wmi.c 69 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743
  1. /*
  2. * Copyright (c) 2004-2011 Atheros Communications Inc.
  3. *
  4. * Permission to use, copy, modify, and/or distribute this software for any
  5. * purpose with or without fee is hereby granted, provided that the above
  6. * copyright notice and this permission notice appear in all copies.
  7. *
  8. * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  9. * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  10. * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  11. * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  12. * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  13. * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  14. * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  15. */
  16. #include <linux/ip.h>
  17. #include "core.h"
  18. #include "debug.h"
  19. static int ath6kl_wmi_sync_point(struct wmi *wmi);
  20. static const s32 wmi_rate_tbl[][2] = {
  21. /* {W/O SGI, with SGI} */
  22. {1000, 1000},
  23. {2000, 2000},
  24. {5500, 5500},
  25. {11000, 11000},
  26. {6000, 6000},
  27. {9000, 9000},
  28. {12000, 12000},
  29. {18000, 18000},
  30. {24000, 24000},
  31. {36000, 36000},
  32. {48000, 48000},
  33. {54000, 54000},
  34. {6500, 7200},
  35. {13000, 14400},
  36. {19500, 21700},
  37. {26000, 28900},
  38. {39000, 43300},
  39. {52000, 57800},
  40. {58500, 65000},
  41. {65000, 72200},
  42. {13500, 15000},
  43. {27000, 30000},
  44. {40500, 45000},
  45. {54000, 60000},
  46. {81000, 90000},
  47. {108000, 120000},
  48. {121500, 135000},
  49. {135000, 150000},
  50. {0, 0}
  51. };
  52. /* 802.1d to AC mapping. Refer pg 57 of WMM-test-plan-v1.2 */
  53. static const u8 up_to_ac[] = {
  54. WMM_AC_BE,
  55. WMM_AC_BK,
  56. WMM_AC_BK,
  57. WMM_AC_BE,
  58. WMM_AC_VI,
  59. WMM_AC_VI,
  60. WMM_AC_VO,
  61. WMM_AC_VO,
  62. };
  63. void ath6kl_wmi_set_control_ep(struct wmi *wmi, enum htc_endpoint_id ep_id)
  64. {
  65. if (WARN_ON(ep_id == ENDPOINT_UNUSED || ep_id >= ENDPOINT_MAX))
  66. return;
  67. wmi->ep_id = ep_id;
  68. }
  69. enum htc_endpoint_id ath6kl_wmi_get_control_ep(struct wmi *wmi)
  70. {
  71. return wmi->ep_id;
  72. }
  73. /* Performs DIX to 802.3 encapsulation for transmit packets.
  74. * Assumes the entire DIX header is contigous and that there is
  75. * enough room in the buffer for a 802.3 mac header and LLC+SNAP headers.
  76. */
  77. int ath6kl_wmi_dix_2_dot3(struct wmi *wmi, struct sk_buff *skb)
  78. {
  79. struct ath6kl_llc_snap_hdr *llc_hdr;
  80. struct ethhdr *eth_hdr;
  81. size_t new_len;
  82. __be16 type;
  83. u8 *datap;
  84. u16 size;
  85. if (WARN_ON(skb == NULL))
  86. return -EINVAL;
  87. size = sizeof(struct ath6kl_llc_snap_hdr) + sizeof(struct wmi_data_hdr);
  88. if (skb_headroom(skb) < size)
  89. return -ENOMEM;
  90. eth_hdr = (struct ethhdr *) skb->data;
  91. type = eth_hdr->h_proto;
  92. if (!is_ethertype(be16_to_cpu(type))) {
  93. ath6kl_dbg(ATH6KL_DBG_WMI,
  94. "%s: pkt is already in 802.3 format\n", __func__);
  95. return 0;
  96. }
  97. new_len = skb->len - sizeof(*eth_hdr) + sizeof(*llc_hdr);
  98. skb_push(skb, sizeof(struct ath6kl_llc_snap_hdr));
  99. datap = skb->data;
  100. eth_hdr->h_proto = cpu_to_be16(new_len);
  101. memcpy(datap, eth_hdr, sizeof(*eth_hdr));
  102. llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap + sizeof(*eth_hdr));
  103. llc_hdr->dsap = 0xAA;
  104. llc_hdr->ssap = 0xAA;
  105. llc_hdr->cntl = 0x03;
  106. llc_hdr->org_code[0] = 0x0;
  107. llc_hdr->org_code[1] = 0x0;
  108. llc_hdr->org_code[2] = 0x0;
  109. llc_hdr->eth_type = type;
  110. return 0;
  111. }
  112. static int ath6kl_wmi_meta_add(struct wmi *wmi, struct sk_buff *skb,
  113. u8 *version, void *tx_meta_info)
  114. {
  115. struct wmi_tx_meta_v1 *v1;
  116. struct wmi_tx_meta_v2 *v2;
  117. if (WARN_ON(skb == NULL || version == NULL))
  118. return -EINVAL;
  119. switch (*version) {
  120. case WMI_META_VERSION_1:
  121. skb_push(skb, WMI_MAX_TX_META_SZ);
  122. v1 = (struct wmi_tx_meta_v1 *) skb->data;
  123. v1->pkt_id = 0;
  124. v1->rate_plcy_id = 0;
  125. *version = WMI_META_VERSION_1;
  126. break;
  127. case WMI_META_VERSION_2:
  128. skb_push(skb, WMI_MAX_TX_META_SZ);
  129. v2 = (struct wmi_tx_meta_v2 *) skb->data;
  130. memcpy(v2, (struct wmi_tx_meta_v2 *) tx_meta_info,
  131. sizeof(struct wmi_tx_meta_v2));
  132. break;
  133. }
  134. return 0;
  135. }
  136. int ath6kl_wmi_data_hdr_add(struct wmi *wmi, struct sk_buff *skb,
  137. u8 msg_type, bool more_data,
  138. enum wmi_data_hdr_data_type data_type,
  139. u8 meta_ver, void *tx_meta_info)
  140. {
  141. struct wmi_data_hdr *data_hdr;
  142. int ret;
  143. if (WARN_ON(skb == NULL))
  144. return -EINVAL;
  145. ret = ath6kl_wmi_meta_add(wmi, skb, &meta_ver, tx_meta_info);
  146. if (ret)
  147. return ret;
  148. skb_push(skb, sizeof(struct wmi_data_hdr));
  149. data_hdr = (struct wmi_data_hdr *)skb->data;
  150. memset(data_hdr, 0, sizeof(struct wmi_data_hdr));
  151. data_hdr->info = msg_type << WMI_DATA_HDR_MSG_TYPE_SHIFT;
  152. data_hdr->info |= data_type << WMI_DATA_HDR_DATA_TYPE_SHIFT;
  153. if (more_data)
  154. data_hdr->info |=
  155. WMI_DATA_HDR_MORE_MASK << WMI_DATA_HDR_MORE_SHIFT;
  156. data_hdr->info2 = cpu_to_le16(meta_ver << WMI_DATA_HDR_META_SHIFT);
  157. data_hdr->info3 = 0;
  158. return 0;
  159. }
  160. static u8 ath6kl_wmi_determine_user_priority(u8 *pkt, u32 layer2_pri)
  161. {
  162. struct iphdr *ip_hdr = (struct iphdr *) pkt;
  163. u8 ip_pri;
  164. /*
  165. * Determine IPTOS priority
  166. *
  167. * IP-TOS - 8bits
  168. * : DSCP(6-bits) ECN(2-bits)
  169. * : DSCP - P2 P1 P0 X X X
  170. * where (P2 P1 P0) form 802.1D
  171. */
  172. ip_pri = ip_hdr->tos >> 5;
  173. ip_pri &= 0x7;
  174. if ((layer2_pri & 0x7) > ip_pri)
  175. return (u8) layer2_pri & 0x7;
  176. else
  177. return ip_pri;
  178. }
  179. int ath6kl_wmi_implicit_create_pstream(struct wmi *wmi, struct sk_buff *skb,
  180. u32 layer2_priority, bool wmm_enabled,
  181. u8 *ac)
  182. {
  183. struct wmi_data_hdr *data_hdr;
  184. struct ath6kl_llc_snap_hdr *llc_hdr;
  185. struct wmi_create_pstream_cmd cmd;
  186. u32 meta_size, hdr_size;
  187. u16 ip_type = IP_ETHERTYPE;
  188. u8 stream_exist, usr_pri;
  189. u8 traffic_class = WMM_AC_BE;
  190. u8 *datap;
  191. if (WARN_ON(skb == NULL))
  192. return -EINVAL;
  193. datap = skb->data;
  194. data_hdr = (struct wmi_data_hdr *) datap;
  195. meta_size = ((le16_to_cpu(data_hdr->info2) >> WMI_DATA_HDR_META_SHIFT) &
  196. WMI_DATA_HDR_META_MASK) ? WMI_MAX_TX_META_SZ : 0;
  197. if (!wmm_enabled) {
  198. /* If WMM is disabled all traffic goes as BE traffic */
  199. usr_pri = 0;
  200. } else {
  201. hdr_size = sizeof(struct ethhdr);
  202. llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap +
  203. sizeof(struct
  204. wmi_data_hdr) +
  205. meta_size + hdr_size);
  206. if (llc_hdr->eth_type == htons(ip_type)) {
  207. /*
  208. * Extract the endpoint info from the TOS field
  209. * in the IP header.
  210. */
  211. usr_pri =
  212. ath6kl_wmi_determine_user_priority(((u8 *) llc_hdr) +
  213. sizeof(struct ath6kl_llc_snap_hdr),
  214. layer2_priority);
  215. } else
  216. usr_pri = layer2_priority & 0x7;
  217. }
  218. /* workaround for WMM S5 */
  219. if ((wmi->traffic_class == WMM_AC_VI) &&
  220. ((usr_pri == 5) || (usr_pri == 4)))
  221. usr_pri = 1;
  222. /* Convert user priority to traffic class */
  223. traffic_class = up_to_ac[usr_pri & 0x7];
  224. wmi_data_hdr_set_up(data_hdr, usr_pri);
  225. spin_lock_bh(&wmi->lock);
  226. stream_exist = wmi->fat_pipe_exist;
  227. spin_unlock_bh(&wmi->lock);
  228. if (!(stream_exist & (1 << traffic_class))) {
  229. memset(&cmd, 0, sizeof(cmd));
  230. cmd.traffic_class = traffic_class;
  231. cmd.user_pri = usr_pri;
  232. cmd.inactivity_int =
  233. cpu_to_le32(WMI_IMPLICIT_PSTREAM_INACTIVITY_INT);
  234. /* Implicit streams are created with TSID 0xFF */
  235. cmd.tsid = WMI_IMPLICIT_PSTREAM;
  236. ath6kl_wmi_create_pstream_cmd(wmi, &cmd);
  237. }
  238. *ac = traffic_class;
  239. return 0;
  240. }
  241. int ath6kl_wmi_dot11_hdr_remove(struct wmi *wmi, struct sk_buff *skb)
  242. {
  243. struct ieee80211_hdr_3addr *pwh, wh;
  244. struct ath6kl_llc_snap_hdr *llc_hdr;
  245. struct ethhdr eth_hdr;
  246. u32 hdr_size;
  247. u8 *datap;
  248. __le16 sub_type;
  249. if (WARN_ON(skb == NULL))
  250. return -EINVAL;
  251. datap = skb->data;
  252. pwh = (struct ieee80211_hdr_3addr *) datap;
  253. sub_type = pwh->frame_control & cpu_to_le16(IEEE80211_FCTL_STYPE);
  254. memcpy((u8 *) &wh, datap, sizeof(struct ieee80211_hdr_3addr));
  255. /* Strip off the 802.11 header */
  256. if (sub_type == cpu_to_le16(IEEE80211_STYPE_QOS_DATA)) {
  257. hdr_size = roundup(sizeof(struct ieee80211_qos_hdr),
  258. sizeof(u32));
  259. skb_pull(skb, hdr_size);
  260. } else if (sub_type == cpu_to_le16(IEEE80211_STYPE_DATA))
  261. skb_pull(skb, sizeof(struct ieee80211_hdr_3addr));
  262. datap = skb->data;
  263. llc_hdr = (struct ath6kl_llc_snap_hdr *)(datap);
  264. memset(&eth_hdr, 0, sizeof(eth_hdr));
  265. eth_hdr.h_proto = llc_hdr->eth_type;
  266. switch ((le16_to_cpu(wh.frame_control)) &
  267. (IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS)) {
  268. case 0:
  269. memcpy(eth_hdr.h_dest, wh.addr1, ETH_ALEN);
  270. memcpy(eth_hdr.h_source, wh.addr2, ETH_ALEN);
  271. break;
  272. case IEEE80211_FCTL_TODS:
  273. memcpy(eth_hdr.h_dest, wh.addr3, ETH_ALEN);
  274. memcpy(eth_hdr.h_source, wh.addr2, ETH_ALEN);
  275. break;
  276. case IEEE80211_FCTL_FROMDS:
  277. memcpy(eth_hdr.h_dest, wh.addr1, ETH_ALEN);
  278. memcpy(eth_hdr.h_source, wh.addr3, ETH_ALEN);
  279. break;
  280. case IEEE80211_FCTL_FROMDS | IEEE80211_FCTL_TODS:
  281. break;
  282. }
  283. skb_pull(skb, sizeof(struct ath6kl_llc_snap_hdr));
  284. skb_push(skb, sizeof(eth_hdr));
  285. datap = skb->data;
  286. memcpy(datap, &eth_hdr, sizeof(eth_hdr));
  287. return 0;
  288. }
  289. /*
  290. * Performs 802.3 to DIX encapsulation for received packets.
  291. * Assumes the entire 802.3 header is contigous.
  292. */
  293. int ath6kl_wmi_dot3_2_dix(struct sk_buff *skb)
  294. {
  295. struct ath6kl_llc_snap_hdr *llc_hdr;
  296. struct ethhdr eth_hdr;
  297. u8 *datap;
  298. if (WARN_ON(skb == NULL))
  299. return -EINVAL;
  300. datap = skb->data;
  301. memcpy(&eth_hdr, datap, sizeof(eth_hdr));
  302. llc_hdr = (struct ath6kl_llc_snap_hdr *) (datap + sizeof(eth_hdr));
  303. eth_hdr.h_proto = llc_hdr->eth_type;
  304. skb_pull(skb, sizeof(struct ath6kl_llc_snap_hdr));
  305. datap = skb->data;
  306. memcpy(datap, &eth_hdr, sizeof(eth_hdr));
  307. return 0;
  308. }
  309. int ath6kl_wmi_data_hdr_remove(struct wmi *wmi, struct sk_buff *skb)
  310. {
  311. if (WARN_ON(skb == NULL))
  312. return -EINVAL;
  313. skb_pull(skb, sizeof(struct wmi_data_hdr));
  314. return 0;
  315. }
  316. static void ath6kl_wmi_convert_bssinfo_hdr2_to_hdr(struct sk_buff *skb,
  317. u8 *datap)
  318. {
  319. struct wmi_bss_info_hdr2 bih2;
  320. struct wmi_bss_info_hdr *bih;
  321. memcpy(&bih2, datap, sizeof(struct wmi_bss_info_hdr2));
  322. skb_push(skb, 4);
  323. bih = (struct wmi_bss_info_hdr *) skb->data;
  324. bih->ch = bih2.ch;
  325. bih->frame_type = bih2.frame_type;
  326. bih->snr = bih2.snr;
  327. bih->rssi = a_cpu_to_sle16(bih2.snr - 95);
  328. bih->ie_mask = cpu_to_le32(le16_to_cpu(bih2.ie_mask));
  329. memcpy(bih->bssid, bih2.bssid, ETH_ALEN);
  330. }
  331. static int ath6kl_wmi_tx_complete_event_rx(u8 *datap, int len)
  332. {
  333. struct tx_complete_msg_v1 *msg_v1;
  334. struct wmi_tx_complete_event *evt;
  335. int index;
  336. u16 size;
  337. evt = (struct wmi_tx_complete_event *) datap;
  338. ath6kl_dbg(ATH6KL_DBG_WMI, "comp: %d %d %d\n",
  339. evt->num_msg, evt->msg_len, evt->msg_type);
  340. if (!AR_DBG_LVL_CHECK(ATH6KL_DBG_WMI))
  341. return 0;
  342. for (index = 0; index < evt->num_msg; index++) {
  343. size = sizeof(struct wmi_tx_complete_event) +
  344. (index * sizeof(struct tx_complete_msg_v1));
  345. msg_v1 = (struct tx_complete_msg_v1 *)(datap + size);
  346. ath6kl_dbg(ATH6KL_DBG_WMI, "msg: %d %d %d %d\n",
  347. msg_v1->status, msg_v1->pkt_id,
  348. msg_v1->rate_idx, msg_v1->ack_failures);
  349. }
  350. return 0;
  351. }
  352. static inline struct sk_buff *ath6kl_wmi_get_new_buf(u32 size)
  353. {
  354. struct sk_buff *skb;
  355. skb = ath6kl_buf_alloc(size);
  356. if (!skb)
  357. return NULL;
  358. skb_put(skb, size);
  359. if (size)
  360. memset(skb->data, 0, size);
  361. return skb;
  362. }
  363. /* Send a "simple" wmi command -- one with no arguments */
  364. static int ath6kl_wmi_simple_cmd(struct wmi *wmi, enum wmi_cmd_id cmd_id)
  365. {
  366. struct sk_buff *skb;
  367. int ret;
  368. skb = ath6kl_wmi_get_new_buf(0);
  369. if (!skb)
  370. return -ENOMEM;
  371. ret = ath6kl_wmi_cmd_send(wmi, skb, cmd_id, NO_SYNC_WMIFLAG);
  372. return ret;
  373. }
  374. static int ath6kl_wmi_ready_event_rx(struct wmi *wmi, u8 *datap, int len)
  375. {
  376. struct wmi_ready_event_2 *ev = (struct wmi_ready_event_2 *) datap;
  377. if (len < sizeof(struct wmi_ready_event_2))
  378. return -EINVAL;
  379. wmi->ready = true;
  380. ath6kl_ready_event(wmi->parent_dev, ev->mac_addr,
  381. le32_to_cpu(ev->sw_version),
  382. le32_to_cpu(ev->abi_version));
  383. return 0;
  384. }
  385. static int ath6kl_wmi_connect_event_rx(struct wmi *wmi, u8 *datap, int len)
  386. {
  387. struct wmi_connect_event *ev;
  388. u8 *pie, *peie;
  389. if (len < sizeof(struct wmi_connect_event))
  390. return -EINVAL;
  391. ev = (struct wmi_connect_event *) datap;
  392. ath6kl_dbg(ATH6KL_DBG_WMI, "%s: freq %d bssid %pM\n",
  393. __func__, ev->ch, ev->bssid);
  394. /* Start of assoc rsp IEs */
  395. pie = ev->assoc_info + ev->beacon_ie_len +
  396. ev->assoc_req_len + (sizeof(u16) * 3); /* capinfo, status, aid */
  397. /* End of assoc rsp IEs */
  398. peie = ev->assoc_info + ev->beacon_ie_len + ev->assoc_req_len +
  399. ev->assoc_resp_len;
  400. while (pie < peie) {
  401. switch (*pie) {
  402. case WLAN_EID_VENDOR_SPECIFIC:
  403. if (pie[1] > 3 && pie[2] == 0x00 && pie[3] == 0x50 &&
  404. pie[4] == 0xf2 && pie[5] == WMM_OUI_TYPE) {
  405. /* WMM OUT (00:50:F2) */
  406. if (pie[1] > 5
  407. && pie[6] == WMM_PARAM_OUI_SUBTYPE)
  408. wmi->is_wmm_enabled = true;
  409. }
  410. break;
  411. }
  412. if (wmi->is_wmm_enabled)
  413. break;
  414. pie += pie[1] + 2;
  415. }
  416. ath6kl_connect_event(wmi->parent_dev, le16_to_cpu(ev->ch), ev->bssid,
  417. le16_to_cpu(ev->listen_intvl),
  418. le16_to_cpu(ev->beacon_intvl),
  419. le32_to_cpu(ev->nw_type),
  420. ev->beacon_ie_len, ev->assoc_req_len,
  421. ev->assoc_resp_len, ev->assoc_info);
  422. return 0;
  423. }
  424. static int ath6kl_wmi_disconnect_event_rx(struct wmi *wmi, u8 *datap, int len)
  425. {
  426. struct wmi_disconnect_event *ev;
  427. wmi->traffic_class = 100;
  428. if (len < sizeof(struct wmi_disconnect_event))
  429. return -EINVAL;
  430. ev = (struct wmi_disconnect_event *) datap;
  431. wmi->is_wmm_enabled = false;
  432. wmi->pair_crypto_type = NONE_CRYPT;
  433. wmi->grp_crypto_type = NONE_CRYPT;
  434. ath6kl_disconnect_event(wmi->parent_dev, ev->disconn_reason,
  435. ev->bssid, ev->assoc_resp_len, ev->assoc_info,
  436. le16_to_cpu(ev->proto_reason_status));
  437. return 0;
  438. }
  439. static int ath6kl_wmi_peer_node_event_rx(struct wmi *wmi, u8 *datap, int len)
  440. {
  441. struct wmi_peer_node_event *ev;
  442. if (len < sizeof(struct wmi_peer_node_event))
  443. return -EINVAL;
  444. ev = (struct wmi_peer_node_event *) datap;
  445. if (ev->event_code == PEER_NODE_JOIN_EVENT)
  446. ath6kl_dbg(ATH6KL_DBG_WMI, "joined node with mac addr: %pM\n",
  447. ev->peer_mac_addr);
  448. else if (ev->event_code == PEER_NODE_LEAVE_EVENT)
  449. ath6kl_dbg(ATH6KL_DBG_WMI, "left node with mac addr: %pM\n",
  450. ev->peer_mac_addr);
  451. return 0;
  452. }
  453. static int ath6kl_wmi_tkip_micerr_event_rx(struct wmi *wmi, u8 *datap, int len)
  454. {
  455. struct wmi_tkip_micerr_event *ev;
  456. if (len < sizeof(struct wmi_tkip_micerr_event))
  457. return -EINVAL;
  458. ev = (struct wmi_tkip_micerr_event *) datap;
  459. ath6kl_tkip_micerr_event(wmi->parent_dev, ev->key_id, ev->is_mcast);
  460. return 0;
  461. }
  462. static int ath6kl_wlan_parse_beacon(u8 *buf, int frame_len,
  463. struct ath6kl_common_ie *cie)
  464. {
  465. u8 *frm, *efrm;
  466. u8 elemid_ssid = false;
  467. frm = buf;
  468. efrm = (u8 *) (frm + frame_len);
  469. /*
  470. * beacon/probe response frame format
  471. * [8] time stamp
  472. * [2] beacon interval
  473. * [2] capability information
  474. * [tlv] ssid
  475. * [tlv] supported rates
  476. * [tlv] country information
  477. * [tlv] parameter set (FH/DS)
  478. * [tlv] erp information
  479. * [tlv] extended supported rates
  480. * [tlv] WMM
  481. * [tlv] WPA or RSN
  482. * [tlv] Atheros Advanced Capabilities
  483. */
  484. if ((efrm - frm) < 12)
  485. return -EINVAL;
  486. memset(cie, 0, sizeof(*cie));
  487. cie->ie_tstamp = frm;
  488. frm += 8;
  489. cie->ie_beaconInt = *(u16 *) frm;
  490. frm += 2;
  491. cie->ie_capInfo = *(u16 *) frm;
  492. frm += 2;
  493. cie->ie_chan = 0;
  494. while (frm < efrm) {
  495. switch (*frm) {
  496. case WLAN_EID_SSID:
  497. if (!elemid_ssid) {
  498. cie->ie_ssid = frm;
  499. elemid_ssid = true;
  500. }
  501. break;
  502. case WLAN_EID_SUPP_RATES:
  503. cie->ie_rates = frm;
  504. break;
  505. case WLAN_EID_COUNTRY:
  506. cie->ie_country = frm;
  507. break;
  508. case WLAN_EID_FH_PARAMS:
  509. break;
  510. case WLAN_EID_DS_PARAMS:
  511. cie->ie_chan = frm[2];
  512. break;
  513. case WLAN_EID_TIM:
  514. cie->ie_tim = frm;
  515. break;
  516. case WLAN_EID_IBSS_PARAMS:
  517. break;
  518. case WLAN_EID_EXT_SUPP_RATES:
  519. cie->ie_xrates = frm;
  520. break;
  521. case WLAN_EID_ERP_INFO:
  522. if (frm[1] != 1)
  523. return -EINVAL;
  524. cie->ie_erp = frm[2];
  525. break;
  526. case WLAN_EID_RSN:
  527. cie->ie_rsn = frm;
  528. break;
  529. case WLAN_EID_HT_CAPABILITY:
  530. cie->ie_htcap = frm;
  531. break;
  532. case WLAN_EID_HT_INFORMATION:
  533. cie->ie_htop = frm;
  534. break;
  535. case WLAN_EID_VENDOR_SPECIFIC:
  536. if (frm[1] > 3 && frm[2] == 0x00 && frm[3] == 0x50 &&
  537. frm[4] == 0xf2) {
  538. /* OUT Type (00:50:F2) */
  539. if (frm[5] == WPA_OUI_TYPE) {
  540. /* WPA OUT */
  541. cie->ie_wpa = frm;
  542. } else if (frm[5] == WMM_OUI_TYPE) {
  543. /* WMM OUT */
  544. cie->ie_wmm = frm;
  545. } else if (frm[5] == WSC_OUT_TYPE) {
  546. /* WSC OUT */
  547. cie->ie_wsc = frm;
  548. }
  549. } else if (frm[1] > 3 && frm[2] == 0x00
  550. && frm[3] == 0x03 && frm[4] == 0x7f
  551. && frm[5] == ATH_OUI_TYPE) {
  552. /* Atheros OUI (00:03:7f) */
  553. cie->ie_ath = frm;
  554. }
  555. break;
  556. default:
  557. break;
  558. }
  559. frm += frm[1] + 2;
  560. }
  561. if ((cie->ie_rates == NULL)
  562. || (cie->ie_rates[1] > ATH6KL_RATE_MAXSIZE))
  563. return -EINVAL;
  564. if ((cie->ie_ssid == NULL)
  565. || (cie->ie_ssid[1] > IEEE80211_MAX_SSID_LEN))
  566. return -EINVAL;
  567. return 0;
  568. }
  569. static int ath6kl_wmi_bssinfo_event_rx(struct wmi *wmi, u8 *datap, int len)
  570. {
  571. struct bss *bss = NULL;
  572. struct wmi_bss_info_hdr *bih;
  573. u8 cached_ssid_len = 0;
  574. u8 cached_ssid[IEEE80211_MAX_SSID_LEN] = { 0 };
  575. u8 beacon_ssid_len = 0;
  576. u8 *buf, *ie_ssid;
  577. u8 *ni_buf;
  578. int buf_len;
  579. int ret;
  580. if (len <= sizeof(struct wmi_bss_info_hdr))
  581. return -EINVAL;
  582. bih = (struct wmi_bss_info_hdr *) datap;
  583. bss = wlan_find_node(&wmi->parent_dev->scan_table, bih->bssid);
  584. if (a_sle16_to_cpu(bih->rssi) > 0) {
  585. if (bss == NULL)
  586. return 0;
  587. else
  588. bih->rssi = a_cpu_to_sle16(bss->ni_rssi);
  589. }
  590. buf = datap + sizeof(struct wmi_bss_info_hdr);
  591. len -= sizeof(struct wmi_bss_info_hdr);
  592. ath6kl_dbg(ATH6KL_DBG_WMI,
  593. "bss info evt - ch %u, rssi %02x, bssid \"%pM\"\n",
  594. bih->ch, a_sle16_to_cpu(bih->rssi), bih->bssid);
  595. if (bss != NULL) {
  596. /*
  597. * Free up the node. We are about to allocate a new node.
  598. * In case of hidden AP, beacon will not have ssid,
  599. * but a directed probe response will have it,
  600. * so cache the probe-resp-ssid if already present.
  601. */
  602. if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE)) {
  603. ie_ssid = bss->ni_cie.ie_ssid;
  604. if (ie_ssid && (ie_ssid[1] <= IEEE80211_MAX_SSID_LEN) &&
  605. (ie_ssid[2] != 0)) {
  606. cached_ssid_len = ie_ssid[1];
  607. memcpy(cached_ssid, ie_ssid + 2,
  608. cached_ssid_len);
  609. }
  610. }
  611. /*
  612. * Use the current average rssi of associated AP base on
  613. * assumption
  614. * 1. Most os with GUI will update RSSI by
  615. * ath6kl_wmi_get_stats_cmd() periodically.
  616. * 2. ath6kl_wmi_get_stats_cmd(..) will be called when calling
  617. * ath6kl_wmi_startscan_cmd(...)
  618. * The average value of RSSI give end-user better feeling for
  619. * instance value of scan result. It also sync up RSSI info
  620. * in GUI between scan result and RSSI signal icon.
  621. */
  622. if (memcmp(wmi->parent_dev->bssid, bih->bssid, ETH_ALEN) == 0) {
  623. bih->rssi = a_cpu_to_sle16(bss->ni_rssi);
  624. bih->snr = bss->ni_snr;
  625. }
  626. wlan_node_reclaim(&wmi->parent_dev->scan_table, bss);
  627. }
  628. /*
  629. * beacon/probe response frame format
  630. * [8] time stamp
  631. * [2] beacon interval
  632. * [2] capability information
  633. * [tlv] ssid
  634. */
  635. beacon_ssid_len = buf[SSID_IE_LEN_INDEX];
  636. /*
  637. * If ssid is cached for this hidden AP, then change
  638. * buffer len accordingly.
  639. */
  640. if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE) &&
  641. (cached_ssid_len != 0) &&
  642. (beacon_ssid_len == 0 || (cached_ssid_len > beacon_ssid_len &&
  643. buf[SSID_IE_LEN_INDEX + 1] == 0))) {
  644. len += (cached_ssid_len - beacon_ssid_len);
  645. }
  646. bss = wlan_node_alloc(len);
  647. if (!bss)
  648. return -ENOMEM;
  649. bss->ni_snr = bih->snr;
  650. bss->ni_rssi = a_sle16_to_cpu(bih->rssi);
  651. if (WARN_ON(!bss->ni_buf))
  652. return -EINVAL;
  653. /*
  654. * In case of hidden AP, beacon will not have ssid,
  655. * but a directed probe response will have it,
  656. * so place the cached-ssid(probe-resp) in the bss info.
  657. */
  658. if (wmi->is_probe_ssid && (bih->frame_type == BEACON_FTYPE) &&
  659. (cached_ssid_len != 0) &&
  660. (beacon_ssid_len == 0 || (beacon_ssid_len &&
  661. buf[SSID_IE_LEN_INDEX + 1] == 0))) {
  662. ni_buf = bss->ni_buf;
  663. buf_len = len;
  664. /*
  665. * Copy the first 14 bytes:
  666. * time-stamp(8), beacon-interval(2),
  667. * cap-info(2), ssid-id(1), ssid-len(1).
  668. */
  669. memcpy(ni_buf, buf, SSID_IE_LEN_INDEX + 1);
  670. ni_buf[SSID_IE_LEN_INDEX] = cached_ssid_len;
  671. ni_buf += (SSID_IE_LEN_INDEX + 1);
  672. buf += (SSID_IE_LEN_INDEX + 1);
  673. buf_len -= (SSID_IE_LEN_INDEX + 1);
  674. memcpy(ni_buf, cached_ssid, cached_ssid_len);
  675. ni_buf += cached_ssid_len;
  676. buf += beacon_ssid_len;
  677. buf_len -= beacon_ssid_len;
  678. if (cached_ssid_len > beacon_ssid_len)
  679. buf_len -= (cached_ssid_len - beacon_ssid_len);
  680. memcpy(ni_buf, buf, buf_len);
  681. } else
  682. memcpy(bss->ni_buf, buf, len);
  683. bss->ni_framelen = len;
  684. ret = ath6kl_wlan_parse_beacon(bss->ni_buf, len, &bss->ni_cie);
  685. if (ret) {
  686. wlan_node_free(bss);
  687. return -EINVAL;
  688. }
  689. /*
  690. * Update the frequency in ie_chan, overwriting of channel number
  691. * which is done in ath6kl_wlan_parse_beacon
  692. */
  693. bss->ni_cie.ie_chan = le16_to_cpu(bih->ch);
  694. wlan_setup_node(&wmi->parent_dev->scan_table, bss, bih->bssid);
  695. return 0;
  696. }
  697. static int ath6kl_wmi_opt_frame_event_rx(struct wmi *wmi, u8 *datap, int len)
  698. {
  699. struct bss *bss;
  700. struct wmi_opt_rx_info_hdr *bih;
  701. u8 *buf;
  702. if (len <= sizeof(struct wmi_opt_rx_info_hdr))
  703. return -EINVAL;
  704. bih = (struct wmi_opt_rx_info_hdr *) datap;
  705. buf = datap + sizeof(struct wmi_opt_rx_info_hdr);
  706. len -= sizeof(struct wmi_opt_rx_info_hdr);
  707. ath6kl_dbg(ATH6KL_DBG_WMI, "opt frame event %2.2x:%2.2x\n",
  708. bih->bssid[4], bih->bssid[5]);
  709. bss = wlan_find_node(&wmi->parent_dev->scan_table, bih->bssid);
  710. if (bss != NULL) {
  711. /* Free up the node. We are about to allocate a new node. */
  712. wlan_node_reclaim(&wmi->parent_dev->scan_table, bss);
  713. }
  714. bss = wlan_node_alloc(len);
  715. if (!bss)
  716. return -ENOMEM;
  717. bss->ni_snr = bih->snr;
  718. bss->ni_cie.ie_chan = le16_to_cpu(bih->ch);
  719. if (WARN_ON(!bss->ni_buf))
  720. return -EINVAL;
  721. memcpy(bss->ni_buf, buf, len);
  722. wlan_setup_node(&wmi->parent_dev->scan_table, bss, bih->bssid);
  723. return 0;
  724. }
  725. /* Inactivity timeout of a fatpipe(pstream) at the target */
  726. static int ath6kl_wmi_pstream_timeout_event_rx(struct wmi *wmi, u8 *datap,
  727. int len)
  728. {
  729. struct wmi_pstream_timeout_event *ev;
  730. if (len < sizeof(struct wmi_pstream_timeout_event))
  731. return -EINVAL;
  732. ev = (struct wmi_pstream_timeout_event *) datap;
  733. /*
  734. * When the pstream (fat pipe == AC) timesout, it means there were
  735. * no thinStreams within this pstream & it got implicitly created
  736. * due to data flow on this AC. We start the inactivity timer only
  737. * for implicitly created pstream. Just reset the host state.
  738. */
  739. spin_lock_bh(&wmi->lock);
  740. wmi->stream_exist_for_ac[ev->traffic_class] = 0;
  741. wmi->fat_pipe_exist &= ~(1 << ev->traffic_class);
  742. spin_unlock_bh(&wmi->lock);
  743. /* Indicate inactivity to driver layer for this fatpipe (pstream) */
  744. ath6kl_indicate_tx_activity(wmi->parent_dev, ev->traffic_class, false);
  745. return 0;
  746. }
  747. static int ath6kl_wmi_bitrate_reply_rx(struct wmi *wmi, u8 *datap, int len)
  748. {
  749. struct wmi_bit_rate_reply *reply;
  750. s32 rate;
  751. u32 sgi, index;
  752. if (len < sizeof(struct wmi_bit_rate_reply))
  753. return -EINVAL;
  754. reply = (struct wmi_bit_rate_reply *) datap;
  755. ath6kl_dbg(ATH6KL_DBG_WMI, "rateindex %d\n", reply->rate_index);
  756. if (reply->rate_index == (s8) RATE_AUTO) {
  757. rate = RATE_AUTO;
  758. } else {
  759. index = reply->rate_index & 0x7f;
  760. sgi = (reply->rate_index & 0x80) ? 1 : 0;
  761. rate = wmi_rate_tbl[index][sgi];
  762. }
  763. ath6kl_wakeup_event(wmi->parent_dev);
  764. return 0;
  765. }
  766. static int ath6kl_wmi_ratemask_reply_rx(struct wmi *wmi, u8 *datap, int len)
  767. {
  768. if (len < sizeof(struct wmi_fix_rates_reply))
  769. return -EINVAL;
  770. ath6kl_wakeup_event(wmi->parent_dev);
  771. return 0;
  772. }
  773. static int ath6kl_wmi_ch_list_reply_rx(struct wmi *wmi, u8 *datap, int len)
  774. {
  775. if (len < sizeof(struct wmi_channel_list_reply))
  776. return -EINVAL;
  777. ath6kl_wakeup_event(wmi->parent_dev);
  778. return 0;
  779. }
  780. static int ath6kl_wmi_tx_pwr_reply_rx(struct wmi *wmi, u8 *datap, int len)
  781. {
  782. struct wmi_tx_pwr_reply *reply;
  783. if (len < sizeof(struct wmi_tx_pwr_reply))
  784. return -EINVAL;
  785. reply = (struct wmi_tx_pwr_reply *) datap;
  786. ath6kl_txpwr_rx_evt(wmi->parent_dev, reply->dbM);
  787. return 0;
  788. }
  789. static int ath6kl_wmi_keepalive_reply_rx(struct wmi *wmi, u8 *datap, int len)
  790. {
  791. if (len < sizeof(struct wmi_get_keepalive_cmd))
  792. return -EINVAL;
  793. ath6kl_wakeup_event(wmi->parent_dev);
  794. return 0;
  795. }
  796. static int ath6kl_wmi_scan_complete_rx(struct wmi *wmi, u8 *datap, int len)
  797. {
  798. struct wmi_scan_complete_event *ev;
  799. ev = (struct wmi_scan_complete_event *) datap;
  800. if (a_sle32_to_cpu(ev->status) == 0)
  801. wlan_refresh_inactive_nodes(wmi->parent_dev);
  802. ath6kl_scan_complete_evt(wmi->parent_dev, a_sle32_to_cpu(ev->status));
  803. wmi->is_probe_ssid = false;
  804. return 0;
  805. }
  806. /*
  807. * Target is reporting a programming error. This is for
  808. * developer aid only. Target only checks a few common violations
  809. * and it is responsibility of host to do all error checking.
  810. * Behavior of target after wmi error event is undefined.
  811. * A reset is recommended.
  812. */
  813. static int ath6kl_wmi_error_event_rx(struct wmi *wmi, u8 *datap, int len)
  814. {
  815. const char *type = "unknown error";
  816. struct wmi_cmd_error_event *ev;
  817. ev = (struct wmi_cmd_error_event *) datap;
  818. switch (ev->err_code) {
  819. case INVALID_PARAM:
  820. type = "invalid parameter";
  821. break;
  822. case ILLEGAL_STATE:
  823. type = "invalid state";
  824. break;
  825. case INTERNAL_ERROR:
  826. type = "internal error";
  827. break;
  828. }
  829. ath6kl_dbg(ATH6KL_DBG_WMI, "programming error, cmd=%d %s\n",
  830. ev->cmd_id, type);
  831. return 0;
  832. }
  833. static int ath6kl_wmi_stats_event_rx(struct wmi *wmi, u8 *datap, int len)
  834. {
  835. ath6kl_tgt_stats_event(wmi->parent_dev, datap, len);
  836. return 0;
  837. }
  838. static u8 ath6kl_wmi_get_upper_threshold(s16 rssi,
  839. struct sq_threshold_params *sq_thresh,
  840. u32 size)
  841. {
  842. u32 index;
  843. u8 threshold = (u8) sq_thresh->upper_threshold[size - 1];
  844. /* The list is already in sorted order. Get the next lower value */
  845. for (index = 0; index < size; index++) {
  846. if (rssi < sq_thresh->upper_threshold[index]) {
  847. threshold = (u8) sq_thresh->upper_threshold[index];
  848. break;
  849. }
  850. }
  851. return threshold;
  852. }
  853. static u8 ath6kl_wmi_get_lower_threshold(s16 rssi,
  854. struct sq_threshold_params *sq_thresh,
  855. u32 size)
  856. {
  857. u32 index;
  858. u8 threshold = (u8) sq_thresh->lower_threshold[size - 1];
  859. /* The list is already in sorted order. Get the next lower value */
  860. for (index = 0; index < size; index++) {
  861. if (rssi > sq_thresh->lower_threshold[index]) {
  862. threshold = (u8) sq_thresh->lower_threshold[index];
  863. break;
  864. }
  865. }
  866. return threshold;
  867. }
  868. static int ath6kl_wmi_send_rssi_threshold_params(struct wmi *wmi,
  869. struct wmi_rssi_threshold_params_cmd *rssi_cmd)
  870. {
  871. struct sk_buff *skb;
  872. struct wmi_rssi_threshold_params_cmd *cmd;
  873. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  874. if (!skb)
  875. return -ENOMEM;
  876. cmd = (struct wmi_rssi_threshold_params_cmd *) skb->data;
  877. memcpy(cmd, rssi_cmd, sizeof(struct wmi_rssi_threshold_params_cmd));
  878. return ath6kl_wmi_cmd_send(wmi, skb, WMI_RSSI_THRESHOLD_PARAMS_CMDID,
  879. NO_SYNC_WMIFLAG);
  880. }
  881. static int ath6kl_wmi_rssi_threshold_event_rx(struct wmi *wmi, u8 *datap,
  882. int len)
  883. {
  884. struct wmi_rssi_threshold_event *reply;
  885. struct wmi_rssi_threshold_params_cmd cmd;
  886. struct sq_threshold_params *sq_thresh;
  887. enum wmi_rssi_threshold_val new_threshold;
  888. u8 upper_rssi_threshold, lower_rssi_threshold;
  889. s16 rssi;
  890. int ret;
  891. if (len < sizeof(struct wmi_rssi_threshold_event))
  892. return -EINVAL;
  893. reply = (struct wmi_rssi_threshold_event *) datap;
  894. new_threshold = (enum wmi_rssi_threshold_val) reply->range;
  895. rssi = a_sle16_to_cpu(reply->rssi);
  896. sq_thresh = &wmi->sq_threshld[SIGNAL_QUALITY_METRICS_RSSI];
  897. /*
  898. * Identify the threshold breached and communicate that to the app.
  899. * After that install a new set of thresholds based on the signal
  900. * quality reported by the target
  901. */
  902. if (new_threshold) {
  903. /* Upper threshold breached */
  904. if (rssi < sq_thresh->upper_threshold[0]) {
  905. ath6kl_dbg(ATH6KL_DBG_WMI,
  906. "spurious upper rssi threshold event: %d\n",
  907. rssi);
  908. } else if ((rssi < sq_thresh->upper_threshold[1]) &&
  909. (rssi >= sq_thresh->upper_threshold[0])) {
  910. new_threshold = WMI_RSSI_THRESHOLD1_ABOVE;
  911. } else if ((rssi < sq_thresh->upper_threshold[2]) &&
  912. (rssi >= sq_thresh->upper_threshold[1])) {
  913. new_threshold = WMI_RSSI_THRESHOLD2_ABOVE;
  914. } else if ((rssi < sq_thresh->upper_threshold[3]) &&
  915. (rssi >= sq_thresh->upper_threshold[2])) {
  916. new_threshold = WMI_RSSI_THRESHOLD3_ABOVE;
  917. } else if ((rssi < sq_thresh->upper_threshold[4]) &&
  918. (rssi >= sq_thresh->upper_threshold[3])) {
  919. new_threshold = WMI_RSSI_THRESHOLD4_ABOVE;
  920. } else if ((rssi < sq_thresh->upper_threshold[5]) &&
  921. (rssi >= sq_thresh->upper_threshold[4])) {
  922. new_threshold = WMI_RSSI_THRESHOLD5_ABOVE;
  923. } else if (rssi >= sq_thresh->upper_threshold[5]) {
  924. new_threshold = WMI_RSSI_THRESHOLD6_ABOVE;
  925. }
  926. } else {
  927. /* Lower threshold breached */
  928. if (rssi > sq_thresh->lower_threshold[0]) {
  929. ath6kl_dbg(ATH6KL_DBG_WMI,
  930. "spurious lower rssi threshold event: %d %d\n",
  931. rssi, sq_thresh->lower_threshold[0]);
  932. } else if ((rssi > sq_thresh->lower_threshold[1]) &&
  933. (rssi <= sq_thresh->lower_threshold[0])) {
  934. new_threshold = WMI_RSSI_THRESHOLD6_BELOW;
  935. } else if ((rssi > sq_thresh->lower_threshold[2]) &&
  936. (rssi <= sq_thresh->lower_threshold[1])) {
  937. new_threshold = WMI_RSSI_THRESHOLD5_BELOW;
  938. } else if ((rssi > sq_thresh->lower_threshold[3]) &&
  939. (rssi <= sq_thresh->lower_threshold[2])) {
  940. new_threshold = WMI_RSSI_THRESHOLD4_BELOW;
  941. } else if ((rssi > sq_thresh->lower_threshold[4]) &&
  942. (rssi <= sq_thresh->lower_threshold[3])) {
  943. new_threshold = WMI_RSSI_THRESHOLD3_BELOW;
  944. } else if ((rssi > sq_thresh->lower_threshold[5]) &&
  945. (rssi <= sq_thresh->lower_threshold[4])) {
  946. new_threshold = WMI_RSSI_THRESHOLD2_BELOW;
  947. } else if (rssi <= sq_thresh->lower_threshold[5]) {
  948. new_threshold = WMI_RSSI_THRESHOLD1_BELOW;
  949. }
  950. }
  951. /* Calculate and install the next set of thresholds */
  952. lower_rssi_threshold = ath6kl_wmi_get_lower_threshold(rssi, sq_thresh,
  953. sq_thresh->lower_threshold_valid_count);
  954. upper_rssi_threshold = ath6kl_wmi_get_upper_threshold(rssi, sq_thresh,
  955. sq_thresh->upper_threshold_valid_count);
  956. /* Issue a wmi command to install the thresholds */
  957. cmd.thresh_above1_val = a_cpu_to_sle16(upper_rssi_threshold);
  958. cmd.thresh_below1_val = a_cpu_to_sle16(lower_rssi_threshold);
  959. cmd.weight = sq_thresh->weight;
  960. cmd.poll_time = cpu_to_le32(sq_thresh->polling_interval);
  961. ret = ath6kl_wmi_send_rssi_threshold_params(wmi, &cmd);
  962. if (ret) {
  963. ath6kl_err("unable to configure rssi thresholds\n");
  964. return -EIO;
  965. }
  966. return 0;
  967. }
  968. static int ath6kl_wmi_cac_event_rx(struct wmi *wmi, u8 *datap, int len)
  969. {
  970. struct wmi_cac_event *reply;
  971. struct ieee80211_tspec_ie *ts;
  972. u16 active_tsids, tsinfo;
  973. u8 tsid, index;
  974. u8 ts_id;
  975. if (len < sizeof(struct wmi_cac_event))
  976. return -EINVAL;
  977. reply = (struct wmi_cac_event *) datap;
  978. if ((reply->cac_indication == CAC_INDICATION_ADMISSION_RESP) &&
  979. (reply->status_code != IEEE80211_TSPEC_STATUS_ADMISS_ACCEPTED)) {
  980. ts = (struct ieee80211_tspec_ie *) &(reply->tspec_suggestion);
  981. tsinfo = le16_to_cpu(ts->tsinfo);
  982. tsid = (tsinfo >> IEEE80211_WMM_IE_TSPEC_TID_SHIFT) &
  983. IEEE80211_WMM_IE_TSPEC_TID_MASK;
  984. ath6kl_wmi_delete_pstream_cmd(wmi, reply->ac, tsid);
  985. } else if (reply->cac_indication == CAC_INDICATION_NO_RESP) {
  986. /*
  987. * Following assumes that there is only one outstanding
  988. * ADDTS request when this event is received
  989. */
  990. spin_lock_bh(&wmi->lock);
  991. active_tsids = wmi->stream_exist_for_ac[reply->ac];
  992. spin_unlock_bh(&wmi->lock);
  993. for (index = 0; index < sizeof(active_tsids) * 8; index++) {
  994. if ((active_tsids >> index) & 1)
  995. break;
  996. }
  997. if (index < (sizeof(active_tsids) * 8))
  998. ath6kl_wmi_delete_pstream_cmd(wmi, reply->ac, index);
  999. }
  1000. /*
  1001. * Clear active tsids and Add missing handling
  1002. * for delete qos stream from AP
  1003. */
  1004. else if (reply->cac_indication == CAC_INDICATION_DELETE) {
  1005. ts = (struct ieee80211_tspec_ie *) &(reply->tspec_suggestion);
  1006. tsinfo = le16_to_cpu(ts->tsinfo);
  1007. ts_id = ((tsinfo >> IEEE80211_WMM_IE_TSPEC_TID_SHIFT) &
  1008. IEEE80211_WMM_IE_TSPEC_TID_MASK);
  1009. spin_lock_bh(&wmi->lock);
  1010. wmi->stream_exist_for_ac[reply->ac] &= ~(1 << ts_id);
  1011. active_tsids = wmi->stream_exist_for_ac[reply->ac];
  1012. spin_unlock_bh(&wmi->lock);
  1013. /* Indicate stream inactivity to driver layer only if all tsids
  1014. * within this AC are deleted.
  1015. */
  1016. if (!active_tsids) {
  1017. ath6kl_indicate_tx_activity(wmi->parent_dev, reply->ac,
  1018. false);
  1019. wmi->fat_pipe_exist &= ~(1 << reply->ac);
  1020. }
  1021. }
  1022. return 0;
  1023. }
  1024. static int ath6kl_wmi_send_snr_threshold_params(struct wmi *wmi,
  1025. struct wmi_snr_threshold_params_cmd *snr_cmd)
  1026. {
  1027. struct sk_buff *skb;
  1028. struct wmi_snr_threshold_params_cmd *cmd;
  1029. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1030. if (!skb)
  1031. return -ENOMEM;
  1032. cmd = (struct wmi_snr_threshold_params_cmd *) skb->data;
  1033. memcpy(cmd, snr_cmd, sizeof(struct wmi_snr_threshold_params_cmd));
  1034. return ath6kl_wmi_cmd_send(wmi, skb, WMI_SNR_THRESHOLD_PARAMS_CMDID,
  1035. NO_SYNC_WMIFLAG);
  1036. }
  1037. static int ath6kl_wmi_snr_threshold_event_rx(struct wmi *wmi, u8 *datap,
  1038. int len)
  1039. {
  1040. struct wmi_snr_threshold_event *reply;
  1041. struct sq_threshold_params *sq_thresh;
  1042. struct wmi_snr_threshold_params_cmd cmd;
  1043. enum wmi_snr_threshold_val new_threshold;
  1044. u8 upper_snr_threshold, lower_snr_threshold;
  1045. s16 snr;
  1046. int ret;
  1047. if (len < sizeof(struct wmi_snr_threshold_event))
  1048. return -EINVAL;
  1049. reply = (struct wmi_snr_threshold_event *) datap;
  1050. new_threshold = (enum wmi_snr_threshold_val) reply->range;
  1051. snr = reply->snr;
  1052. sq_thresh = &wmi->sq_threshld[SIGNAL_QUALITY_METRICS_SNR];
  1053. /*
  1054. * Identify the threshold breached and communicate that to the app.
  1055. * After that install a new set of thresholds based on the signal
  1056. * quality reported by the target.
  1057. */
  1058. if (new_threshold) {
  1059. /* Upper threshold breached */
  1060. if (snr < sq_thresh->upper_threshold[0]) {
  1061. ath6kl_dbg(ATH6KL_DBG_WMI,
  1062. "spurious upper snr threshold event: %d\n",
  1063. snr);
  1064. } else if ((snr < sq_thresh->upper_threshold[1]) &&
  1065. (snr >= sq_thresh->upper_threshold[0])) {
  1066. new_threshold = WMI_SNR_THRESHOLD1_ABOVE;
  1067. } else if ((snr < sq_thresh->upper_threshold[2]) &&
  1068. (snr >= sq_thresh->upper_threshold[1])) {
  1069. new_threshold = WMI_SNR_THRESHOLD2_ABOVE;
  1070. } else if ((snr < sq_thresh->upper_threshold[3]) &&
  1071. (snr >= sq_thresh->upper_threshold[2])) {
  1072. new_threshold = WMI_SNR_THRESHOLD3_ABOVE;
  1073. } else if (snr >= sq_thresh->upper_threshold[3]) {
  1074. new_threshold = WMI_SNR_THRESHOLD4_ABOVE;
  1075. }
  1076. } else {
  1077. /* Lower threshold breached */
  1078. if (snr > sq_thresh->lower_threshold[0]) {
  1079. ath6kl_dbg(ATH6KL_DBG_WMI,
  1080. "spurious lower snr threshold event: %d\n",
  1081. sq_thresh->lower_threshold[0]);
  1082. } else if ((snr > sq_thresh->lower_threshold[1]) &&
  1083. (snr <= sq_thresh->lower_threshold[0])) {
  1084. new_threshold = WMI_SNR_THRESHOLD4_BELOW;
  1085. } else if ((snr > sq_thresh->lower_threshold[2]) &&
  1086. (snr <= sq_thresh->lower_threshold[1])) {
  1087. new_threshold = WMI_SNR_THRESHOLD3_BELOW;
  1088. } else if ((snr > sq_thresh->lower_threshold[3]) &&
  1089. (snr <= sq_thresh->lower_threshold[2])) {
  1090. new_threshold = WMI_SNR_THRESHOLD2_BELOW;
  1091. } else if (snr <= sq_thresh->lower_threshold[3]) {
  1092. new_threshold = WMI_SNR_THRESHOLD1_BELOW;
  1093. }
  1094. }
  1095. /* Calculate and install the next set of thresholds */
  1096. lower_snr_threshold = ath6kl_wmi_get_lower_threshold(snr, sq_thresh,
  1097. sq_thresh->lower_threshold_valid_count);
  1098. upper_snr_threshold = ath6kl_wmi_get_upper_threshold(snr, sq_thresh,
  1099. sq_thresh->upper_threshold_valid_count);
  1100. /* Issue a wmi command to install the thresholds */
  1101. cmd.thresh_above1_val = upper_snr_threshold;
  1102. cmd.thresh_below1_val = lower_snr_threshold;
  1103. cmd.weight = sq_thresh->weight;
  1104. cmd.poll_time = cpu_to_le32(sq_thresh->polling_interval);
  1105. ath6kl_dbg(ATH6KL_DBG_WMI,
  1106. "snr: %d, threshold: %d, lower: %d, upper: %d\n",
  1107. snr, new_threshold,
  1108. lower_snr_threshold, upper_snr_threshold);
  1109. ret = ath6kl_wmi_send_snr_threshold_params(wmi, &cmd);
  1110. if (ret) {
  1111. ath6kl_err("unable to configure snr threshold\n");
  1112. return -EIO;
  1113. }
  1114. return 0;
  1115. }
  1116. static int ath6kl_wmi_aplist_event_rx(struct wmi *wmi, u8 *datap, int len)
  1117. {
  1118. u16 ap_info_entry_size;
  1119. struct wmi_aplist_event *ev = (struct wmi_aplist_event *) datap;
  1120. struct wmi_ap_info_v1 *ap_info_v1;
  1121. u8 index;
  1122. if (len < sizeof(struct wmi_aplist_event) ||
  1123. ev->ap_list_ver != APLIST_VER1)
  1124. return -EINVAL;
  1125. ap_info_entry_size = sizeof(struct wmi_ap_info_v1);
  1126. ap_info_v1 = (struct wmi_ap_info_v1 *) ev->ap_list;
  1127. ath6kl_dbg(ATH6KL_DBG_WMI,
  1128. "number of APs in aplist event: %d\n", ev->num_ap);
  1129. if (len < (int) (sizeof(struct wmi_aplist_event) +
  1130. (ev->num_ap - 1) * ap_info_entry_size))
  1131. return -EINVAL;
  1132. /* AP list version 1 contents */
  1133. for (index = 0; index < ev->num_ap; index++) {
  1134. ath6kl_dbg(ATH6KL_DBG_WMI, "AP#%d BSSID %pM Channel %d\n",
  1135. index, ap_info_v1->bssid, ap_info_v1->channel);
  1136. ap_info_v1++;
  1137. }
  1138. return 0;
  1139. }
  1140. int ath6kl_wmi_cmd_send(struct wmi *wmi, struct sk_buff *skb,
  1141. enum wmi_cmd_id cmd_id, enum wmi_sync_flag sync_flag)
  1142. {
  1143. struct wmi_cmd_hdr *cmd_hdr;
  1144. enum htc_endpoint_id ep_id = wmi->ep_id;
  1145. int ret;
  1146. if (WARN_ON(skb == NULL))
  1147. return -EINVAL;
  1148. if (sync_flag >= END_WMIFLAG) {
  1149. dev_kfree_skb(skb);
  1150. return -EINVAL;
  1151. }
  1152. if ((sync_flag == SYNC_BEFORE_WMIFLAG) ||
  1153. (sync_flag == SYNC_BOTH_WMIFLAG)) {
  1154. /*
  1155. * Make sure all data currently queued is transmitted before
  1156. * the cmd execution. Establish a new sync point.
  1157. */
  1158. ath6kl_wmi_sync_point(wmi);
  1159. }
  1160. skb_push(skb, sizeof(struct wmi_cmd_hdr));
  1161. cmd_hdr = (struct wmi_cmd_hdr *) skb->data;
  1162. cmd_hdr->cmd_id = cpu_to_le16(cmd_id);
  1163. cmd_hdr->info1 = 0; /* added for virtual interface */
  1164. /* Only for OPT_TX_CMD, use BE endpoint. */
  1165. if (cmd_id == WMI_OPT_TX_FRAME_CMDID) {
  1166. ret = ath6kl_wmi_data_hdr_add(wmi, skb, OPT_MSGTYPE,
  1167. false, false, 0, NULL);
  1168. if (ret) {
  1169. dev_kfree_skb(skb);
  1170. return ret;
  1171. }
  1172. ep_id = ath6kl_ac2_endpoint_id(wmi->parent_dev, WMM_AC_BE);
  1173. }
  1174. ath6kl_control_tx(wmi->parent_dev, skb, ep_id);
  1175. if ((sync_flag == SYNC_AFTER_WMIFLAG) ||
  1176. (sync_flag == SYNC_BOTH_WMIFLAG)) {
  1177. /*
  1178. * Make sure all new data queued waits for the command to
  1179. * execute. Establish a new sync point.
  1180. */
  1181. ath6kl_wmi_sync_point(wmi);
  1182. }
  1183. return 0;
  1184. }
  1185. int ath6kl_wmi_connect_cmd(struct wmi *wmi, enum network_type nw_type,
  1186. enum dot11_auth_mode dot11_auth_mode,
  1187. enum auth_mode auth_mode,
  1188. enum crypto_type pairwise_crypto,
  1189. u8 pairwise_crypto_len,
  1190. enum crypto_type group_crypto,
  1191. u8 group_crypto_len, int ssid_len, u8 *ssid,
  1192. u8 *bssid, u16 channel, u32 ctrl_flags)
  1193. {
  1194. struct sk_buff *skb;
  1195. struct wmi_connect_cmd *cc;
  1196. int ret;
  1197. wmi->traffic_class = 100;
  1198. if ((pairwise_crypto == NONE_CRYPT) && (group_crypto != NONE_CRYPT))
  1199. return -EINVAL;
  1200. if ((pairwise_crypto != NONE_CRYPT) && (group_crypto == NONE_CRYPT))
  1201. return -EINVAL;
  1202. skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_connect_cmd));
  1203. if (!skb)
  1204. return -ENOMEM;
  1205. cc = (struct wmi_connect_cmd *) skb->data;
  1206. if (ssid_len)
  1207. memcpy(cc->ssid, ssid, ssid_len);
  1208. cc->ssid_len = ssid_len;
  1209. cc->nw_type = nw_type;
  1210. cc->dot11_auth_mode = dot11_auth_mode;
  1211. cc->auth_mode = auth_mode;
  1212. cc->prwise_crypto_type = pairwise_crypto;
  1213. cc->prwise_crypto_len = pairwise_crypto_len;
  1214. cc->grp_crypto_type = group_crypto;
  1215. cc->grp_crypto_len = group_crypto_len;
  1216. cc->ch = cpu_to_le16(channel);
  1217. cc->ctrl_flags = cpu_to_le32(ctrl_flags);
  1218. if (bssid != NULL)
  1219. memcpy(cc->bssid, bssid, ETH_ALEN);
  1220. wmi->pair_crypto_type = pairwise_crypto;
  1221. wmi->grp_crypto_type = group_crypto;
  1222. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_CONNECT_CMDID, NO_SYNC_WMIFLAG);
  1223. return ret;
  1224. }
  1225. int ath6kl_wmi_reconnect_cmd(struct wmi *wmi, u8 *bssid, u16 channel)
  1226. {
  1227. struct sk_buff *skb;
  1228. struct wmi_reconnect_cmd *cc;
  1229. int ret;
  1230. wmi->traffic_class = 100;
  1231. skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_reconnect_cmd));
  1232. if (!skb)
  1233. return -ENOMEM;
  1234. cc = (struct wmi_reconnect_cmd *) skb->data;
  1235. cc->channel = cpu_to_le16(channel);
  1236. if (bssid != NULL)
  1237. memcpy(cc->bssid, bssid, ETH_ALEN);
  1238. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_RECONNECT_CMDID,
  1239. NO_SYNC_WMIFLAG);
  1240. return ret;
  1241. }
  1242. int ath6kl_wmi_disconnect_cmd(struct wmi *wmi)
  1243. {
  1244. int ret;
  1245. wmi->traffic_class = 100;
  1246. /* Disconnect command does not need to do a SYNC before. */
  1247. ret = ath6kl_wmi_simple_cmd(wmi, WMI_DISCONNECT_CMDID);
  1248. return ret;
  1249. }
  1250. int ath6kl_wmi_startscan_cmd(struct wmi *wmi, enum wmi_scan_type scan_type,
  1251. u32 force_fgscan, u32 is_legacy,
  1252. u32 home_dwell_time, u32 force_scan_interval,
  1253. s8 num_chan, u16 *ch_list)
  1254. {
  1255. struct sk_buff *skb;
  1256. struct wmi_start_scan_cmd *sc;
  1257. s8 size;
  1258. int ret;
  1259. size = sizeof(struct wmi_start_scan_cmd);
  1260. if ((scan_type != WMI_LONG_SCAN) && (scan_type != WMI_SHORT_SCAN))
  1261. return -EINVAL;
  1262. if (num_chan > WMI_MAX_CHANNELS)
  1263. return -EINVAL;
  1264. if (num_chan)
  1265. size += sizeof(u16) * (num_chan - 1);
  1266. skb = ath6kl_wmi_get_new_buf(size);
  1267. if (!skb)
  1268. return -ENOMEM;
  1269. sc = (struct wmi_start_scan_cmd *) skb->data;
  1270. sc->scan_type = scan_type;
  1271. sc->force_fg_scan = cpu_to_le32(force_fgscan);
  1272. sc->is_legacy = cpu_to_le32(is_legacy);
  1273. sc->home_dwell_time = cpu_to_le32(home_dwell_time);
  1274. sc->force_scan_intvl = cpu_to_le32(force_scan_interval);
  1275. sc->num_ch = num_chan;
  1276. if (num_chan)
  1277. memcpy(sc->ch_list, ch_list, num_chan * sizeof(u16));
  1278. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_START_SCAN_CMDID,
  1279. NO_SYNC_WMIFLAG);
  1280. return ret;
  1281. }
  1282. int ath6kl_wmi_scanparams_cmd(struct wmi *wmi, u16 fg_start_sec,
  1283. u16 fg_end_sec, u16 bg_sec,
  1284. u16 minact_chdw_msec, u16 maxact_chdw_msec,
  1285. u16 pas_chdw_msec, u8 short_scan_ratio,
  1286. u8 scan_ctrl_flag, u32 max_dfsch_act_time,
  1287. u16 maxact_scan_per_ssid)
  1288. {
  1289. struct sk_buff *skb;
  1290. struct wmi_scan_params_cmd *sc;
  1291. int ret;
  1292. skb = ath6kl_wmi_get_new_buf(sizeof(*sc));
  1293. if (!skb)
  1294. return -ENOMEM;
  1295. sc = (struct wmi_scan_params_cmd *) skb->data;
  1296. sc->fg_start_period = cpu_to_le16(fg_start_sec);
  1297. sc->fg_end_period = cpu_to_le16(fg_end_sec);
  1298. sc->bg_period = cpu_to_le16(bg_sec);
  1299. sc->minact_chdwell_time = cpu_to_le16(minact_chdw_msec);
  1300. sc->maxact_chdwell_time = cpu_to_le16(maxact_chdw_msec);
  1301. sc->pas_chdwell_time = cpu_to_le16(pas_chdw_msec);
  1302. sc->short_scan_ratio = short_scan_ratio;
  1303. sc->scan_ctrl_flags = scan_ctrl_flag;
  1304. sc->max_dfsch_act_time = cpu_to_le32(max_dfsch_act_time);
  1305. sc->maxact_scan_per_ssid = cpu_to_le16(maxact_scan_per_ssid);
  1306. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_SCAN_PARAMS_CMDID,
  1307. NO_SYNC_WMIFLAG);
  1308. return ret;
  1309. }
  1310. int ath6kl_wmi_bssfilter_cmd(struct wmi *wmi, u8 filter, u32 ie_mask)
  1311. {
  1312. struct sk_buff *skb;
  1313. struct wmi_bss_filter_cmd *cmd;
  1314. int ret;
  1315. if (filter >= LAST_BSS_FILTER)
  1316. return -EINVAL;
  1317. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1318. if (!skb)
  1319. return -ENOMEM;
  1320. cmd = (struct wmi_bss_filter_cmd *) skb->data;
  1321. cmd->bss_filter = filter;
  1322. cmd->ie_mask = cpu_to_le32(ie_mask);
  1323. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_BSS_FILTER_CMDID,
  1324. NO_SYNC_WMIFLAG);
  1325. return ret;
  1326. }
  1327. int ath6kl_wmi_probedssid_cmd(struct wmi *wmi, u8 index, u8 flag,
  1328. u8 ssid_len, u8 *ssid)
  1329. {
  1330. struct sk_buff *skb;
  1331. struct wmi_probed_ssid_cmd *cmd;
  1332. int ret;
  1333. if (index > MAX_PROBED_SSID_INDEX)
  1334. return -EINVAL;
  1335. if (ssid_len > sizeof(cmd->ssid))
  1336. return -EINVAL;
  1337. if ((flag & (DISABLE_SSID_FLAG | ANY_SSID_FLAG)) && (ssid_len > 0))
  1338. return -EINVAL;
  1339. if ((flag & SPECIFIC_SSID_FLAG) && !ssid_len)
  1340. return -EINVAL;
  1341. if (flag & SPECIFIC_SSID_FLAG)
  1342. wmi->is_probe_ssid = true;
  1343. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1344. if (!skb)
  1345. return -ENOMEM;
  1346. cmd = (struct wmi_probed_ssid_cmd *) skb->data;
  1347. cmd->entry_index = index;
  1348. cmd->flag = flag;
  1349. cmd->ssid_len = ssid_len;
  1350. memcpy(cmd->ssid, ssid, ssid_len);
  1351. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_PROBED_SSID_CMDID,
  1352. NO_SYNC_WMIFLAG);
  1353. return ret;
  1354. }
  1355. int ath6kl_wmi_listeninterval_cmd(struct wmi *wmi, u16 listen_interval,
  1356. u16 listen_beacons)
  1357. {
  1358. struct sk_buff *skb;
  1359. struct wmi_listen_int_cmd *cmd;
  1360. int ret;
  1361. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1362. if (!skb)
  1363. return -ENOMEM;
  1364. cmd = (struct wmi_listen_int_cmd *) skb->data;
  1365. cmd->listen_intvl = cpu_to_le16(listen_interval);
  1366. cmd->num_beacons = cpu_to_le16(listen_beacons);
  1367. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_LISTEN_INT_CMDID,
  1368. NO_SYNC_WMIFLAG);
  1369. return ret;
  1370. }
  1371. int ath6kl_wmi_powermode_cmd(struct wmi *wmi, u8 pwr_mode)
  1372. {
  1373. struct sk_buff *skb;
  1374. struct wmi_power_mode_cmd *cmd;
  1375. int ret;
  1376. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1377. if (!skb)
  1378. return -ENOMEM;
  1379. cmd = (struct wmi_power_mode_cmd *) skb->data;
  1380. cmd->pwr_mode = pwr_mode;
  1381. wmi->pwr_mode = pwr_mode;
  1382. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_POWER_MODE_CMDID,
  1383. NO_SYNC_WMIFLAG);
  1384. return ret;
  1385. }
  1386. int ath6kl_wmi_pmparams_cmd(struct wmi *wmi, u16 idle_period,
  1387. u16 ps_poll_num, u16 dtim_policy,
  1388. u16 tx_wakeup_policy, u16 num_tx_to_wakeup,
  1389. u16 ps_fail_event_policy)
  1390. {
  1391. struct sk_buff *skb;
  1392. struct wmi_power_params_cmd *pm;
  1393. int ret;
  1394. skb = ath6kl_wmi_get_new_buf(sizeof(*pm));
  1395. if (!skb)
  1396. return -ENOMEM;
  1397. pm = (struct wmi_power_params_cmd *)skb->data;
  1398. pm->idle_period = cpu_to_le16(idle_period);
  1399. pm->pspoll_number = cpu_to_le16(ps_poll_num);
  1400. pm->dtim_policy = cpu_to_le16(dtim_policy);
  1401. pm->tx_wakeup_policy = cpu_to_le16(tx_wakeup_policy);
  1402. pm->num_tx_to_wakeup = cpu_to_le16(num_tx_to_wakeup);
  1403. pm->ps_fail_event_policy = cpu_to_le16(ps_fail_event_policy);
  1404. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_POWER_PARAMS_CMDID,
  1405. NO_SYNC_WMIFLAG);
  1406. return ret;
  1407. }
  1408. int ath6kl_wmi_disctimeout_cmd(struct wmi *wmi, u8 timeout)
  1409. {
  1410. struct sk_buff *skb;
  1411. struct wmi_disc_timeout_cmd *cmd;
  1412. int ret;
  1413. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1414. if (!skb)
  1415. return -ENOMEM;
  1416. cmd = (struct wmi_disc_timeout_cmd *) skb->data;
  1417. cmd->discon_timeout = timeout;
  1418. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_DISC_TIMEOUT_CMDID,
  1419. NO_SYNC_WMIFLAG);
  1420. return ret;
  1421. }
  1422. int ath6kl_wmi_addkey_cmd(struct wmi *wmi, u8 key_index,
  1423. enum crypto_type key_type,
  1424. u8 key_usage, u8 key_len,
  1425. u8 *key_rsc, u8 *key_material,
  1426. u8 key_op_ctrl, u8 *mac_addr,
  1427. enum wmi_sync_flag sync_flag)
  1428. {
  1429. struct sk_buff *skb;
  1430. struct wmi_add_cipher_key_cmd *cmd;
  1431. int ret;
  1432. if ((key_index > WMI_MAX_KEY_INDEX) || (key_len > WMI_MAX_KEY_LEN) ||
  1433. (key_material == NULL))
  1434. return -EINVAL;
  1435. if ((WEP_CRYPT != key_type) && (NULL == key_rsc))
  1436. return -EINVAL;
  1437. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1438. if (!skb)
  1439. return -ENOMEM;
  1440. cmd = (struct wmi_add_cipher_key_cmd *) skb->data;
  1441. cmd->key_index = key_index;
  1442. cmd->key_type = key_type;
  1443. cmd->key_usage = key_usage;
  1444. cmd->key_len = key_len;
  1445. memcpy(cmd->key, key_material, key_len);
  1446. if (key_rsc != NULL)
  1447. memcpy(cmd->key_rsc, key_rsc, sizeof(cmd->key_rsc));
  1448. cmd->key_op_ctrl = key_op_ctrl;
  1449. if (mac_addr)
  1450. memcpy(cmd->key_mac_addr, mac_addr, ETH_ALEN);
  1451. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_ADD_CIPHER_KEY_CMDID,
  1452. sync_flag);
  1453. return ret;
  1454. }
  1455. int ath6kl_wmi_add_krk_cmd(struct wmi *wmi, u8 *krk)
  1456. {
  1457. struct sk_buff *skb;
  1458. struct wmi_add_krk_cmd *cmd;
  1459. int ret;
  1460. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1461. if (!skb)
  1462. return -ENOMEM;
  1463. cmd = (struct wmi_add_krk_cmd *) skb->data;
  1464. memcpy(cmd->krk, krk, WMI_KRK_LEN);
  1465. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_ADD_KRK_CMDID, NO_SYNC_WMIFLAG);
  1466. return ret;
  1467. }
  1468. int ath6kl_wmi_deletekey_cmd(struct wmi *wmi, u8 key_index)
  1469. {
  1470. struct sk_buff *skb;
  1471. struct wmi_delete_cipher_key_cmd *cmd;
  1472. int ret;
  1473. if (key_index > WMI_MAX_KEY_INDEX)
  1474. return -EINVAL;
  1475. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1476. if (!skb)
  1477. return -ENOMEM;
  1478. cmd = (struct wmi_delete_cipher_key_cmd *) skb->data;
  1479. cmd->key_index = key_index;
  1480. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_DELETE_CIPHER_KEY_CMDID,
  1481. NO_SYNC_WMIFLAG);
  1482. return ret;
  1483. }
  1484. int ath6kl_wmi_setpmkid_cmd(struct wmi *wmi, const u8 *bssid,
  1485. const u8 *pmkid, bool set)
  1486. {
  1487. struct sk_buff *skb;
  1488. struct wmi_setpmkid_cmd *cmd;
  1489. int ret;
  1490. if (bssid == NULL)
  1491. return -EINVAL;
  1492. if (set && pmkid == NULL)
  1493. return -EINVAL;
  1494. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1495. if (!skb)
  1496. return -ENOMEM;
  1497. cmd = (struct wmi_setpmkid_cmd *) skb->data;
  1498. memcpy(cmd->bssid, bssid, ETH_ALEN);
  1499. if (set) {
  1500. memcpy(cmd->pmkid, pmkid, sizeof(cmd->pmkid));
  1501. cmd->enable = PMKID_ENABLE;
  1502. } else {
  1503. memset(cmd->pmkid, 0, sizeof(cmd->pmkid));
  1504. cmd->enable = PMKID_DISABLE;
  1505. }
  1506. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_PMKID_CMDID,
  1507. NO_SYNC_WMIFLAG);
  1508. return ret;
  1509. }
  1510. static int ath6kl_wmi_data_sync_send(struct wmi *wmi, struct sk_buff *skb,
  1511. enum htc_endpoint_id ep_id)
  1512. {
  1513. struct wmi_data_hdr *data_hdr;
  1514. int ret;
  1515. if (WARN_ON(skb == NULL || ep_id == wmi->ep_id))
  1516. return -EINVAL;
  1517. skb_push(skb, sizeof(struct wmi_data_hdr));
  1518. data_hdr = (struct wmi_data_hdr *) skb->data;
  1519. data_hdr->info = SYNC_MSGTYPE << WMI_DATA_HDR_MSG_TYPE_SHIFT;
  1520. data_hdr->info3 = 0;
  1521. ret = ath6kl_control_tx(wmi->parent_dev, skb, ep_id);
  1522. return ret;
  1523. }
  1524. static int ath6kl_wmi_sync_point(struct wmi *wmi)
  1525. {
  1526. struct sk_buff *skb;
  1527. struct wmi_sync_cmd *cmd;
  1528. struct wmi_data_sync_bufs data_sync_bufs[WMM_NUM_AC];
  1529. enum htc_endpoint_id ep_id;
  1530. u8 index, num_pri_streams = 0;
  1531. int ret = 0;
  1532. memset(data_sync_bufs, 0, sizeof(data_sync_bufs));
  1533. spin_lock_bh(&wmi->lock);
  1534. for (index = 0; index < WMM_NUM_AC; index++) {
  1535. if (wmi->fat_pipe_exist & (1 << index)) {
  1536. num_pri_streams++;
  1537. data_sync_bufs[num_pri_streams - 1].traffic_class =
  1538. index;
  1539. }
  1540. }
  1541. spin_unlock_bh(&wmi->lock);
  1542. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1543. if (!skb) {
  1544. ret = -ENOMEM;
  1545. goto free_skb;
  1546. }
  1547. cmd = (struct wmi_sync_cmd *) skb->data;
  1548. /*
  1549. * In the SYNC cmd sent on the control Ep, send a bitmap
  1550. * of the data eps on which the Data Sync will be sent
  1551. */
  1552. cmd->data_sync_map = wmi->fat_pipe_exist;
  1553. for (index = 0; index < num_pri_streams; index++) {
  1554. data_sync_bufs[index].skb = ath6kl_buf_alloc(0);
  1555. if (data_sync_bufs[index].skb == NULL) {
  1556. ret = -ENOMEM;
  1557. break;
  1558. }
  1559. }
  1560. /*
  1561. * If buffer allocation for any of the dataSync fails,
  1562. * then do not send the Synchronize cmd on the control ep
  1563. */
  1564. if (ret)
  1565. goto free_skb;
  1566. /*
  1567. * Send sync cmd followed by sync data messages on all
  1568. * endpoints being used
  1569. */
  1570. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SYNCHRONIZE_CMDID,
  1571. NO_SYNC_WMIFLAG);
  1572. if (ret)
  1573. goto free_skb;
  1574. /* cmd buffer sent, we no longer own it */
  1575. skb = NULL;
  1576. for (index = 0; index < num_pri_streams; index++) {
  1577. if (WARN_ON(!data_sync_bufs[index].skb))
  1578. break;
  1579. ep_id = ath6kl_ac2_endpoint_id(wmi->parent_dev,
  1580. data_sync_bufs[index].
  1581. traffic_class);
  1582. ret =
  1583. ath6kl_wmi_data_sync_send(wmi, data_sync_bufs[index].skb,
  1584. ep_id);
  1585. if (ret)
  1586. break;
  1587. data_sync_bufs[index].skb = NULL;
  1588. }
  1589. free_skb:
  1590. /* free up any resources left over (possibly due to an error) */
  1591. if (skb)
  1592. dev_kfree_skb(skb);
  1593. for (index = 0; index < num_pri_streams; index++) {
  1594. if (data_sync_bufs[index].skb != NULL) {
  1595. dev_kfree_skb((struct sk_buff *)data_sync_bufs[index].
  1596. skb);
  1597. }
  1598. }
  1599. return ret;
  1600. }
  1601. int ath6kl_wmi_create_pstream_cmd(struct wmi *wmi,
  1602. struct wmi_create_pstream_cmd *params)
  1603. {
  1604. struct sk_buff *skb;
  1605. struct wmi_create_pstream_cmd *cmd;
  1606. u8 fatpipe_exist_for_ac = 0;
  1607. s32 min_phy = 0;
  1608. s32 nominal_phy = 0;
  1609. int ret;
  1610. if (!((params->user_pri < 8) &&
  1611. (params->user_pri <= 0x7) &&
  1612. (up_to_ac[params->user_pri & 0x7] == params->traffic_class) &&
  1613. (params->traffic_direc == UPLINK_TRAFFIC ||
  1614. params->traffic_direc == DNLINK_TRAFFIC ||
  1615. params->traffic_direc == BIDIR_TRAFFIC) &&
  1616. (params->traffic_type == TRAFFIC_TYPE_APERIODIC ||
  1617. params->traffic_type == TRAFFIC_TYPE_PERIODIC) &&
  1618. (params->voice_psc_cap == DISABLE_FOR_THIS_AC ||
  1619. params->voice_psc_cap == ENABLE_FOR_THIS_AC ||
  1620. params->voice_psc_cap == ENABLE_FOR_ALL_AC) &&
  1621. (params->tsid == WMI_IMPLICIT_PSTREAM ||
  1622. params->tsid <= WMI_MAX_THINSTREAM))) {
  1623. return -EINVAL;
  1624. }
  1625. /*
  1626. * Check nominal PHY rate is >= minimalPHY,
  1627. * so that DUT can allow TSRS IE
  1628. */
  1629. /* Get the physical rate (units of bps) */
  1630. min_phy = ((le32_to_cpu(params->min_phy_rate) / 1000) / 1000);
  1631. /* Check minimal phy < nominal phy rate */
  1632. if (params->nominal_phy >= min_phy) {
  1633. /* unit of 500 kbps */
  1634. nominal_phy = (params->nominal_phy * 1000) / 500;
  1635. ath6kl_dbg(ATH6KL_DBG_WMI,
  1636. "TSRS IE enabled::MinPhy %x->NominalPhy ===> %x\n",
  1637. min_phy, nominal_phy);
  1638. params->nominal_phy = nominal_phy;
  1639. } else {
  1640. params->nominal_phy = 0;
  1641. }
  1642. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1643. if (!skb)
  1644. return -ENOMEM;
  1645. ath6kl_dbg(ATH6KL_DBG_WMI,
  1646. "sending create_pstream_cmd: ac=%d tsid:%d\n",
  1647. params->traffic_class, params->tsid);
  1648. cmd = (struct wmi_create_pstream_cmd *) skb->data;
  1649. memcpy(cmd, params, sizeof(*cmd));
  1650. /* This is an implicitly created Fat pipe */
  1651. if ((u32) params->tsid == (u32) WMI_IMPLICIT_PSTREAM) {
  1652. spin_lock_bh(&wmi->lock);
  1653. fatpipe_exist_for_ac = (wmi->fat_pipe_exist &
  1654. (1 << params->traffic_class));
  1655. wmi->fat_pipe_exist |= (1 << params->traffic_class);
  1656. spin_unlock_bh(&wmi->lock);
  1657. } else {
  1658. /* explicitly created thin stream within a fat pipe */
  1659. spin_lock_bh(&wmi->lock);
  1660. fatpipe_exist_for_ac = (wmi->fat_pipe_exist &
  1661. (1 << params->traffic_class));
  1662. wmi->stream_exist_for_ac[params->traffic_class] |=
  1663. (1 << params->tsid);
  1664. /*
  1665. * If a thinstream becomes active, the fat pipe automatically
  1666. * becomes active
  1667. */
  1668. wmi->fat_pipe_exist |= (1 << params->traffic_class);
  1669. spin_unlock_bh(&wmi->lock);
  1670. }
  1671. /*
  1672. * Indicate activty change to driver layer only if this is the
  1673. * first TSID to get created in this AC explicitly or an implicit
  1674. * fat pipe is getting created.
  1675. */
  1676. if (!fatpipe_exist_for_ac)
  1677. ath6kl_indicate_tx_activity(wmi->parent_dev,
  1678. params->traffic_class, true);
  1679. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_CREATE_PSTREAM_CMDID,
  1680. NO_SYNC_WMIFLAG);
  1681. return ret;
  1682. }
  1683. int ath6kl_wmi_delete_pstream_cmd(struct wmi *wmi, u8 traffic_class, u8 tsid)
  1684. {
  1685. struct sk_buff *skb;
  1686. struct wmi_delete_pstream_cmd *cmd;
  1687. u16 active_tsids = 0;
  1688. int ret;
  1689. if (traffic_class > 3) {
  1690. ath6kl_err("invalid traffic class: %d\n", traffic_class);
  1691. return -EINVAL;
  1692. }
  1693. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1694. if (!skb)
  1695. return -ENOMEM;
  1696. cmd = (struct wmi_delete_pstream_cmd *) skb->data;
  1697. cmd->traffic_class = traffic_class;
  1698. cmd->tsid = tsid;
  1699. spin_lock_bh(&wmi->lock);
  1700. active_tsids = wmi->stream_exist_for_ac[traffic_class];
  1701. spin_unlock_bh(&wmi->lock);
  1702. if (!(active_tsids & (1 << tsid))) {
  1703. dev_kfree_skb(skb);
  1704. ath6kl_dbg(ATH6KL_DBG_WMI,
  1705. "TSID %d doesn't exist for traffic class: %d\n",
  1706. tsid, traffic_class);
  1707. return -ENODATA;
  1708. }
  1709. ath6kl_dbg(ATH6KL_DBG_WMI,
  1710. "sending delete_pstream_cmd: traffic class: %d tsid=%d\n",
  1711. traffic_class, tsid);
  1712. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_DELETE_PSTREAM_CMDID,
  1713. SYNC_BEFORE_WMIFLAG);
  1714. spin_lock_bh(&wmi->lock);
  1715. wmi->stream_exist_for_ac[traffic_class] &= ~(1 << tsid);
  1716. active_tsids = wmi->stream_exist_for_ac[traffic_class];
  1717. spin_unlock_bh(&wmi->lock);
  1718. /*
  1719. * Indicate stream inactivity to driver layer only if all tsids
  1720. * within this AC are deleted.
  1721. */
  1722. if (!active_tsids) {
  1723. ath6kl_indicate_tx_activity(wmi->parent_dev,
  1724. traffic_class, false);
  1725. wmi->fat_pipe_exist &= ~(1 << traffic_class);
  1726. }
  1727. return ret;
  1728. }
  1729. int ath6kl_wmi_set_ip_cmd(struct wmi *wmi, struct wmi_set_ip_cmd *ip_cmd)
  1730. {
  1731. struct sk_buff *skb;
  1732. struct wmi_set_ip_cmd *cmd;
  1733. int ret;
  1734. /* Multicast address are not valid */
  1735. if ((*((u8 *) &ip_cmd->ips[0]) >= 0xE0) ||
  1736. (*((u8 *) &ip_cmd->ips[1]) >= 0xE0))
  1737. return -EINVAL;
  1738. skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_ip_cmd));
  1739. if (!skb)
  1740. return -ENOMEM;
  1741. cmd = (struct wmi_set_ip_cmd *) skb->data;
  1742. memcpy(cmd, ip_cmd, sizeof(struct wmi_set_ip_cmd));
  1743. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_IP_CMDID, NO_SYNC_WMIFLAG);
  1744. return ret;
  1745. }
  1746. static int ath6kl_wmi_get_wow_list_event_rx(struct wmi *wmi, u8 * datap,
  1747. int len)
  1748. {
  1749. if (len < sizeof(struct wmi_get_wow_list_reply))
  1750. return -EINVAL;
  1751. return 0;
  1752. }
  1753. static int ath6kl_wmi_cmd_send_xtnd(struct wmi *wmi, struct sk_buff *skb,
  1754. enum wmix_command_id cmd_id,
  1755. enum wmi_sync_flag sync_flag)
  1756. {
  1757. struct wmix_cmd_hdr *cmd_hdr;
  1758. int ret;
  1759. skb_push(skb, sizeof(struct wmix_cmd_hdr));
  1760. cmd_hdr = (struct wmix_cmd_hdr *) skb->data;
  1761. cmd_hdr->cmd_id = cpu_to_le32(cmd_id);
  1762. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_EXTENSION_CMDID, sync_flag);
  1763. return ret;
  1764. }
  1765. int ath6kl_wmi_get_challenge_resp_cmd(struct wmi *wmi, u32 cookie, u32 source)
  1766. {
  1767. struct sk_buff *skb;
  1768. struct wmix_hb_challenge_resp_cmd *cmd;
  1769. int ret;
  1770. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1771. if (!skb)
  1772. return -ENOMEM;
  1773. cmd = (struct wmix_hb_challenge_resp_cmd *) skb->data;
  1774. cmd->cookie = cpu_to_le32(cookie);
  1775. cmd->source = cpu_to_le32(source);
  1776. ret = ath6kl_wmi_cmd_send_xtnd(wmi, skb, WMIX_HB_CHALLENGE_RESP_CMDID,
  1777. NO_SYNC_WMIFLAG);
  1778. return ret;
  1779. }
  1780. int ath6kl_wmi_get_stats_cmd(struct wmi *wmi)
  1781. {
  1782. return ath6kl_wmi_simple_cmd(wmi, WMI_GET_STATISTICS_CMDID);
  1783. }
  1784. int ath6kl_wmi_set_tx_pwr_cmd(struct wmi *wmi, u8 dbM)
  1785. {
  1786. struct sk_buff *skb;
  1787. struct wmi_set_tx_pwr_cmd *cmd;
  1788. int ret;
  1789. skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_tx_pwr_cmd));
  1790. if (!skb)
  1791. return -ENOMEM;
  1792. cmd = (struct wmi_set_tx_pwr_cmd *) skb->data;
  1793. cmd->dbM = dbM;
  1794. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_TX_PWR_CMDID,
  1795. NO_SYNC_WMIFLAG);
  1796. return ret;
  1797. }
  1798. int ath6kl_wmi_get_tx_pwr_cmd(struct wmi *wmi)
  1799. {
  1800. return ath6kl_wmi_simple_cmd(wmi, WMI_GET_TX_PWR_CMDID);
  1801. }
  1802. int ath6kl_wmi_set_lpreamble_cmd(struct wmi *wmi, u8 status, u8 preamble_policy)
  1803. {
  1804. struct sk_buff *skb;
  1805. struct wmi_set_lpreamble_cmd *cmd;
  1806. int ret;
  1807. skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_lpreamble_cmd));
  1808. if (!skb)
  1809. return -ENOMEM;
  1810. cmd = (struct wmi_set_lpreamble_cmd *) skb->data;
  1811. cmd->status = status;
  1812. cmd->preamble_policy = preamble_policy;
  1813. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_LPREAMBLE_CMDID,
  1814. NO_SYNC_WMIFLAG);
  1815. return ret;
  1816. }
  1817. int ath6kl_wmi_set_rts_cmd(struct wmi *wmi, u16 threshold)
  1818. {
  1819. struct sk_buff *skb;
  1820. struct wmi_set_rts_cmd *cmd;
  1821. int ret;
  1822. skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_rts_cmd));
  1823. if (!skb)
  1824. return -ENOMEM;
  1825. cmd = (struct wmi_set_rts_cmd *) skb->data;
  1826. cmd->threshold = cpu_to_le16(threshold);
  1827. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_RTS_CMDID, NO_SYNC_WMIFLAG);
  1828. return ret;
  1829. }
  1830. int ath6kl_wmi_set_wmm_txop(struct wmi *wmi, enum wmi_txop_cfg cfg)
  1831. {
  1832. struct sk_buff *skb;
  1833. struct wmi_set_wmm_txop_cmd *cmd;
  1834. int ret;
  1835. if (!((cfg == WMI_TXOP_DISABLED) || (cfg == WMI_TXOP_ENABLED)))
  1836. return -EINVAL;
  1837. skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_set_wmm_txop_cmd));
  1838. if (!skb)
  1839. return -ENOMEM;
  1840. cmd = (struct wmi_set_wmm_txop_cmd *) skb->data;
  1841. cmd->txop_enable = cfg;
  1842. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_WMM_TXOP_CMDID,
  1843. NO_SYNC_WMIFLAG);
  1844. return ret;
  1845. }
  1846. int ath6kl_wmi_set_keepalive_cmd(struct wmi *wmi, u8 keep_alive_intvl)
  1847. {
  1848. struct sk_buff *skb;
  1849. struct wmi_set_keepalive_cmd *cmd;
  1850. int ret;
  1851. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1852. if (!skb)
  1853. return -ENOMEM;
  1854. cmd = (struct wmi_set_keepalive_cmd *) skb->data;
  1855. cmd->keep_alive_intvl = keep_alive_intvl;
  1856. wmi->keep_alive_intvl = keep_alive_intvl;
  1857. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_SET_KEEPALIVE_CMDID,
  1858. NO_SYNC_WMIFLAG);
  1859. return ret;
  1860. }
  1861. s32 ath6kl_wmi_get_rate(s8 rate_index)
  1862. {
  1863. if (rate_index == RATE_AUTO)
  1864. return 0;
  1865. return wmi_rate_tbl[(u32) rate_index][0];
  1866. }
  1867. void ath6kl_wmi_node_return(struct wmi *wmi, struct bss *bss)
  1868. {
  1869. if (bss)
  1870. wlan_node_return(&wmi->parent_dev->scan_table, bss);
  1871. }
  1872. struct bss *ath6kl_wmi_find_ssid_node(struct wmi *wmi, u8 * ssid,
  1873. u32 ssid_len, bool is_wpa2,
  1874. bool match_ssid)
  1875. {
  1876. struct bss *node = NULL;
  1877. node = wlan_find_ssid_node(&wmi->parent_dev->scan_table, ssid,
  1878. ssid_len, is_wpa2, match_ssid);
  1879. return node;
  1880. }
  1881. struct bss *ath6kl_wmi_find_node(struct wmi *wmi, const u8 * mac_addr)
  1882. {
  1883. struct bss *ni = NULL;
  1884. ni = wlan_find_node(&wmi->parent_dev->scan_table, mac_addr);
  1885. return ni;
  1886. }
  1887. void ath6kl_wmi_node_free(struct wmi *wmi, const u8 * mac_addr)
  1888. {
  1889. struct bss *ni = NULL;
  1890. ni = wlan_find_node(&wmi->parent_dev->scan_table, mac_addr);
  1891. if (ni != NULL)
  1892. wlan_node_reclaim(&wmi->parent_dev->scan_table, ni);
  1893. return;
  1894. }
  1895. static int ath6kl_wmi_get_pmkid_list_event_rx(struct wmi *wmi, u8 *datap,
  1896. u32 len)
  1897. {
  1898. struct wmi_pmkid_list_reply *reply;
  1899. u32 expected_len;
  1900. if (len < sizeof(struct wmi_pmkid_list_reply))
  1901. return -EINVAL;
  1902. reply = (struct wmi_pmkid_list_reply *)datap;
  1903. expected_len = sizeof(reply->num_pmkid) +
  1904. le32_to_cpu(reply->num_pmkid) * WMI_PMKID_LEN;
  1905. if (len < expected_len)
  1906. return -EINVAL;
  1907. return 0;
  1908. }
  1909. static int ath6kl_wmi_addba_req_event_rx(struct wmi *wmi, u8 *datap, int len)
  1910. {
  1911. struct wmi_addba_req_event *cmd = (struct wmi_addba_req_event *) datap;
  1912. aggr_recv_addba_req_evt(wmi->parent_dev, cmd->tid,
  1913. le16_to_cpu(cmd->st_seq_no), cmd->win_sz);
  1914. return 0;
  1915. }
  1916. static int ath6kl_wmi_delba_req_event_rx(struct wmi *wmi, u8 *datap, int len)
  1917. {
  1918. struct wmi_delba_event *cmd = (struct wmi_delba_event *) datap;
  1919. aggr_recv_delba_req_evt(wmi->parent_dev, cmd->tid);
  1920. return 0;
  1921. }
  1922. /* AP mode functions */
  1923. static int ath6kl_wmi_pspoll_event_rx(struct wmi *wmi, u8 *datap, int len)
  1924. {
  1925. struct wmi_pspoll_event *ev;
  1926. if (len < sizeof(struct wmi_pspoll_event))
  1927. return -EINVAL;
  1928. ev = (struct wmi_pspoll_event *) datap;
  1929. ath6kl_pspoll_event(wmi->parent_dev, le16_to_cpu(ev->aid));
  1930. return 0;
  1931. }
  1932. static int ath6kl_wmi_dtimexpiry_event_rx(struct wmi *wmi, u8 *datap, int len)
  1933. {
  1934. ath6kl_dtimexpiry_event(wmi->parent_dev);
  1935. return 0;
  1936. }
  1937. int ath6kl_wmi_set_pvb_cmd(struct wmi *wmi, u16 aid, bool flag)
  1938. {
  1939. struct sk_buff *skb;
  1940. struct wmi_ap_set_pvb_cmd *cmd;
  1941. int ret;
  1942. skb = ath6kl_wmi_get_new_buf(sizeof(struct wmi_ap_set_pvb_cmd));
  1943. if (!skb)
  1944. return -ENOMEM;
  1945. cmd = (struct wmi_ap_set_pvb_cmd *) skb->data;
  1946. cmd->aid = cpu_to_le16(aid);
  1947. cmd->flag = cpu_to_le32(flag);
  1948. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_AP_SET_PVB_CMDID,
  1949. NO_SYNC_WMIFLAG);
  1950. return 0;
  1951. }
  1952. int ath6kl_wmi_set_rx_frame_format_cmd(struct wmi *wmi, u8 rx_meta_ver,
  1953. bool rx_dot11_hdr, bool defrag_on_host)
  1954. {
  1955. struct sk_buff *skb;
  1956. struct wmi_rx_frame_format_cmd *cmd;
  1957. int ret;
  1958. skb = ath6kl_wmi_get_new_buf(sizeof(*cmd));
  1959. if (!skb)
  1960. return -ENOMEM;
  1961. cmd = (struct wmi_rx_frame_format_cmd *) skb->data;
  1962. cmd->dot11_hdr = rx_dot11_hdr ? 1 : 0;
  1963. cmd->defrag_on_host = defrag_on_host ? 1 : 0;
  1964. cmd->meta_ver = rx_meta_ver;
  1965. /* Delete the local aggr state, on host */
  1966. ret = ath6kl_wmi_cmd_send(wmi, skb, WMI_RX_FRAME_FORMAT_CMDID,
  1967. NO_SYNC_WMIFLAG);
  1968. return ret;
  1969. }
  1970. static int ath6kl_wmi_control_rx_xtnd(struct wmi *wmi, struct sk_buff *skb)
  1971. {
  1972. struct wmix_cmd_hdr *cmd;
  1973. u32 len;
  1974. u16 id;
  1975. u8 *datap;
  1976. int ret = 0;
  1977. if (skb->len < sizeof(struct wmix_cmd_hdr)) {
  1978. ath6kl_err("bad packet 1\n");
  1979. wmi->stat.cmd_len_err++;
  1980. return -EINVAL;
  1981. }
  1982. cmd = (struct wmix_cmd_hdr *) skb->data;
  1983. id = le32_to_cpu(cmd->cmd_id);
  1984. skb_pull(skb, sizeof(struct wmix_cmd_hdr));
  1985. datap = skb->data;
  1986. len = skb->len;
  1987. switch (id) {
  1988. case WMIX_HB_CHALLENGE_RESP_EVENTID:
  1989. break;
  1990. case WMIX_DBGLOG_EVENTID:
  1991. break;
  1992. default:
  1993. ath6kl_err("unknown cmd id 0x%x\n", id);
  1994. wmi->stat.cmd_id_err++;
  1995. ret = -EINVAL;
  1996. break;
  1997. }
  1998. return ret;
  1999. }
  2000. /* Control Path */
  2001. int ath6kl_wmi_control_rx(struct wmi *wmi, struct sk_buff *skb)
  2002. {
  2003. struct wmi_cmd_hdr *cmd;
  2004. u32 len;
  2005. u16 id;
  2006. u8 *datap;
  2007. int ret = 0;
  2008. if (WARN_ON(skb == NULL))
  2009. return -EINVAL;
  2010. if (skb->len < sizeof(struct wmi_cmd_hdr)) {
  2011. ath6kl_err("bad packet 1\n");
  2012. dev_kfree_skb(skb);
  2013. wmi->stat.cmd_len_err++;
  2014. return -EINVAL;
  2015. }
  2016. cmd = (struct wmi_cmd_hdr *) skb->data;
  2017. id = le16_to_cpu(cmd->cmd_id);
  2018. skb_pull(skb, sizeof(struct wmi_cmd_hdr));
  2019. datap = skb->data;
  2020. len = skb->len;
  2021. ath6kl_dbg(ATH6KL_DBG_WMI, "%s: wmi id: %d\n", __func__, id);
  2022. ath6kl_dbg_dump(ATH6KL_DBG_RAW_BYTES, "msg payload ", datap, len);
  2023. switch (id) {
  2024. case WMI_GET_BITRATE_CMDID:
  2025. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_BITRATE_CMDID\n");
  2026. ret = ath6kl_wmi_bitrate_reply_rx(wmi, datap, len);
  2027. break;
  2028. case WMI_GET_CHANNEL_LIST_CMDID:
  2029. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_CHANNEL_LIST_CMDID\n");
  2030. ret = ath6kl_wmi_ch_list_reply_rx(wmi, datap, len);
  2031. break;
  2032. case WMI_GET_TX_PWR_CMDID:
  2033. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_TX_PWR_CMDID\n");
  2034. ret = ath6kl_wmi_tx_pwr_reply_rx(wmi, datap, len);
  2035. break;
  2036. case WMI_READY_EVENTID:
  2037. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_READY_EVENTID\n");
  2038. ret = ath6kl_wmi_ready_event_rx(wmi, datap, len);
  2039. break;
  2040. case WMI_CONNECT_EVENTID:
  2041. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CONNECT_EVENTID\n");
  2042. ret = ath6kl_wmi_connect_event_rx(wmi, datap, len);
  2043. break;
  2044. case WMI_DISCONNECT_EVENTID:
  2045. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DISCONNECT_EVENTID\n");
  2046. ret = ath6kl_wmi_disconnect_event_rx(wmi, datap, len);
  2047. break;
  2048. case WMI_PEER_NODE_EVENTID:
  2049. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PEER_NODE_EVENTID\n");
  2050. ret = ath6kl_wmi_peer_node_event_rx(wmi, datap, len);
  2051. break;
  2052. case WMI_TKIP_MICERR_EVENTID:
  2053. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TKIP_MICERR_EVENTID\n");
  2054. ret = ath6kl_wmi_tkip_micerr_event_rx(wmi, datap, len);
  2055. break;
  2056. case WMI_BSSINFO_EVENTID:
  2057. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_BSSINFO_EVENTID\n");
  2058. ath6kl_wmi_convert_bssinfo_hdr2_to_hdr(skb, datap);
  2059. ret = ath6kl_wmi_bssinfo_event_rx(wmi, skb->data, skb->len);
  2060. break;
  2061. case WMI_REGDOMAIN_EVENTID:
  2062. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REGDOMAIN_EVENTID\n");
  2063. break;
  2064. case WMI_PSTREAM_TIMEOUT_EVENTID:
  2065. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PSTREAM_TIMEOUT_EVENTID\n");
  2066. ret = ath6kl_wmi_pstream_timeout_event_rx(wmi, datap, len);
  2067. break;
  2068. case WMI_NEIGHBOR_REPORT_EVENTID:
  2069. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_NEIGHBOR_REPORT_EVENTID\n");
  2070. break;
  2071. case WMI_SCAN_COMPLETE_EVENTID:
  2072. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SCAN_COMPLETE_EVENTID\n");
  2073. ret = ath6kl_wmi_scan_complete_rx(wmi, datap, len);
  2074. break;
  2075. case WMI_CMDERROR_EVENTID:
  2076. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CMDERROR_EVENTID\n");
  2077. ret = ath6kl_wmi_error_event_rx(wmi, datap, len);
  2078. break;
  2079. case WMI_REPORT_STATISTICS_EVENTID:
  2080. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_STATISTICS_EVENTID\n");
  2081. ret = ath6kl_wmi_stats_event_rx(wmi, datap, len);
  2082. break;
  2083. case WMI_RSSI_THRESHOLD_EVENTID:
  2084. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_RSSI_THRESHOLD_EVENTID\n");
  2085. ret = ath6kl_wmi_rssi_threshold_event_rx(wmi, datap, len);
  2086. break;
  2087. case WMI_ERROR_REPORT_EVENTID:
  2088. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ERROR_REPORT_EVENTID\n");
  2089. break;
  2090. case WMI_OPT_RX_FRAME_EVENTID:
  2091. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_OPT_RX_FRAME_EVENTID\n");
  2092. ret = ath6kl_wmi_opt_frame_event_rx(wmi, datap, len);
  2093. break;
  2094. case WMI_REPORT_ROAM_TBL_EVENTID:
  2095. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_ROAM_TBL_EVENTID\n");
  2096. break;
  2097. case WMI_EXTENSION_EVENTID:
  2098. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_EXTENSION_EVENTID\n");
  2099. ret = ath6kl_wmi_control_rx_xtnd(wmi, skb);
  2100. break;
  2101. case WMI_CAC_EVENTID:
  2102. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CAC_EVENTID\n");
  2103. ret = ath6kl_wmi_cac_event_rx(wmi, datap, len);
  2104. break;
  2105. case WMI_CHANNEL_CHANGE_EVENTID:
  2106. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_CHANNEL_CHANGE_EVENTID\n");
  2107. break;
  2108. case WMI_REPORT_ROAM_DATA_EVENTID:
  2109. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_REPORT_ROAM_DATA_EVENTID\n");
  2110. break;
  2111. case WMI_GET_FIXRATES_CMDID:
  2112. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_FIXRATES_CMDID\n");
  2113. ret = ath6kl_wmi_ratemask_reply_rx(wmi, datap, len);
  2114. break;
  2115. case WMI_TX_RETRY_ERR_EVENTID:
  2116. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_RETRY_ERR_EVENTID\n");
  2117. break;
  2118. case WMI_SNR_THRESHOLD_EVENTID:
  2119. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SNR_THRESHOLD_EVENTID\n");
  2120. ret = ath6kl_wmi_snr_threshold_event_rx(wmi, datap, len);
  2121. break;
  2122. case WMI_LQ_THRESHOLD_EVENTID:
  2123. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_LQ_THRESHOLD_EVENTID\n");
  2124. break;
  2125. case WMI_APLIST_EVENTID:
  2126. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_APLIST_EVENTID\n");
  2127. ret = ath6kl_wmi_aplist_event_rx(wmi, datap, len);
  2128. break;
  2129. case WMI_GET_KEEPALIVE_CMDID:
  2130. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_KEEPALIVE_CMDID\n");
  2131. ret = ath6kl_wmi_keepalive_reply_rx(wmi, datap, len);
  2132. break;
  2133. case WMI_GET_WOW_LIST_EVENTID:
  2134. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_WOW_LIST_EVENTID\n");
  2135. ret = ath6kl_wmi_get_wow_list_event_rx(wmi, datap, len);
  2136. break;
  2137. case WMI_GET_PMKID_LIST_EVENTID:
  2138. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_GET_PMKID_LIST_EVENTID\n");
  2139. ret = ath6kl_wmi_get_pmkid_list_event_rx(wmi, datap, len);
  2140. break;
  2141. case WMI_PSPOLL_EVENTID:
  2142. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_PSPOLL_EVENTID\n");
  2143. ret = ath6kl_wmi_pspoll_event_rx(wmi, datap, len);
  2144. break;
  2145. case WMI_DTIMEXPIRY_EVENTID:
  2146. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DTIMEXPIRY_EVENTID\n");
  2147. ret = ath6kl_wmi_dtimexpiry_event_rx(wmi, datap, len);
  2148. break;
  2149. case WMI_SET_PARAMS_REPLY_EVENTID:
  2150. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_SET_PARAMS_REPLY_EVENTID\n");
  2151. break;
  2152. case WMI_ADDBA_REQ_EVENTID:
  2153. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ADDBA_REQ_EVENTID\n");
  2154. ret = ath6kl_wmi_addba_req_event_rx(wmi, datap, len);
  2155. break;
  2156. case WMI_ADDBA_RESP_EVENTID:
  2157. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_ADDBA_RESP_EVENTID\n");
  2158. break;
  2159. case WMI_DELBA_REQ_EVENTID:
  2160. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_DELBA_REQ_EVENTID\n");
  2161. ret = ath6kl_wmi_delba_req_event_rx(wmi, datap, len);
  2162. break;
  2163. case WMI_REPORT_BTCOEX_CONFIG_EVENTID:
  2164. ath6kl_dbg(ATH6KL_DBG_WMI,
  2165. "WMI_REPORT_BTCOEX_CONFIG_EVENTID\n");
  2166. break;
  2167. case WMI_REPORT_BTCOEX_STATS_EVENTID:
  2168. ath6kl_dbg(ATH6KL_DBG_WMI,
  2169. "WMI_REPORT_BTCOEX_STATS_EVENTID\n");
  2170. break;
  2171. case WMI_TX_COMPLETE_EVENTID:
  2172. ath6kl_dbg(ATH6KL_DBG_WMI, "WMI_TX_COMPLETE_EVENTID\n");
  2173. ret = ath6kl_wmi_tx_complete_event_rx(datap, len);
  2174. break;
  2175. default:
  2176. ath6kl_dbg(ATH6KL_DBG_WMI, "unknown cmd id 0x%x\n", id);
  2177. wmi->stat.cmd_id_err++;
  2178. ret = -EINVAL;
  2179. break;
  2180. }
  2181. dev_kfree_skb(skb);
  2182. return ret;
  2183. }
  2184. static void ath6kl_wmi_qos_state_init(struct wmi *wmi)
  2185. {
  2186. if (!wmi)
  2187. return;
  2188. spin_lock_bh(&wmi->lock);
  2189. wmi->fat_pipe_exist = 0;
  2190. memset(wmi->stream_exist_for_ac, 0, sizeof(wmi->stream_exist_for_ac));
  2191. spin_unlock_bh(&wmi->lock);
  2192. }
  2193. void *ath6kl_wmi_init(struct ath6kl *dev)
  2194. {
  2195. struct wmi *wmi;
  2196. wmi = kzalloc(sizeof(struct wmi), GFP_KERNEL);
  2197. if (!wmi)
  2198. return NULL;
  2199. spin_lock_init(&wmi->lock);
  2200. wmi->parent_dev = dev;
  2201. ath6kl_wmi_qos_state_init(wmi);
  2202. wmi->pwr_mode = REC_POWER;
  2203. wmi->phy_mode = WMI_11G_MODE;
  2204. wmi->pair_crypto_type = NONE_CRYPT;
  2205. wmi->grp_crypto_type = NONE_CRYPT;
  2206. wmi->ht_allowed[A_BAND_24GHZ] = 1;
  2207. wmi->ht_allowed[A_BAND_5GHZ] = 1;
  2208. return wmi;
  2209. }
  2210. void ath6kl_wmi_shutdown(struct wmi *wmi)
  2211. {
  2212. if (!wmi)
  2213. return;
  2214. kfree(wmi);
  2215. }