eeprom.c 76 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722
  1. /*
  2. * Copyright (c) 2008 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include "ath9k.h"
  17. static void ath9k_hw_analog_shift_rmw(struct ath_hw *ah,
  18. u32 reg, u32 mask,
  19. u32 shift, u32 val)
  20. {
  21. u32 regVal;
  22. regVal = REG_READ(ah, reg) & ~mask;
  23. regVal |= (val << shift) & mask;
  24. REG_WRITE(ah, reg, regVal);
  25. if (ah->ah_config.analog_shiftreg)
  26. udelay(100);
  27. return;
  28. }
  29. static inline u16 ath9k_hw_fbin2freq(u8 fbin, bool is2GHz)
  30. {
  31. if (fbin == AR5416_BCHAN_UNUSED)
  32. return fbin;
  33. return (u16) ((is2GHz) ? (2300 + fbin) : (4800 + 5 * fbin));
  34. }
  35. static inline int16_t ath9k_hw_interpolate(u16 target,
  36. u16 srcLeft, u16 srcRight,
  37. int16_t targetLeft,
  38. int16_t targetRight)
  39. {
  40. int16_t rv;
  41. if (srcRight == srcLeft) {
  42. rv = targetLeft;
  43. } else {
  44. rv = (int16_t) (((target - srcLeft) * targetRight +
  45. (srcRight - target) * targetLeft) /
  46. (srcRight - srcLeft));
  47. }
  48. return rv;
  49. }
  50. static inline bool ath9k_hw_get_lower_upper_index(u8 target, u8 *pList,
  51. u16 listSize, u16 *indexL,
  52. u16 *indexR)
  53. {
  54. u16 i;
  55. if (target <= pList[0]) {
  56. *indexL = *indexR = 0;
  57. return true;
  58. }
  59. if (target >= pList[listSize - 1]) {
  60. *indexL = *indexR = (u16) (listSize - 1);
  61. return true;
  62. }
  63. for (i = 0; i < listSize - 1; i++) {
  64. if (pList[i] == target) {
  65. *indexL = *indexR = i;
  66. return true;
  67. }
  68. if (target < pList[i + 1]) {
  69. *indexL = i;
  70. *indexR = (u16) (i + 1);
  71. return false;
  72. }
  73. }
  74. return false;
  75. }
  76. static inline bool ath9k_hw_nvram_read(struct ath_hw *ah, u32 off, u16 *data)
  77. {
  78. struct ath_softc *sc = ah->ah_sc;
  79. return sc->bus_ops->eeprom_read(ah, off, data);
  80. }
  81. static bool ath9k_hw_fill_4k_eeprom(struct ath_hw *ah)
  82. {
  83. #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  84. struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
  85. u16 *eep_data;
  86. int addr, eep_start_loc = 0;
  87. eep_start_loc = 64;
  88. if (!ath9k_hw_use_flash(ah)) {
  89. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  90. "Reading from EEPROM, not flash\n");
  91. }
  92. eep_data = (u16 *)eep;
  93. for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
  94. if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data)) {
  95. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  96. "Unable to read eeprom region \n");
  97. return false;
  98. }
  99. eep_data++;
  100. }
  101. return true;
  102. #undef SIZE_EEPROM_4K
  103. }
  104. static bool ath9k_hw_fill_def_eeprom(struct ath_hw *ah)
  105. {
  106. #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
  107. struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
  108. u16 *eep_data;
  109. int addr, ar5416_eep_start_loc = 0x100;
  110. eep_data = (u16 *)eep;
  111. for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
  112. if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
  113. eep_data)) {
  114. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  115. "Unable to read eeprom region\n");
  116. return false;
  117. }
  118. eep_data++;
  119. }
  120. return true;
  121. #undef SIZE_EEPROM_DEF
  122. }
  123. static bool (*ath9k_fill_eeprom[]) (struct ath_hw *) = {
  124. ath9k_hw_fill_def_eeprom,
  125. ath9k_hw_fill_4k_eeprom
  126. };
  127. static inline bool ath9k_hw_fill_eeprom(struct ath_hw *ah)
  128. {
  129. return ath9k_fill_eeprom[ah->ah_eep_map](ah);
  130. }
  131. static int ath9k_hw_check_def_eeprom(struct ath_hw *ah)
  132. {
  133. struct ar5416_eeprom_def *eep =
  134. (struct ar5416_eeprom_def *) &ah->ah_eeprom.def;
  135. u16 *eepdata, temp, magic, magic2;
  136. u32 sum = 0, el;
  137. bool need_swap = false;
  138. int i, addr, size;
  139. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  140. &magic)) {
  141. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  142. "Reading Magic # failed\n");
  143. return false;
  144. }
  145. if (!ath9k_hw_use_flash(ah)) {
  146. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  147. "Read Magic = 0x%04X\n", magic);
  148. if (magic != AR5416_EEPROM_MAGIC) {
  149. magic2 = swab16(magic);
  150. if (magic2 == AR5416_EEPROM_MAGIC) {
  151. size = sizeof(struct ar5416_eeprom_def);
  152. need_swap = true;
  153. eepdata = (u16 *) (&ah->ah_eeprom);
  154. for (addr = 0; addr < size / sizeof(u16); addr++) {
  155. temp = swab16(*eepdata);
  156. *eepdata = temp;
  157. eepdata++;
  158. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  159. "0x%04X ", *eepdata);
  160. if (((addr + 1) % 6) == 0)
  161. DPRINTF(ah->ah_sc,
  162. ATH_DBG_EEPROM, "\n");
  163. }
  164. } else {
  165. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  166. "Invalid EEPROM Magic. "
  167. "endianness mismatch.\n");
  168. return -EINVAL;
  169. }
  170. }
  171. }
  172. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  173. need_swap ? "True" : "False");
  174. if (need_swap)
  175. el = swab16(ah->ah_eeprom.def.baseEepHeader.length);
  176. else
  177. el = ah->ah_eeprom.def.baseEepHeader.length;
  178. if (el > sizeof(struct ar5416_eeprom_def))
  179. el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
  180. else
  181. el = el / sizeof(u16);
  182. eepdata = (u16 *)(&ah->ah_eeprom);
  183. for (i = 0; i < el; i++)
  184. sum ^= *eepdata++;
  185. if (need_swap) {
  186. u32 integer, j;
  187. u16 word;
  188. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  189. "EEPROM Endianness is not native.. Changing \n");
  190. word = swab16(eep->baseEepHeader.length);
  191. eep->baseEepHeader.length = word;
  192. word = swab16(eep->baseEepHeader.checksum);
  193. eep->baseEepHeader.checksum = word;
  194. word = swab16(eep->baseEepHeader.version);
  195. eep->baseEepHeader.version = word;
  196. word = swab16(eep->baseEepHeader.regDmn[0]);
  197. eep->baseEepHeader.regDmn[0] = word;
  198. word = swab16(eep->baseEepHeader.regDmn[1]);
  199. eep->baseEepHeader.regDmn[1] = word;
  200. word = swab16(eep->baseEepHeader.rfSilent);
  201. eep->baseEepHeader.rfSilent = word;
  202. word = swab16(eep->baseEepHeader.blueToothOptions);
  203. eep->baseEepHeader.blueToothOptions = word;
  204. word = swab16(eep->baseEepHeader.deviceCap);
  205. eep->baseEepHeader.deviceCap = word;
  206. for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
  207. struct modal_eep_header *pModal =
  208. &eep->modalHeader[j];
  209. integer = swab32(pModal->antCtrlCommon);
  210. pModal->antCtrlCommon = integer;
  211. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  212. integer = swab32(pModal->antCtrlChain[i]);
  213. pModal->antCtrlChain[i] = integer;
  214. }
  215. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  216. word = swab16(pModal->spurChans[i].spurChan);
  217. pModal->spurChans[i].spurChan = word;
  218. }
  219. }
  220. }
  221. if (sum != 0xffff || ar5416_get_eep_ver(ah) != AR5416_EEP_VER ||
  222. ar5416_get_eep_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  223. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  224. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  225. sum, ar5416_get_eep_ver(ah));
  226. return -EINVAL;
  227. }
  228. return 0;
  229. }
  230. static int ath9k_hw_check_4k_eeprom(struct ath_hw *ah)
  231. {
  232. #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
  233. struct ar5416_eeprom_4k *eep =
  234. (struct ar5416_eeprom_4k *) &ah->ah_eeprom.map4k;
  235. u16 *eepdata, temp, magic, magic2;
  236. u32 sum = 0, el;
  237. bool need_swap = false;
  238. int i, addr;
  239. if (!ath9k_hw_use_flash(ah)) {
  240. if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
  241. &magic)) {
  242. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  243. "Reading Magic # failed\n");
  244. return false;
  245. }
  246. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  247. "Read Magic = 0x%04X\n", magic);
  248. if (magic != AR5416_EEPROM_MAGIC) {
  249. magic2 = swab16(magic);
  250. if (magic2 == AR5416_EEPROM_MAGIC) {
  251. need_swap = true;
  252. eepdata = (u16 *) (&ah->ah_eeprom);
  253. for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
  254. temp = swab16(*eepdata);
  255. *eepdata = temp;
  256. eepdata++;
  257. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  258. "0x%04X ", *eepdata);
  259. if (((addr + 1) % 6) == 0)
  260. DPRINTF(ah->ah_sc,
  261. ATH_DBG_EEPROM, "\n");
  262. }
  263. } else {
  264. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  265. "Invalid EEPROM Magic. "
  266. "endianness mismatch.\n");
  267. return -EINVAL;
  268. }
  269. }
  270. }
  271. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
  272. need_swap ? "True" : "False");
  273. if (need_swap)
  274. el = swab16(ah->ah_eeprom.map4k.baseEepHeader.length);
  275. else
  276. el = ah->ah_eeprom.map4k.baseEepHeader.length;
  277. if (el > sizeof(struct ar5416_eeprom_def))
  278. el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
  279. else
  280. el = el / sizeof(u16);
  281. eepdata = (u16 *)(&ah->ah_eeprom);
  282. for (i = 0; i < el; i++)
  283. sum ^= *eepdata++;
  284. if (need_swap) {
  285. u32 integer;
  286. u16 word;
  287. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  288. "EEPROM Endianness is not native.. Changing \n");
  289. word = swab16(eep->baseEepHeader.length);
  290. eep->baseEepHeader.length = word;
  291. word = swab16(eep->baseEepHeader.checksum);
  292. eep->baseEepHeader.checksum = word;
  293. word = swab16(eep->baseEepHeader.version);
  294. eep->baseEepHeader.version = word;
  295. word = swab16(eep->baseEepHeader.regDmn[0]);
  296. eep->baseEepHeader.regDmn[0] = word;
  297. word = swab16(eep->baseEepHeader.regDmn[1]);
  298. eep->baseEepHeader.regDmn[1] = word;
  299. word = swab16(eep->baseEepHeader.rfSilent);
  300. eep->baseEepHeader.rfSilent = word;
  301. word = swab16(eep->baseEepHeader.blueToothOptions);
  302. eep->baseEepHeader.blueToothOptions = word;
  303. word = swab16(eep->baseEepHeader.deviceCap);
  304. eep->baseEepHeader.deviceCap = word;
  305. integer = swab32(eep->modalHeader.antCtrlCommon);
  306. eep->modalHeader.antCtrlCommon = integer;
  307. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  308. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  309. eep->modalHeader.antCtrlChain[i] = integer;
  310. }
  311. for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
  312. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  313. eep->modalHeader.spurChans[i].spurChan = word;
  314. }
  315. }
  316. if (sum != 0xffff || ar5416_get_eep4k_ver(ah) != AR5416_EEP_VER ||
  317. ar5416_get_eep4k_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  318. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  319. "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  320. sum, ar5416_get_eep4k_ver(ah));
  321. return -EINVAL;
  322. }
  323. return 0;
  324. #undef EEPROM_4K_SIZE
  325. }
  326. static int (*ath9k_check_eeprom[]) (struct ath_hw *) = {
  327. ath9k_hw_check_def_eeprom,
  328. ath9k_hw_check_4k_eeprom
  329. };
  330. static inline int ath9k_hw_check_eeprom(struct ath_hw *ah)
  331. {
  332. return ath9k_check_eeprom[ah->ah_eep_map](ah);
  333. }
  334. static inline bool ath9k_hw_fill_vpd_table(u8 pwrMin, u8 pwrMax, u8 *pPwrList,
  335. u8 *pVpdList, u16 numIntercepts,
  336. u8 *pRetVpdList)
  337. {
  338. u16 i, k;
  339. u8 currPwr = pwrMin;
  340. u16 idxL = 0, idxR = 0;
  341. for (i = 0; i <= (pwrMax - pwrMin) / 2; i++) {
  342. ath9k_hw_get_lower_upper_index(currPwr, pPwrList,
  343. numIntercepts, &(idxL),
  344. &(idxR));
  345. if (idxR < 1)
  346. idxR = 1;
  347. if (idxL == numIntercepts - 1)
  348. idxL = (u16) (numIntercepts - 2);
  349. if (pPwrList[idxL] == pPwrList[idxR])
  350. k = pVpdList[idxL];
  351. else
  352. k = (u16)(((currPwr - pPwrList[idxL]) * pVpdList[idxR] +
  353. (pPwrList[idxR] - currPwr) * pVpdList[idxL]) /
  354. (pPwrList[idxR] - pPwrList[idxL]));
  355. pRetVpdList[i] = (u8) k;
  356. currPwr += 2;
  357. }
  358. return true;
  359. }
  360. static void ath9k_hw_get_4k_gain_boundaries_pdadcs(struct ath_hw *ah,
  361. struct ath9k_channel *chan,
  362. struct cal_data_per_freq_4k *pRawDataSet,
  363. u8 *bChans, u16 availPiers,
  364. u16 tPdGainOverlap, int16_t *pMinCalPower,
  365. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  366. u16 numXpdGains)
  367. {
  368. #define TMP_VAL_VPD_TABLE \
  369. ((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));
  370. int i, j, k;
  371. int16_t ss;
  372. u16 idxL = 0, idxR = 0, numPiers;
  373. static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
  374. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  375. static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
  376. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  377. static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
  378. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  379. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  380. u8 minPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  381. u8 maxPwrT4[AR5416_EEP4K_NUM_PD_GAINS];
  382. int16_t vpdStep;
  383. int16_t tmpVal;
  384. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  385. bool match;
  386. int16_t minDelta = 0;
  387. struct chan_centers centers;
  388. #define PD_GAIN_BOUNDARY_DEFAULT 58;
  389. ath9k_hw_get_channel_centers(ah, chan, &centers);
  390. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  391. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  392. break;
  393. }
  394. match = ath9k_hw_get_lower_upper_index(
  395. (u8)FREQ2FBIN(centers.synth_center,
  396. IS_CHAN_2GHZ(chan)), bChans, numPiers,
  397. &idxL, &idxR);
  398. if (match) {
  399. for (i = 0; i < numXpdGains; i++) {
  400. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  401. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  402. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  403. pRawDataSet[idxL].pwrPdg[i],
  404. pRawDataSet[idxL].vpdPdg[i],
  405. AR5416_EEP4K_PD_GAIN_ICEPTS,
  406. vpdTableI[i]);
  407. }
  408. } else {
  409. for (i = 0; i < numXpdGains; i++) {
  410. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  411. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  412. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  413. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  414. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  415. maxPwrT4[i] =
  416. min(pPwrL[AR5416_EEP4K_PD_GAIN_ICEPTS - 1],
  417. pPwrR[AR5416_EEP4K_PD_GAIN_ICEPTS - 1]);
  418. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  419. pPwrL, pVpdL,
  420. AR5416_EEP4K_PD_GAIN_ICEPTS,
  421. vpdTableL[i]);
  422. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  423. pPwrR, pVpdR,
  424. AR5416_EEP4K_PD_GAIN_ICEPTS,
  425. vpdTableR[i]);
  426. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  427. vpdTableI[i][j] =
  428. (u8)(ath9k_hw_interpolate((u16)
  429. FREQ2FBIN(centers.
  430. synth_center,
  431. IS_CHAN_2GHZ
  432. (chan)),
  433. bChans[idxL], bChans[idxR],
  434. vpdTableL[i][j], vpdTableR[i][j]));
  435. }
  436. }
  437. }
  438. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  439. k = 0;
  440. for (i = 0; i < numXpdGains; i++) {
  441. if (i == (numXpdGains - 1))
  442. pPdGainBoundaries[i] =
  443. (u16)(maxPwrT4[i] / 2);
  444. else
  445. pPdGainBoundaries[i] =
  446. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  447. pPdGainBoundaries[i] =
  448. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  449. if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
  450. minDelta = pPdGainBoundaries[0] - 23;
  451. pPdGainBoundaries[0] = 23;
  452. } else {
  453. minDelta = 0;
  454. }
  455. if (i == 0) {
  456. if (AR_SREV_9280_10_OR_LATER(ah))
  457. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  458. else
  459. ss = 0;
  460. } else {
  461. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  462. (minPwrT4[i] / 2)) -
  463. tPdGainOverlap + 1 + minDelta);
  464. }
  465. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  466. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  467. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  468. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  469. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  470. ss++;
  471. }
  472. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  473. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  474. (minPwrT4[i] / 2));
  475. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  476. tgtIndex : sizeCurrVpdTable;
  477. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1)))
  478. pPDADCValues[k++] = vpdTableI[i][ss++];
  479. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  480. vpdTableI[i][sizeCurrVpdTable - 2]);
  481. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  482. if (tgtIndex > maxIndex) {
  483. while ((ss <= tgtIndex) &&
  484. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  485. tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
  486. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  487. 255 : tmpVal);
  488. ss++;
  489. }
  490. }
  491. }
  492. while (i < AR5416_EEP4K_PD_GAINS_IN_MASK) {
  493. pPdGainBoundaries[i] = PD_GAIN_BOUNDARY_DEFAULT;
  494. i++;
  495. }
  496. while (k < AR5416_NUM_PDADC_VALUES) {
  497. pPDADCValues[k] = pPDADCValues[k - 1];
  498. k++;
  499. }
  500. return;
  501. #undef TMP_VAL_VPD_TABLE
  502. }
  503. static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
  504. struct ath9k_channel *chan,
  505. struct cal_data_per_freq *pRawDataSet,
  506. u8 *bChans, u16 availPiers,
  507. u16 tPdGainOverlap, int16_t *pMinCalPower,
  508. u16 *pPdGainBoundaries, u8 *pPDADCValues,
  509. u16 numXpdGains)
  510. {
  511. int i, j, k;
  512. int16_t ss;
  513. u16 idxL = 0, idxR = 0, numPiers;
  514. static u8 vpdTableL[AR5416_NUM_PD_GAINS]
  515. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  516. static u8 vpdTableR[AR5416_NUM_PD_GAINS]
  517. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  518. static u8 vpdTableI[AR5416_NUM_PD_GAINS]
  519. [AR5416_MAX_PWR_RANGE_IN_HALF_DB];
  520. u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
  521. u8 minPwrT4[AR5416_NUM_PD_GAINS];
  522. u8 maxPwrT4[AR5416_NUM_PD_GAINS];
  523. int16_t vpdStep;
  524. int16_t tmpVal;
  525. u16 sizeCurrVpdTable, maxIndex, tgtIndex;
  526. bool match;
  527. int16_t minDelta = 0;
  528. struct chan_centers centers;
  529. ath9k_hw_get_channel_centers(ah, chan, &centers);
  530. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  531. if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
  532. break;
  533. }
  534. match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
  535. IS_CHAN_2GHZ(chan)),
  536. bChans, numPiers, &idxL, &idxR);
  537. if (match) {
  538. for (i = 0; i < numXpdGains; i++) {
  539. minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
  540. maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
  541. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  542. pRawDataSet[idxL].pwrPdg[i],
  543. pRawDataSet[idxL].vpdPdg[i],
  544. AR5416_PD_GAIN_ICEPTS,
  545. vpdTableI[i]);
  546. }
  547. } else {
  548. for (i = 0; i < numXpdGains; i++) {
  549. pVpdL = pRawDataSet[idxL].vpdPdg[i];
  550. pPwrL = pRawDataSet[idxL].pwrPdg[i];
  551. pVpdR = pRawDataSet[idxR].vpdPdg[i];
  552. pPwrR = pRawDataSet[idxR].pwrPdg[i];
  553. minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
  554. maxPwrT4[i] =
  555. min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
  556. pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
  557. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  558. pPwrL, pVpdL,
  559. AR5416_PD_GAIN_ICEPTS,
  560. vpdTableL[i]);
  561. ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
  562. pPwrR, pVpdR,
  563. AR5416_PD_GAIN_ICEPTS,
  564. vpdTableR[i]);
  565. for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
  566. vpdTableI[i][j] =
  567. (u8)(ath9k_hw_interpolate((u16)
  568. FREQ2FBIN(centers.
  569. synth_center,
  570. IS_CHAN_2GHZ
  571. (chan)),
  572. bChans[idxL], bChans[idxR],
  573. vpdTableL[i][j], vpdTableR[i][j]));
  574. }
  575. }
  576. }
  577. *pMinCalPower = (int16_t)(minPwrT4[0] / 2);
  578. k = 0;
  579. for (i = 0; i < numXpdGains; i++) {
  580. if (i == (numXpdGains - 1))
  581. pPdGainBoundaries[i] =
  582. (u16)(maxPwrT4[i] / 2);
  583. else
  584. pPdGainBoundaries[i] =
  585. (u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
  586. pPdGainBoundaries[i] =
  587. min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
  588. if ((i == 0) && !AR_SREV_5416_V20_OR_LATER(ah)) {
  589. minDelta = pPdGainBoundaries[0] - 23;
  590. pPdGainBoundaries[0] = 23;
  591. } else {
  592. minDelta = 0;
  593. }
  594. if (i == 0) {
  595. if (AR_SREV_9280_10_OR_LATER(ah))
  596. ss = (int16_t)(0 - (minPwrT4[i] / 2));
  597. else
  598. ss = 0;
  599. } else {
  600. ss = (int16_t)((pPdGainBoundaries[i - 1] -
  601. (minPwrT4[i] / 2)) -
  602. tPdGainOverlap + 1 + minDelta);
  603. }
  604. vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
  605. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  606. while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  607. tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
  608. pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
  609. ss++;
  610. }
  611. sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
  612. tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
  613. (minPwrT4[i] / 2));
  614. maxIndex = (tgtIndex < sizeCurrVpdTable) ?
  615. tgtIndex : sizeCurrVpdTable;
  616. while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  617. pPDADCValues[k++] = vpdTableI[i][ss++];
  618. }
  619. vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
  620. vpdTableI[i][sizeCurrVpdTable - 2]);
  621. vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
  622. if (tgtIndex > maxIndex) {
  623. while ((ss <= tgtIndex) &&
  624. (k < (AR5416_NUM_PDADC_VALUES - 1))) {
  625. tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
  626. (ss - maxIndex + 1) * vpdStep));
  627. pPDADCValues[k++] = (u8)((tmpVal > 255) ?
  628. 255 : tmpVal);
  629. ss++;
  630. }
  631. }
  632. }
  633. while (i < AR5416_PD_GAINS_IN_MASK) {
  634. pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
  635. i++;
  636. }
  637. while (k < AR5416_NUM_PDADC_VALUES) {
  638. pPDADCValues[k] = pPDADCValues[k - 1];
  639. k++;
  640. }
  641. return;
  642. }
  643. static void ath9k_hw_get_legacy_target_powers(struct ath_hw *ah,
  644. struct ath9k_channel *chan,
  645. struct cal_target_power_leg *powInfo,
  646. u16 numChannels,
  647. struct cal_target_power_leg *pNewPower,
  648. u16 numRates, bool isExtTarget)
  649. {
  650. struct chan_centers centers;
  651. u16 clo, chi;
  652. int i;
  653. int matchIndex = -1, lowIndex = -1;
  654. u16 freq;
  655. ath9k_hw_get_channel_centers(ah, chan, &centers);
  656. freq = (isExtTarget) ? centers.ext_center : centers.ctl_center;
  657. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel,
  658. IS_CHAN_2GHZ(chan))) {
  659. matchIndex = 0;
  660. } else {
  661. for (i = 0; (i < numChannels) &&
  662. (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  663. if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
  664. IS_CHAN_2GHZ(chan))) {
  665. matchIndex = i;
  666. break;
  667. } else if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
  668. IS_CHAN_2GHZ(chan))) &&
  669. (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
  670. IS_CHAN_2GHZ(chan)))) {
  671. lowIndex = i - 1;
  672. break;
  673. }
  674. }
  675. if ((matchIndex == -1) && (lowIndex == -1))
  676. matchIndex = i - 1;
  677. }
  678. if (matchIndex != -1) {
  679. *pNewPower = powInfo[matchIndex];
  680. } else {
  681. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  682. IS_CHAN_2GHZ(chan));
  683. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  684. IS_CHAN_2GHZ(chan));
  685. for (i = 0; i < numRates; i++) {
  686. pNewPower->tPow2x[i] =
  687. (u8)ath9k_hw_interpolate(freq, clo, chi,
  688. powInfo[lowIndex].tPow2x[i],
  689. powInfo[lowIndex + 1].tPow2x[i]);
  690. }
  691. }
  692. }
  693. static void ath9k_hw_get_target_powers(struct ath_hw *ah,
  694. struct ath9k_channel *chan,
  695. struct cal_target_power_ht *powInfo,
  696. u16 numChannels,
  697. struct cal_target_power_ht *pNewPower,
  698. u16 numRates, bool isHt40Target)
  699. {
  700. struct chan_centers centers;
  701. u16 clo, chi;
  702. int i;
  703. int matchIndex = -1, lowIndex = -1;
  704. u16 freq;
  705. ath9k_hw_get_channel_centers(ah, chan, &centers);
  706. freq = isHt40Target ? centers.synth_center : centers.ctl_center;
  707. if (freq <= ath9k_hw_fbin2freq(powInfo[0].bChannel, IS_CHAN_2GHZ(chan))) {
  708. matchIndex = 0;
  709. } else {
  710. for (i = 0; (i < numChannels) &&
  711. (powInfo[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  712. if (freq == ath9k_hw_fbin2freq(powInfo[i].bChannel,
  713. IS_CHAN_2GHZ(chan))) {
  714. matchIndex = i;
  715. break;
  716. } else
  717. if ((freq < ath9k_hw_fbin2freq(powInfo[i].bChannel,
  718. IS_CHAN_2GHZ(chan))) &&
  719. (freq > ath9k_hw_fbin2freq(powInfo[i - 1].bChannel,
  720. IS_CHAN_2GHZ(chan)))) {
  721. lowIndex = i - 1;
  722. break;
  723. }
  724. }
  725. if ((matchIndex == -1) && (lowIndex == -1))
  726. matchIndex = i - 1;
  727. }
  728. if (matchIndex != -1) {
  729. *pNewPower = powInfo[matchIndex];
  730. } else {
  731. clo = ath9k_hw_fbin2freq(powInfo[lowIndex].bChannel,
  732. IS_CHAN_2GHZ(chan));
  733. chi = ath9k_hw_fbin2freq(powInfo[lowIndex + 1].bChannel,
  734. IS_CHAN_2GHZ(chan));
  735. for (i = 0; i < numRates; i++) {
  736. pNewPower->tPow2x[i] = (u8)ath9k_hw_interpolate(freq,
  737. clo, chi,
  738. powInfo[lowIndex].tPow2x[i],
  739. powInfo[lowIndex + 1].tPow2x[i]);
  740. }
  741. }
  742. }
  743. static u16 ath9k_hw_get_max_edge_power(u16 freq,
  744. struct cal_ctl_edges *pRdEdgesPower,
  745. bool is2GHz, int num_band_edges)
  746. {
  747. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  748. int i;
  749. for (i = 0; (i < num_band_edges) &&
  750. (pRdEdgesPower[i].bChannel != AR5416_BCHAN_UNUSED); i++) {
  751. if (freq == ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel, is2GHz)) {
  752. twiceMaxEdgePower = pRdEdgesPower[i].tPower;
  753. break;
  754. } else if ((i > 0) &&
  755. (freq < ath9k_hw_fbin2freq(pRdEdgesPower[i].bChannel,
  756. is2GHz))) {
  757. if (ath9k_hw_fbin2freq(pRdEdgesPower[i - 1].bChannel,
  758. is2GHz) < freq &&
  759. pRdEdgesPower[i - 1].flag) {
  760. twiceMaxEdgePower =
  761. pRdEdgesPower[i - 1].tPower;
  762. }
  763. break;
  764. }
  765. }
  766. return twiceMaxEdgePower;
  767. }
  768. static bool ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
  769. struct ath9k_channel *chan,
  770. int16_t *pTxPowerIndexOffset)
  771. {
  772. struct ar5416_eeprom_def *pEepData = &ah->ah_eeprom.def;
  773. struct cal_data_per_freq *pRawDataset;
  774. u8 *pCalBChans = NULL;
  775. u16 pdGainOverlap_t2;
  776. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  777. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  778. u16 numPiers, i, j;
  779. int16_t tMinCalPower;
  780. u16 numXpdGain, xpdMask;
  781. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
  782. u32 reg32, regOffset, regChainOffset;
  783. int16_t modalIdx;
  784. modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
  785. xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
  786. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  787. AR5416_EEP_MINOR_VER_2) {
  788. pdGainOverlap_t2 =
  789. pEepData->modalHeader[modalIdx].pdGainOverlap;
  790. } else {
  791. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  792. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  793. }
  794. if (IS_CHAN_2GHZ(chan)) {
  795. pCalBChans = pEepData->calFreqPier2G;
  796. numPiers = AR5416_NUM_2G_CAL_PIERS;
  797. } else {
  798. pCalBChans = pEepData->calFreqPier5G;
  799. numPiers = AR5416_NUM_5G_CAL_PIERS;
  800. }
  801. numXpdGain = 0;
  802. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  803. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  804. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  805. break;
  806. xpdGainValues[numXpdGain] =
  807. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  808. numXpdGain++;
  809. }
  810. }
  811. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  812. (numXpdGain - 1) & 0x3);
  813. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  814. xpdGainValues[0]);
  815. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  816. xpdGainValues[1]);
  817. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  818. xpdGainValues[2]);
  819. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  820. if (AR_SREV_5416_V20_OR_LATER(ah) &&
  821. (ah->ah_rxchainmask == 5 || ah->ah_txchainmask == 5) &&
  822. (i != 0)) {
  823. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  824. } else
  825. regChainOffset = i * 0x1000;
  826. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  827. if (IS_CHAN_2GHZ(chan))
  828. pRawDataset = pEepData->calPierData2G[i];
  829. else
  830. pRawDataset = pEepData->calPierData5G[i];
  831. ath9k_hw_get_def_gain_boundaries_pdadcs(ah, chan,
  832. pRawDataset, pCalBChans,
  833. numPiers, pdGainOverlap_t2,
  834. &tMinCalPower, gainBoundaries,
  835. pdadcValues, numXpdGain);
  836. if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  837. REG_WRITE(ah,
  838. AR_PHY_TPCRG5 + regChainOffset,
  839. SM(pdGainOverlap_t2,
  840. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  841. | SM(gainBoundaries[0],
  842. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  843. | SM(gainBoundaries[1],
  844. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  845. | SM(gainBoundaries[2],
  846. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  847. | SM(gainBoundaries[3],
  848. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  849. }
  850. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  851. for (j = 0; j < 32; j++) {
  852. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  853. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  854. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  855. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  856. REG_WRITE(ah, regOffset, reg32);
  857. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  858. "PDADC (%d,%4x): %4.4x %8.8x\n",
  859. i, regChainOffset, regOffset,
  860. reg32);
  861. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  862. "PDADC: Chain %d | PDADC %3d "
  863. "Value %3d | PDADC %3d Value %3d | "
  864. "PDADC %3d Value %3d | PDADC %3d "
  865. "Value %3d |\n",
  866. i, 4 * j, pdadcValues[4 * j],
  867. 4 * j + 1, pdadcValues[4 * j + 1],
  868. 4 * j + 2, pdadcValues[4 * j + 2],
  869. 4 * j + 3,
  870. pdadcValues[4 * j + 3]);
  871. regOffset += 4;
  872. }
  873. }
  874. }
  875. *pTxPowerIndexOffset = 0;
  876. return true;
  877. }
  878. static bool ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
  879. struct ath9k_channel *chan,
  880. int16_t *pTxPowerIndexOffset)
  881. {
  882. struct ar5416_eeprom_4k *pEepData = &ah->ah_eeprom.map4k;
  883. struct cal_data_per_freq_4k *pRawDataset;
  884. u8 *pCalBChans = NULL;
  885. u16 pdGainOverlap_t2;
  886. static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  887. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  888. u16 numPiers, i, j;
  889. int16_t tMinCalPower;
  890. u16 numXpdGain, xpdMask;
  891. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
  892. u32 reg32, regOffset, regChainOffset;
  893. xpdMask = pEepData->modalHeader.xpdGain;
  894. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  895. AR5416_EEP_MINOR_VER_2) {
  896. pdGainOverlap_t2 =
  897. pEepData->modalHeader.pdGainOverlap;
  898. } else {
  899. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  900. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  901. }
  902. pCalBChans = pEepData->calFreqPier2G;
  903. numPiers = AR5416_NUM_2G_CAL_PIERS;
  904. numXpdGain = 0;
  905. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  906. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  907. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  908. break;
  909. xpdGainValues[numXpdGain] =
  910. (u16)(AR5416_PD_GAINS_IN_MASK - i);
  911. numXpdGain++;
  912. }
  913. }
  914. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  915. (numXpdGain - 1) & 0x3);
  916. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  917. xpdGainValues[0]);
  918. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  919. xpdGainValues[1]);
  920. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  921. xpdGainValues[2]);
  922. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  923. if (AR_SREV_5416_V20_OR_LATER(ah) &&
  924. (ah->ah_rxchainmask == 5 || ah->ah_txchainmask == 5) &&
  925. (i != 0)) {
  926. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  927. } else
  928. regChainOffset = i * 0x1000;
  929. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  930. pRawDataset = pEepData->calPierData2G[i];
  931. ath9k_hw_get_4k_gain_boundaries_pdadcs(ah, chan,
  932. pRawDataset, pCalBChans,
  933. numPiers, pdGainOverlap_t2,
  934. &tMinCalPower, gainBoundaries,
  935. pdadcValues, numXpdGain);
  936. if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  937. REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
  938. SM(pdGainOverlap_t2,
  939. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  940. | SM(gainBoundaries[0],
  941. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  942. | SM(gainBoundaries[1],
  943. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  944. | SM(gainBoundaries[2],
  945. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  946. | SM(gainBoundaries[3],
  947. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
  948. }
  949. regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
  950. for (j = 0; j < 32; j++) {
  951. reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
  952. ((pdadcValues[4 * j + 1] & 0xFF) << 8) |
  953. ((pdadcValues[4 * j + 2] & 0xFF) << 16)|
  954. ((pdadcValues[4 * j + 3] & 0xFF) << 24);
  955. REG_WRITE(ah, regOffset, reg32);
  956. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  957. "PDADC (%d,%4x): %4.4x %8.8x\n",
  958. i, regChainOffset, regOffset,
  959. reg32);
  960. DPRINTF(ah->ah_sc, ATH_DBG_REG_IO,
  961. "PDADC: Chain %d | "
  962. "PDADC %3d Value %3d | "
  963. "PDADC %3d Value %3d | "
  964. "PDADC %3d Value %3d | "
  965. "PDADC %3d Value %3d |\n",
  966. i, 4 * j, pdadcValues[4 * j],
  967. 4 * j + 1, pdadcValues[4 * j + 1],
  968. 4 * j + 2, pdadcValues[4 * j + 2],
  969. 4 * j + 3,
  970. pdadcValues[4 * j + 3]);
  971. regOffset += 4;
  972. }
  973. }
  974. }
  975. *pTxPowerIndexOffset = 0;
  976. return true;
  977. }
  978. static bool ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
  979. struct ath9k_channel *chan,
  980. int16_t *ratesArray,
  981. u16 cfgCtl,
  982. u16 AntennaReduction,
  983. u16 twiceMaxRegulatoryPower,
  984. u16 powerLimit)
  985. {
  986. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6 /* 10*log10(2)*2 */
  987. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10 /* 10*log10(3)*2 */
  988. struct ar5416_eeprom_def *pEepData = &ah->ah_eeprom.def;
  989. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  990. static const u16 tpScaleReductionTable[5] =
  991. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  992. int i;
  993. int16_t twiceLargestAntenna;
  994. struct cal_ctl_data *rep;
  995. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  996. 0, { 0, 0, 0, 0}
  997. };
  998. struct cal_target_power_leg targetPowerOfdmExt = {
  999. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  1000. 0, { 0, 0, 0, 0 }
  1001. };
  1002. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  1003. 0, {0, 0, 0, 0}
  1004. };
  1005. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  1006. u16 ctlModesFor11a[] =
  1007. { CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
  1008. u16 ctlModesFor11g[] =
  1009. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  1010. CTL_2GHT40
  1011. };
  1012. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  1013. struct chan_centers centers;
  1014. int tx_chainmask;
  1015. u16 twiceMinEdgePower;
  1016. tx_chainmask = ah->ah_txchainmask;
  1017. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1018. twiceLargestAntenna = max(
  1019. pEepData->modalHeader
  1020. [IS_CHAN_2GHZ(chan)].antennaGainCh[0],
  1021. pEepData->modalHeader
  1022. [IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
  1023. twiceLargestAntenna = max((u8)twiceLargestAntenna,
  1024. pEepData->modalHeader
  1025. [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
  1026. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  1027. twiceLargestAntenna, 0);
  1028. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  1029. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  1030. maxRegAllowedPower -=
  1031. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  1032. }
  1033. scaledPower = min(powerLimit, maxRegAllowedPower);
  1034. switch (ar5416_get_ntxchains(tx_chainmask)) {
  1035. case 1:
  1036. break;
  1037. case 2:
  1038. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  1039. break;
  1040. case 3:
  1041. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  1042. break;
  1043. }
  1044. scaledPower = max((u16)0, scaledPower);
  1045. if (IS_CHAN_2GHZ(chan)) {
  1046. numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
  1047. SUB_NUM_CTL_MODES_AT_2G_40;
  1048. pCtlMode = ctlModesFor11g;
  1049. ath9k_hw_get_legacy_target_powers(ah, chan,
  1050. pEepData->calTargetPowerCck,
  1051. AR5416_NUM_2G_CCK_TARGET_POWERS,
  1052. &targetPowerCck, 4, false);
  1053. ath9k_hw_get_legacy_target_powers(ah, chan,
  1054. pEepData->calTargetPower2G,
  1055. AR5416_NUM_2G_20_TARGET_POWERS,
  1056. &targetPowerOfdm, 4, false);
  1057. ath9k_hw_get_target_powers(ah, chan,
  1058. pEepData->calTargetPower2GHT20,
  1059. AR5416_NUM_2G_20_TARGET_POWERS,
  1060. &targetPowerHt20, 8, false);
  1061. if (IS_CHAN_HT40(chan)) {
  1062. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  1063. ath9k_hw_get_target_powers(ah, chan,
  1064. pEepData->calTargetPower2GHT40,
  1065. AR5416_NUM_2G_40_TARGET_POWERS,
  1066. &targetPowerHt40, 8, true);
  1067. ath9k_hw_get_legacy_target_powers(ah, chan,
  1068. pEepData->calTargetPowerCck,
  1069. AR5416_NUM_2G_CCK_TARGET_POWERS,
  1070. &targetPowerCckExt, 4, true);
  1071. ath9k_hw_get_legacy_target_powers(ah, chan,
  1072. pEepData->calTargetPower2G,
  1073. AR5416_NUM_2G_20_TARGET_POWERS,
  1074. &targetPowerOfdmExt, 4, true);
  1075. }
  1076. } else {
  1077. numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
  1078. SUB_NUM_CTL_MODES_AT_5G_40;
  1079. pCtlMode = ctlModesFor11a;
  1080. ath9k_hw_get_legacy_target_powers(ah, chan,
  1081. pEepData->calTargetPower5G,
  1082. AR5416_NUM_5G_20_TARGET_POWERS,
  1083. &targetPowerOfdm, 4, false);
  1084. ath9k_hw_get_target_powers(ah, chan,
  1085. pEepData->calTargetPower5GHT20,
  1086. AR5416_NUM_5G_20_TARGET_POWERS,
  1087. &targetPowerHt20, 8, false);
  1088. if (IS_CHAN_HT40(chan)) {
  1089. numCtlModes = ARRAY_SIZE(ctlModesFor11a);
  1090. ath9k_hw_get_target_powers(ah, chan,
  1091. pEepData->calTargetPower5GHT40,
  1092. AR5416_NUM_5G_40_TARGET_POWERS,
  1093. &targetPowerHt40, 8, true);
  1094. ath9k_hw_get_legacy_target_powers(ah, chan,
  1095. pEepData->calTargetPower5G,
  1096. AR5416_NUM_5G_20_TARGET_POWERS,
  1097. &targetPowerOfdmExt, 4, true);
  1098. }
  1099. }
  1100. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  1101. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  1102. (pCtlMode[ctlMode] == CTL_2GHT40);
  1103. if (isHt40CtlMode)
  1104. freq = centers.synth_center;
  1105. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  1106. freq = centers.ext_center;
  1107. else
  1108. freq = centers.ctl_center;
  1109. if (ar5416_get_eep_ver(ah) == 14 && ar5416_get_eep_rev(ah) <= 2)
  1110. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  1111. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1112. "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
  1113. "EXT_ADDITIVE %d\n",
  1114. ctlMode, numCtlModes, isHt40CtlMode,
  1115. (pCtlMode[ctlMode] & EXT_ADDITIVE));
  1116. for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  1117. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1118. " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
  1119. "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
  1120. "chan %d\n",
  1121. i, cfgCtl, pCtlMode[ctlMode],
  1122. pEepData->ctlIndex[i], chan->channel);
  1123. if ((((cfgCtl & ~CTL_MODE_M) |
  1124. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  1125. pEepData->ctlIndex[i]) ||
  1126. (((cfgCtl & ~CTL_MODE_M) |
  1127. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  1128. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
  1129. rep = &(pEepData->ctlData[i]);
  1130. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  1131. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
  1132. IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
  1133. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1134. " MATCH-EE_IDX %d: ch %d is2 %d "
  1135. "2xMinEdge %d chainmask %d chains %d\n",
  1136. i, freq, IS_CHAN_2GHZ(chan),
  1137. twiceMinEdgePower, tx_chainmask,
  1138. ar5416_get_ntxchains
  1139. (tx_chainmask));
  1140. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  1141. twiceMaxEdgePower = min(twiceMaxEdgePower,
  1142. twiceMinEdgePower);
  1143. } else {
  1144. twiceMaxEdgePower = twiceMinEdgePower;
  1145. break;
  1146. }
  1147. }
  1148. }
  1149. minCtlPower = min(twiceMaxEdgePower, scaledPower);
  1150. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1151. " SEL-Min ctlMode %d pCtlMode %d "
  1152. "2xMaxEdge %d sP %d minCtlPwr %d\n",
  1153. ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
  1154. scaledPower, minCtlPower);
  1155. switch (pCtlMode[ctlMode]) {
  1156. case CTL_11B:
  1157. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  1158. targetPowerCck.tPow2x[i] =
  1159. min((u16)targetPowerCck.tPow2x[i],
  1160. minCtlPower);
  1161. }
  1162. break;
  1163. case CTL_11A:
  1164. case CTL_11G:
  1165. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  1166. targetPowerOfdm.tPow2x[i] =
  1167. min((u16)targetPowerOfdm.tPow2x[i],
  1168. minCtlPower);
  1169. }
  1170. break;
  1171. case CTL_5GHT20:
  1172. case CTL_2GHT20:
  1173. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  1174. targetPowerHt20.tPow2x[i] =
  1175. min((u16)targetPowerHt20.tPow2x[i],
  1176. minCtlPower);
  1177. }
  1178. break;
  1179. case CTL_11B_EXT:
  1180. targetPowerCckExt.tPow2x[0] = min((u16)
  1181. targetPowerCckExt.tPow2x[0],
  1182. minCtlPower);
  1183. break;
  1184. case CTL_11A_EXT:
  1185. case CTL_11G_EXT:
  1186. targetPowerOfdmExt.tPow2x[0] = min((u16)
  1187. targetPowerOfdmExt.tPow2x[0],
  1188. minCtlPower);
  1189. break;
  1190. case CTL_5GHT40:
  1191. case CTL_2GHT40:
  1192. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  1193. targetPowerHt40.tPow2x[i] =
  1194. min((u16)targetPowerHt40.tPow2x[i],
  1195. minCtlPower);
  1196. }
  1197. break;
  1198. default:
  1199. break;
  1200. }
  1201. }
  1202. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  1203. ratesArray[rate18mb] = ratesArray[rate24mb] =
  1204. targetPowerOfdm.tPow2x[0];
  1205. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  1206. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  1207. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  1208. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  1209. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  1210. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  1211. if (IS_CHAN_2GHZ(chan)) {
  1212. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  1213. ratesArray[rate2s] = ratesArray[rate2l] =
  1214. targetPowerCck.tPow2x[1];
  1215. ratesArray[rate5_5s] = ratesArray[rate5_5l] =
  1216. targetPowerCck.tPow2x[2];
  1217. ;
  1218. ratesArray[rate11s] = ratesArray[rate11l] =
  1219. targetPowerCck.tPow2x[3];
  1220. ;
  1221. }
  1222. if (IS_CHAN_HT40(chan)) {
  1223. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  1224. ratesArray[rateHt40_0 + i] =
  1225. targetPowerHt40.tPow2x[i];
  1226. }
  1227. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  1228. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  1229. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  1230. if (IS_CHAN_2GHZ(chan)) {
  1231. ratesArray[rateExtCck] =
  1232. targetPowerCckExt.tPow2x[0];
  1233. }
  1234. }
  1235. return true;
  1236. }
  1237. static bool ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
  1238. struct ath9k_channel *chan,
  1239. int16_t *ratesArray,
  1240. u16 cfgCtl,
  1241. u16 AntennaReduction,
  1242. u16 twiceMaxRegulatoryPower,
  1243. u16 powerLimit)
  1244. {
  1245. struct ar5416_eeprom_4k *pEepData = &ah->ah_eeprom.map4k;
  1246. u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  1247. static const u16 tpScaleReductionTable[5] =
  1248. { 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
  1249. int i;
  1250. int16_t twiceLargestAntenna;
  1251. struct cal_ctl_data_4k *rep;
  1252. struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
  1253. 0, { 0, 0, 0, 0}
  1254. };
  1255. struct cal_target_power_leg targetPowerOfdmExt = {
  1256. 0, { 0, 0, 0, 0} }, targetPowerCckExt = {
  1257. 0, { 0, 0, 0, 0 }
  1258. };
  1259. struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
  1260. 0, {0, 0, 0, 0}
  1261. };
  1262. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  1263. u16 ctlModesFor11g[] =
  1264. { CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
  1265. CTL_2GHT40
  1266. };
  1267. u16 numCtlModes, *pCtlMode, ctlMode, freq;
  1268. struct chan_centers centers;
  1269. int tx_chainmask;
  1270. u16 twiceMinEdgePower;
  1271. tx_chainmask = ah->ah_txchainmask;
  1272. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1273. twiceLargestAntenna = pEepData->modalHeader.antennaGainCh[0];
  1274. twiceLargestAntenna = (int16_t)min(AntennaReduction -
  1275. twiceLargestAntenna, 0);
  1276. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  1277. if (ah->regulatory.tp_scale != ATH9K_TP_SCALE_MAX) {
  1278. maxRegAllowedPower -=
  1279. (tpScaleReductionTable[(ah->regulatory.tp_scale)] * 2);
  1280. }
  1281. scaledPower = min(powerLimit, maxRegAllowedPower);
  1282. scaledPower = max((u16)0, scaledPower);
  1283. numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  1284. pCtlMode = ctlModesFor11g;
  1285. ath9k_hw_get_legacy_target_powers(ah, chan,
  1286. pEepData->calTargetPowerCck,
  1287. AR5416_NUM_2G_CCK_TARGET_POWERS,
  1288. &targetPowerCck, 4, false);
  1289. ath9k_hw_get_legacy_target_powers(ah, chan,
  1290. pEepData->calTargetPower2G,
  1291. AR5416_NUM_2G_20_TARGET_POWERS,
  1292. &targetPowerOfdm, 4, false);
  1293. ath9k_hw_get_target_powers(ah, chan,
  1294. pEepData->calTargetPower2GHT20,
  1295. AR5416_NUM_2G_20_TARGET_POWERS,
  1296. &targetPowerHt20, 8, false);
  1297. if (IS_CHAN_HT40(chan)) {
  1298. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  1299. ath9k_hw_get_target_powers(ah, chan,
  1300. pEepData->calTargetPower2GHT40,
  1301. AR5416_NUM_2G_40_TARGET_POWERS,
  1302. &targetPowerHt40, 8, true);
  1303. ath9k_hw_get_legacy_target_powers(ah, chan,
  1304. pEepData->calTargetPowerCck,
  1305. AR5416_NUM_2G_CCK_TARGET_POWERS,
  1306. &targetPowerCckExt, 4, true);
  1307. ath9k_hw_get_legacy_target_powers(ah, chan,
  1308. pEepData->calTargetPower2G,
  1309. AR5416_NUM_2G_20_TARGET_POWERS,
  1310. &targetPowerOfdmExt, 4, true);
  1311. }
  1312. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  1313. bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
  1314. (pCtlMode[ctlMode] == CTL_2GHT40);
  1315. if (isHt40CtlMode)
  1316. freq = centers.synth_center;
  1317. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  1318. freq = centers.ext_center;
  1319. else
  1320. freq = centers.ctl_center;
  1321. if (ar5416_get_eep_ver(ah) == 14 &&
  1322. ar5416_get_eep_rev(ah) <= 2)
  1323. twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
  1324. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1325. "LOOP-Mode ctlMode %d < %d, isHt40CtlMode %d, "
  1326. "EXT_ADDITIVE %d\n",
  1327. ctlMode, numCtlModes, isHt40CtlMode,
  1328. (pCtlMode[ctlMode] & EXT_ADDITIVE));
  1329. for (i = 0; (i < AR5416_NUM_CTLS) &&
  1330. pEepData->ctlIndex[i]; i++) {
  1331. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1332. " LOOP-Ctlidx %d: cfgCtl 0x%2.2x "
  1333. "pCtlMode 0x%2.2x ctlIndex 0x%2.2x "
  1334. "chan %d\n",
  1335. i, cfgCtl, pCtlMode[ctlMode],
  1336. pEepData->ctlIndex[i], chan->channel);
  1337. if ((((cfgCtl & ~CTL_MODE_M) |
  1338. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  1339. pEepData->ctlIndex[i]) ||
  1340. (((cfgCtl & ~CTL_MODE_M) |
  1341. (pCtlMode[ctlMode] & CTL_MODE_M)) ==
  1342. ((pEepData->ctlIndex[i] & CTL_MODE_M) |
  1343. SD_NO_CTL))) {
  1344. rep = &(pEepData->ctlData[i]);
  1345. twiceMinEdgePower =
  1346. ath9k_hw_get_max_edge_power(freq,
  1347. rep->ctlEdges[ar5416_get_ntxchains
  1348. (tx_chainmask) - 1],
  1349. IS_CHAN_2GHZ(chan),
  1350. AR5416_EEP4K_NUM_BAND_EDGES);
  1351. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1352. " MATCH-EE_IDX %d: ch %d is2 %d "
  1353. "2xMinEdge %d chainmask %d chains %d\n",
  1354. i, freq, IS_CHAN_2GHZ(chan),
  1355. twiceMinEdgePower, tx_chainmask,
  1356. ar5416_get_ntxchains
  1357. (tx_chainmask));
  1358. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  1359. twiceMaxEdgePower =
  1360. min(twiceMaxEdgePower,
  1361. twiceMinEdgePower);
  1362. } else {
  1363. twiceMaxEdgePower = twiceMinEdgePower;
  1364. break;
  1365. }
  1366. }
  1367. }
  1368. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  1369. DPRINTF(ah->ah_sc, ATH_DBG_POWER_MGMT,
  1370. " SEL-Min ctlMode %d pCtlMode %d "
  1371. "2xMaxEdge %d sP %d minCtlPwr %d\n",
  1372. ctlMode, pCtlMode[ctlMode], twiceMaxEdgePower,
  1373. scaledPower, minCtlPower);
  1374. switch (pCtlMode[ctlMode]) {
  1375. case CTL_11B:
  1376. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x);
  1377. i++) {
  1378. targetPowerCck.tPow2x[i] =
  1379. min((u16)targetPowerCck.tPow2x[i],
  1380. minCtlPower);
  1381. }
  1382. break;
  1383. case CTL_11G:
  1384. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x);
  1385. i++) {
  1386. targetPowerOfdm.tPow2x[i] =
  1387. min((u16)targetPowerOfdm.tPow2x[i],
  1388. minCtlPower);
  1389. }
  1390. break;
  1391. case CTL_2GHT20:
  1392. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x);
  1393. i++) {
  1394. targetPowerHt20.tPow2x[i] =
  1395. min((u16)targetPowerHt20.tPow2x[i],
  1396. minCtlPower);
  1397. }
  1398. break;
  1399. case CTL_11B_EXT:
  1400. targetPowerCckExt.tPow2x[0] = min((u16)
  1401. targetPowerCckExt.tPow2x[0],
  1402. minCtlPower);
  1403. break;
  1404. case CTL_11G_EXT:
  1405. targetPowerOfdmExt.tPow2x[0] = min((u16)
  1406. targetPowerOfdmExt.tPow2x[0],
  1407. minCtlPower);
  1408. break;
  1409. case CTL_2GHT40:
  1410. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x);
  1411. i++) {
  1412. targetPowerHt40.tPow2x[i] =
  1413. min((u16)targetPowerHt40.tPow2x[i],
  1414. minCtlPower);
  1415. }
  1416. break;
  1417. default:
  1418. break;
  1419. }
  1420. }
  1421. ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
  1422. ratesArray[rate18mb] = ratesArray[rate24mb] =
  1423. targetPowerOfdm.tPow2x[0];
  1424. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  1425. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  1426. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  1427. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  1428. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  1429. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  1430. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  1431. ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  1432. ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  1433. ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  1434. if (IS_CHAN_HT40(chan)) {
  1435. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  1436. ratesArray[rateHt40_0 + i] =
  1437. targetPowerHt40.tPow2x[i];
  1438. }
  1439. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  1440. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  1441. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  1442. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  1443. }
  1444. return true;
  1445. }
  1446. static int ath9k_hw_def_set_txpower(struct ath_hw *ah,
  1447. struct ath9k_channel *chan,
  1448. u16 cfgCtl,
  1449. u8 twiceAntennaReduction,
  1450. u8 twiceMaxRegulatoryPower,
  1451. u8 powerLimit)
  1452. {
  1453. struct ar5416_eeprom_def *pEepData = &ah->ah_eeprom.def;
  1454. struct modal_eep_header *pModal =
  1455. &(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
  1456. int16_t ratesArray[Ar5416RateSize];
  1457. int16_t txPowerIndexOffset = 0;
  1458. u8 ht40PowerIncForPdadc = 2;
  1459. int i;
  1460. memset(ratesArray, 0, sizeof(ratesArray));
  1461. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1462. AR5416_EEP_MINOR_VER_2) {
  1463. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  1464. }
  1465. if (!ath9k_hw_set_def_power_per_rate_table(ah, chan,
  1466. &ratesArray[0], cfgCtl,
  1467. twiceAntennaReduction,
  1468. twiceMaxRegulatoryPower,
  1469. powerLimit)) {
  1470. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1471. "ath9k_hw_set_txpower: unable to set "
  1472. "tx power per rate table\n");
  1473. return -EIO;
  1474. }
  1475. if (!ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset)) {
  1476. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1477. "ath9k_hw_set_txpower: unable to set power table\n");
  1478. return -EIO;
  1479. }
  1480. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  1481. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  1482. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  1483. ratesArray[i] = AR5416_MAX_RATE_POWER;
  1484. }
  1485. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1486. for (i = 0; i < Ar5416RateSize; i++)
  1487. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  1488. }
  1489. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  1490. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  1491. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  1492. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  1493. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  1494. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  1495. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  1496. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  1497. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  1498. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  1499. if (IS_CHAN_2GHZ(chan)) {
  1500. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  1501. ATH9K_POW_SM(ratesArray[rate2s], 24)
  1502. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  1503. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  1504. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  1505. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  1506. ATH9K_POW_SM(ratesArray[rate11s], 24)
  1507. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  1508. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  1509. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  1510. }
  1511. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  1512. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  1513. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  1514. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  1515. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  1516. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  1517. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  1518. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  1519. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  1520. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  1521. if (IS_CHAN_HT40(chan)) {
  1522. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  1523. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  1524. ht40PowerIncForPdadc, 24)
  1525. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  1526. ht40PowerIncForPdadc, 16)
  1527. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  1528. ht40PowerIncForPdadc, 8)
  1529. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  1530. ht40PowerIncForPdadc, 0));
  1531. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  1532. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  1533. ht40PowerIncForPdadc, 24)
  1534. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  1535. ht40PowerIncForPdadc, 16)
  1536. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  1537. ht40PowerIncForPdadc, 8)
  1538. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  1539. ht40PowerIncForPdadc, 0));
  1540. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  1541. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  1542. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  1543. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  1544. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  1545. }
  1546. REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
  1547. ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
  1548. | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
  1549. i = rate6mb;
  1550. if (IS_CHAN_HT40(chan))
  1551. i = rateHt40_0;
  1552. else if (IS_CHAN_HT20(chan))
  1553. i = rateHt20_0;
  1554. if (AR_SREV_9280_10_OR_LATER(ah))
  1555. ah->regulatory.max_power_level =
  1556. ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
  1557. else
  1558. ah->regulatory.max_power_level = ratesArray[i];
  1559. return 0;
  1560. }
  1561. static int ath9k_hw_4k_set_txpower(struct ath_hw *ah,
  1562. struct ath9k_channel *chan,
  1563. u16 cfgCtl,
  1564. u8 twiceAntennaReduction,
  1565. u8 twiceMaxRegulatoryPower,
  1566. u8 powerLimit)
  1567. {
  1568. struct ar5416_eeprom_4k *pEepData = &ah->ah_eeprom.map4k;
  1569. struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
  1570. int16_t ratesArray[Ar5416RateSize];
  1571. int16_t txPowerIndexOffset = 0;
  1572. u8 ht40PowerIncForPdadc = 2;
  1573. int i;
  1574. memset(ratesArray, 0, sizeof(ratesArray));
  1575. if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  1576. AR5416_EEP_MINOR_VER_2) {
  1577. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  1578. }
  1579. if (!ath9k_hw_set_4k_power_per_rate_table(ah, chan,
  1580. &ratesArray[0], cfgCtl,
  1581. twiceAntennaReduction,
  1582. twiceMaxRegulatoryPower,
  1583. powerLimit)) {
  1584. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1585. "ath9k_hw_set_txpower: unable to set "
  1586. "tx power per rate table\n");
  1587. return -EIO;
  1588. }
  1589. if (!ath9k_hw_set_4k_power_cal_table(ah, chan, &txPowerIndexOffset)) {
  1590. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  1591. "ath9k_hw_set_txpower: unable to set power table\n");
  1592. return -EIO;
  1593. }
  1594. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  1595. ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
  1596. if (ratesArray[i] > AR5416_MAX_RATE_POWER)
  1597. ratesArray[i] = AR5416_MAX_RATE_POWER;
  1598. }
  1599. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1600. for (i = 0; i < Ar5416RateSize; i++)
  1601. ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
  1602. }
  1603. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  1604. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  1605. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  1606. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  1607. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  1608. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  1609. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  1610. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  1611. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  1612. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  1613. if (IS_CHAN_2GHZ(chan)) {
  1614. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  1615. ATH9K_POW_SM(ratesArray[rate2s], 24)
  1616. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  1617. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  1618. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  1619. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  1620. ATH9K_POW_SM(ratesArray[rate11s], 24)
  1621. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  1622. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  1623. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  1624. }
  1625. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  1626. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  1627. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  1628. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  1629. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  1630. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  1631. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  1632. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  1633. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  1634. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  1635. if (IS_CHAN_HT40(chan)) {
  1636. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  1637. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  1638. ht40PowerIncForPdadc, 24)
  1639. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  1640. ht40PowerIncForPdadc, 16)
  1641. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  1642. ht40PowerIncForPdadc, 8)
  1643. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  1644. ht40PowerIncForPdadc, 0));
  1645. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  1646. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  1647. ht40PowerIncForPdadc, 24)
  1648. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  1649. ht40PowerIncForPdadc, 16)
  1650. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  1651. ht40PowerIncForPdadc, 8)
  1652. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  1653. ht40PowerIncForPdadc, 0));
  1654. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  1655. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  1656. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  1657. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  1658. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  1659. }
  1660. i = rate6mb;
  1661. if (IS_CHAN_HT40(chan))
  1662. i = rateHt40_0;
  1663. else if (IS_CHAN_HT20(chan))
  1664. i = rateHt20_0;
  1665. if (AR_SREV_9280_10_OR_LATER(ah))
  1666. ah->regulatory.max_power_level =
  1667. ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
  1668. else
  1669. ah->regulatory.max_power_level = ratesArray[i];
  1670. return 0;
  1671. }
  1672. static int (*ath9k_set_txpower[]) (struct ath_hw *,
  1673. struct ath9k_channel *,
  1674. u16, u8, u8, u8) = {
  1675. ath9k_hw_def_set_txpower,
  1676. ath9k_hw_4k_set_txpower
  1677. };
  1678. int ath9k_hw_set_txpower(struct ath_hw *ah,
  1679. struct ath9k_channel *chan,
  1680. u16 cfgCtl,
  1681. u8 twiceAntennaReduction,
  1682. u8 twiceMaxRegulatoryPower,
  1683. u8 powerLimit)
  1684. {
  1685. return ath9k_set_txpower[ah->ah_eep_map](ah, chan, cfgCtl,
  1686. twiceAntennaReduction, twiceMaxRegulatoryPower,
  1687. powerLimit);
  1688. }
  1689. static void ath9k_hw_set_def_addac(struct ath_hw *ah,
  1690. struct ath9k_channel *chan)
  1691. {
  1692. #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
  1693. struct modal_eep_header *pModal;
  1694. struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
  1695. u8 biaslevel;
  1696. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  1697. return;
  1698. if (ar5416_get_eep_rev(ah) < AR5416_EEP_MINOR_VER_7)
  1699. return;
  1700. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  1701. if (pModal->xpaBiasLvl != 0xff) {
  1702. biaslevel = pModal->xpaBiasLvl;
  1703. } else {
  1704. u16 resetFreqBin, freqBin, freqCount = 0;
  1705. struct chan_centers centers;
  1706. ath9k_hw_get_channel_centers(ah, chan, &centers);
  1707. resetFreqBin = FREQ2FBIN(centers.synth_center,
  1708. IS_CHAN_2GHZ(chan));
  1709. freqBin = XPA_LVL_FREQ(0) & 0xff;
  1710. biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
  1711. freqCount++;
  1712. while (freqCount < 3) {
  1713. if (XPA_LVL_FREQ(freqCount) == 0x0)
  1714. break;
  1715. freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
  1716. if (resetFreqBin >= freqBin)
  1717. biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
  1718. else
  1719. break;
  1720. freqCount++;
  1721. }
  1722. }
  1723. if (IS_CHAN_2GHZ(chan)) {
  1724. INI_RA(&ah->ah_iniAddac, 7, 1) = (INI_RA(&ah->ah_iniAddac,
  1725. 7, 1) & (~0x18)) | biaslevel << 3;
  1726. } else {
  1727. INI_RA(&ah->ah_iniAddac, 6, 1) = (INI_RA(&ah->ah_iniAddac,
  1728. 6, 1) & (~0xc0)) | biaslevel << 6;
  1729. }
  1730. #undef XPA_LVL_FREQ
  1731. }
  1732. static void ath9k_hw_set_4k_addac(struct ath_hw *ah,
  1733. struct ath9k_channel *chan)
  1734. {
  1735. struct modal_eep_4k_header *pModal;
  1736. struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
  1737. u8 biaslevel;
  1738. if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
  1739. return;
  1740. if (ar5416_get_eep_rev(ah) < AR5416_EEP_MINOR_VER_7)
  1741. return;
  1742. pModal = &eep->modalHeader;
  1743. if (pModal->xpaBiasLvl != 0xff) {
  1744. biaslevel = pModal->xpaBiasLvl;
  1745. INI_RA(&ah->ah_iniAddac, 7, 1) =
  1746. (INI_RA(&ah->ah_iniAddac, 7, 1) & (~0x18)) | biaslevel << 3;
  1747. }
  1748. }
  1749. static void (*ath9k_set_addac[]) (struct ath_hw *, struct ath9k_channel *) = {
  1750. ath9k_hw_set_def_addac,
  1751. ath9k_hw_set_4k_addac
  1752. };
  1753. void ath9k_hw_set_addac(struct ath_hw *ah, struct ath9k_channel *chan)
  1754. {
  1755. ath9k_set_addac[ah->ah_eep_map](ah, chan);
  1756. }
  1757. /* XXX: Clean me up, make me more legible */
  1758. static bool ath9k_hw_eeprom_set_def_board_values(struct ath_hw *ah,
  1759. struct ath9k_channel *chan)
  1760. {
  1761. #define AR5416_VER_MASK (eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK)
  1762. struct modal_eep_header *pModal;
  1763. struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
  1764. int i, regChainOffset;
  1765. u8 txRxAttenLocal;
  1766. pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  1767. txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
  1768. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  1769. ath9k_hw_get_eeprom_antenna_cfg(ah, chan));
  1770. for (i = 0; i < AR5416_MAX_CHAINS; i++) {
  1771. if (AR_SREV_9280(ah)) {
  1772. if (i >= 2)
  1773. break;
  1774. }
  1775. if (AR_SREV_5416_V20_OR_LATER(ah) &&
  1776. (ah->ah_rxchainmask == 5 || ah->ah_txchainmask == 5)
  1777. && (i != 0))
  1778. regChainOffset = (i == 1) ? 0x2000 : 0x1000;
  1779. else
  1780. regChainOffset = i * 0x1000;
  1781. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  1782. pModal->antCtrlChain[i]);
  1783. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  1784. (REG_READ(ah,
  1785. AR_PHY_TIMING_CTRL4(0) +
  1786. regChainOffset) &
  1787. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  1788. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  1789. SM(pModal->iqCalICh[i],
  1790. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  1791. SM(pModal->iqCalQCh[i],
  1792. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  1793. if ((i == 0) || AR_SREV_5416_V20_OR_LATER(ah)) {
  1794. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  1795. txRxAttenLocal = pModal->txRxAttenCh[i];
  1796. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1797. REG_RMW_FIELD(ah,
  1798. AR_PHY_GAIN_2GHZ +
  1799. regChainOffset,
  1800. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  1801. pModal->
  1802. bswMargin[i]);
  1803. REG_RMW_FIELD(ah,
  1804. AR_PHY_GAIN_2GHZ +
  1805. regChainOffset,
  1806. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  1807. pModal->
  1808. bswAtten[i]);
  1809. REG_RMW_FIELD(ah,
  1810. AR_PHY_GAIN_2GHZ +
  1811. regChainOffset,
  1812. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  1813. pModal->
  1814. xatten2Margin[i]);
  1815. REG_RMW_FIELD(ah,
  1816. AR_PHY_GAIN_2GHZ +
  1817. regChainOffset,
  1818. AR_PHY_GAIN_2GHZ_XATTEN2_DB,
  1819. pModal->
  1820. xatten2Db[i]);
  1821. } else {
  1822. REG_WRITE(ah,
  1823. AR_PHY_GAIN_2GHZ +
  1824. regChainOffset,
  1825. (REG_READ(ah,
  1826. AR_PHY_GAIN_2GHZ +
  1827. regChainOffset) &
  1828. ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
  1829. | SM(pModal->
  1830. bswMargin[i],
  1831. AR_PHY_GAIN_2GHZ_BSW_MARGIN));
  1832. REG_WRITE(ah,
  1833. AR_PHY_GAIN_2GHZ +
  1834. regChainOffset,
  1835. (REG_READ(ah,
  1836. AR_PHY_GAIN_2GHZ +
  1837. regChainOffset) &
  1838. ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
  1839. | SM(pModal->bswAtten[i],
  1840. AR_PHY_GAIN_2GHZ_BSW_ATTEN));
  1841. }
  1842. }
  1843. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1844. REG_RMW_FIELD(ah,
  1845. AR_PHY_RXGAIN +
  1846. regChainOffset,
  1847. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  1848. txRxAttenLocal);
  1849. REG_RMW_FIELD(ah,
  1850. AR_PHY_RXGAIN +
  1851. regChainOffset,
  1852. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  1853. pModal->rxTxMarginCh[i]);
  1854. } else {
  1855. REG_WRITE(ah,
  1856. AR_PHY_RXGAIN + regChainOffset,
  1857. (REG_READ(ah,
  1858. AR_PHY_RXGAIN +
  1859. regChainOffset) &
  1860. ~AR_PHY_RXGAIN_TXRX_ATTEN) |
  1861. SM(txRxAttenLocal,
  1862. AR_PHY_RXGAIN_TXRX_ATTEN));
  1863. REG_WRITE(ah,
  1864. AR_PHY_GAIN_2GHZ +
  1865. regChainOffset,
  1866. (REG_READ(ah,
  1867. AR_PHY_GAIN_2GHZ +
  1868. regChainOffset) &
  1869. ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
  1870. SM(pModal->rxTxMarginCh[i],
  1871. AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
  1872. }
  1873. }
  1874. }
  1875. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1876. if (IS_CHAN_2GHZ(chan)) {
  1877. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  1878. AR_AN_RF2G1_CH0_OB,
  1879. AR_AN_RF2G1_CH0_OB_S,
  1880. pModal->ob);
  1881. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
  1882. AR_AN_RF2G1_CH0_DB,
  1883. AR_AN_RF2G1_CH0_DB_S,
  1884. pModal->db);
  1885. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  1886. AR_AN_RF2G1_CH1_OB,
  1887. AR_AN_RF2G1_CH1_OB_S,
  1888. pModal->ob_ch1);
  1889. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
  1890. AR_AN_RF2G1_CH1_DB,
  1891. AR_AN_RF2G1_CH1_DB_S,
  1892. pModal->db_ch1);
  1893. } else {
  1894. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  1895. AR_AN_RF5G1_CH0_OB5,
  1896. AR_AN_RF5G1_CH0_OB5_S,
  1897. pModal->ob);
  1898. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
  1899. AR_AN_RF5G1_CH0_DB5,
  1900. AR_AN_RF5G1_CH0_DB5_S,
  1901. pModal->db);
  1902. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  1903. AR_AN_RF5G1_CH1_OB5,
  1904. AR_AN_RF5G1_CH1_OB5_S,
  1905. pModal->ob_ch1);
  1906. ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
  1907. AR_AN_RF5G1_CH1_DB5,
  1908. AR_AN_RF5G1_CH1_DB5_S,
  1909. pModal->db_ch1);
  1910. }
  1911. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  1912. AR_AN_TOP2_XPABIAS_LVL,
  1913. AR_AN_TOP2_XPABIAS_LVL_S,
  1914. pModal->xpaBiasLvl);
  1915. ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
  1916. AR_AN_TOP2_LOCALBIAS,
  1917. AR_AN_TOP2_LOCALBIAS_S,
  1918. pModal->local_bias);
  1919. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "ForceXPAon: %d\n",
  1920. pModal->force_xpaon);
  1921. REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
  1922. pModal->force_xpaon);
  1923. }
  1924. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  1925. pModal->switchSettling);
  1926. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  1927. pModal->adcDesiredSize);
  1928. if (!AR_SREV_9280_10_OR_LATER(ah))
  1929. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  1930. AR_PHY_DESIRED_SZ_PGA,
  1931. pModal->pgaDesiredSize);
  1932. REG_WRITE(ah, AR_PHY_RF_CTL4,
  1933. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  1934. | SM(pModal->txEndToXpaOff,
  1935. AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  1936. | SM(pModal->txFrameToXpaOn,
  1937. AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  1938. | SM(pModal->txFrameToXpaOn,
  1939. AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  1940. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  1941. pModal->txEndToRxOn);
  1942. if (AR_SREV_9280_10_OR_LATER(ah)) {
  1943. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  1944. pModal->thresh62);
  1945. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  1946. AR_PHY_EXT_CCA0_THRESH62,
  1947. pModal->thresh62);
  1948. } else {
  1949. REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
  1950. pModal->thresh62);
  1951. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
  1952. AR_PHY_EXT_CCA_THRESH62,
  1953. pModal->thresh62);
  1954. }
  1955. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
  1956. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  1957. AR_PHY_TX_END_DATA_START,
  1958. pModal->txFrameToDataStart);
  1959. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  1960. pModal->txFrameToPaOn);
  1961. }
  1962. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
  1963. if (IS_CHAN_HT40(chan))
  1964. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  1965. AR_PHY_SETTLING_SWITCH,
  1966. pModal->swSettleHt40);
  1967. }
  1968. if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
  1969. if (IS_CHAN_HT20(chan))
  1970. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  1971. eep->baseEepHeader.dacLpMode);
  1972. else if (eep->baseEepHeader.dacHiPwrMode_5G)
  1973. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
  1974. else
  1975. REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
  1976. eep->baseEepHeader.dacLpMode);
  1977. REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
  1978. pModal->miscBits >> 2);
  1979. }
  1980. return true;
  1981. #undef AR5416_VER_MASK
  1982. }
  1983. static bool ath9k_hw_eeprom_set_4k_board_values(struct ath_hw *ah,
  1984. struct ath9k_channel *chan)
  1985. {
  1986. struct modal_eep_4k_header *pModal;
  1987. struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
  1988. int regChainOffset;
  1989. u8 txRxAttenLocal;
  1990. u8 ob[5], db1[5], db2[5];
  1991. u8 ant_div_control1, ant_div_control2;
  1992. u32 regVal;
  1993. pModal = &eep->modalHeader;
  1994. txRxAttenLocal = 23;
  1995. REG_WRITE(ah, AR_PHY_SWITCH_COM,
  1996. ath9k_hw_get_eeprom_antenna_cfg(ah, chan));
  1997. regChainOffset = 0;
  1998. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  1999. pModal->antCtrlChain[0]);
  2000. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  2001. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
  2002. ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  2003. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  2004. SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  2005. SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  2006. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  2007. AR5416_EEP_MINOR_VER_3) {
  2008. txRxAttenLocal = pModal->txRxAttenCh[0];
  2009. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  2010. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
  2011. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  2012. AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
  2013. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  2014. AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
  2015. pModal->xatten2Margin[0]);
  2016. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  2017. AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
  2018. }
  2019. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  2020. AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
  2021. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  2022. AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
  2023. if (AR_SREV_9285_11(ah))
  2024. REG_WRITE(ah, AR9285_AN_TOP4, (AR9285_AN_TOP4_DEFAULT | 0x14));
  2025. /* Initialize Ant Diversity settings from EEPROM */
  2026. if (pModal->version == 3) {
  2027. ant_div_control1 = ((pModal->ob_234 >> 12) & 0xf);
  2028. ant_div_control2 = ((pModal->db1_234 >> 12) & 0xf);
  2029. regVal = REG_READ(ah, 0x99ac);
  2030. regVal &= (~(0x7f000000));
  2031. regVal |= ((ant_div_control1 & 0x1) << 24);
  2032. regVal |= (((ant_div_control1 >> 1) & 0x1) << 29);
  2033. regVal |= (((ant_div_control1 >> 2) & 0x1) << 30);
  2034. regVal |= ((ant_div_control2 & 0x3) << 25);
  2035. regVal |= (((ant_div_control2 >> 2) & 0x3) << 27);
  2036. REG_WRITE(ah, 0x99ac, regVal);
  2037. regVal = REG_READ(ah, 0x99ac);
  2038. regVal = REG_READ(ah, 0xa208);
  2039. regVal &= (~(0x1 << 13));
  2040. regVal |= (((ant_div_control1 >> 3) & 0x1) << 13);
  2041. REG_WRITE(ah, 0xa208, regVal);
  2042. regVal = REG_READ(ah, 0xa208);
  2043. }
  2044. if (pModal->version >= 2) {
  2045. ob[0] = (pModal->ob_01 & 0xf);
  2046. ob[1] = (pModal->ob_01 >> 4) & 0xf;
  2047. ob[2] = (pModal->ob_234 & 0xf);
  2048. ob[3] = ((pModal->ob_234 >> 4) & 0xf);
  2049. ob[4] = ((pModal->ob_234 >> 8) & 0xf);
  2050. db1[0] = (pModal->db1_01 & 0xf);
  2051. db1[1] = ((pModal->db1_01 >> 4) & 0xf);
  2052. db1[2] = (pModal->db1_234 & 0xf);
  2053. db1[3] = ((pModal->db1_234 >> 4) & 0xf);
  2054. db1[4] = ((pModal->db1_234 >> 8) & 0xf);
  2055. db2[0] = (pModal->db2_01 & 0xf);
  2056. db2[1] = ((pModal->db2_01 >> 4) & 0xf);
  2057. db2[2] = (pModal->db2_234 & 0xf);
  2058. db2[3] = ((pModal->db2_234 >> 4) & 0xf);
  2059. db2[4] = ((pModal->db2_234 >> 8) & 0xf);
  2060. } else if (pModal->version == 1) {
  2061. DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
  2062. "EEPROM Model version is set to 1 \n");
  2063. ob[0] = (pModal->ob_01 & 0xf);
  2064. ob[1] = ob[2] = ob[3] = ob[4] = (pModal->ob_01 >> 4) & 0xf;
  2065. db1[0] = (pModal->db1_01 & 0xf);
  2066. db1[1] = db1[2] = db1[3] =
  2067. db1[4] = ((pModal->db1_01 >> 4) & 0xf);
  2068. db2[0] = (pModal->db2_01 & 0xf);
  2069. db2[1] = db2[2] = db2[3] =
  2070. db2[4] = ((pModal->db2_01 >> 4) & 0xf);
  2071. } else {
  2072. int i;
  2073. for (i = 0; i < 5; i++) {
  2074. ob[i] = pModal->ob_01;
  2075. db1[i] = pModal->db1_01;
  2076. db2[i] = pModal->db1_01;
  2077. }
  2078. }
  2079. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  2080. AR9285_AN_RF2G3_OB_0, AR9285_AN_RF2G3_OB_0_S, ob[0]);
  2081. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  2082. AR9285_AN_RF2G3_OB_1, AR9285_AN_RF2G3_OB_1_S, ob[1]);
  2083. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  2084. AR9285_AN_RF2G3_OB_2, AR9285_AN_RF2G3_OB_2_S, ob[2]);
  2085. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  2086. AR9285_AN_RF2G3_OB_3, AR9285_AN_RF2G3_OB_3_S, ob[3]);
  2087. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  2088. AR9285_AN_RF2G3_OB_4, AR9285_AN_RF2G3_OB_4_S, ob[4]);
  2089. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  2090. AR9285_AN_RF2G3_DB1_0, AR9285_AN_RF2G3_DB1_0_S, db1[0]);
  2091. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  2092. AR9285_AN_RF2G3_DB1_1, AR9285_AN_RF2G3_DB1_1_S, db1[1]);
  2093. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G3,
  2094. AR9285_AN_RF2G3_DB1_2, AR9285_AN_RF2G3_DB1_2_S, db1[2]);
  2095. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  2096. AR9285_AN_RF2G4_DB1_3, AR9285_AN_RF2G4_DB1_3_S, db1[3]);
  2097. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  2098. AR9285_AN_RF2G4_DB1_4, AR9285_AN_RF2G4_DB1_4_S, db1[4]);
  2099. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  2100. AR9285_AN_RF2G4_DB2_0, AR9285_AN_RF2G4_DB2_0_S, db2[0]);
  2101. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  2102. AR9285_AN_RF2G4_DB2_1, AR9285_AN_RF2G4_DB2_1_S, db2[1]);
  2103. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  2104. AR9285_AN_RF2G4_DB2_2, AR9285_AN_RF2G4_DB2_2_S, db2[2]);
  2105. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  2106. AR9285_AN_RF2G4_DB2_3, AR9285_AN_RF2G4_DB2_3_S, db2[3]);
  2107. ath9k_hw_analog_shift_rmw(ah, AR9285_AN_RF2G4,
  2108. AR9285_AN_RF2G4_DB2_4, AR9285_AN_RF2G4_DB2_4_S, db2[4]);
  2109. if (AR_SREV_9285_11(ah))
  2110. REG_WRITE(ah, AR9285_AN_TOP4, AR9285_AN_TOP4_DEFAULT);
  2111. REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
  2112. pModal->switchSettling);
  2113. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
  2114. pModal->adcDesiredSize);
  2115. REG_WRITE(ah, AR_PHY_RF_CTL4,
  2116. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
  2117. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
  2118. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON) |
  2119. SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  2120. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
  2121. pModal->txEndToRxOn);
  2122. REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
  2123. pModal->thresh62);
  2124. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
  2125. pModal->thresh62);
  2126. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  2127. AR5416_EEP_MINOR_VER_2) {
  2128. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
  2129. pModal->txFrameToDataStart);
  2130. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
  2131. pModal->txFrameToPaOn);
  2132. }
  2133. if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
  2134. AR5416_EEP_MINOR_VER_3) {
  2135. if (IS_CHAN_HT40(chan))
  2136. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  2137. AR_PHY_SETTLING_SWITCH,
  2138. pModal->swSettleHt40);
  2139. }
  2140. return true;
  2141. }
  2142. static bool (*ath9k_eeprom_set_board_values[])(struct ath_hw *,
  2143. struct ath9k_channel *) = {
  2144. ath9k_hw_eeprom_set_def_board_values,
  2145. ath9k_hw_eeprom_set_4k_board_values
  2146. };
  2147. bool ath9k_hw_eeprom_set_board_values(struct ath_hw *ah,
  2148. struct ath9k_channel *chan)
  2149. {
  2150. return ath9k_eeprom_set_board_values[ah->ah_eep_map](ah, chan);
  2151. }
  2152. static u16 ath9k_hw_get_def_eeprom_antenna_cfg(struct ath_hw *ah,
  2153. struct ath9k_channel *chan)
  2154. {
  2155. struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
  2156. struct modal_eep_header *pModal =
  2157. &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
  2158. return pModal->antCtrlCommon & 0xFFFF;
  2159. }
  2160. static u16 ath9k_hw_get_4k_eeprom_antenna_cfg(struct ath_hw *ah,
  2161. struct ath9k_channel *chan)
  2162. {
  2163. struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
  2164. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  2165. return pModal->antCtrlCommon & 0xFFFF;
  2166. }
  2167. static u16 (*ath9k_get_eeprom_antenna_cfg[])(struct ath_hw *,
  2168. struct ath9k_channel *) = {
  2169. ath9k_hw_get_def_eeprom_antenna_cfg,
  2170. ath9k_hw_get_4k_eeprom_antenna_cfg
  2171. };
  2172. u16 ath9k_hw_get_eeprom_antenna_cfg(struct ath_hw *ah,
  2173. struct ath9k_channel *chan)
  2174. {
  2175. return ath9k_get_eeprom_antenna_cfg[ah->ah_eep_map](ah, chan);
  2176. }
  2177. static u8 ath9k_hw_get_4k_num_ant_config(struct ath_hw *ah,
  2178. enum ieee80211_band freq_band)
  2179. {
  2180. return 1;
  2181. }
  2182. static u8 ath9k_hw_get_def_num_ant_config(struct ath_hw *ah,
  2183. enum ieee80211_band freq_band)
  2184. {
  2185. struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
  2186. struct modal_eep_header *pModal =
  2187. &(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
  2188. struct base_eep_header *pBase = &eep->baseEepHeader;
  2189. u8 num_ant_config;
  2190. num_ant_config = 1;
  2191. if (pBase->version >= 0x0E0D)
  2192. if (pModal->useAnt1)
  2193. num_ant_config += 1;
  2194. return num_ant_config;
  2195. }
  2196. static u8 (*ath9k_get_num_ant_config[])(struct ath_hw *,
  2197. enum ieee80211_band) = {
  2198. ath9k_hw_get_def_num_ant_config,
  2199. ath9k_hw_get_4k_num_ant_config
  2200. };
  2201. u8 ath9k_hw_get_num_ant_config(struct ath_hw *ah,
  2202. enum ieee80211_band freq_band)
  2203. {
  2204. return ath9k_get_num_ant_config[ah->ah_eep_map](ah, freq_band);
  2205. }
  2206. u16 ath9k_hw_eeprom_get_spur_chan(struct ath_hw *ah, u16 i, bool is2GHz)
  2207. {
  2208. #define EEP_MAP4K_SPURCHAN \
  2209. (ah->ah_eeprom.map4k.modalHeader.spurChans[i].spurChan)
  2210. #define EEP_DEF_SPURCHAN \
  2211. (ah->ah_eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
  2212. u16 spur_val = AR_NO_SPUR;
  2213. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2214. "Getting spur idx %d is2Ghz. %d val %x\n",
  2215. i, is2GHz, ah->ah_config.spurchans[i][is2GHz]);
  2216. switch (ah->ah_config.spurmode) {
  2217. case SPUR_DISABLE:
  2218. break;
  2219. case SPUR_ENABLE_IOCTL:
  2220. spur_val = ah->ah_config.spurchans[i][is2GHz];
  2221. DPRINTF(ah->ah_sc, ATH_DBG_ANI,
  2222. "Getting spur val from new loc. %d\n", spur_val);
  2223. break;
  2224. case SPUR_ENABLE_EEPROM:
  2225. if (ah->ah_eep_map == EEP_MAP_4KBITS)
  2226. spur_val = EEP_MAP4K_SPURCHAN;
  2227. else
  2228. spur_val = EEP_DEF_SPURCHAN;
  2229. break;
  2230. }
  2231. return spur_val;
  2232. #undef EEP_DEF_SPURCHAN
  2233. #undef EEP_MAP4K_SPURCHAN
  2234. }
  2235. static u32 ath9k_hw_get_eeprom_4k(struct ath_hw *ah,
  2236. enum eeprom_param param)
  2237. {
  2238. struct ar5416_eeprom_4k *eep = &ah->ah_eeprom.map4k;
  2239. struct modal_eep_4k_header *pModal = &eep->modalHeader;
  2240. struct base_eep_header_4k *pBase = &eep->baseEepHeader;
  2241. switch (param) {
  2242. case EEP_NFTHRESH_2:
  2243. return pModal[1].noiseFloorThreshCh[0];
  2244. case AR_EEPROM_MAC(0):
  2245. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  2246. case AR_EEPROM_MAC(1):
  2247. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  2248. case AR_EEPROM_MAC(2):
  2249. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  2250. case EEP_REG_0:
  2251. return pBase->regDmn[0];
  2252. case EEP_REG_1:
  2253. return pBase->regDmn[1];
  2254. case EEP_OP_CAP:
  2255. return pBase->deviceCap;
  2256. case EEP_OP_MODE:
  2257. return pBase->opCapFlags;
  2258. case EEP_RF_SILENT:
  2259. return pBase->rfSilent;
  2260. case EEP_OB_2:
  2261. return pModal->ob_01;
  2262. case EEP_DB_2:
  2263. return pModal->db1_01;
  2264. case EEP_MINOR_REV:
  2265. return pBase->version & AR5416_EEP_VER_MINOR_MASK;
  2266. case EEP_TX_MASK:
  2267. return pBase->txMask;
  2268. case EEP_RX_MASK:
  2269. return pBase->rxMask;
  2270. default:
  2271. return 0;
  2272. }
  2273. }
  2274. static u32 ath9k_hw_get_eeprom_def(struct ath_hw *ah,
  2275. enum eeprom_param param)
  2276. {
  2277. #define AR5416_VER_MASK (pBase->version & AR5416_EEP_VER_MINOR_MASK)
  2278. struct ar5416_eeprom_def *eep = &ah->ah_eeprom.def;
  2279. struct modal_eep_header *pModal = eep->modalHeader;
  2280. struct base_eep_header *pBase = &eep->baseEepHeader;
  2281. switch (param) {
  2282. case EEP_NFTHRESH_5:
  2283. return pModal[0].noiseFloorThreshCh[0];
  2284. case EEP_NFTHRESH_2:
  2285. return pModal[1].noiseFloorThreshCh[0];
  2286. case AR_EEPROM_MAC(0):
  2287. return pBase->macAddr[0] << 8 | pBase->macAddr[1];
  2288. case AR_EEPROM_MAC(1):
  2289. return pBase->macAddr[2] << 8 | pBase->macAddr[3];
  2290. case AR_EEPROM_MAC(2):
  2291. return pBase->macAddr[4] << 8 | pBase->macAddr[5];
  2292. case EEP_REG_0:
  2293. return pBase->regDmn[0];
  2294. case EEP_REG_1:
  2295. return pBase->regDmn[1];
  2296. case EEP_OP_CAP:
  2297. return pBase->deviceCap;
  2298. case EEP_OP_MODE:
  2299. return pBase->opCapFlags;
  2300. case EEP_RF_SILENT:
  2301. return pBase->rfSilent;
  2302. case EEP_OB_5:
  2303. return pModal[0].ob;
  2304. case EEP_DB_5:
  2305. return pModal[0].db;
  2306. case EEP_OB_2:
  2307. return pModal[1].ob;
  2308. case EEP_DB_2:
  2309. return pModal[1].db;
  2310. case EEP_MINOR_REV:
  2311. return AR5416_VER_MASK;
  2312. case EEP_TX_MASK:
  2313. return pBase->txMask;
  2314. case EEP_RX_MASK:
  2315. return pBase->rxMask;
  2316. case EEP_RXGAIN_TYPE:
  2317. return pBase->rxGainType;
  2318. case EEP_TXGAIN_TYPE:
  2319. return pBase->txGainType;
  2320. case EEP_DAC_HPWR_5G:
  2321. if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
  2322. return pBase->dacHiPwrMode_5G;
  2323. else
  2324. return 0;
  2325. default:
  2326. return 0;
  2327. }
  2328. #undef AR5416_VER_MASK
  2329. }
  2330. static u32 (*ath9k_get_eeprom[])(struct ath_hw *, enum eeprom_param) = {
  2331. ath9k_hw_get_eeprom_def,
  2332. ath9k_hw_get_eeprom_4k
  2333. };
  2334. u32 ath9k_hw_get_eeprom(struct ath_hw *ah,
  2335. enum eeprom_param param)
  2336. {
  2337. return ath9k_get_eeprom[ah->ah_eep_map](ah, param);
  2338. }
  2339. int ath9k_hw_eeprom_attach(struct ath_hw *ah)
  2340. {
  2341. int status;
  2342. if (AR_SREV_9285(ah))
  2343. ah->ah_eep_map = EEP_MAP_4KBITS;
  2344. else
  2345. ah->ah_eep_map = EEP_MAP_DEFAULT;
  2346. if (!ath9k_hw_fill_eeprom(ah))
  2347. return -EIO;
  2348. status = ath9k_hw_check_eeprom(ah);
  2349. return status;
  2350. }