA if
  1528. * FOLL_FORCE is set.
  1529. */
  1530. if (!(gup_flags & FOLL_FORCE))
  1531. gup_flags |= FOLL_NUMA;
  1532. i = 0;
  1533. do {
  1534. struct vm_area_struct *vma;
  1535. vma = find_extend_vma(mm, start);
  1536. if (!vma && in_gate_area(mm, start)) {
  1537. unsigned long pg = start & PAGE_MASK;
  1538. pgd_t *pgd;
  1539. pud_t *pud;
  1540. pmd_t *pmd;
  1541. pte_t *pte;
  1542. /* user gate pages are read-only */
  1543. if (gup_flags & FOLL_WRITE)
  1544. return i ? : -EFAULT;
  1545. if (pg > TASK_SIZE)
  1546. pgd = pgd_offset_k(pg);
  1547. else
  1548. pgd = pgd_offset_gate(mm, pg);
  1549. BUG_ON(pgd_none(*pgd));
  1550. pud = pud_offset(pgd, pg);
  1551. BUG_ON(pud_none(*pud));
  1552. pmd = pmd_offset(pud, pg);
  1553. if (pmd_none(*pmd))
  1554. return i ? : -EFAULT;
  1555. VM_BUG_ON(pmd_trans_huge(*pmd));
  1556. pte = pte_offset_map(pmd, pg);
  1557. if (pte_none(*pte)) {
  1558. pte_unmap(pte);
  1559. return i ? : -EFAULT;
  1560. }
  1561. vma = get_gate_vma(mm);
  1562. if (pages) {
  1563. struct page *page;
  1564. page = vm_normal_page(vma, start, *pte);
  1565. if (!page) {
  1566. if (!(gup_flags & FOLL_DUMP) &&
  1567. is_zero_pfn(pte_pfn(*pte)))
  1568. page = pte_page(*pte);
  1569. else {
  1570. pte_unmap(pte);
  1571. return i ? : -EFAULT;
  1572. }
  1573. }
  1574. pages[i] = page;
  1575. get_page(page);
  1576. }
  1577. pte_unmap(pte);
  1578. goto next_page;
  1579. }
  1580. if (!vma ||
  1581. (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
  1582. !(vm_flags & vma->vm_flags))
  1583. return i ? : -EFAULT;
  1584. if (is_vm_hugetlb_page(vma)) {
  1585. i = follow_hugetlb_page(mm, vma, pages, vmas,
  1586. &start, &nr_pages, i, gup_flags);
  1587. continue;
  1588. }
  1589. do {
  1590. struct page *page;
  1591. unsigned int foll_flags = gup_flags;
  1592. /*
  1593. * If we have a pending SIGKILL, don't keep faulting
  1594. * pages and potentially allocating memory.
  1595. */
  1596. if (unlikely(fatal_signal_pending(current)))
  1597. return i ? i : -ERESTARTSYS;
  1598. cond_resched();
  1599. while (!(page = follow_page(vma, start, foll_flags))) {
  1600. int ret;
  1601. unsigned int fault_flags = 0;
  1602. /* For mlock, just skip the stack guard page. */
  1603. if (foll_flags & FOLL_MLOCK) {
  1604. if (stack_guard_page(vma, start))
  1605. goto next_page;
  1606. }
  1607. if (foll_flags & FOLL_WRITE)
  1608. fault_flags |= FAULT_FLAG_WRITE;
  1609. if (nonblocking)
  1610. fault_flags |= FAULT_FLAG_ALLOW_RETRY;
  1611. if (foll_flags & FOLL_NOWAIT)
  1612. fault_flags |= (FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT);
  1613. ret = handle_mm_fault(mm, vma, start,
  1614. fault_flags);
  1615. if (ret & VM_FAULT_ERROR) {
  1616. if (ret & VM_FAULT_OOM)
  1617. return i ? i : -ENOMEM;
  1618. if (ret & (VM_FAULT_HWPOISON |
  1619. VM_FAULT_HWPOISON_LARGE)) {
  1620. if (i)
  1621. return i;
  1622. else if (gup_flags & FOLL_HWPOISON)
  1623. return -EHWPOISON;
  1624. else
  1625. return -EFAULT;
  1626. }
  1627. if (ret & VM_FAULT_SIGBUS)
  1628. return i ? i : -EFAULT;
  1629. BUG();
  1630. }
  1631. if (tsk) {
  1632. if (ret & VM_FAULT_MAJOR)
  1633. tsk->maj_flt++;
  1634. else
  1635. tsk->min_flt++;
  1636. }
  1637. if (ret & VM_FAULT_RETRY) {
  1638. if (nonblocking)
  1639. *nonblocking = 0;
  1640. return i;
  1641. }
  1642. /*
  1643. * The VM_FAULT_WRITE bit tells us that
  1644. * do_wp_page has broken COW when necessary,
  1645. * even if maybe_mkwrite decided not to set
  1646. * pte_write. We can thus safely do subsequent
  1647. * page lookups as if they were reads. But only
  1648. * do so when looping for pte_write is futile:
  1649. * in some cases userspace may also be wanting
  1650. * to write to the gotten user page, which a
  1651. * read fault here might prevent (a readonly
  1652. * page might get reCOWed by userspace write).
  1653. */
  1654. if ((ret & VM_FAULT_WRITE) &&
  1655. !(vma->vm_flags & VM_WRITE))
  1656. foll_flags &= ~FOLL_WRITE;
  1657. cond_resched();
  1658. }
  1659. if (IS_ERR(page))
  1660. return i ? i : PTR_ERR(page);
  1661. if (pages) {
  1662. pages[i] = page;
  1663. flush_anon_page(vma, page, start);
  1664. flush_dcache_page(page);
  1665. }
  1666. next_page:
  1667. if (vmas)
  1668. vmas[i] = vma;
  1669. i++;
  1670. start += PAGE_SIZE;
  1671. nr_pages--;
  1672. } while (nr_pages && start < vma->vm_end);
  1673. } while (nr_pages);
  1674. return i;
  1675. }
  1676. EXPORT_SYMBOL(__get_user_pages);
  1677. /*
  1678. * fixup_user_fault() - manually resolve a user page fault
  1679. * @tsk: the task_struct to use for page fault accounting, or
  1680. * NULL if faults are not to be recorded.
  1681. * @mm: mm_struct of target mm
  1682. * @address: user address
  1683. * @fault_flags:flags to pass down to handle_mm_fault()
  1684. *
  1685. * This is meant to be called in the specific scenario where for locking reasons
  1686. * we try to access user memory in atomic context (within a pagefault_disable()
  1687. * section), this returns -EFAULT, and we want to resolve the user fault before
  1688. * trying again.
  1689. *
  1690. * Typically this is meant to be used by the futex code.
  1691. *
  1692. * The main difference with get_user_pages() is that this function will
  1693. * unconditionally call handle_mm_fault() which will in turn perform all the
  1694. * necessary SW fixup of the dirty and young bits in the PTE, while
  1695. * handle_mm_fault() only guarantees to update these in the struct page.
  1696. *
  1697. * This is important for some architectures where those bits also gate the
  1698. * access permission to the page because they are maintained in software. On
  1699. * such architectures, gup() will not be enough to make a subsequent access
  1700. * succeed.
  1701. *
  1702. * This should be called with the mm_sem held for read.
  1703. */
  1704. int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
  1705. unsigned long address, unsigned int fault_flags)
  1706. {
  1707. struct vm_area_struct *vma;
  1708. int ret;
  1709. vma = find_extend_vma(mm, address);
  1710. if (!vma || address < vma->vm_start)
  1711. return -EFAULT;
  1712. ret = handle_mm_fault(mm, vma, address, fault_flags);
  1713. if (ret & VM_FAULT_ERROR) {
  1714. if (ret & VM_FAULT_OOM)
  1715. return -ENOMEM;
  1716. if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
  1717. return -EHWPOISON;
  1718. if (ret & VM_FAULT_SIGBUS)
  1719. return -EFAULT;
  1720. BUG();
  1721. }
  1722. if (tsk) {
  1723. if (ret & VM_FAULT_MAJOR)
  1724. tsk->maj_flt++;
  1725. else
  1726. tsk->min_flt++;
  1727. }
  1728. return 0;
  1729. }
  1730. /*
  1731. * get_user_pages() - pin user pages in memory
  1732. * @tsk: the task_struct to use for page fault accounting, or
  1733. * NULL if faults are not to be recorded.
  1734. * @mm: mm_struct of target mm
  1735. * @start: starting user address
  1736. * @nr_pages: number of pages from start to pin
  1737. * @write: whether pages will be written to by the caller
  1738. * @force: whether to force write access even if user mapping is
  1739. * readonly. This will result in the page being COWed even
  1740. * in MAP_SHARED mappings. You do not want this.
  1741. * @pages: array that receives pointers to the pages pinned.
  1742. * Should be at least nr_pages long. Or NULL, if caller
  1743. * only intends to ensure the pages are faulted in.
  1744. * @vmas: array of pointers to vmas corresponding to each page.
  1745. * Or NULL if the caller does not require them.
  1746. *
  1747. * Returns number of pages pinned. This may be fewer than the number
  1748. * requested. If nr_pages is 0 or negative, returns 0. If no pages
  1749. * were pinned, returns -errno. Each page returned must be released
  1750. * with a put_page() call when it is finished with. vmas will only
  1751. * remain valid while mmap_sem is held.
  1752. *
  1753. * Must be called with mmap_sem held for read or write.
  1754. *
  1755. * get_user_pages walks a process's page tables and takes a reference to
  1756. * each struct page that each user address corresponds to at a given
  1757. * instant. That is, it takes the page that would be accessed if a user
  1758. * thread accesses the given user virtual address at that instant.
  1759. *
  1760. * This does not guarantee that the page exists in the user mappings when
  1761. * get_user_pages returns, and there may even be a completely different
  1762. * page there in some cases (eg. if mmapped pagecache has been invalidated
  1763. * and subsequently re faulted). However it does guarantee that the page
  1764. * won't be freed completely. And mostly callers simply care that the page
  1765. * contains data that was valid *at some point in time*. Typically, an IO
  1766. * or similar operation cannot guarantee anything stronger anyway because
  1767. * locks can't be held over the syscall boundary.
  1768. *
  1769. * If write=0, the page must not be written to. If the page is written to,
  1770. * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
  1771. * after the page is finished with, and before put_page is called.
  1772. *
  1773. * get_user_pages is typically used for fewer-copy IO operations, to get a
  1774. * handle on the memory by some means other than accesses via the user virtual
  1775. * addresses. The pages may be submitted for DMA to devices or accessed via
  1776. * their kernel linear mapping (via the kmap APIs). Care should be taken to
  1777. * use the correct cache flushing APIs.
  1778. *
  1779. * See also get_user_pages_fast, for performance critical applications.
  1780. */
  1781. int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
  1782. unsigned long start, int nr_pages, int write, int force,
  1783. struct page **pages, struct vm_area_struct **vmas)
  1784. {
  1785. int flags = FOLL_TOUCH;
  1786. if (pages)
  1787. flags |= FOLL_GET;
  1788. if (write)
  1789. flags |= FOLL_WRITE;
  1790. if (force)
  1791. flags |= FOLL_FORCE;
  1792. return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
  1793. NULL);
  1794. }
  1795. EXPORT_SYMBOL(get_user_pages);
  1796. /**
  1797. * get_dump_page() - pin user page in memory while writing it to core dump
  1798. * @addr: user address
  1799. *
  1800. * Returns struct page pointer of user page pinned for dump,
  1801. * to be freed afterwards by page_cache_release() or put_page().
  1802. *
  1803. * Returns NULL on any kind of failure - a hole must then be inserted into
  1804. * the corefile, to preserve alignment with its headers; and also returns
  1805. * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
  1806. * allowing a hole to be left in the corefile to save diskspace.
  1807. *
  1808. * Called without mmap_sem, but after all other threads have been killed.
  1809. */
  1810. #ifdef CONFIG_ELF_CORE
  1811. struct page *get_dump_page(unsigned long addr)
  1812. {
  1813. struct vm_area_struct *vma;
  1814. struct page *page;
  1815. if (__get_user_pages(current, current->mm, addr, 1,
  1816. FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
  1817. NULL) < 1)
  1818. return NULL;
  1819. flush_cache_page(vma, addr, page_to_pfn(page));
  1820. return page;
  1821. }
  1822. #endif /* CONFIG_ELF_CORE */
  1823. pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
  1824. spinlock_t **ptl)
  1825. {
  1826. pgd_t * pgd = pgd_offset(mm, addr);
  1827. pud_t * pud = pud_alloc(mm, pgd, addr);
  1828. if (pud) {
  1829. pmd_t * pmd = pmd_alloc(mm, pud, addr);
  1830. if (pmd) {
  1831. VM_BUG_ON(pmd_trans_huge(*pmd));
  1832. return pte_alloc_map_lock(mm, pmd, addr, ptl);
  1833. }
  1834. }
  1835. return NULL;
  1836. }
  1837. /*
  1838. * This is the old fallback for page remapping.
  1839. *
  1840. * For historical reasons, it only allows reserved pages. Only
  1841. * old drivers should use this, and they needed to mark their
  1842. * pages reserved for the old functions anyway.
  1843. */
  1844. static int insert_page(struct vm_area_struct *vma, unsigned long addr,
  1845. struct page *page, pgprot_t prot)
  1846. {
  1847. struct mm_struct *mm = vma->vm_mm;
  1848. int retval;
  1849. pte_t *pte;
  1850. spinlock_t *ptl;
  1851. retval = -EINVAL;
  1852. if (PageAnon(page))
  1853. goto out;
  1854. retval = -ENOMEM;
  1855. flush_dcache_page(page);
  1856. pte = get_locked_pte(mm, addr, &ptl);
  1857. if (!pte)
  1858. goto out;
  1859. retval = -EBUSY;
  1860. if (!pte_none(*pte))
  1861. goto out_unlock;
  1862. /* Ok, finally just insert the thing.. */
  1863. get_page(page);
  1864. inc_mm_counter_fast(mm, MM_FILEPAGES);
  1865. page_add_file_rmap(page);
  1866. set_pte_at(mm, addr, pte, mk_pte(page, prot));
  1867. retval = 0;
  1868. pte_unmap_unlock(pte, ptl);
  1869. return retval;
  1870. out_unlock:
  1871. pte_unmap_unlock(pte, ptl);
  1872. out:
  1873. return retval;
  1874. }
  1875. /**
  1876. * vm_insert_page - insert single page into user vma
  1877. * @vma: user vma to map to
  1878. * @addr: target user address of this page
  1879. * @page: source kernel page
  1880. *
  1881. * This allows drivers to insert individual pages they've allocated
  1882. * into a user vma.
  1883. *
  1884. * The page has to be a nice clean _individual_ kernel allocation.
  1885. * If you allocate a compound page, you need to have marked it as
  1886. * such (__GFP_COMP), or manually just split the page up yourself
  1887. * (see split_page()).
  1888. *
  1889. * NOTE! Traditionally this was done with "remap_pfn_range()" which
  1890. * took an arbitrary page protection parameter. This doesn't allow
  1891. * that. Your vma protection will have to be set up correctly, which
  1892. * means that if you want a shared writable mapping, you'd better
  1893. * ask for a shared writable mapping!
  1894. *
  1895. * The page does not need to be reserved.
  1896. *
  1897. * Usually this function is called from f_op->mmap() handler
  1898. * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
  1899. * Caller must set VM_MIXEDMAP on vma if it wants to call this
  1900. * function from other places, for example from page-fault handler.
  1901. */
  1902. int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
  1903. struct page *page)
  1904. {
  1905. if (addr < vma->vm_start || addr >= vma->vm_end)
  1906. return -EFAULT;
  1907. if (!page_count(page))
  1908. return -EINVAL;
  1909. if (!(vma->vm_flags & VM_MIXEDMAP)) {
  1910. BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
  1911. BUG_ON(vma->vm_flags & VM_PFNMAP);
  1912. vma->vm_flags |= VM_MIXEDMAP;
  1913. }
  1914. return insert_page(vma, addr, page, vma->vm_page_prot);
  1915. }
  1916. EXPORT_SYMBOL(vm_insert_page);
  1917. static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1918. unsigned long pfn, pgprot_t prot)
  1919. {
  1920. struct mm_struct *mm = vma->vm_mm;
  1921. int retval;
  1922. pte_t *pte, entry;
  1923. spinlock_t *ptl;
  1924. retval = -ENOMEM;
  1925. pte = get_locked_pte(mm, addr, &ptl);
  1926. if (!pte)
  1927. goto out;
  1928. retval = -EBUSY;
  1929. if (!pte_none(*pte))
  1930. goto out_unlock;
  1931. /* Ok, finally just insert the thing.. */
  1932. entry = pte_mkspecial(pfn_pte(pfn, prot));
  1933. set_pte_at(mm, addr, pte, entry);
  1934. update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
  1935. retval = 0;
  1936. out_unlock:
  1937. pte_unmap_unlock(pte, ptl);
  1938. out:
  1939. return retval;
  1940. }
  1941. /**
  1942. * vm_insert_pfn - insert single pfn into user vma
  1943. * @vma: user vma to map to
  1944. * @addr: target user address of this page
  1945. * @pfn: source kernel pfn
  1946. *
  1947. * Similar to vm_insert_page, this allows drivers to insert individual pages
  1948. * they've allocated into a user vma. Same comments apply.
  1949. *
  1950. * This function should only be called from a vm_ops->fault handler, and
  1951. * in that case the handler should return NULL.
  1952. *
  1953. * vma cannot be a COW mapping.
  1954. *
  1955. * As this is called only for pages that do not currently exist, we
  1956. * do not need to flush old virtual caches or the TLB.
  1957. */
  1958. int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
  1959. unsigned long pfn)
  1960. {
  1961. int ret;
  1962. pgprot_t pgprot = vma->vm_page_prot;
  1963. /*
  1964. * Technically, architectures with pte_special can avoid all these
  1965. * restrictions (same for remap_pfn_range). However we would like
  1966. * consistency in testing and feature parity among all, so we should
  1967. * try to keep these invariants in place for everybody.
  1968. */
  1969. BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
  1970. BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
  1971. (VM_PFNMAP|VM_MIXEDMAP));
  1972. BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
  1973. BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
  1974. if (addr < vma->vm_start || addr >= vma->vm_end)
  1975. return -EFAULT;
  1976. if (track_pfn_insert(vma, &pgprot, pfn))
  1977. return -EINVAL;
  1978. ret = insert_pfn(vma, addr, pfn, pgprot);
  1979. return ret;
  1980. }
  1981. EXPORT_SYMBOL(vm_insert_pfn);
  1982. int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
  1983. unsigned long pfn)
  1984. {
  1985. BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
  1986. if (addr < vma->vm_start || addr >= vma->vm_end)
  1987. return -EFAULT;
  1988. /*
  1989. * If we don't have pte special, then we have to use the pfn_valid()
  1990. * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
  1991. * refcount the page if pfn_valid is true (hence insert_page rather
  1992. * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
  1993. * without pte special, it would there be refcounted as a normal page.
  1994. */
  1995. if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
  1996. struct page *page;
  1997. page = pfn_to_page(pfn);
  1998. return insert_page(vma, addr, page, vma->vm_page_prot);
  1999. }
  2000. return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
  2001. }
  2002. EXPORT_SYMBOL(vm_insert_mixed);
  2003. /*
  2004. * maps a range of physical memory into the requested pages. the old
  2005. * mappings are removed. any references to nonexistent pages results
  2006. * in null mappings (currently treated as "copy-on-access")
  2007. */
  2008. static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2009. unsigned long addr, unsigned long end,
  2010. unsigned long pfn, pgprot_t prot)
  2011. {
  2012. pte_t *pte;
  2013. spinlock_t *ptl;
  2014. pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2015. if (!pte)
  2016. return -ENOMEM;
  2017. arch_enter_lazy_mmu_mode();
  2018. do {
  2019. BUG_ON(!pte_none(*pte));
  2020. set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
  2021. pfn++;
  2022. } while (pte++, addr += PAGE_SIZE, addr != end);
  2023. arch_leave_lazy_mmu_mode();
  2024. pte_unmap_unlock(pte - 1, ptl);
  2025. return 0;
  2026. }
  2027. static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
  2028. unsigned long addr, unsigned long end,
  2029. unsigned long pfn, pgprot_t prot)
  2030. {
  2031. pmd_t *pmd;
  2032. unsigned long next;
  2033. pfn -= addr >> PAGE_SHIFT;
  2034. pmd = pmd_alloc(mm, pud, addr);
  2035. if (!pmd)
  2036. return -ENOMEM;
  2037. VM_BUG_ON(pmd_trans_huge(*pmd));
  2038. do {
  2039. next = pmd_addr_end(addr, end);
  2040. if (remap_pte_range(mm, pmd, addr, next,
  2041. pfn + (addr >> PAGE_SHIFT), prot))
  2042. return -ENOMEM;
  2043. } while (pmd++, addr = next, addr != end);
  2044. return 0;
  2045. }
  2046. static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2047. unsigned long addr, unsigned long end,
  2048. unsigned long pfn, pgprot_t prot)
  2049. {
  2050. pud_t *pud;
  2051. unsigned long next;
  2052. pfn -= addr >> PAGE_SHIFT;
  2053. pud = pud_alloc(mm, pgd, addr);
  2054. if (!pud)
  2055. return -ENOMEM;
  2056. do {
  2057. next = pud_addr_end(addr, end);
  2058. if (remap_pmd_range(mm, pud, addr, next,
  2059. pfn + (addr >> PAGE_SHIFT), prot))
  2060. return -ENOMEM;
  2061. } while (pud++, addr = next, addr != end);
  2062. return 0;
  2063. }
  2064. /**
  2065. * remap_pfn_range - remap kernel memory to userspace
  2066. * @vma: user vma to map to
  2067. * @addr: target user address to start at
  2068. * @pfn: physical address of kernel memory
  2069. * @size: size of map area
  2070. * @prot: page protection flags for this mapping
  2071. *
  2072. * Note: this is only safe if the mm semaphore is held when called.
  2073. */
  2074. int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
  2075. unsigned long pfn, unsigned long size, pgprot_t prot)
  2076. {
  2077. pgd_t *pgd;
  2078. unsigned long next;
  2079. unsigned long end = addr + PAGE_ALIGN(size);
  2080. struct mm_struct *mm = vma->vm_mm;
  2081. int err;
  2082. /*
  2083. * Physically remapped pages are special. Tell the
  2084. * rest of the world about it:
  2085. * VM_IO tells people not to look at these pages
  2086. * (accesses can have side effects).
  2087. * VM_PFNMAP tells the core MM that the base pages are just
  2088. * raw PFN mappings, and do not have a "struct page" associated
  2089. * with them.
  2090. * VM_DONTEXPAND
  2091. * Disable vma merging and expanding with mremap().
  2092. * VM_DONTDUMP
  2093. * Omit vma from core dump, even when VM_IO turned off.
  2094. *
  2095. * There's a horrible special case to handle copy-on-write
  2096. * behaviour that some programs depend on. We mark the "original"
  2097. * un-COW'ed pages by matching them up with "vma->vm_pgoff".
  2098. * See vm_normal_page() for details.
  2099. */
  2100. if (is_cow_mapping(vma->vm_flags)) {
  2101. if (addr != vma->vm_start || end != vma->vm_end)
  2102. return -EINVAL;
  2103. vma->vm_pgoff = pfn;
  2104. }
  2105. err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
  2106. if (err)
  2107. return -EINVAL;
  2108. vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
  2109. BUG_ON(addr >= end);
  2110. pfn -= addr >> PAGE_SHIFT;
  2111. pgd = pgd_offset(mm, addr);
  2112. flush_cache_range(vma, addr, end);
  2113. do {
  2114. next = pgd_addr_end(addr, end);
  2115. err = remap_pud_range(mm, pgd, addr, next,
  2116. pfn + (addr >> PAGE_SHIFT), prot);
  2117. if (err)
  2118. break;
  2119. } while (pgd++, addr = next, addr != end);
  2120. if (err)
  2121. untrack_pfn(vma, pfn, PAGE_ALIGN(size));
  2122. return err;
  2123. }
  2124. EXPORT_SYMBOL(remap_pfn_range);
  2125. static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
  2126. unsigned long addr, unsigned long end,
  2127. pte_fn_t fn, void *data)
  2128. {
  2129. pte_t *pte;
  2130. int err;
  2131. pgtable_t token;
  2132. spinlock_t *uninitialized_var(ptl);
  2133. pte = (mm == &init_mm) ?
  2134. pte_alloc_kernel(pmd, addr) :
  2135. pte_alloc_map_lock(mm, pmd, addr, &ptl);
  2136. if (!pte)
  2137. return -ENOMEM;
  2138. BUG_ON(pmd_huge(*pmd));
  2139. arch_enter_lazy_mmu_mode();
  2140. token = pmd_pgtable(*pmd);
  2141. do {
  2142. err = fn(pte++, token, addr, data);
  2143. if (err)
  2144. break;
  2145. } while (addr += PAGE_SIZE, addr != end);
  2146. arch_leave_lazy_mmu_mode();
  2147. if (mm != &init_mm)
  2148. pte_unmap_unlock(pte-1, ptl);
  2149. return err;
  2150. }
  2151. static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
  2152. unsigned long addr, unsigned long end,
  2153. pte_fn_t fn, void *data)
  2154. {
  2155. pmd_t *pmd;
  2156. unsigned long next;
  2157. int err;
  2158. BUG_ON(pud_huge(*pud));
  2159. pmd = pmd_alloc(mm, pud, addr);
  2160. if (!pmd)
  2161. return -ENOMEM;
  2162. do {
  2163. next = pmd_addr_end(addr, end);
  2164. err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
  2165. if (err)
  2166. break;
  2167. } while (pmd++, addr = next, addr != end);
  2168. return err;
  2169. }
  2170. static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
  2171. unsigned long addr, unsigned long end,
  2172. pte_fn_t fn, void *data)
  2173. {
  2174. pud_t *pud;
  2175. unsigned long next;
  2176. int err;
  2177. pud = pud_alloc(mm, pgd, addr);
  2178. if (!pud)
  2179. return -ENOMEM;
  2180. do {
  2181. next = pud_addr_end(addr, end);
  2182. err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
  2183. if (err)
  2184. break;
  2185. } while (pud++, addr = next, addr != end);
  2186. return err;
  2187. }
  2188. /*
  2189. * Scan a region of virtual memory, filling in page tables as necessary
  2190. * and calling a provided function on each leaf page table.
  2191. */
  2192. int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
  2193. unsigned long size, pte_fn_t fn, void *data)
  2194. {
  2195. pgd_t *pgd;
  2196. unsigned long next;
  2197. unsigned long end = addr + size;
  2198. int err;
  2199. BUG_ON(addr >= end);
  2200. pgd = pgd_offset(mm, addr);
  2201. do {
  2202. next = pgd_addr_end(addr, end);
  2203. err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
  2204. if (err)
  2205. break;
  2206. } while (pgd++, addr = next, addr != end);
  2207. return err;
  2208. }
  2209. EXPORT_SYMBOL_GPL(apply_to_page_range);
  2210. /*
  2211. * handle_pte_fault chooses page fault handler according to an entry
  2212. * which was read non-atomically. Before making any commitment, on
  2213. * those architectures or configurations (e.g. i386 with PAE) which
  2214. * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
  2215. * must check under lock before unmapping the pte and proceeding
  2216. * (but do_wp_page is only called after already making such a check;
  2217. * and do_anonymous_page can safely check later on).
  2218. */
  2219. static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
  2220. pte_t *page_table, pte_t orig_pte)
  2221. {
  2222. int same = 1;
  2223. #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
  2224. if (sizeof(pte_t) > sizeof(unsigned long)) {
  2225. spinlock_t *ptl = pte_lockptr(mm, pmd);
  2226. spin_lock(ptl);
  2227. same = pte_same(*page_table, orig_pte);
  2228. spin_unlock(ptl);
  2229. }
  2230. #endif
  2231. pte_unmap(page_table);
  2232. return same;
  2233. }
  2234. static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
  2235. {
  2236. /*
  2237. * If the source page was a PFN mapping, we don't have
  2238. * a "struct page" for it. We do a best-effort copy by
  2239. * just copying from the original user address. If that
  2240. * fails, we just zero-fill it. Live with it.
  2241. */
  2242. if (unlikely(!src)) {
  2243. void *kaddr = kmap_atomic(dst);
  2244. void __user *uaddr = (void __user *)(va & PAGE_MASK);
  2245. /*
  2246. * This really shouldn't fail, because the page is there
  2247. * in the page tables. But it might just be unreadable,
  2248. * in which case we just give up and fill the result with
  2249. * zeroes.
  2250. */
  2251. if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
  2252. clear_page(kaddr);
  2253. kunmap_atomic(kaddr);
  2254. flush_dcache_page(dst);
  2255. } else
  2256. copy_user_highpage(dst, src, va, vma);
  2257. }
  2258. /*
  2259. * This routine handles present pages, when users try to write
  2260. * to a shared page. It is done by copying the page to a new address
  2261. * and decrementing the shared-page counter for the old page.
  2262. *
  2263. * Note that this routine assumes that the protection checks have been
  2264. * done by the caller (the low-level page fault routine in most cases).
  2265. * Thus we can safely just mark it writable once we've done any necessary
  2266. * COW.
  2267. *
  2268. * We also mark the page dirty at this point even though the page will
  2269. * change only once the write actually happens. This avoids a few races,
  2270. * and potentially makes it more efficient.
  2271. *
  2272. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2273. * but allow concurrent faults), with pte both mapped and locked.
  2274. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2275. */
  2276. static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2277. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2278. spinlock_t *ptl, pte_t orig_pte)
  2279. __releases(ptl)
  2280. {
  2281. struct page *old_page, *new_page = NULL;
  2282. pte_t entry;
  2283. int ret = 0;
  2284. int page_mkwrite = 0;
  2285. struct page *dirty_page = NULL;
  2286. unsigned long mmun_start = 0; /* For mmu_notifiers */
  2287. unsigned long mmun_end = 0; /* For mmu_notifiers */
  2288. old_page = vm_normal_page(vma, address, orig_pte);
  2289. if (!old_page) {
  2290. /*
  2291. * VM_MIXEDMAP !pfn_valid() case
  2292. *
  2293. * We should not cow pages in a shared writeable mapping.
  2294. * Just mark the pages writable as we can't do any dirty
  2295. * accounting on raw pfn maps.
  2296. */
  2297. if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2298. (VM_WRITE|VM_SHARED))
  2299. goto reuse;
  2300. goto gotten;
  2301. }
  2302. /*
  2303. * Take out anonymous pages first, anonymous shared vmas are
  2304. * not dirty accountable.
  2305. */
  2306. if (PageAnon(old_page) && !PageKsm(old_page)) {
  2307. if (!trylock_page(old_page)) {
  2308. page_cache_get(old_page);
  2309. pte_unmap_unlock(page_table, ptl);
  2310. lock_page(old_page);
  2311. page_table = pte_offset_map_lock(mm, pmd, address,
  2312. &ptl);
  2313. if (!pte_same(*page_table, orig_pte)) {
  2314. unlock_page(old_page);
  2315. goto unlock;
  2316. }
  2317. page_cache_release(old_page);
  2318. }
  2319. if (reuse_swap_page(old_page)) {
  2320. /*
  2321. * The page is all ours. Move it to our anon_vma so
  2322. * the rmap code will not search our parent or siblings.
  2323. * Protected against the rmap code by the page lock.
  2324. */
  2325. page_move_anon_rmap(old_page, vma, address);
  2326. unlock_page(old_page);
  2327. goto reuse;
  2328. }
  2329. unlock_page(old_page);
  2330. } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
  2331. (VM_WRITE|VM_SHARED))) {
  2332. /*
  2333. * Only catch write-faults on shared writable pages,
  2334. * read-only shared pages can get COWed by
  2335. * get_user_pages(.write=1, .force=1).
  2336. */
  2337. if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
  2338. struct vm_fault vmf;
  2339. int tmp;
  2340. vmf.virtual_address = (void __user *)(address &
  2341. PAGE_MASK);
  2342. vmf.pgoff = old_page->index;
  2343. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2344. vmf.page = old_page;
  2345. /*
  2346. * Notify the address space that the page is about to
  2347. * become writable so that it can prohibit this or wait
  2348. * for the page to get into an appropriate state.
  2349. *
  2350. * We do this without the lock held, so that it can
  2351. * sleep if it needs to.
  2352. */
  2353. page_cache_get(old_page);
  2354. pte_unmap_unlock(page_table, ptl);
  2355. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2356. if (unlikely(tmp &
  2357. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2358. ret = tmp;
  2359. goto unwritable_page;
  2360. }
  2361. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2362. lock_page(old_page);
  2363. if (!old_page->mapping) {
  2364. ret = 0; /* retry the fault */
  2365. unlock_page(old_page);
  2366. goto unwritable_page;
  2367. }
  2368. } else
  2369. VM_BUG_ON(!PageLocked(old_page));
  2370. /*
  2371. * Since we dropped the lock we need to revalidate
  2372. * the PTE as someone else may have changed it. If
  2373. * they did, we just return, as we can count on the
  2374. * MMU to tell us if they didn't also make it writable.
  2375. */
  2376. page_table = pte_offset_map_lock(mm, pmd, address,
  2377. &ptl);
  2378. if (!pte_same(*page_table, orig_pte)) {
  2379. unlock_page(old_page);
  2380. goto unlock;
  2381. }
  2382. page_mkwrite = 1;
  2383. }
  2384. dirty_page = old_page;
  2385. get_page(dirty_page);
  2386. reuse:
  2387. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2388. entry = pte_mkyoung(orig_pte);
  2389. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2390. if (ptep_set_access_flags(vma, address, page_table, entry,1))
  2391. update_mmu_cache(vma, address, page_table);
  2392. pte_unmap_unlock(page_table, ptl);
  2393. ret |= VM_FAULT_WRITE;
  2394. if (!dirty_page)
  2395. return ret;
  2396. /*
  2397. * Yes, Virginia, this is actually required to prevent a race
  2398. * with clear_page_dirty_for_io() from clearing the page dirty
  2399. * bit after it clear all dirty ptes, but before a racing
  2400. * do_wp_page installs a dirty pte.
  2401. *
  2402. * __do_fault is protected similarly.
  2403. */
  2404. if (!page_mkwrite) {
  2405. wait_on_page_locked(dirty_page);
  2406. set_page_dirty_balance(dirty_page, page_mkwrite);
  2407. /* file_update_time outside page_lock */
  2408. if (vma->vm_file)
  2409. file_update_time(vma->vm_file);
  2410. }
  2411. put_page(dirty_page);
  2412. if (page_mkwrite) {
  2413. struct address_space *mapping = dirty_page->mapping;
  2414. set_page_dirty(dirty_page);
  2415. unlock_page(dirty_page);
  2416. page_cache_release(dirty_page);
  2417. if (mapping) {
  2418. /*
  2419. * Some device drivers do not set page.mapping
  2420. * but still dirty their pages
  2421. */
  2422. balance_dirty_pages_ratelimited(mapping);
  2423. }
  2424. }
  2425. return ret;
  2426. }
  2427. /*
  2428. * Ok, we need to copy. Oh, well..
  2429. */
  2430. page_cache_get(old_page);
  2431. gotten:
  2432. pte_unmap_unlock(page_table, ptl);
  2433. if (unlikely(anon_vma_prepare(vma)))
  2434. goto oom;
  2435. if (is_zero_pfn(pte_pfn(orig_pte))) {
  2436. new_page = alloc_zeroed_user_highpage_movable(vma, address);
  2437. if (!new_page)
  2438. goto oom;
  2439. } else {
  2440. new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2441. if (!new_page)
  2442. goto oom;
  2443. cow_user_page(new_page, old_page, address, vma);
  2444. }
  2445. __SetPageUptodate(new_page);
  2446. if (mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))
  2447. goto oom_free_new;
  2448. mmun_start = address & PAGE_MASK;
  2449. mmun_end = mmun_start + PAGE_SIZE;
  2450. mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
  2451. /*
  2452. * Re-check the pte - we dropped the lock
  2453. */
  2454. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2455. if (likely(pte_same(*page_table, orig_pte))) {
  2456. if (old_page) {
  2457. if (!PageAnon(old_page)) {
  2458. dec_mm_counter_fast(mm, MM_FILEPAGES);
  2459. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2460. }
  2461. } else
  2462. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2463. flush_cache_page(vma, address, pte_pfn(orig_pte));
  2464. entry = mk_pte(new_page, vma->vm_page_prot);
  2465. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  2466. /*
  2467. * Clear the pte entry and flush it first, before updating the
  2468. * pte with the new entry. This will avoid a race condition
  2469. * seen in the presence of one thread doing SMC and another
  2470. * thread doing COW.
  2471. */
  2472. ptep_clear_flush(vma, address, page_table);
  2473. page_add_new_anon_rmap(new_page, vma, address);
  2474. /*
  2475. * We call the notify macro here because, when using secondary
  2476. * mmu page tables (such as kvm shadow page tables), we want the
  2477. * new page to be mapped directly into the secondary page table.
  2478. */
  2479. set_pte_at_notify(mm, address, page_table, entry);
  2480. update_mmu_cache(vma, address, page_table);
  2481. if (old_page) {
  2482. /*
  2483. * Only after switching the pte to the new page may
  2484. * we remove the mapcount here. Otherwise another
  2485. * process may come and find the rmap count decremented
  2486. * before the pte is switched to the new page, and
  2487. * "reuse" the old page writing into it while our pte
  2488. * here still points into it and can be read by other
  2489. * threads.
  2490. *
  2491. * The critical issue is to order this
  2492. * page_remove_rmap with the ptp_clear_flush above.
  2493. * Those stores are ordered by (if nothing else,)
  2494. * the barrier present in the atomic_add_negative
  2495. * in page_remove_rmap.
  2496. *
  2497. * Then the TLB flush in ptep_clear_flush ensures that
  2498. * no process can access the old page before the
  2499. * decremented mapcount is visible. And the old page
  2500. * cannot be reused until after the decremented
  2501. * mapcount is visible. So transitively, TLBs to
  2502. * old page will be flushed before it can be reused.
  2503. */
  2504. page_remove_rmap(old_page);
  2505. }
  2506. /* Free the old page.. */
  2507. new_page = old_page;
  2508. ret |= VM_FAULT_WRITE;
  2509. } else
  2510. mem_cgroup_uncharge_page(new_page);
  2511. if (new_page)
  2512. page_cache_release(new_page);
  2513. unlock:
  2514. pte_unmap_unlock(page_table, ptl);
  2515. if (mmun_end > mmun_start)
  2516. mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
  2517. if (old_page) {
  2518. /*
  2519. * Don't let another task, with possibly unlocked vma,
  2520. * keep the mlocked page.
  2521. */
  2522. if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
  2523. lock_page(old_page); /* LRU manipulation */
  2524. munlock_vma_page(old_page);
  2525. unlock_page(old_page);
  2526. }
  2527. page_cache_release(old_page);
  2528. }
  2529. return ret;
  2530. oom_free_new:
  2531. page_cache_release(new_page);
  2532. oom:
  2533. if (old_page) {
  2534. if (page_mkwrite) {
  2535. unlock_page(old_page);
  2536. page_cache_release(old_page);
  2537. }
  2538. page_cache_release(old_page);
  2539. }
  2540. return VM_FAULT_OOM;
  2541. unwritable_page:
  2542. page_cache_release(old_page);
  2543. return ret;
  2544. }
  2545. static void unmap_mapping_range_vma(struct vm_area_struct *vma,
  2546. unsigned long start_addr, unsigned long end_addr,
  2547. struct zap_details *details)
  2548. {
  2549. zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
  2550. }
  2551. static inline void unmap_mapping_range_tree(struct rb_root *root,
  2552. struct zap_details *details)
  2553. {
  2554. struct vm_area_struct *vma;
  2555. pgoff_t vba, vea, zba, zea;
  2556. vma_interval_tree_foreach(vma, root,
  2557. details->first_index, details->last_index) {
  2558. vba = vma->vm_pgoff;
  2559. vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
  2560. /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
  2561. zba = details->first_index;
  2562. if (zba < vba)
  2563. zba = vba;
  2564. zea = details->last_index;
  2565. if (zea > vea)
  2566. zea = vea;
  2567. unmap_mapping_range_vma(vma,
  2568. ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
  2569. ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
  2570. details);
  2571. }
  2572. }
  2573. static inline void unmap_mapping_range_list(struct list_head *head,
  2574. struct zap_details *details)
  2575. {
  2576. struct vm_area_struct *vma;
  2577. /*
  2578. * In nonlinear VMAs there is no correspondence between virtual address
  2579. * offset and file offset. So we must perform an exhaustive search
  2580. * across *all* the pages in each nonlinear VMA, not just the pages
  2581. * whose virtual address lies outside the file truncation point.
  2582. */
  2583. list_for_each_entry(vma, head, shared.nonlinear) {
  2584. details->nonlinear_vma = vma;
  2585. unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
  2586. }
  2587. }
  2588. /**
  2589. * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
  2590. * @mapping: the address space containing mmaps to be unmapped.
  2591. * @holebegin: byte in first page to unmap, relative to the start of
  2592. * the underlying file. This will be rounded down to a PAGE_SIZE
  2593. * boundary. Note that this is different from truncate_pagecache(), which
  2594. * must keep the partial page. In contrast, we must get rid of
  2595. * partial pages.
  2596. * @holelen: size of prospective hole in bytes. This will be rounded
  2597. * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
  2598. * end of the file.
  2599. * @even_cows: 1 when truncating a file, unmap even private COWed pages;
  2600. * but 0 when invalidating pagecache, don't throw away private data.
  2601. */
  2602. void unmap_mapping_range(struct address_space *mapping,
  2603. loff_t const holebegin, loff_t const holelen, int even_cows)
  2604. {
  2605. struct zap_details details;
  2606. pgoff_t hba = holebegin >> PAGE_SHIFT;
  2607. pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2608. /* Check for overflow. */
  2609. if (sizeof(holelen) > sizeof(hlen)) {
  2610. long long holeend =
  2611. (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
  2612. if (holeend & ~(long long)ULONG_MAX)
  2613. hlen = ULONG_MAX - hba + 1;
  2614. }
  2615. details.check_mapping = even_cows? NULL: mapping;
  2616. details.nonlinear_vma = NULL;
  2617. details.first_index = hba;
  2618. details.last_index = hba + hlen - 1;
  2619. if (details.last_index < details.first_index)
  2620. details.last_index = ULONG_MAX;
  2621. mutex_lock(&mapping->i_mmap_mutex);
  2622. if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
  2623. unmap_mapping_range_tree(&mapping->i_mmap, &details);
  2624. if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
  2625. unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
  2626. mutex_unlock(&mapping->i_mmap_mutex);
  2627. }
  2628. EXPORT_SYMBOL(unmap_mapping_range);
  2629. /*
  2630. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2631. * but allow concurrent faults), and pte mapped but not yet locked.
  2632. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2633. */
  2634. static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2635. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2636. unsigned int flags, pte_t orig_pte)
  2637. {
  2638. spinlock_t *ptl;
  2639. struct page *page, *swapcache = NULL;
  2640. swp_entry_t entry;
  2641. pte_t pte;
  2642. int locked;
  2643. struct mem_cgroup *ptr;
  2644. int exclusive = 0;
  2645. int ret = 0;
  2646. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  2647. goto out;
  2648. entry = pte_to_swp_entry(orig_pte);
  2649. if (unlikely(non_swap_entry(entry))) {
  2650. if (is_migration_entry(entry)) {
  2651. migration_entry_wait(mm, pmd, address);
  2652. } else if (is_hwpoison_entry(entry)) {
  2653. ret = VM_FAULT_HWPOISON;
  2654. } else {
  2655. print_bad_pte(vma, address, orig_pte, NULL);
  2656. ret = VM_FAULT_SIGBUS;
  2657. }
  2658. goto out;
  2659. }
  2660. delayacct_set_flag(DELAYACCT_PF_SWAPIN);
  2661. page = lookup_swap_cache(entry);
  2662. if (!page) {
  2663. page = swapin_readahead(entry,
  2664. GFP_HIGHUSER_MOVABLE, vma, address);
  2665. if (!page) {
  2666. /*
  2667. * Back out if somebody else faulted in this pte
  2668. * while we released the pte lock.
  2669. */
  2670. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2671. if (likely(pte_same(*page_table, orig_pte)))
  2672. ret = VM_FAULT_OOM;
  2673. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2674. goto unlock;
  2675. }
  2676. /* Had to read the page from swap area: Major fault */
  2677. ret = VM_FAULT_MAJOR;
  2678. count_vm_event(PGMAJFAULT);
  2679. mem_cgroup_count_vm_event(mm, PGMAJFAULT);
  2680. } else if (PageHWPoison(page)) {
  2681. /*
  2682. * hwpoisoned dirty swapcache pages are kept for killing
  2683. * owner processes (which may be unknown at hwpoison time)
  2684. */
  2685. ret = VM_FAULT_HWPOISON;
  2686. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2687. goto out_release;
  2688. }
  2689. locked = lock_page_or_retry(page, mm, flags);
  2690. delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
  2691. if (!locked) {
  2692. ret |= VM_FAULT_RETRY;
  2693. goto out_release;
  2694. }
  2695. /*
  2696. * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
  2697. * release the swapcache from under us. The page pin, and pte_same
  2698. * test below, are not enough to exclude that. Even if it is still
  2699. * swapcache, we need to check that the page's swap has not changed.
  2700. */
  2701. if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
  2702. goto out_page;
  2703. if (ksm_might_need_to_copy(page, vma, address)) {
  2704. swapcache = page;
  2705. page = ksm_does_need_to_copy(page, vma, address);
  2706. if (unlikely(!page)) {
  2707. ret = VM_FAULT_OOM;
  2708. page = swapcache;
  2709. swapcache = NULL;
  2710. goto out_page;
  2711. }
  2712. }
  2713. if (mem_cgroup_try_charge_swapin(mm, page, GFP_KERNEL, &ptr)) {
  2714. ret = VM_FAULT_OOM;
  2715. goto out_page;
  2716. }
  2717. /*
  2718. * Back out if somebody else already faulted in this pte.
  2719. */
  2720. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2721. if (unlikely(!pte_same(*page_table, orig_pte)))
  2722. goto out_nomap;
  2723. if (unlikely(!PageUptodate(page))) {
  2724. ret = VM_FAULT_SIGBUS;
  2725. goto out_nomap;
  2726. }
  2727. /*
  2728. * The page isn't present yet, go ahead with the fault.
  2729. *
  2730. * Be careful about the sequence of operations here.
  2731. * To get its accounting right, reuse_swap_page() must be called
  2732. * while the page is counted on swap but not yet in mapcount i.e.
  2733. * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
  2734. * must be called after the swap_free(), or it will never succeed.
  2735. * Because delete_from_swap_page() may be called by reuse_swap_page(),
  2736. * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
  2737. * in page->private. In this case, a record in swap_cgroup is silently
  2738. * discarded at swap_free().
  2739. */
  2740. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2741. dec_mm_counter_fast(mm, MM_SWAPENTS);
  2742. pte = mk_pte(page, vma->vm_page_prot);
  2743. if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
  2744. pte = maybe_mkwrite(pte_mkdirty(pte), vma);
  2745. flags &= ~FAULT_FLAG_WRITE;
  2746. ret |= VM_FAULT_WRITE;
  2747. exclusive = 1;
  2748. }
  2749. flush_icache_page(vma, page);
  2750. set_pte_at(mm, address, page_table, pte);
  2751. do_page_add_anon_rmap(page, vma, address, exclusive);
  2752. /* It's better to call commit-charge after rmap is established */
  2753. mem_cgroup_commit_charge_swapin(page, ptr);
  2754. swap_free(entry);
  2755. if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
  2756. try_to_free_swap(page);
  2757. unlock_page(page);
  2758. if (swapcache) {
  2759. /*
  2760. * Hold the lock to avoid the swap entry to be reused
  2761. * until we take the PT lock for the pte_same() check
  2762. * (to avoid false positives from pte_same). For
  2763. * further safety release the lock after the swap_free
  2764. * so that the swap count won't change under a
  2765. * parallel locked swapcache.
  2766. */
  2767. unlock_page(swapcache);
  2768. page_cache_release(swapcache);
  2769. }
  2770. if (flags & FAULT_FLAG_WRITE) {
  2771. ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
  2772. if (ret & VM_FAULT_ERROR)
  2773. ret &= VM_FAULT_ERROR;
  2774. goto out;
  2775. }
  2776. /* No need to invalidate - it was non-present before */
  2777. update_mmu_cache(vma, address, page_table);
  2778. unlock:
  2779. pte_unmap_unlock(page_table, ptl);
  2780. out:
  2781. return ret;
  2782. out_nomap:
  2783. mem_cgroup_cancel_charge_swapin(ptr);
  2784. pte_unmap_unlock(page_table, ptl);
  2785. out_page:
  2786. unlock_page(page);
  2787. out_release:
  2788. page_cache_release(page);
  2789. if (swapcache) {
  2790. unlock_page(swapcache);
  2791. page_cache_release(swapcache);
  2792. }
  2793. return ret;
  2794. }
  2795. /*
  2796. * This is like a special single-page "expand_{down|up}wards()",
  2797. * except we must first make sure that 'address{-|+}PAGE_SIZE'
  2798. * doesn't hit another vma.
  2799. */
  2800. static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
  2801. {
  2802. address &= PAGE_MASK;
  2803. if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
  2804. struct vm_area_struct *prev = vma->vm_prev;
  2805. /*
  2806. * Is there a mapping abutting this one below?
  2807. *
  2808. * That's only ok if it's the same stack mapping
  2809. * that has gotten split..
  2810. */
  2811. if (prev && prev->vm_end == address)
  2812. return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
  2813. expand_downwards(vma, address - PAGE_SIZE);
  2814. }
  2815. if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
  2816. struct vm_area_struct *next = vma->vm_next;
  2817. /* As VM_GROWSDOWN but s/below/above/ */
  2818. if (next && next->vm_start == address + PAGE_SIZE)
  2819. return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
  2820. expand_upwards(vma, address + PAGE_SIZE);
  2821. }
  2822. return 0;
  2823. }
  2824. /*
  2825. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2826. * but allow concurrent faults), and pte mapped but not yet locked.
  2827. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2828. */
  2829. static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
  2830. unsigned long address, pte_t *page_table, pmd_t *pmd,
  2831. unsigned int flags)
  2832. {
  2833. struct page *page;
  2834. spinlock_t *ptl;
  2835. pte_t entry;
  2836. pte_unmap(page_table);
  2837. /* Check if we need to add a guard page to the stack */
  2838. if (check_stack_guard_page(vma, address) < 0)
  2839. return VM_FAULT_SIGBUS;
  2840. /* Use the zero-page for reads */
  2841. if (!(flags & FAULT_FLAG_WRITE)) {
  2842. entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
  2843. vma->vm_page_prot));
  2844. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2845. if (!pte_none(*page_table))
  2846. goto unlock;
  2847. goto setpte;
  2848. }
  2849. /* Allocate our own private page. */
  2850. if (unlikely(anon_vma_prepare(vma)))
  2851. goto oom;
  2852. page = alloc_zeroed_user_highpage_movable(vma, address);
  2853. if (!page)
  2854. goto oom;
  2855. __SetPageUptodate(page);
  2856. if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))
  2857. goto oom_free_page;
  2858. entry = mk_pte(page, vma->vm_page_prot);
  2859. if (vma->vm_flags & VM_WRITE)
  2860. entry = pte_mkwrite(pte_mkdirty(entry));
  2861. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2862. if (!pte_none(*page_table))
  2863. goto release;
  2864. inc_mm_counter_fast(mm, MM_ANONPAGES);
  2865. page_add_new_anon_rmap(page, vma, address);
  2866. setpte:
  2867. set_pte_at(mm, address, page_table, entry);
  2868. /* No need to invalidate - it was non-present before */
  2869. update_mmu_cache(vma, address, page_table);
  2870. unlock:
  2871. pte_unmap_unlock(page_table, ptl);
  2872. return 0;
  2873. release:
  2874. mem_cgroup_uncharge_page(page);
  2875. page_cache_release(page);
  2876. goto unlock;
  2877. oom_free_page:
  2878. page_cache_release(page);
  2879. oom:
  2880. return VM_FAULT_OOM;
  2881. }
  2882. /*
  2883. * __do_fault() tries to create a new page mapping. It aggressively
  2884. * tries to share with existing pages, but makes a separate copy if
  2885. * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
  2886. * the next page fault.
  2887. *
  2888. * As this is called only for pages that do not currently exist, we
  2889. * do not need to flush old virtual caches or the TLB.
  2890. *
  2891. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  2892. * but allow concurrent faults), and pte neither mapped nor locked.
  2893. * We return with mmap_sem still held, but pte unmapped and unlocked.
  2894. */
  2895. static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  2896. unsigned long address, pmd_t *pmd,
  2897. pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
  2898. {
  2899. pte_t *page_table;
  2900. spinlock_t *ptl;
  2901. struct page *page;
  2902. struct page *cow_page;
  2903. pte_t entry;
  2904. int anon = 0;
  2905. struct page *dirty_page = NULL;
  2906. struct vm_fault vmf;
  2907. int ret;
  2908. int page_mkwrite = 0;
  2909. /*
  2910. * If we do COW later, allocate page befor taking lock_page()
  2911. * on the file cache page. This will reduce lock holding time.
  2912. */
  2913. if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
  2914. if (unlikely(anon_vma_prepare(vma)))
  2915. return VM_FAULT_OOM;
  2916. cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
  2917. if (!cow_page)
  2918. return VM_FAULT_OOM;
  2919. if (mem_cgroup_newpage_charge(cow_page, mm, GFP_KERNEL)) {
  2920. page_cache_release(cow_page);
  2921. return VM_FAULT_OOM;
  2922. }
  2923. } else
  2924. cow_page = NULL;
  2925. vmf.virtual_address = (void __user *)(address & PAGE_MASK);
  2926. vmf.pgoff = pgoff;
  2927. vmf.flags = flags;
  2928. vmf.page = NULL;
  2929. ret = vma->vm_ops->fault(vma, &vmf);
  2930. if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
  2931. VM_FAULT_RETRY)))
  2932. goto uncharge_out;
  2933. if (unlikely(PageHWPoison(vmf.page))) {
  2934. if (ret & VM_FAULT_LOCKED)
  2935. unlock_page(vmf.page);
  2936. ret = VM_FAULT_HWPOISON;
  2937. goto uncharge_out;
  2938. }
  2939. /*
  2940. * For consistency in subsequent calls, make the faulted page always
  2941. * locked.
  2942. */
  2943. if (unlikely(!(ret & VM_FAULT_LOCKED)))
  2944. lock_page(vmf.page);
  2945. else
  2946. VM_BUG_ON(!PageLocked(vmf.page));
  2947. /*
  2948. * Should we do an early C-O-W break?
  2949. */
  2950. page = vmf.page;
  2951. if (flags & FAULT_FLAG_WRITE) {
  2952. if (!(vma->vm_flags & VM_SHARED)) {
  2953. page = cow_page;
  2954. anon = 1;
  2955. copy_user_highpage(page, vmf.page, address, vma);
  2956. __SetPageUptodate(page);
  2957. } else {
  2958. /*
  2959. * If the page will be shareable, see if the backing
  2960. * address space wants to know that the page is about
  2961. * to become writable
  2962. */
  2963. if (vma->vm_ops->page_mkwrite) {
  2964. int tmp;
  2965. unlock_page(page);
  2966. vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
  2967. tmp = vma->vm_ops->page_mkwrite(vma, &vmf);
  2968. if (unlikely(tmp &
  2969. (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
  2970. ret = tmp;
  2971. goto unwritable_page;
  2972. }
  2973. if (unlikely(!(tmp & VM_FAULT_LOCKED))) {
  2974. lock_page(page);
  2975. if (!page->mapping) {
  2976. ret = 0; /* retry the fault */
  2977. unlock_page(page);
  2978. goto unwritable_page;
  2979. }
  2980. } else
  2981. VM_BUG_ON(!PageLocked(page));
  2982. page_mkwrite = 1;
  2983. }
  2984. }
  2985. }
  2986. page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
  2987. /*
  2988. * This silly early PAGE_DIRTY setting removes a race
  2989. * due to the bad i386 page protection. But it's valid
  2990. * for other architectures too.
  2991. *
  2992. * Note that if FAULT_FLAG_WRITE is set, we either now have
  2993. * an exclusive copy of the page, or this is a shared mapping,
  2994. * so we can make it writable and dirty to avoid having to
  2995. * handle that later.
  2996. */
  2997. /* Only go through if we didn't race with anybody else... */
  2998. if (likely(pte_same(*page_table, orig_pte))) {
  2999. flush_icache_page(vma, page);
  3000. entry = mk_pte(page, vma->vm_page_prot);
  3001. if (flags & FAULT_FLAG_WRITE)
  3002. entry = maybe_mkwrite(pte_mkdirty(entry), vma);
  3003. if (anon) {
  3004. inc_mm_counter_fast(mm, MM_ANONPAGES);
  3005. page_add_new_anon_rmap(page, vma, address);
  3006. } else {
  3007. inc_mm_counter_fast(mm, MM_FILEPAGES);
  3008. page_add_file_rmap(page);
  3009. if (flags & FAULT_FLAG_WRITE) {
  3010. dirty_page = page;
  3011. get_page(dirty_page);
  3012. }
  3013. }
  3014. set_pte_at(mm, address, page_table, entry);
  3015. /* no need to invalidate: a not-present page won't be cached */
  3016. update_mmu_cache(vma, address, page_table);
  3017. } else {
  3018. if (cow_page)
  3019. mem_cgroup_uncharge_page(cow_page);
  3020. if (anon)
  3021. page_cache_release(page);
  3022. else
  3023. anon = 1; /* no anon but release faulted_page */
  3024. }
  3025. pte_unmap_unlock(page_table, ptl);
  3026. if (dirty_page) {
  3027. struct address_space *mapping = page->mapping;
  3028. int dirtied = 0;
  3029. if (set_page_dirty(dirty_page))
  3030. dirtied = 1;
  3031. unlock_page(dirty_page);
  3032. put_page(dirty_page);
  3033. if ((dirtied || page_mkwrite) && mapping) {
  3034. /*
  3035. * Some device drivers do not set page.mapping but still
  3036. * dirty their pages
  3037. */
  3038. balance_dirty_pages_ratelimited(mapping);
  3039. }
  3040. /* file_update_time outside page_lock */
  3041. if (vma->vm_file && !page_mkwrite)
  3042. file_update_time(vma->vm_file);
  3043. } else {
  3044. unlock_page(vmf.page);
  3045. if (anon)
  3046. page_cache_release(vmf.page);
  3047. }
  3048. return ret;
  3049. unwritable_page:
  3050. page_cache_release(page);
  3051. return ret;
  3052. uncharge_out:
  3053. /* fs's fault handler get error */
  3054. if (cow_page) {
  3055. mem_cgroup_uncharge_page(cow_page);
  3056. page_cache_release(cow_page);
  3057. }
  3058. return ret;
  3059. }
  3060. static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3061. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3062. unsigned int flags, pte_t orig_pte)
  3063. {
  3064. pgoff_t pgoff = (((address & PAGE_MASK)
  3065. - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  3066. pte_unmap(page_table);
  3067. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3068. }
  3069. /*
  3070. * Fault of a previously existing named mapping. Repopulate the pte
  3071. * from the encoded file_pte if possible. This enables swappable
  3072. * nonlinear vmas.
  3073. *
  3074. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3075. * but allow concurrent faults), and pte mapped but not yet locked.
  3076. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3077. */
  3078. static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3079. unsigned long address, pte_t *page_table, pmd_t *pmd,
  3080. unsigned int flags, pte_t orig_pte)
  3081. {
  3082. pgoff_t pgoff;
  3083. flags |= FAULT_FLAG_NONLINEAR;
  3084. if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
  3085. return 0;
  3086. if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
  3087. /*
  3088. * Page table corrupted: show pte and kill process.
  3089. */
  3090. print_bad_pte(vma, address, orig_pte, NULL);
  3091. return VM_FAULT_SIGBUS;
  3092. }
  3093. pgoff = pte_to_pgoff(orig_pte);
  3094. return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
  3095. }
  3096. int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3097. unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
  3098. {
  3099. struct page *page = NULL;
  3100. spinlock_t *ptl;
  3101. int current_nid = -1;
  3102. int target_nid;
  3103. /*
  3104. * The "pte" at this point cannot be used safely without
  3105. * validation through pte_unmap_same(). It's of NUMA type but
  3106. * the pfn may be screwed if the read is non atomic.
  3107. *
  3108. * ptep_modify_prot_start is not called as this is clearing
  3109. * the _PAGE_NUMA bit and it is not really expected that there
  3110. * would be concurrent hardware modifications to the PTE.
  3111. */
  3112. ptl = pte_lockptr(mm, pmd);
  3113. spin_lock(ptl);
  3114. if (unlikely(!pte_same(*ptep, pte))) {
  3115. pte_unmap_unlock(ptep, ptl);
  3116. goto out;
  3117. }
  3118. pte = pte_mknonnuma(pte);
  3119. set_pte_at(mm, addr, ptep, pte);
  3120. update_mmu_cache(vma, addr, ptep);
  3121. page = vm_normal_page(vma, addr, pte);
  3122. if (!page) {
  3123. pte_unmap_unlock(ptep, ptl);
  3124. return 0;
  3125. }
  3126. get_page(page);
  3127. current_nid = page_to_nid(page);
  3128. target_nid = mpol_misplaced(page, vma, addr);
  3129. pte_unmap_unlock(ptep, ptl);
  3130. if (target_nid == -1) {
  3131. /*
  3132. * Account for the fault against the current node if it not
  3133. * being replaced regardless of where the page is located.
  3134. */
  3135. current_nid = numa_node_id();
  3136. put_page(page);
  3137. goto out;
  3138. }
  3139. /* Migrate to the requested node */
  3140. if (migrate_misplaced_page(page, target_nid))
  3141. current_nid = target_nid;
  3142. out:
  3143. task_numa_fault(current_nid, 1);
  3144. return 0;
  3145. }
  3146. /* NUMA hinting page fault entry point for regular pmds */
  3147. #ifdef CONFIG_NUMA_BALANCING
  3148. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3149. unsigned long addr, pmd_t *pmdp)
  3150. {
  3151. pmd_t pmd;
  3152. pte_t *pte, *orig_pte;
  3153. unsigned long _addr = addr & PMD_MASK;
  3154. unsigned long offset;
  3155. spinlock_t *ptl;
  3156. bool numa = false;
  3157. spin_lock(&mm->page_table_lock);
  3158. pmd = *pmdp;
  3159. if (pmd_numa(pmd)) {
  3160. set_pmd_at(mm, _addr, pmdp, pmd_mknonnuma(pmd));
  3161. numa = true;
  3162. }
  3163. spin_unlock(&mm->page_table_lock);
  3164. if (!numa)
  3165. return 0;
  3166. /* we're in a page fault so some vma must be in the range */
  3167. BUG_ON(!vma);
  3168. BUG_ON(vma->vm_start >= _addr + PMD_SIZE);
  3169. offset = max(_addr, vma->vm_start) & ~PMD_MASK;
  3170. VM_BUG_ON(offset >= PMD_SIZE);
  3171. orig_pte = pte = pte_offset_map_lock(mm, pmdp, _addr, &ptl);
  3172. pte += offset >> PAGE_SHIFT;
  3173. for (addr = _addr + offset; addr < _addr + PMD_SIZE; pte++, addr += PAGE_SIZE) {
  3174. pte_t pteval = *pte;
  3175. struct page *page;
  3176. int curr_nid;
  3177. if (!pte_present(pteval))
  3178. continue;
  3179. if (!pte_numa(pteval))
  3180. continue;
  3181. if (addr >= vma->vm_end) {
  3182. vma = find_vma(mm, addr);
  3183. /* there's a pte present so there must be a vma */
  3184. BUG_ON(!vma);
  3185. BUG_ON(addr < vma->vm_start);
  3186. }
  3187. if (pte_numa(pteval)) {
  3188. pteval = pte_mknonnuma(pteval);
  3189. set_pte_at(mm, addr, pte, pteval);
  3190. }
  3191. page = vm_normal_page(vma, addr, pteval);
  3192. if (unlikely(!page))
  3193. continue;
  3194. /* only check non-shared pages */
  3195. if (unlikely(page_mapcount(page) != 1))
  3196. continue;
  3197. pte_unmap_unlock(pte, ptl);
  3198. curr_nid = page_to_nid(page);
  3199. task_numa_fault(curr_nid, 1);
  3200. pte = pte_offset_map_lock(mm, pmdp, addr, &ptl);
  3201. }
  3202. pte_unmap_unlock(orig_pte, ptl);
  3203. return 0;
  3204. }
  3205. #else
  3206. static int do_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
  3207. unsigned long addr, pmd_t *pmdp)
  3208. {
  3209. BUG();
  3210. }
  3211. #endif /* CONFIG_NUMA_BALANCING */
  3212. /*
  3213. * These routines also need to handle stuff like marking pages dirty
  3214. * and/or accessed for architectures that don't do it in hardware (most
  3215. * RISC architectures). The early dirtying is also good on the i386.
  3216. *
  3217. * There is also a hook called "update_mmu_cache()" that architectures
  3218. * with external mmu caches can use to update those (ie the Sparc or
  3219. * PowerPC hashed page tables that act as extended TLBs).
  3220. *
  3221. * We enter with non-exclusive mmap_sem (to exclude vma changes,
  3222. * but allow concurrent faults), and pte mapped but not yet locked.
  3223. * We return with mmap_sem still held, but pte unmapped and unlocked.
  3224. */
  3225. int handle_pte_fault(struct mm_struct *mm,
  3226. struct vm_area_struct *vma, unsigned long address,
  3227. pte_t *pte, pmd_t *pmd, unsigned int flags)
  3228. {
  3229. pte_t entry;
  3230. spinlock_t *ptl;
  3231. entry = *pte;
  3232. if (!pte_present(entry)) {
  3233. if (pte_none(entry)) {
  3234. if (vma->vm_ops) {
  3235. if (likely(vma->vm_ops->fault))
  3236. return do_linear_fault(mm, vma, address,
  3237. pte, pmd, flags, entry);
  3238. }
  3239. return do_anonymous_page(mm, vma, address,
  3240. pte, pmd, flags);
  3241. }
  3242. if (pte_file(entry))
  3243. return do_nonlinear_fault(mm, vma, address,
  3244. pte, pmd, flags, entry);
  3245. return do_swap_page(mm, vma, address,
  3246. pte, pmd, flags, entry);
  3247. }
  3248. if (pte_numa(entry))
  3249. return do_numa_page(mm, vma, address, entry, pte, pmd);
  3250. ptl = pte_lockptr(mm, pmd);
  3251. spin_lock(ptl);
  3252. if (unlikely(!pte_same(*pte, entry)))
  3253. goto unlock;
  3254. if (flags & FAULT_FLAG_WRITE) {
  3255. if (!pte_write(entry))
  3256. return do_wp_page(mm, vma, address,
  3257. pte, pmd, ptl, entry);
  3258. entry = pte_mkdirty(entry);
  3259. }
  3260. entry = pte_mkyoung(entry);
  3261. if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
  3262. update_mmu_cache(vma, address, pte);
  3263. } else {
  3264. /*
  3265. * This is needed only for protection faults but the arch code
  3266. * is not yet telling us if this is a protection fault or not.
  3267. * This still avoids useless tlb flushes for .text page faults
  3268. * with threads.
  3269. */
  3270. if (flags & FAULT_FLAG_WRITE)
  3271. flush_tlb_fix_spurious_fault(vma, address);
  3272. }
  3273. unlock:
  3274. pte_unmap_unlock(pte, ptl);
  3275. return 0;
  3276. }
  3277. /*
  3278. * By the time we get here, we already hold the mm semaphore
  3279. */
  3280. int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
  3281. unsigned long address, unsigned int flags)
  3282. {
  3283. pgd_t *pgd;
  3284. pud_t *pud;
  3285. pmd_t *pmd;
  3286. pte_t *pte;
  3287. __set_current_state(TASK_RUNNING);
  3288. count_vm_event(PGFAULT);
  3289. mem_cgroup_count_vm_event(mm, PGFAULT);
  3290. /* do counter updates before entering really critical section. */
  3291. check_sync_rss_stat(current);
  3292. if (unlikely(is_vm_hugetlb_page(vma)))
  3293. return hugetlb_fault(mm, vma, address, flags);
  3294. retry:
  3295. pgd = pgd_offset(mm, address);
  3296. pud = pud_alloc(mm, pgd, address);
  3297. if (!pud)
  3298. return VM_FAULT_OOM;
  3299. pmd = pmd_alloc(mm, pud, address);
  3300. if (!pmd)
  3301. return VM_FAULT_OOM;
  3302. if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
  3303. if (!vma->vm_ops)
  3304. return do_huge_pmd_anonymous_page(mm, vma, address,
  3305. pmd, flags);
  3306. } else {
  3307. pmd_t orig_pmd = *pmd;
  3308. int ret;
  3309. barrier();
  3310. if (pmd_trans_huge(orig_pmd)) {
  3311. if (pmd_numa(*pmd))
  3312. return do_huge_pmd_numa_page(mm, vma, address,
  3313. orig_pmd, pmd);
  3314. if ((flags & FAULT_FLAG_WRITE) && !pmd_write(orig_pmd)) {
  3315. ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
  3316. orig_pmd);
  3317. /*
  3318. * If COW results in an oom, the huge pmd will
  3319. * have been split, so retry the fault on the
  3320. * pte for a smaller charge.
  3321. */
  3322. if (unlikely(ret & VM_FAULT_OOM))
  3323. goto retry;
  3324. return ret;
  3325. }
  3326. return 0;
  3327. }
  3328. }
  3329. if (pmd_numa(*pmd))
  3330. return do_pmd_numa_page(mm, vma, address, pmd);
  3331. /*
  3332. * Use __pte_alloc instead of pte_alloc_map, because we can't
  3333. * run pte_offset_map on the pmd, if an huge pmd could
  3334. * materialize from under us from a different thread.
  3335. */
  3336. if (unlikely(pmd_none(*pmd)) &&
  3337. unlikely(__pte_alloc(mm, vma, pmd, address)))
  3338. return VM_FAULT_OOM;
  3339. /* if an huge pmd materialized from under us just retry later */
  3340. if (unlikely(pmd_trans_huge(*pmd)))
  3341. return 0;
  3342. /*
  3343. * A regular pmd is established and it can't morph into a huge pmd
  3344. * from under us anymore at this point because we hold the mmap_sem
  3345. * read mode and khugepaged takes it in write mode. So now it's
  3346. * safe to run pte_offset_map().
  3347. */
  3348. pte = pte_offset_map(pmd, address);
  3349. return handle_pte_fault(mm, vma, address, pte, pmd, flags);
  3350. }
  3351. #ifndef __PAGETABLE_PUD_FOLDED
  3352. /*
  3353. * Allocate page upper directory.
  3354. * We've already handled the fast-path in-line.
  3355. */
  3356. int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
  3357. {
  3358. pud_t *new = pud_alloc_one(mm, address);
  3359. if (!new)
  3360. return -ENOMEM;
  3361. smp_wmb(); /* See comment in __pte_alloc */
  3362. spin_lock(&mm->page_table_lock);
  3363. if (pgd_present(*pgd)) /* Another has populated it */
  3364. pud_free(mm, new);
  3365. else
  3366. pgd_populate(mm, pgd, new);
  3367. spin_unlock(&mm->page_table_lock);
  3368. return 0;
  3369. }
  3370. #endif /* __PAGETABLE_PUD_FOLDED */
  3371. #ifndef __PAGETABLE_PMD_FOLDED
  3372. /*
  3373. * Allocate page middle directory.
  3374. * We've already handled the fast-path in-line.
  3375. */
  3376. int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
  3377. {
  3378. pmd_t *new = pmd_alloc_one(mm, address);
  3379. if (!new)
  3380. return -ENOMEM;
  3381. smp_wmb(); /* See comment in __pte_alloc */
  3382. spin_lock(&mm->page_table_lock);
  3383. #ifndef __ARCH_HAS_4LEVEL_HACK
  3384. if (pud_present(*pud)) /* Another has populated it */
  3385. pmd_free(mm, new);
  3386. else
  3387. pud_populate(mm, pud, new);
  3388. #else
  3389. if (pgd_present(*pud)) /* Another has populated it */
  3390. pmd_free(mm, new);
  3391. else
  3392. pgd_populate(mm, pud, new);
  3393. #endif /* __ARCH_HAS_4LEVEL_HACK */
  3394. spin_unlock(&mm->page_table_lock);
  3395. return 0;
  3396. }
  3397. #endif /* __PAGETABLE_PMD_FOLDED */
  3398. int make_pages_present(unsigned long addr, unsigned long end)
  3399. {
  3400. int ret, len, write;
  3401. struct vm_area_struct * vma;
  3402. vma = find_vma(current->mm, addr);
  3403. if (!vma)
  3404. return -ENOMEM;
  3405. /*
  3406. * We want to touch writable mappings with a write fault in order
  3407. * to break COW, except for shared mappings because these don't COW
  3408. * and we would not want to dirty them for nothing.
  3409. */
  3410. write = (vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE;
  3411. BUG_ON(addr >= end);
  3412. BUG_ON(end > vma->vm_end);
  3413. len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
  3414. ret = get_user_pages(current, current->mm, addr,
  3415. len, write, 0, NULL, NULL);
  3416. if (ret < 0)
  3417. return ret;
  3418. return ret == len ? 0 : -EFAULT;
  3419. }
  3420. #if !defined(__HAVE_ARCH_GATE_AREA)
  3421. #if defined(AT_SYSINFO_EHDR)
  3422. static struct vm_area_struct gate_vma;
  3423. static int __init gate_vma_init(void)
  3424. {
  3425. gate_vma.vm_mm = NULL;
  3426. gate_vma.vm_start = FIXADDR_USER_START;
  3427. gate_vma.vm_end = FIXADDR_USER_END;
  3428. gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
  3429. gate_vma.vm_page_prot = __P101;
  3430. return 0;
  3431. }
  3432. __initcall(gate_vma_init);
  3433. #endif
  3434. struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
  3435. {
  3436. #ifdef AT_SYSINFO_EHDR
  3437. return &gate_vma;
  3438. #else
  3439. return NULL;
  3440. #endif
  3441. }
  3442. int in_gate_area_no_mm(unsigned long addr)
  3443. {
  3444. #ifdef AT_SYSINFO_EHDR
  3445. if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
  3446. return 1;
  3447. #endif
  3448. return 0;
  3449. }
  3450. #endif /* __HAVE_ARCH_GATE_AREA */
  3451. static int __follow_pte(struct mm_struct *mm, unsigned long address,
  3452. pte_t **ptepp, spinlock_t **ptlp)
  3453. {
  3454. pgd_t *pgd;
  3455. pud_t *pud;
  3456. pmd_t *pmd;
  3457. pte_t *ptep;
  3458. pgd = pgd_offset(mm, address);
  3459. if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
  3460. goto out;
  3461. pud = pud_offset(pgd, address);
  3462. if (pud_none(*pud) || unlikely(pud_bad(*pud)))
  3463. goto out;
  3464. pmd = pmd_offset(pud, address);
  3465. VM_BUG_ON(pmd_trans_huge(*pmd));
  3466. if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
  3467. goto out;
  3468. /* We cannot handle huge page PFN maps. Luckily they don't exist. */
  3469. if (pmd_huge(*pmd))
  3470. goto out;
  3471. ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
  3472. if (!ptep)
  3473. goto out;
  3474. if (!pte_present(*ptep))
  3475. goto unlock;
  3476. *ptepp = ptep;
  3477. return 0;
  3478. unlock:
  3479. pte_unmap_unlock(ptep, *ptlp);
  3480. out:
  3481. return -EINVAL;
  3482. }
  3483. static inline int follow_pte(struct mm_struct *mm, unsigned long address,
  3484. pte_t **ptepp, spinlock_t **ptlp)
  3485. {
  3486. int res;
  3487. /* (void) is needed to make gcc happy */
  3488. (void) __cond_lock(*ptlp,
  3489. !(res = __follow_pte(mm, address, ptepp, ptlp)));
  3490. return res;
  3491. }
  3492. /**
  3493. * follow_pfn - look up PFN at a user virtual address
  3494. * @vma: memory mapping
  3495. * @address: user virtual address
  3496. * @pfn: location to store found PFN
  3497. *
  3498. * Only IO mappings and raw PFN mappings are allowed.
  3499. *
  3500. * Returns zero and the pfn at @pfn on success, -ve otherwise.
  3501. */
  3502. int follow_pfn(struct vm_area_struct *vma, unsigned long address,
  3503. unsigned long *pfn)
  3504. {
  3505. int ret = -EINVAL;
  3506. spinlock_t *ptl;
  3507. pte_t *ptep;
  3508. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3509. return ret;
  3510. ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
  3511. if (ret)
  3512. return ret;
  3513. *pfn = pte_pfn(*ptep);
  3514. pte_unmap_unlock(ptep, ptl);
  3515. return 0;
  3516. }
  3517. EXPORT_SYMBOL(follow_pfn);
  3518. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3519. int follow_phys(struct vm_area_struct *vma,
  3520. unsigned long address, unsigned int flags,
  3521. unsigned long *prot, resource_size_t *phys)
  3522. {
  3523. int ret = -EINVAL;
  3524. pte_t *ptep, pte;
  3525. spinlock_t *ptl;
  3526. if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
  3527. goto out;
  3528. if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
  3529. goto out;
  3530. pte = *ptep;
  3531. if ((flags & FOLL_WRITE) && !pte_write(pte))
  3532. goto unlock;
  3533. *prot = pgprot_val(pte_pgprot(pte));
  3534. *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
  3535. ret = 0;
  3536. unlock:
  3537. pte_unmap_unlock(ptep, ptl);
  3538. out:
  3539. return ret;
  3540. }
  3541. int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
  3542. void *buf, int len, int write)
  3543. {
  3544. resource_size_t phys_addr;
  3545. unsigned long prot = 0;
  3546. void __iomem *maddr;
  3547. int offset = addr & (PAGE_SIZE-1);
  3548. if (follow_phys(vma, addr, write, &prot, &phys_addr))
  3549. return -EINVAL;
  3550. maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
  3551. if (write)
  3552. memcpy_toio(maddr + offset, buf, len);
  3553. else
  3554. memcpy_fromio(buf, maddr + offset, len);
  3555. iounmap(maddr);
  3556. return len;
  3557. }
  3558. #endif
  3559. /*
  3560. * Access another process' address space as given in mm. If non-NULL, use the
  3561. * given task for page fault accounting.
  3562. */
  3563. static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
  3564. unsigned long addr, void *buf, int len, int write)
  3565. {
  3566. struct vm_area_struct *vma;
  3567. void *old_buf = buf;
  3568. down_read(&mm->mmap_sem);
  3569. /* ignore errors, just check how much was successfully transferred */
  3570. while (len) {
  3571. int bytes, ret, offset;
  3572. void *maddr;
  3573. struct page *page = NULL;
  3574. ret = get_user_pages(tsk, mm, addr, 1,
  3575. write, 1, &page, &vma);
  3576. if (ret <= 0) {
  3577. /*
  3578. * Check if this is a VM_IO | VM_PFNMAP VMA, which
  3579. * we can access using slightly different code.
  3580. */
  3581. #ifdef CONFIG_HAVE_IOREMAP_PROT
  3582. vma = find_vma(mm, addr);
  3583. if (!vma || vma->vm_start > addr)
  3584. break;
  3585. if (vma->vm_ops && vma->vm_ops->access)
  3586. ret = vma->vm_ops->access(vma, addr, buf,
  3587. len, write);
  3588. if (ret <= 0)
  3589. #endif
  3590. break;
  3591. bytes = ret;
  3592. } else {
  3593. bytes = len;
  3594. offset = addr & (PAGE_SIZE-1);
  3595. if (bytes > PAGE_SIZE-offset)
  3596. bytes = PAGE_SIZE-offset;
  3597. maddr = kmap(page);
  3598. if (write) {
  3599. copy_to_user_page(vma, page, addr,
  3600. maddr + offset, buf, bytes);
  3601. set_page_dirty_lock(page);
  3602. } else {
  3603. copy_from_user_page(vma, page, addr,
  3604. buf, maddr + offset, bytes);
  3605. }
  3606. kunmap(page);
  3607. page_cache_release(page);
  3608. }
  3609. len -= bytes;
  3610. buf += bytes;
  3611. addr += bytes;
  3612. }
  3613. up_read(&mm->mmap_sem);
  3614. return buf - old_buf;
  3615. }
  3616. /**
  3617. * access_remote_vm - access another process' address space
  3618. * @mm: the mm_struct of the target address space
  3619. * @addr: start address to access
  3620. * @buf: source or destination buffer
  3621. * @len: number of bytes to transfer
  3622. * @write: whether the access is a write
  3623. *
  3624. * The caller must hold a reference on @mm.
  3625. */
  3626. int access_remote_vm(struct mm_struct *mm, unsigned long addr,
  3627. void *buf, int len, int write)
  3628. {
  3629. return __access_remote_vm(NULL, mm, addr, buf, len, write);
  3630. }
  3631. /*
  3632. * Access another process' address space.
  3633. * Source/target buffer must be kernel space,
  3634. * Do not walk the page table directly, use get_user_pages
  3635. */
  3636. int access_process_vm(struct task_struct *tsk, unsigned long addr,
  3637. void *buf, int len, int write)
  3638. {
  3639. struct mm_struct *mm;
  3640. int ret;
  3641. mm = get_task_mm(tsk);
  3642. if (!mm)
  3643. return 0;
  3644. ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
  3645. mmput(mm);
  3646. return ret;
  3647. }
  3648. /*
  3649. * Print the name of a VMA.
  3650. */
  3651. void print_vma_addr(char *prefix, unsigned long ip)
  3652. {
  3653. struct mm_struct *mm = current->mm;
  3654. struct vm_area_struct *vma;
  3655. /*
  3656. * Do not print if we are in atomic
  3657. * contexts (in exception stacks, etc.):
  3658. */
  3659. if (preempt_count())
  3660. return;
  3661. down_read(&mm->mmap_sem);
  3662. vma = find_vma(mm, ip);
  3663. if (vma && vma->vm_file) {
  3664. struct file *f = vma->vm_file;
  3665. char *buf = (char *)__get_free_page(GFP_KERNEL);
  3666. if (buf) {
  3667. char *p, *s;
  3668. p = d_path(&f->f_path, buf, PAGE_SIZE);
  3669. if (IS_ERR(p))
  3670. p = "?";
  3671. s = strrchr(p, '/');
  3672. if (s)
  3673. p = s+1;
  3674. printk("%s%s[%lx+%lx]", prefix, p,
  3675. vma->vm_start,
  3676. vma->vm_end - vma->vm_start);
  3677. free_page((unsigned long)buf);
  3678. }
  3679. }
  3680. up_read(&mm->mmap_sem);
  3681. }
  3682. #ifdef CONFIG_PROVE_LOCKING
  3683. void might_fault(void)
  3684. {
  3685. /*
  3686. * Some code (nfs/sunrpc) uses socket ops on kernel memory while
  3687. * holding the mmap_sem, this is safe because kernel memory doesn't
  3688. * get paged out, therefore we'll never actually fault, and the
  3689. * below annotations will generate false positives.
  3690. */
  3691. if (segment_eq(get_fs(), KERNEL_DS))
  3692. return;
  3693. might_sleep();
  3694. /*
  3695. * it would be nicer only to annotate paths which are not under
  3696. * pagefault_disable, however that requires a larger audit and
  3697. * providing helpers like get_user_atomic.
  3698. */
  3699. if (!in_atomic() && current->mm)
  3700. might_lock_read(&current->mm->mmap_sem);
  3701. }
  3702. EXPORT_SYMBOL(might_fault);
  3703. #endif
  3704. #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
  3705. static void clear_gigantic_page(struct page *page,
  3706. unsigned long addr,
  3707. unsigned int pages_per_huge_page)
  3708. {
  3709. int i;
  3710. struct page *p = page;
  3711. might_sleep();
  3712. for (i = 0; i < pages_per_huge_page;
  3713. i++, p = mem_map_next(p, page, i)) {
  3714. cond_resched();
  3715. clear_user_highpage(p, addr + i * PAGE_SIZE);
  3716. }
  3717. }
  3718. void clear_huge_page(struct page *page,
  3719. unsigned long addr, unsigned int pages_per_huge_page)
  3720. {
  3721. int i;
  3722. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3723. clear_gigantic_page(page, addr, pages_per_huge_page);
  3724. return;
  3725. }
  3726. might_sleep();
  3727. for (i = 0; i < pages_per_huge_page; i++) {
  3728. cond_resched();
  3729. clear_user_highpage(page + i, addr + i * PAGE_SIZE);
  3730. }
  3731. }
  3732. static void copy_user_gigantic_page(struct page *dst, struct page *src,
  3733. unsigned long addr,
  3734. struct vm_area_struct *vma,
  3735. unsigned int pages_per_huge_page)
  3736. {
  3737. int i;
  3738. struct page *dst_base = dst;
  3739. struct page *src_base = src;
  3740. for (i = 0; i < pages_per_huge_page; ) {
  3741. cond_resched();
  3742. copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
  3743. i++;
  3744. dst = mem_map_next(dst, dst_base, i);
  3745. src = mem_map_next(src, src_base, i);
  3746. }
  3747. }
  3748. void copy_user_huge_page(struct page *dst, struct page *src,
  3749. unsigned long addr, struct vm_area_struct *vma,
  3750. unsigned int pages_per_huge_page)
  3751. {
  3752. int i;
  3753. if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
  3754. copy_user_gigantic_page(dst, src, addr, vma,
  3755. pages_per_huge_page);
  3756. return;
  3757. }
  3758. might_sleep();
  3759. for (i = 0; i < pages_per_huge_page; i++) {
  3760. cond_resched();
  3761. copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
  3762. }
  3763. }
  3764. #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */