eeprom_9287.c 33 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106
  1. /*
  2. * Copyright (c) 2008-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <asm/unaligned.h>
  17. #include "hw.h"
  18. #include "ar9002_phy.h"
  19. #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
  20. static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
  21. {
  22. return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
  23. }
  24. static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
  25. {
  26. return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
  27. }
  28. static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  29. {
  30. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  31. struct ath_common *common = ath9k_hw_common(ah);
  32. u16 *eep_data;
  33. int addr, eep_start_loc = AR9287_EEP_START_LOC;
  34. eep_data = (u16 *)eep;
  35. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  36. if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
  37. eep_data)) {
  38. ath_dbg(common, ATH_DBG_EEPROM,
  39. "Unable to read eeprom region\n");
  40. return false;
  41. }
  42. eep_data++;
  43. }
  44. return true;
  45. }
  46. static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
  47. {
  48. u16 *eep_data = (u16 *)&ah->eeprom.map9287;
  49. ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
  50. AR9287_HTC_EEP_START_LOC,
  51. SIZE_EEPROM_AR9287);
  52. return true;
  53. }
  54. static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
  55. {
  56. struct ath_common *common = ath9k_hw_common(ah);
  57. if (!ath9k_hw_use_flash(ah)) {
  58. ath_dbg(common, ATH_DBG_EEPROM,
  59. "Reading from EEPROM, not flash\n");
  60. }
  61. if (common->bus_ops->ath_bus_type == ATH_USB)
  62. return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
  63. else
  64. return __ath9k_hw_ar9287_fill_eeprom(ah);
  65. }
  66. #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
  67. static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
  68. struct modal_eep_ar9287_header *modal_hdr)
  69. {
  70. PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
  71. PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
  72. PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
  73. PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
  74. PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
  75. PR_EEP("Switch Settle", modal_hdr->switchSettling);
  76. PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
  77. PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
  78. PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
  79. PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
  80. PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
  81. PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
  82. PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
  83. PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
  84. PR_EEP("CCA Threshold)", modal_hdr->thresh62);
  85. PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
  86. PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
  87. PR_EEP("xpdGain", modal_hdr->xpdGain);
  88. PR_EEP("External PD", modal_hdr->xpd);
  89. PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
  90. PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
  91. PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
  92. PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
  93. PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
  94. PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
  95. PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
  96. PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
  97. PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
  98. PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
  99. PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
  100. PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
  101. PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
  102. PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
  103. PR_EEP("AR92x7 Version", modal_hdr->version);
  104. PR_EEP("DriverBias1", modal_hdr->db1);
  105. PR_EEP("DriverBias2", modal_hdr->db1);
  106. PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
  107. PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
  108. PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
  109. PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
  110. return len;
  111. }
  112. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  113. u8 *buf, u32 len, u32 size)
  114. {
  115. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  116. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  117. if (!dump_base_hdr) {
  118. len += snprintf(buf + len, size - len,
  119. "%20s :\n", "2GHz modal Header");
  120. len += ar9287_dump_modal_eeprom(buf, len, size,
  121. &eep->modalHeader);
  122. goto out;
  123. }
  124. PR_EEP("Major Version", pBase->version >> 12);
  125. PR_EEP("Minor Version", pBase->version & 0xFFF);
  126. PR_EEP("Checksum", pBase->checksum);
  127. PR_EEP("Length", pBase->length);
  128. PR_EEP("RegDomain1", pBase->regDmn[0]);
  129. PR_EEP("RegDomain2", pBase->regDmn[1]);
  130. PR_EEP("TX Mask", pBase->txMask);
  131. PR_EEP("RX Mask", pBase->rxMask);
  132. PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
  133. PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
  134. PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
  135. AR5416_OPFLAGS_N_2G_HT20));
  136. PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
  137. AR5416_OPFLAGS_N_2G_HT40));
  138. PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
  139. AR5416_OPFLAGS_N_5G_HT20));
  140. PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
  141. AR5416_OPFLAGS_N_5G_HT40));
  142. PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
  143. PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
  144. PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
  145. PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
  146. PR_EEP("Power Table Offset", pBase->pwrTableOffset);
  147. PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
  148. len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
  149. pBase->macAddr);
  150. out:
  151. if (len > size)
  152. len = size;
  153. return len;
  154. }
  155. #else
  156. static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
  157. u8 *buf, u32 len, u32 size)
  158. {
  159. return 0;
  160. }
  161. #endif
  162. static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
  163. {
  164. u32 sum = 0, el, integer;
  165. u16 temp, word, magic, magic2, *eepdata;
  166. int i, addr;
  167. bool need_swap = false;
  168. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  169. struct ath_common *common = ath9k_hw_common(ah);
  170. if (!ath9k_hw_use_flash(ah)) {
  171. if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
  172. &magic)) {
  173. ath_err(common, "Reading Magic # failed\n");
  174. return false;
  175. }
  176. ath_dbg(common, ATH_DBG_EEPROM,
  177. "Read Magic = 0x%04X\n", magic);
  178. if (magic != AR5416_EEPROM_MAGIC) {
  179. magic2 = swab16(magic);
  180. if (magic2 == AR5416_EEPROM_MAGIC) {
  181. need_swap = true;
  182. eepdata = (u16 *)(&ah->eeprom);
  183. for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
  184. temp = swab16(*eepdata);
  185. *eepdata = temp;
  186. eepdata++;
  187. }
  188. } else {
  189. ath_err(common,
  190. "Invalid EEPROM Magic. Endianness mismatch.\n");
  191. return -EINVAL;
  192. }
  193. }
  194. }
  195. ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
  196. need_swap ? "True" : "False");
  197. if (need_swap)
  198. el = swab16(ah->eeprom.map9287.baseEepHeader.length);
  199. else
  200. el = ah->eeprom.map9287.baseEepHeader.length;
  201. if (el > sizeof(struct ar9287_eeprom))
  202. el = sizeof(struct ar9287_eeprom) / sizeof(u16);
  203. else
  204. el = el / sizeof(u16);
  205. eepdata = (u16 *)(&ah->eeprom);
  206. for (i = 0; i < el; i++)
  207. sum ^= *eepdata++;
  208. if (need_swap) {
  209. word = swab16(eep->baseEepHeader.length);
  210. eep->baseEepHeader.length = word;
  211. word = swab16(eep->baseEepHeader.checksum);
  212. eep->baseEepHeader.checksum = word;
  213. word = swab16(eep->baseEepHeader.version);
  214. eep->baseEepHeader.version = word;
  215. word = swab16(eep->baseEepHeader.regDmn[0]);
  216. eep->baseEepHeader.regDmn[0] = word;
  217. word = swab16(eep->baseEepHeader.regDmn[1]);
  218. eep->baseEepHeader.regDmn[1] = word;
  219. word = swab16(eep->baseEepHeader.rfSilent);
  220. eep->baseEepHeader.rfSilent = word;
  221. word = swab16(eep->baseEepHeader.blueToothOptions);
  222. eep->baseEepHeader.blueToothOptions = word;
  223. word = swab16(eep->baseEepHeader.deviceCap);
  224. eep->baseEepHeader.deviceCap = word;
  225. integer = swab32(eep->modalHeader.antCtrlCommon);
  226. eep->modalHeader.antCtrlCommon = integer;
  227. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  228. integer = swab32(eep->modalHeader.antCtrlChain[i]);
  229. eep->modalHeader.antCtrlChain[i] = integer;
  230. }
  231. for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
  232. word = swab16(eep->modalHeader.spurChans[i].spurChan);
  233. eep->modalHeader.spurChans[i].spurChan = word;
  234. }
  235. }
  236. if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
  237. || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
  238. ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
  239. sum, ah->eep_ops->get_eeprom_ver(ah));
  240. return -EINVAL;
  241. }
  242. return 0;
  243. }
  244. static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
  245. enum eeprom_param param)
  246. {
  247. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  248. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  249. struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
  250. u16 ver_minor;
  251. ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
  252. switch (param) {
  253. case EEP_NFTHRESH_2:
  254. return pModal->noiseFloorThreshCh[0];
  255. case EEP_MAC_LSW:
  256. return get_unaligned_be16(pBase->macAddr);
  257. case EEP_MAC_MID:
  258. return get_unaligned_be16(pBase->macAddr + 2);
  259. case EEP_MAC_MSW:
  260. return get_unaligned_be16(pBase->macAddr + 4);
  261. case EEP_REG_0:
  262. return pBase->regDmn[0];
  263. case EEP_REG_1:
  264. return pBase->regDmn[1];
  265. case EEP_OP_CAP:
  266. return pBase->deviceCap;
  267. case EEP_OP_MODE:
  268. return pBase->opCapFlags;
  269. case EEP_RF_SILENT:
  270. return pBase->rfSilent;
  271. case EEP_MINOR_REV:
  272. return ver_minor;
  273. case EEP_TX_MASK:
  274. return pBase->txMask;
  275. case EEP_RX_MASK:
  276. return pBase->rxMask;
  277. case EEP_DEV_TYPE:
  278. return pBase->deviceType;
  279. case EEP_OL_PWRCTRL:
  280. return pBase->openLoopPwrCntl;
  281. case EEP_TEMPSENSE_SLOPE:
  282. if (ver_minor >= AR9287_EEP_MINOR_VER_2)
  283. return pBase->tempSensSlope;
  284. else
  285. return 0;
  286. case EEP_TEMPSENSE_SLOPE_PAL_ON:
  287. if (ver_minor >= AR9287_EEP_MINOR_VER_3)
  288. return pBase->tempSensSlopePalOn;
  289. else
  290. return 0;
  291. default:
  292. return 0;
  293. }
  294. }
  295. static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
  296. struct ath9k_channel *chan,
  297. struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
  298. u8 *pCalChans, u16 availPiers, int8_t *pPwr)
  299. {
  300. u16 idxL = 0, idxR = 0, numPiers;
  301. bool match;
  302. struct chan_centers centers;
  303. ath9k_hw_get_channel_centers(ah, chan, &centers);
  304. for (numPiers = 0; numPiers < availPiers; numPiers++) {
  305. if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
  306. break;
  307. }
  308. match = ath9k_hw_get_lower_upper_index(
  309. (u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
  310. pCalChans, numPiers, &idxL, &idxR);
  311. if (match) {
  312. *pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
  313. } else {
  314. *pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
  315. (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
  316. }
  317. }
  318. static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
  319. int32_t txPower, u16 chain)
  320. {
  321. u32 tmpVal;
  322. u32 a;
  323. /* Enable OLPC for chain 0 */
  324. tmpVal = REG_READ(ah, 0xa270);
  325. tmpVal = tmpVal & 0xFCFFFFFF;
  326. tmpVal = tmpVal | (0x3 << 24);
  327. REG_WRITE(ah, 0xa270, tmpVal);
  328. /* Enable OLPC for chain 1 */
  329. tmpVal = REG_READ(ah, 0xb270);
  330. tmpVal = tmpVal & 0xFCFFFFFF;
  331. tmpVal = tmpVal | (0x3 << 24);
  332. REG_WRITE(ah, 0xb270, tmpVal);
  333. /* Write the OLPC ref power for chain 0 */
  334. if (chain == 0) {
  335. tmpVal = REG_READ(ah, 0xa398);
  336. tmpVal = tmpVal & 0xff00ffff;
  337. a = (txPower)&0xff;
  338. tmpVal = tmpVal | (a << 16);
  339. REG_WRITE(ah, 0xa398, tmpVal);
  340. }
  341. /* Write the OLPC ref power for chain 1 */
  342. if (chain == 1) {
  343. tmpVal = REG_READ(ah, 0xb398);
  344. tmpVal = tmpVal & 0xff00ffff;
  345. a = (txPower)&0xff;
  346. tmpVal = tmpVal | (a << 16);
  347. REG_WRITE(ah, 0xb398, tmpVal);
  348. }
  349. }
  350. static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
  351. struct ath9k_channel *chan)
  352. {
  353. struct cal_data_per_freq_ar9287 *pRawDataset;
  354. struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
  355. u8 *pCalBChans = NULL;
  356. u16 pdGainOverlap_t2;
  357. u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
  358. u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
  359. u16 numPiers = 0, i, j;
  360. u16 numXpdGain, xpdMask;
  361. u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
  362. u32 reg32, regOffset, regChainOffset, regval;
  363. int16_t diff = 0;
  364. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  365. xpdMask = pEepData->modalHeader.xpdGain;
  366. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  367. AR9287_EEP_MINOR_VER_2)
  368. pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
  369. else
  370. pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
  371. AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
  372. if (IS_CHAN_2GHZ(chan)) {
  373. pCalBChans = pEepData->calFreqPier2G;
  374. numPiers = AR9287_NUM_2G_CAL_PIERS;
  375. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  376. pRawDatasetOpenLoop =
  377. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
  378. ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
  379. }
  380. }
  381. numXpdGain = 0;
  382. /* Calculate the value of xpdgains from the xpdGain Mask */
  383. for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
  384. if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
  385. if (numXpdGain >= AR5416_NUM_PD_GAINS)
  386. break;
  387. xpdGainValues[numXpdGain] =
  388. (u16)(AR5416_PD_GAINS_IN_MASK-i);
  389. numXpdGain++;
  390. }
  391. }
  392. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
  393. (numXpdGain - 1) & 0x3);
  394. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
  395. xpdGainValues[0]);
  396. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
  397. xpdGainValues[1]);
  398. REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
  399. xpdGainValues[2]);
  400. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  401. regChainOffset = i * 0x1000;
  402. if (pEepData->baseEepHeader.txMask & (1 << i)) {
  403. pRawDatasetOpenLoop =
  404. (struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
  405. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  406. int8_t txPower;
  407. ar9287_eeprom_get_tx_gain_index(ah, chan,
  408. pRawDatasetOpenLoop,
  409. pCalBChans, numPiers,
  410. &txPower);
  411. ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
  412. } else {
  413. pRawDataset =
  414. (struct cal_data_per_freq_ar9287 *)
  415. pEepData->calPierData2G[i];
  416. ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
  417. pRawDataset,
  418. pCalBChans, numPiers,
  419. pdGainOverlap_t2,
  420. gainBoundaries,
  421. pdadcValues,
  422. numXpdGain);
  423. }
  424. ENABLE_REGWRITE_BUFFER(ah);
  425. if (i == 0) {
  426. if (!ath9k_hw_ar9287_get_eeprom(ah,
  427. EEP_OL_PWRCTRL)) {
  428. regval = SM(pdGainOverlap_t2,
  429. AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
  430. | SM(gainBoundaries[0],
  431. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
  432. | SM(gainBoundaries[1],
  433. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
  434. | SM(gainBoundaries[2],
  435. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
  436. | SM(gainBoundaries[3],
  437. AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
  438. REG_WRITE(ah,
  439. AR_PHY_TPCRG5 + regChainOffset,
  440. regval);
  441. }
  442. }
  443. if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
  444. pEepData->baseEepHeader.pwrTableOffset) {
  445. diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
  446. (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
  447. diff *= 2;
  448. for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
  449. pdadcValues[j] = pdadcValues[j+diff];
  450. for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
  451. j < AR5416_NUM_PDADC_VALUES; j++)
  452. pdadcValues[j] =
  453. pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
  454. }
  455. if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  456. regOffset = AR_PHY_BASE +
  457. (672 << 2) + regChainOffset;
  458. for (j = 0; j < 32; j++) {
  459. reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
  460. REG_WRITE(ah, regOffset, reg32);
  461. regOffset += 4;
  462. }
  463. }
  464. REGWRITE_BUFFER_FLUSH(ah);
  465. }
  466. }
  467. }
  468. static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
  469. struct ath9k_channel *chan,
  470. int16_t *ratesArray,
  471. u16 cfgCtl,
  472. u16 AntennaReduction,
  473. u16 twiceMaxRegulatoryPower,
  474. u16 powerLimit)
  475. {
  476. #define CMP_CTL \
  477. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  478. pEepData->ctlIndex[i])
  479. #define CMP_NO_CTL \
  480. (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
  481. ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
  482. #define REDUCE_SCALED_POWER_BY_TWO_CHAIN 6
  483. #define REDUCE_SCALED_POWER_BY_THREE_CHAIN 10
  484. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  485. u16 twiceMaxEdgePower = MAX_RATE_POWER;
  486. static const u16 tpScaleReductionTable[5] =
  487. { 0, 3, 6, 9, MAX_RATE_POWER };
  488. int i;
  489. int16_t twiceLargestAntenna;
  490. struct cal_ctl_data_ar9287 *rep;
  491. struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
  492. targetPowerCck = {0, {0, 0, 0, 0} };
  493. struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
  494. targetPowerCckExt = {0, {0, 0, 0, 0} };
  495. struct cal_target_power_ht targetPowerHt20,
  496. targetPowerHt40 = {0, {0, 0, 0, 0} };
  497. u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
  498. static const u16 ctlModesFor11g[] = {
  499. CTL_11B, CTL_11G, CTL_2GHT20,
  500. CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
  501. };
  502. u16 numCtlModes = 0;
  503. const u16 *pCtlMode = NULL;
  504. u16 ctlMode, freq;
  505. struct chan_centers centers;
  506. int tx_chainmask;
  507. u16 twiceMinEdgePower;
  508. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  509. tx_chainmask = ah->txchainmask;
  510. ath9k_hw_get_channel_centers(ah, chan, &centers);
  511. /* Compute TxPower reduction due to Antenna Gain */
  512. twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
  513. pEepData->modalHeader.antennaGainCh[1]);
  514. twiceLargestAntenna = (int16_t)min((AntennaReduction) -
  515. twiceLargestAntenna, 0);
  516. /*
  517. * scaledPower is the minimum of the user input power level
  518. * and the regulatory allowed power level.
  519. */
  520. maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
  521. if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
  522. maxRegAllowedPower -=
  523. (tpScaleReductionTable[(regulatory->tp_scale)] * 2);
  524. scaledPower = min(powerLimit, maxRegAllowedPower);
  525. /*
  526. * Reduce scaled Power by number of chains active
  527. * to get the per chain tx power level.
  528. */
  529. switch (ar5416_get_ntxchains(tx_chainmask)) {
  530. case 1:
  531. break;
  532. case 2:
  533. if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
  534. scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
  535. else
  536. scaledPower = 0;
  537. break;
  538. case 3:
  539. if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
  540. scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
  541. else
  542. scaledPower = 0;
  543. break;
  544. }
  545. scaledPower = max((u16)0, scaledPower);
  546. /*
  547. * Get TX power from EEPROM.
  548. */
  549. if (IS_CHAN_2GHZ(chan)) {
  550. /* CTL_11B, CTL_11G, CTL_2GHT20 */
  551. numCtlModes =
  552. ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
  553. pCtlMode = ctlModesFor11g;
  554. ath9k_hw_get_legacy_target_powers(ah, chan,
  555. pEepData->calTargetPowerCck,
  556. AR9287_NUM_2G_CCK_TARGET_POWERS,
  557. &targetPowerCck, 4, false);
  558. ath9k_hw_get_legacy_target_powers(ah, chan,
  559. pEepData->calTargetPower2G,
  560. AR9287_NUM_2G_20_TARGET_POWERS,
  561. &targetPowerOfdm, 4, false);
  562. ath9k_hw_get_target_powers(ah, chan,
  563. pEepData->calTargetPower2GHT20,
  564. AR9287_NUM_2G_20_TARGET_POWERS,
  565. &targetPowerHt20, 8, false);
  566. if (IS_CHAN_HT40(chan)) {
  567. /* All 2G CTLs */
  568. numCtlModes = ARRAY_SIZE(ctlModesFor11g);
  569. ath9k_hw_get_target_powers(ah, chan,
  570. pEepData->calTargetPower2GHT40,
  571. AR9287_NUM_2G_40_TARGET_POWERS,
  572. &targetPowerHt40, 8, true);
  573. ath9k_hw_get_legacy_target_powers(ah, chan,
  574. pEepData->calTargetPowerCck,
  575. AR9287_NUM_2G_CCK_TARGET_POWERS,
  576. &targetPowerCckExt, 4, true);
  577. ath9k_hw_get_legacy_target_powers(ah, chan,
  578. pEepData->calTargetPower2G,
  579. AR9287_NUM_2G_20_TARGET_POWERS,
  580. &targetPowerOfdmExt, 4, true);
  581. }
  582. }
  583. for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
  584. bool isHt40CtlMode =
  585. (pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
  586. if (isHt40CtlMode)
  587. freq = centers.synth_center;
  588. else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
  589. freq = centers.ext_center;
  590. else
  591. freq = centers.ctl_center;
  592. /* Walk through the CTL indices stored in EEPROM */
  593. for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
  594. struct cal_ctl_edges *pRdEdgesPower;
  595. /*
  596. * Compare test group from regulatory channel list
  597. * with test mode from pCtlMode list
  598. */
  599. if (CMP_CTL || CMP_NO_CTL) {
  600. rep = &(pEepData->ctlData[i]);
  601. pRdEdgesPower =
  602. rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
  603. twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
  604. pRdEdgesPower,
  605. IS_CHAN_2GHZ(chan),
  606. AR5416_NUM_BAND_EDGES);
  607. if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
  608. twiceMaxEdgePower = min(twiceMaxEdgePower,
  609. twiceMinEdgePower);
  610. } else {
  611. twiceMaxEdgePower = twiceMinEdgePower;
  612. break;
  613. }
  614. }
  615. }
  616. minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
  617. /* Apply ctl mode to correct target power set */
  618. switch (pCtlMode[ctlMode]) {
  619. case CTL_11B:
  620. for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
  621. targetPowerCck.tPow2x[i] =
  622. (u8)min((u16)targetPowerCck.tPow2x[i],
  623. minCtlPower);
  624. }
  625. break;
  626. case CTL_11A:
  627. case CTL_11G:
  628. for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
  629. targetPowerOfdm.tPow2x[i] =
  630. (u8)min((u16)targetPowerOfdm.tPow2x[i],
  631. minCtlPower);
  632. }
  633. break;
  634. case CTL_5GHT20:
  635. case CTL_2GHT20:
  636. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
  637. targetPowerHt20.tPow2x[i] =
  638. (u8)min((u16)targetPowerHt20.tPow2x[i],
  639. minCtlPower);
  640. }
  641. break;
  642. case CTL_11B_EXT:
  643. targetPowerCckExt.tPow2x[0] =
  644. (u8)min((u16)targetPowerCckExt.tPow2x[0],
  645. minCtlPower);
  646. break;
  647. case CTL_11A_EXT:
  648. case CTL_11G_EXT:
  649. targetPowerOfdmExt.tPow2x[0] =
  650. (u8)min((u16)targetPowerOfdmExt.tPow2x[0],
  651. minCtlPower);
  652. break;
  653. case CTL_5GHT40:
  654. case CTL_2GHT40:
  655. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
  656. targetPowerHt40.tPow2x[i] =
  657. (u8)min((u16)targetPowerHt40.tPow2x[i],
  658. minCtlPower);
  659. }
  660. break;
  661. default:
  662. break;
  663. }
  664. }
  665. /* Now set the rates array */
  666. ratesArray[rate6mb] =
  667. ratesArray[rate9mb] =
  668. ratesArray[rate12mb] =
  669. ratesArray[rate18mb] =
  670. ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
  671. ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
  672. ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
  673. ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
  674. ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
  675. for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
  676. ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
  677. if (IS_CHAN_2GHZ(chan)) {
  678. ratesArray[rate1l] = targetPowerCck.tPow2x[0];
  679. ratesArray[rate2s] =
  680. ratesArray[rate2l] = targetPowerCck.tPow2x[1];
  681. ratesArray[rate5_5s] =
  682. ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
  683. ratesArray[rate11s] =
  684. ratesArray[rate11l] = targetPowerCck.tPow2x[3];
  685. }
  686. if (IS_CHAN_HT40(chan)) {
  687. for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
  688. ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
  689. ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
  690. ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
  691. ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
  692. if (IS_CHAN_2GHZ(chan))
  693. ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
  694. }
  695. #undef CMP_CTL
  696. #undef CMP_NO_CTL
  697. #undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
  698. #undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
  699. }
  700. static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
  701. struct ath9k_channel *chan, u16 cfgCtl,
  702. u8 twiceAntennaReduction,
  703. u8 twiceMaxRegulatoryPower,
  704. u8 powerLimit, bool test)
  705. {
  706. struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
  707. struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
  708. struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
  709. int16_t ratesArray[Ar5416RateSize];
  710. u8 ht40PowerIncForPdadc = 2;
  711. int i;
  712. memset(ratesArray, 0, sizeof(ratesArray));
  713. if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
  714. AR9287_EEP_MINOR_VER_2)
  715. ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
  716. ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
  717. &ratesArray[0], cfgCtl,
  718. twiceAntennaReduction,
  719. twiceMaxRegulatoryPower,
  720. powerLimit);
  721. ath9k_hw_set_ar9287_power_cal_table(ah, chan);
  722. regulatory->max_power_level = 0;
  723. for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
  724. if (ratesArray[i] > MAX_RATE_POWER)
  725. ratesArray[i] = MAX_RATE_POWER;
  726. if (ratesArray[i] > regulatory->max_power_level)
  727. regulatory->max_power_level = ratesArray[i];
  728. }
  729. if (test)
  730. return;
  731. if (AR_SREV_9280_20_OR_LATER(ah)) {
  732. for (i = 0; i < Ar5416RateSize; i++)
  733. ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
  734. }
  735. ENABLE_REGWRITE_BUFFER(ah);
  736. /* OFDM power per rate */
  737. REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
  738. ATH9K_POW_SM(ratesArray[rate18mb], 24)
  739. | ATH9K_POW_SM(ratesArray[rate12mb], 16)
  740. | ATH9K_POW_SM(ratesArray[rate9mb], 8)
  741. | ATH9K_POW_SM(ratesArray[rate6mb], 0));
  742. REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
  743. ATH9K_POW_SM(ratesArray[rate54mb], 24)
  744. | ATH9K_POW_SM(ratesArray[rate48mb], 16)
  745. | ATH9K_POW_SM(ratesArray[rate36mb], 8)
  746. | ATH9K_POW_SM(ratesArray[rate24mb], 0));
  747. /* CCK power per rate */
  748. if (IS_CHAN_2GHZ(chan)) {
  749. REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
  750. ATH9K_POW_SM(ratesArray[rate2s], 24)
  751. | ATH9K_POW_SM(ratesArray[rate2l], 16)
  752. | ATH9K_POW_SM(ratesArray[rateXr], 8)
  753. | ATH9K_POW_SM(ratesArray[rate1l], 0));
  754. REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
  755. ATH9K_POW_SM(ratesArray[rate11s], 24)
  756. | ATH9K_POW_SM(ratesArray[rate11l], 16)
  757. | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
  758. | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
  759. }
  760. /* HT20 power per rate */
  761. REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
  762. ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
  763. | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
  764. | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
  765. | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
  766. REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
  767. ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
  768. | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
  769. | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
  770. | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
  771. /* HT40 power per rate */
  772. if (IS_CHAN_HT40(chan)) {
  773. if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
  774. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  775. ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
  776. | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
  777. | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
  778. | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
  779. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  780. ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
  781. | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
  782. | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
  783. | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
  784. } else {
  785. REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
  786. ATH9K_POW_SM(ratesArray[rateHt40_3] +
  787. ht40PowerIncForPdadc, 24)
  788. | ATH9K_POW_SM(ratesArray[rateHt40_2] +
  789. ht40PowerIncForPdadc, 16)
  790. | ATH9K_POW_SM(ratesArray[rateHt40_1] +
  791. ht40PowerIncForPdadc, 8)
  792. | ATH9K_POW_SM(ratesArray[rateHt40_0] +
  793. ht40PowerIncForPdadc, 0));
  794. REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
  795. ATH9K_POW_SM(ratesArray[rateHt40_7] +
  796. ht40PowerIncForPdadc, 24)
  797. | ATH9K_POW_SM(ratesArray[rateHt40_6] +
  798. ht40PowerIncForPdadc, 16)
  799. | ATH9K_POW_SM(ratesArray[rateHt40_5] +
  800. ht40PowerIncForPdadc, 8)
  801. | ATH9K_POW_SM(ratesArray[rateHt40_4] +
  802. ht40PowerIncForPdadc, 0));
  803. }
  804. /* Dup/Ext power per rate */
  805. REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
  806. ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
  807. | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
  808. | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
  809. | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
  810. }
  811. REGWRITE_BUFFER_FLUSH(ah);
  812. }
  813. static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
  814. struct ath9k_channel *chan)
  815. {
  816. }
  817. static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
  818. struct ath9k_channel *chan)
  819. {
  820. struct ar9287_eeprom *eep = &ah->eeprom.map9287;
  821. struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
  822. u32 regChainOffset, regval;
  823. u8 txRxAttenLocal;
  824. int i;
  825. pModal = &eep->modalHeader;
  826. REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
  827. for (i = 0; i < AR9287_MAX_CHAINS; i++) {
  828. regChainOffset = i * 0x1000;
  829. REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
  830. pModal->antCtrlChain[i]);
  831. REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
  832. (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
  833. & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
  834. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
  835. SM(pModal->iqCalICh[i],
  836. AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
  837. SM(pModal->iqCalQCh[i],
  838. AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
  839. txRxAttenLocal = pModal->txRxAttenCh[i];
  840. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  841. AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
  842. pModal->bswMargin[i]);
  843. REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
  844. AR_PHY_GAIN_2GHZ_XATTEN1_DB,
  845. pModal->bswAtten[i]);
  846. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  847. AR9280_PHY_RXGAIN_TXRX_ATTEN,
  848. txRxAttenLocal);
  849. REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
  850. AR9280_PHY_RXGAIN_TXRX_MARGIN,
  851. pModal->rxTxMarginCh[i]);
  852. }
  853. if (IS_CHAN_HT40(chan))
  854. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  855. AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
  856. else
  857. REG_RMW_FIELD(ah, AR_PHY_SETTLING,
  858. AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
  859. REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
  860. AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
  861. REG_WRITE(ah, AR_PHY_RF_CTL4,
  862. SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
  863. | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
  864. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
  865. | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
  866. REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
  867. AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
  868. REG_RMW_FIELD(ah, AR_PHY_CCA,
  869. AR9280_PHY_CCA_THRESH62, pModal->thresh62);
  870. REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
  871. AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
  872. regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
  873. regval &= ~(AR9287_AN_RF2G3_DB1 |
  874. AR9287_AN_RF2G3_DB2 |
  875. AR9287_AN_RF2G3_OB_CCK |
  876. AR9287_AN_RF2G3_OB_PSK |
  877. AR9287_AN_RF2G3_OB_QAM |
  878. AR9287_AN_RF2G3_OB_PAL_OFF);
  879. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  880. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  881. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  882. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  883. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  884. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  885. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
  886. regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
  887. regval &= ~(AR9287_AN_RF2G3_DB1 |
  888. AR9287_AN_RF2G3_DB2 |
  889. AR9287_AN_RF2G3_OB_CCK |
  890. AR9287_AN_RF2G3_OB_PSK |
  891. AR9287_AN_RF2G3_OB_QAM |
  892. AR9287_AN_RF2G3_OB_PAL_OFF);
  893. regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
  894. SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
  895. SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
  896. SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
  897. SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
  898. SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
  899. ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
  900. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  901. AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
  902. REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
  903. AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
  904. ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
  905. AR9287_AN_TOP2_XPABIAS_LVL,
  906. AR9287_AN_TOP2_XPABIAS_LVL_S,
  907. pModal->xpaBiasLvl);
  908. }
  909. static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
  910. u16 i, bool is2GHz)
  911. {
  912. #define EEP_MAP9287_SPURCHAN \
  913. (ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)
  914. struct ath_common *common = ath9k_hw_common(ah);
  915. u16 spur_val = AR_NO_SPUR;
  916. ath_dbg(common, ATH_DBG_ANI,
  917. "Getting spur idx:%d is2Ghz:%d val:%x\n",
  918. i, is2GHz, ah->config.spurchans[i][is2GHz]);
  919. switch (ah->config.spurmode) {
  920. case SPUR_DISABLE:
  921. break;
  922. case SPUR_ENABLE_IOCTL:
  923. spur_val = ah->config.spurchans[i][is2GHz];
  924. ath_dbg(common, ATH_DBG_ANI,
  925. "Getting spur val from new loc. %d\n", spur_val);
  926. break;
  927. case SPUR_ENABLE_EEPROM:
  928. spur_val = EEP_MAP9287_SPURCHAN;
  929. break;
  930. }
  931. return spur_val;
  932. #undef EEP_MAP9287_SPURCHAN
  933. }
  934. const struct eeprom_ops eep_ar9287_ops = {
  935. .check_eeprom = ath9k_hw_ar9287_check_eeprom,
  936. .get_eeprom = ath9k_hw_ar9287_get_eeprom,
  937. .fill_eeprom = ath9k_hw_ar9287_fill_eeprom,
  938. .dump_eeprom = ath9k_hw_ar9287_dump_eeprom,
  939. .get_eeprom_ver = ath9k_hw_ar9287_get_eeprom_ver,
  940. .get_eeprom_rev = ath9k_hw_ar9287_get_eeprom_rev,
  941. .set_board_values = ath9k_hw_ar9287_set_board_values,
  942. .set_addac = ath9k_hw_ar9287_set_addac,
  943. .set_txpower = ath9k_hw_ar9287_set_txpower,
  944. .get_spur_channel = ath9k_hw_ar9287_get_spur_channel
  945. };