ngene-core.c 43 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673
  1. /*
  2. * ngene.c: nGene PCIe bridge driver
  3. *
  4. * Copyright (C) 2005-2007 Micronas
  5. *
  6. * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de>
  7. * Modifications for new nGene firmware,
  8. * support for EEPROM-copying,
  9. * support for new dual DVB-S2 card prototype
  10. *
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * version 2 only, as published by the Free Software Foundation.
  15. *
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. *
  23. * You should have received a copy of the GNU General Public License
  24. * along with this program; if not, write to the Free Software
  25. * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  26. * 02110-1301, USA
  27. * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  28. */
  29. #include <linux/module.h>
  30. #include <linux/init.h>
  31. #include <linux/delay.h>
  32. #include <linux/poll.h>
  33. #include <linux/io.h>
  34. #include <asm/div64.h>
  35. #include <linux/pci.h>
  36. #include <linux/smp_lock.h>
  37. #include <linux/timer.h>
  38. #include <linux/byteorder/generic.h>
  39. #include <linux/firmware.h>
  40. #include <linux/vmalloc.h>
  41. #include "ngene.h"
  42. static int one_adapter = 1;
  43. module_param(one_adapter, int, 0444);
  44. MODULE_PARM_DESC(one_adapter, "Use only one adapter.");
  45. static int debug;
  46. module_param(debug, int, 0444);
  47. MODULE_PARM_DESC(debug, "Print debugging information.");
  48. DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr);
  49. #define COMMAND_TIMEOUT_WORKAROUND
  50. #define dprintk if (debug) printk
  51. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  52. #define ngwritel(dat, adr) writel((dat), (char *)(dev->iomem + (adr)))
  53. #define ngwriteb(dat, adr) writeb((dat), (char *)(dev->iomem + (adr)))
  54. #define ngreadl(adr) readl(dev->iomem + (adr))
  55. #define ngreadb(adr) readb(dev->iomem + (adr))
  56. #define ngcpyto(adr, src, count) memcpy_toio((char *) \
  57. (dev->iomem + (adr)), (src), (count))
  58. #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), (char *) \
  59. (dev->iomem + (adr)), (count))
  60. /****************************************************************************/
  61. /* nGene interrupt handler **************************************************/
  62. /****************************************************************************/
  63. static void event_tasklet(unsigned long data)
  64. {
  65. struct ngene *dev = (struct ngene *)data;
  66. while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) {
  67. struct EVENT_BUFFER Event =
  68. dev->EventQueue[dev->EventQueueReadIndex];
  69. dev->EventQueueReadIndex =
  70. (dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1);
  71. if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify))
  72. dev->TxEventNotify(dev, Event.TimeStamp);
  73. if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify))
  74. dev->RxEventNotify(dev, Event.TimeStamp,
  75. Event.RXCharacter);
  76. }
  77. }
  78. static void demux_tasklet(unsigned long data)
  79. {
  80. struct ngene_channel *chan = (struct ngene_channel *)data;
  81. struct SBufferHeader *Cur = chan->nextBuffer;
  82. spin_lock_irq(&chan->state_lock);
  83. while (Cur->ngeneBuffer.SR.Flags & 0x80) {
  84. if (chan->mode & NGENE_IO_TSOUT) {
  85. u32 Flags = chan->DataFormatFlags;
  86. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  87. Flags |= BEF_OVERFLOW;
  88. if (chan->pBufferExchange) {
  89. if (!chan->pBufferExchange(chan,
  90. Cur->Buffer1,
  91. chan->Capture1Length,
  92. Cur->ngeneBuffer.SR.
  93. Clock, Flags)) {
  94. /*
  95. We didn't get data
  96. Clear in service flag to make sure we
  97. get called on next interrupt again.
  98. leave fill/empty (0x80) flag alone
  99. to avoid hardware running out of
  100. buffers during startup, we hold only
  101. in run state ( the source may be late
  102. delivering data )
  103. */
  104. if (chan->HWState == HWSTATE_RUN) {
  105. Cur->ngeneBuffer.SR.Flags &=
  106. ~0x40;
  107. break;
  108. /* Stop proccessing stream */
  109. }
  110. } else {
  111. /* We got a valid buffer,
  112. so switch to run state */
  113. chan->HWState = HWSTATE_RUN;
  114. }
  115. } else {
  116. printk(KERN_ERR DEVICE_NAME ": OOPS\n");
  117. if (chan->HWState == HWSTATE_RUN) {
  118. Cur->ngeneBuffer.SR.Flags &= ~0x40;
  119. break; /* Stop proccessing stream */
  120. }
  121. }
  122. if (chan->AudioDTOUpdated) {
  123. printk(KERN_INFO DEVICE_NAME
  124. ": Update AudioDTO = %d\n",
  125. chan->AudioDTOValue);
  126. Cur->ngeneBuffer.SR.DTOUpdate =
  127. chan->AudioDTOValue;
  128. chan->AudioDTOUpdated = 0;
  129. }
  130. } else {
  131. if (chan->HWState == HWSTATE_RUN) {
  132. u32 Flags = 0;
  133. if (Cur->ngeneBuffer.SR.Flags & 0x01)
  134. Flags |= BEF_EVEN_FIELD;
  135. if (Cur->ngeneBuffer.SR.Flags & 0x20)
  136. Flags |= BEF_OVERFLOW;
  137. if (chan->pBufferExchange)
  138. chan->pBufferExchange(chan,
  139. Cur->Buffer1,
  140. chan->
  141. Capture1Length,
  142. Cur->ngeneBuffer.
  143. SR.Clock, Flags);
  144. if (chan->pBufferExchange2)
  145. chan->pBufferExchange2(chan,
  146. Cur->Buffer2,
  147. chan->
  148. Capture2Length,
  149. Cur->ngeneBuffer.
  150. SR.Clock, Flags);
  151. } else if (chan->HWState != HWSTATE_STOP)
  152. chan->HWState = HWSTATE_RUN;
  153. }
  154. Cur->ngeneBuffer.SR.Flags = 0x00;
  155. Cur = Cur->Next;
  156. }
  157. chan->nextBuffer = Cur;
  158. spin_unlock_irq(&chan->state_lock);
  159. }
  160. static irqreturn_t irq_handler(int irq, void *dev_id)
  161. {
  162. struct ngene *dev = (struct ngene *)dev_id;
  163. u32 icounts = 0;
  164. irqreturn_t rc = IRQ_NONE;
  165. u32 i = MAX_STREAM;
  166. u8 *tmpCmdDoneByte;
  167. if (dev->BootFirmware) {
  168. icounts = ngreadl(NGENE_INT_COUNTS);
  169. if (icounts != dev->icounts) {
  170. ngwritel(0, FORCE_NMI);
  171. dev->cmd_done = 1;
  172. wake_up(&dev->cmd_wq);
  173. dev->icounts = icounts;
  174. rc = IRQ_HANDLED;
  175. }
  176. return rc;
  177. }
  178. ngwritel(0, FORCE_NMI);
  179. spin_lock(&dev->cmd_lock);
  180. tmpCmdDoneByte = dev->CmdDoneByte;
  181. if (tmpCmdDoneByte &&
  182. (*tmpCmdDoneByte ||
  183. (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) {
  184. dev->CmdDoneByte = NULL;
  185. dev->cmd_done = 1;
  186. wake_up(&dev->cmd_wq);
  187. rc = IRQ_HANDLED;
  188. }
  189. spin_unlock(&dev->cmd_lock);
  190. if (dev->EventBuffer->EventStatus & 0x80) {
  191. u8 nextWriteIndex =
  192. (dev->EventQueueWriteIndex + 1) &
  193. (EVENT_QUEUE_SIZE - 1);
  194. if (nextWriteIndex != dev->EventQueueReadIndex) {
  195. dev->EventQueue[dev->EventQueueWriteIndex] =
  196. *(dev->EventBuffer);
  197. dev->EventQueueWriteIndex = nextWriteIndex;
  198. } else {
  199. printk(KERN_ERR DEVICE_NAME ": event overflow\n");
  200. dev->EventQueueOverflowCount += 1;
  201. dev->EventQueueOverflowFlag = 1;
  202. }
  203. dev->EventBuffer->EventStatus &= ~0x80;
  204. tasklet_schedule(&dev->event_tasklet);
  205. rc = IRQ_HANDLED;
  206. }
  207. while (i > 0) {
  208. i--;
  209. spin_lock(&dev->channel[i].state_lock);
  210. /* if (dev->channel[i].State>=KSSTATE_RUN) { */
  211. if (dev->channel[i].nextBuffer) {
  212. if ((dev->channel[i].nextBuffer->
  213. ngeneBuffer.SR.Flags & 0xC0) == 0x80) {
  214. dev->channel[i].nextBuffer->
  215. ngeneBuffer.SR.Flags |= 0x40;
  216. tasklet_schedule(
  217. &dev->channel[i].demux_tasklet);
  218. rc = IRQ_HANDLED;
  219. }
  220. }
  221. spin_unlock(&dev->channel[i].state_lock);
  222. }
  223. /* Request might have been processed by a previous call. */
  224. return IRQ_HANDLED;
  225. }
  226. /****************************************************************************/
  227. /* nGene command interface **************************************************/
  228. /****************************************************************************/
  229. static void dump_command_io(struct ngene *dev)
  230. {
  231. u8 buf[8], *b;
  232. ngcpyfrom(buf, HOST_TO_NGENE, 8);
  233. printk(KERN_ERR "host_to_ngene (%04x): %02x %02x %02x %02x %02x %02x %02x %02x\n",
  234. HOST_TO_NGENE, buf[0], buf[1], buf[2], buf[3],
  235. buf[4], buf[5], buf[6], buf[7]);
  236. ngcpyfrom(buf, NGENE_TO_HOST, 8);
  237. printk(KERN_ERR "ngene_to_host (%04x): %02x %02x %02x %02x %02x %02x %02x %02x\n",
  238. NGENE_TO_HOST, buf[0], buf[1], buf[2], buf[3],
  239. buf[4], buf[5], buf[6], buf[7]);
  240. b = dev->hosttongene;
  241. printk(KERN_ERR "dev->hosttongene (%p): %02x %02x %02x %02x %02x %02x %02x %02x\n",
  242. b, b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]);
  243. b = dev->ngenetohost;
  244. printk(KERN_ERR "dev->ngenetohost (%p): %02x %02x %02x %02x %02x %02x %02x %02x\n",
  245. b, b[0], b[1], b[2], b[3], b[4], b[5], b[6], b[7]);
  246. }
  247. static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com)
  248. {
  249. int ret;
  250. u8 *tmpCmdDoneByte;
  251. dev->cmd_done = 0;
  252. if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) {
  253. dev->BootFirmware = 1;
  254. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  255. ngwritel(0, NGENE_COMMAND);
  256. ngwritel(0, NGENE_COMMAND_HI);
  257. ngwritel(0, NGENE_STATUS);
  258. ngwritel(0, NGENE_STATUS_HI);
  259. ngwritel(0, NGENE_EVENT);
  260. ngwritel(0, NGENE_EVENT_HI);
  261. } else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) {
  262. u64 fwio = dev->PAFWInterfaceBuffer;
  263. ngwritel(fwio & 0xffffffff, NGENE_COMMAND);
  264. ngwritel(fwio >> 32, NGENE_COMMAND_HI);
  265. ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS);
  266. ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI);
  267. ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT);
  268. ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI);
  269. }
  270. memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2);
  271. if (dev->BootFirmware)
  272. ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2);
  273. spin_lock_irq(&dev->cmd_lock);
  274. tmpCmdDoneByte = dev->ngenetohost + com->out_len;
  275. if (!com->out_len)
  276. tmpCmdDoneByte++;
  277. *tmpCmdDoneByte = 0;
  278. dev->ngenetohost[0] = 0;
  279. dev->ngenetohost[1] = 0;
  280. dev->CmdDoneByte = tmpCmdDoneByte;
  281. spin_unlock_irq(&dev->cmd_lock);
  282. /* Notify 8051. */
  283. ngwritel(1, FORCE_INT);
  284. ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ);
  285. if (!ret) {
  286. /*ngwritel(0, FORCE_NMI);*/
  287. printk(KERN_ERR DEVICE_NAME
  288. ": Command timeout cmd=%02x prev=%02x\n",
  289. com->cmd.hdr.Opcode, dev->prev_cmd);
  290. dump_command_io(dev);
  291. return -1;
  292. }
  293. if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH)
  294. dev->BootFirmware = 0;
  295. dev->prev_cmd = com->cmd.hdr.Opcode;
  296. if (!com->out_len)
  297. return 0;
  298. memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len);
  299. return 0;
  300. }
  301. int ngene_command(struct ngene *dev, struct ngene_command *com)
  302. {
  303. int result;
  304. down(&dev->cmd_mutex);
  305. result = ngene_command_mutex(dev, com);
  306. up(&dev->cmd_mutex);
  307. return result;
  308. }
  309. static int ngene_command_load_firmware(struct ngene *dev,
  310. u8 *ngene_fw, u32 size)
  311. {
  312. #define FIRSTCHUNK (1024)
  313. u32 cleft;
  314. struct ngene_command com;
  315. com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE;
  316. com.cmd.hdr.Length = 0;
  317. com.in_len = 0;
  318. com.out_len = 0;
  319. ngene_command(dev, &com);
  320. cleft = (size + 3) & ~3;
  321. if (cleft > FIRSTCHUNK) {
  322. ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK,
  323. cleft - FIRSTCHUNK);
  324. cleft = FIRSTCHUNK;
  325. }
  326. ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft);
  327. memset(&com, 0, sizeof(struct ngene_command));
  328. com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH;
  329. com.cmd.hdr.Length = 4;
  330. com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA;
  331. com.cmd.FWLoadFinish.Length = (unsigned short)cleft;
  332. com.in_len = 4;
  333. com.out_len = 0;
  334. return ngene_command(dev, &com);
  335. }
  336. static int ngene_command_config_buf(struct ngene *dev, u8 config)
  337. {
  338. struct ngene_command com;
  339. com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER;
  340. com.cmd.hdr.Length = 1;
  341. com.cmd.ConfigureBuffers.config = config;
  342. com.in_len = 1;
  343. com.out_len = 0;
  344. if (ngene_command(dev, &com) < 0)
  345. return -EIO;
  346. return 0;
  347. }
  348. static int ngene_command_config_free_buf(struct ngene *dev, u8 *config)
  349. {
  350. struct ngene_command com;
  351. com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER;
  352. com.cmd.hdr.Length = 6;
  353. memcpy(&com.cmd.ConfigureBuffers.config, config, 6);
  354. com.in_len = 6;
  355. com.out_len = 0;
  356. if (ngene_command(dev, &com) < 0)
  357. return -EIO;
  358. return 0;
  359. }
  360. int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level)
  361. {
  362. struct ngene_command com;
  363. com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN;
  364. com.cmd.hdr.Length = 1;
  365. com.cmd.SetGpioPin.select = select | (level << 7);
  366. com.in_len = 1;
  367. com.out_len = 0;
  368. return ngene_command(dev, &com);
  369. }
  370. /*
  371. 02000640 is sample on rising edge.
  372. 02000740 is sample on falling edge.
  373. 02000040 is ignore "valid" signal
  374. 0: FD_CTL1 Bit 7,6 must be 0,1
  375. 7 disable(fw controlled)
  376. 6 0-AUX,1-TS
  377. 5 0-par,1-ser
  378. 4 0-lsb/1-msb
  379. 3,2 reserved
  380. 1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both
  381. 1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge
  382. 2: FD_STA is read-only. 0-sync
  383. 3: FD_INSYNC is number of 47s to trigger "in sync".
  384. 4: FD_OUTSYNC is number of 47s to trigger "out of sync".
  385. 5: FD_MAXBYTE1 is low-order of bytes per packet.
  386. 6: FD_MAXBYTE2 is high-order of bytes per packet.
  387. 7: Top byte is unused.
  388. */
  389. /****************************************************************************/
  390. static u8 TSFeatureDecoderSetup[8 * 5] = {
  391. 0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00,
  392. 0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */
  393. 0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */
  394. 0x72, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */
  395. 0x40, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* LGDT3303 */
  396. };
  397. /* Set NGENE I2S Config to 16 bit packed */
  398. static u8 I2SConfiguration[] = {
  399. 0x00, 0x10, 0x00, 0x00,
  400. 0x80, 0x10, 0x00, 0x00,
  401. };
  402. static u8 SPDIFConfiguration[10] = {
  403. 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
  404. };
  405. /* Set NGENE I2S Config to transport stream compatible mode */
  406. static u8 TS_I2SConfiguration[4] = { 0x3E, 0x1A, 0x00, 0x00 }; /*3e 18 00 00 ?*/
  407. static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x20, 0x00, 0x00 };
  408. static u8 ITUDecoderSetup[4][16] = {
  409. {0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */
  410. 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00},
  411. {0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00,
  412. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  413. {0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */
  414. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  415. {0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */
  416. 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00},
  417. };
  418. /*
  419. * 50 48 60 gleich
  420. * 27p50 9f 00 22 80 42 69 18 ...
  421. * 27p60 93 00 22 80 82 69 1c ...
  422. */
  423. /* Maxbyte to 1144 (for raw data) */
  424. static u8 ITUFeatureDecoderSetup[8] = {
  425. 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00
  426. };
  427. static void FillTSBuffer(void *Buffer, int Length, u32 Flags)
  428. {
  429. u32 *ptr = Buffer;
  430. memset(Buffer, 0xff, Length);
  431. while (Length > 0) {
  432. if (Flags & DF_SWAP32)
  433. *ptr = 0x471FFF10;
  434. else
  435. *ptr = 0x10FF1F47;
  436. ptr += (188 / 4);
  437. Length -= 188;
  438. }
  439. }
  440. static void flush_buffers(struct ngene_channel *chan)
  441. {
  442. u8 val;
  443. do {
  444. msleep(1);
  445. spin_lock_irq(&chan->state_lock);
  446. val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80;
  447. spin_unlock_irq(&chan->state_lock);
  448. } while (val);
  449. }
  450. static void clear_buffers(struct ngene_channel *chan)
  451. {
  452. struct SBufferHeader *Cur = chan->nextBuffer;
  453. do {
  454. memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR));
  455. if (chan->mode & NGENE_IO_TSOUT)
  456. FillTSBuffer(Cur->Buffer1,
  457. chan->Capture1Length,
  458. chan->DataFormatFlags);
  459. Cur = Cur->Next;
  460. } while (Cur != chan->nextBuffer);
  461. if (chan->mode & NGENE_IO_TSOUT) {
  462. chan->nextBuffer->ngeneBuffer.SR.DTOUpdate =
  463. chan->AudioDTOValue;
  464. chan->AudioDTOUpdated = 0;
  465. Cur = chan->TSIdleBuffer.Head;
  466. do {
  467. memset(&Cur->ngeneBuffer.SR, 0,
  468. sizeof(Cur->ngeneBuffer.SR));
  469. FillTSBuffer(Cur->Buffer1,
  470. chan->Capture1Length,
  471. chan->DataFormatFlags);
  472. Cur = Cur->Next;
  473. } while (Cur != chan->TSIdleBuffer.Head);
  474. }
  475. }
  476. static int ngene_command_stream_control(struct ngene *dev, u8 stream,
  477. u8 control, u8 mode, u8 flags)
  478. {
  479. struct ngene_channel *chan = &dev->channel[stream];
  480. struct ngene_command com;
  481. u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300);
  482. u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500);
  483. u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700);
  484. u16 BsSDO = 0x9B00;
  485. /* down(&dev->stream_mutex); */
  486. while (down_trylock(&dev->stream_mutex)) {
  487. printk(KERN_INFO DEVICE_NAME ": SC locked\n");
  488. msleep(1);
  489. }
  490. memset(&com, 0, sizeof(com));
  491. com.cmd.hdr.Opcode = CMD_CONTROL;
  492. com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2;
  493. com.cmd.StreamControl.Stream = stream | (control ? 8 : 0);
  494. if (chan->mode & NGENE_IO_TSOUT)
  495. com.cmd.StreamControl.Stream |= 0x07;
  496. com.cmd.StreamControl.Control = control |
  497. (flags & SFLAG_ORDER_LUMA_CHROMA);
  498. com.cmd.StreamControl.Mode = mode;
  499. com.in_len = sizeof(struct FW_STREAM_CONTROL);
  500. com.out_len = 0;
  501. dprintk(KERN_INFO DEVICE_NAME
  502. ": Stream=%02x, Control=%02x, Mode=%02x\n",
  503. com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control,
  504. com.cmd.StreamControl.Mode);
  505. chan->Mode = mode;
  506. if (!(control & 0x80)) {
  507. spin_lock_irq(&chan->state_lock);
  508. if (chan->State == KSSTATE_RUN) {
  509. chan->State = KSSTATE_ACQUIRE;
  510. chan->HWState = HWSTATE_STOP;
  511. spin_unlock_irq(&chan->state_lock);
  512. if (ngene_command(dev, &com) < 0) {
  513. up(&dev->stream_mutex);
  514. return -1;
  515. }
  516. /* clear_buffers(chan); */
  517. flush_buffers(chan);
  518. up(&dev->stream_mutex);
  519. return 0;
  520. }
  521. spin_unlock_irq(&chan->state_lock);
  522. up(&dev->stream_mutex);
  523. return 0;
  524. }
  525. if (mode & SMODE_AUDIO_CAPTURE) {
  526. com.cmd.StreamControl.CaptureBlockCount =
  527. chan->Capture1Length / AUDIO_BLOCK_SIZE;
  528. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  529. } else if (mode & SMODE_TRANSPORT_STREAM) {
  530. com.cmd.StreamControl.CaptureBlockCount =
  531. chan->Capture1Length / TS_BLOCK_SIZE;
  532. com.cmd.StreamControl.MaxLinesPerField =
  533. chan->Capture1Length / TS_BLOCK_SIZE;
  534. com.cmd.StreamControl.Buffer_Address =
  535. chan->TSRingBuffer.PAHead;
  536. if (chan->mode & NGENE_IO_TSOUT) {
  537. com.cmd.StreamControl.BytesPerVBILine =
  538. chan->Capture1Length / TS_BLOCK_SIZE;
  539. com.cmd.StreamControl.Stream |= 0x07;
  540. }
  541. } else {
  542. com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine;
  543. com.cmd.StreamControl.MaxLinesPerField = chan->nLines;
  544. com.cmd.StreamControl.MinLinesPerField = 100;
  545. com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead;
  546. if (mode & SMODE_VBI_CAPTURE) {
  547. com.cmd.StreamControl.MaxVBILinesPerField =
  548. chan->nVBILines;
  549. com.cmd.StreamControl.MinVBILinesPerField = 0;
  550. com.cmd.StreamControl.BytesPerVBILine =
  551. chan->nBytesPerVBILine;
  552. }
  553. if (flags & SFLAG_COLORBAR)
  554. com.cmd.StreamControl.Stream |= 0x04;
  555. }
  556. spin_lock_irq(&chan->state_lock);
  557. if (mode & SMODE_AUDIO_CAPTURE) {
  558. chan->nextBuffer = chan->RingBuffer.Head;
  559. if (mode & SMODE_AUDIO_SPDIF) {
  560. com.cmd.StreamControl.SetupDataLen =
  561. sizeof(SPDIFConfiguration);
  562. com.cmd.StreamControl.SetupDataAddr = BsSPI;
  563. memcpy(com.cmd.StreamControl.SetupData,
  564. SPDIFConfiguration, sizeof(SPDIFConfiguration));
  565. } else {
  566. com.cmd.StreamControl.SetupDataLen = 4;
  567. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  568. memcpy(com.cmd.StreamControl.SetupData,
  569. I2SConfiguration +
  570. 4 * dev->card_info->i2s[stream], 4);
  571. }
  572. } else if (mode & SMODE_TRANSPORT_STREAM) {
  573. chan->nextBuffer = chan->TSRingBuffer.Head;
  574. if (stream >= STREAM_AUDIOIN1) {
  575. if (chan->mode & NGENE_IO_TSOUT) {
  576. com.cmd.StreamControl.SetupDataLen =
  577. sizeof(TS_I2SOutConfiguration);
  578. com.cmd.StreamControl.SetupDataAddr = BsSDO;
  579. memcpy(com.cmd.StreamControl.SetupData,
  580. TS_I2SOutConfiguration,
  581. sizeof(TS_I2SOutConfiguration));
  582. } else {
  583. com.cmd.StreamControl.SetupDataLen =
  584. sizeof(TS_I2SConfiguration);
  585. com.cmd.StreamControl.SetupDataAddr = BsSDI;
  586. memcpy(com.cmd.StreamControl.SetupData,
  587. TS_I2SConfiguration,
  588. sizeof(TS_I2SConfiguration));
  589. }
  590. } else {
  591. com.cmd.StreamControl.SetupDataLen = 8;
  592. com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10;
  593. memcpy(com.cmd.StreamControl.SetupData,
  594. TSFeatureDecoderSetup +
  595. 8 * dev->card_info->tsf[stream], 8);
  596. }
  597. } else {
  598. chan->nextBuffer = chan->RingBuffer.Head;
  599. com.cmd.StreamControl.SetupDataLen =
  600. 16 + sizeof(ITUFeatureDecoderSetup);
  601. com.cmd.StreamControl.SetupDataAddr = BsUVI;
  602. memcpy(com.cmd.StreamControl.SetupData,
  603. ITUDecoderSetup[chan->itumode], 16);
  604. memcpy(com.cmd.StreamControl.SetupData + 16,
  605. ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup));
  606. }
  607. clear_buffers(chan);
  608. chan->State = KSSTATE_RUN;
  609. if (mode & SMODE_TRANSPORT_STREAM)
  610. chan->HWState = HWSTATE_RUN;
  611. else
  612. chan->HWState = HWSTATE_STARTUP;
  613. spin_unlock_irq(&chan->state_lock);
  614. if (ngene_command(dev, &com) < 0) {
  615. up(&dev->stream_mutex);
  616. return -1;
  617. }
  618. up(&dev->stream_mutex);
  619. return 0;
  620. }
  621. /****************************************************************************/
  622. /* EEPROM TAGS **************************************************************/
  623. /****************************************************************************/
  624. /****************************************************************************/
  625. /* DVB functions and API interface ******************************************/
  626. /****************************************************************************/
  627. static void swap_buffer(u32 *p, u32 len)
  628. {
  629. while (len) {
  630. *p = swab32(*p);
  631. p++;
  632. len -= 4;
  633. }
  634. }
  635. static void *tsin_exchange(void *priv, void *buf, u32 len, u32 clock, u32 flags)
  636. {
  637. struct ngene_channel *chan = priv;
  638. #ifdef COMMAND_TIMEOUT_WORKAROUND
  639. if (chan->users > 0)
  640. #endif
  641. dvb_dmx_swfilter(&chan->demux, buf, len);
  642. return NULL;
  643. }
  644. u8 fill_ts[188] = { 0x47, 0x1f, 0xff, 0x10 };
  645. static void *tsout_exchange(void *priv, void *buf, u32 len,
  646. u32 clock, u32 flags)
  647. {
  648. struct ngene_channel *chan = priv;
  649. struct ngene *dev = chan->dev;
  650. u32 alen;
  651. alen = dvb_ringbuffer_avail(&dev->tsout_rbuf);
  652. alen -= alen % 188;
  653. if (alen < len)
  654. FillTSBuffer(buf + alen, len - alen, flags);
  655. else
  656. alen = len;
  657. dvb_ringbuffer_read(&dev->tsout_rbuf, buf, alen);
  658. if (flags & DF_SWAP32)
  659. swap_buffer((u32 *)buf, alen);
  660. wake_up_interruptible(&dev->tsout_rbuf.queue);
  661. return buf;
  662. }
  663. static void set_transfer(struct ngene_channel *chan, int state)
  664. {
  665. u8 control = 0, mode = 0, flags = 0;
  666. struct ngene *dev = chan->dev;
  667. int ret;
  668. /*
  669. printk(KERN_INFO DEVICE_NAME ": st %d\n", state);
  670. msleep(100);
  671. */
  672. if (state) {
  673. if (chan->running) {
  674. printk(KERN_INFO DEVICE_NAME ": already running\n");
  675. return;
  676. }
  677. } else {
  678. if (!chan->running) {
  679. printk(KERN_INFO DEVICE_NAME ": already stopped\n");
  680. return;
  681. }
  682. }
  683. if (dev->card_info->switch_ctrl)
  684. dev->card_info->switch_ctrl(chan, 1, state ^ 1);
  685. if (state) {
  686. spin_lock_irq(&chan->state_lock);
  687. /* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  688. ngreadl(0x9310)); */
  689. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  690. control = 0x80;
  691. if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  692. chan->Capture1Length = 512 * 188;
  693. mode = SMODE_TRANSPORT_STREAM;
  694. }
  695. if (chan->mode & NGENE_IO_TSOUT) {
  696. chan->pBufferExchange = tsout_exchange;
  697. /* 0x66666666 = 50MHz *2^33 /250MHz */
  698. chan->AudioDTOValue = 0x66666666;
  699. /* set_dto(chan, 38810700+1000); */
  700. /* set_dto(chan, 19392658); */
  701. }
  702. if (chan->mode & NGENE_IO_TSIN)
  703. chan->pBufferExchange = tsin_exchange;
  704. /* ngwritel(0, 0x9310); */
  705. spin_unlock_irq(&chan->state_lock);
  706. } else
  707. ;/* printk(KERN_INFO DEVICE_NAME ": lock=%08x\n",
  708. ngreadl(0x9310)); */
  709. ret = ngene_command_stream_control(dev, chan->number,
  710. control, mode, flags);
  711. if (!ret)
  712. chan->running = state;
  713. else
  714. printk(KERN_ERR DEVICE_NAME ": set_transfer %d failed\n",
  715. state);
  716. if (!state) {
  717. spin_lock_irq(&chan->state_lock);
  718. chan->pBufferExchange = NULL;
  719. dvb_ringbuffer_flush(&dev->tsout_rbuf);
  720. spin_unlock_irq(&chan->state_lock);
  721. }
  722. }
  723. static int ngene_start_feed(struct dvb_demux_feed *dvbdmxfeed)
  724. {
  725. struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
  726. struct ngene_channel *chan = dvbdmx->priv;
  727. if (chan->users == 0) {
  728. #ifdef COMMAND_TIMEOUT_WORKAROUND
  729. if (!chan->running)
  730. #endif
  731. set_transfer(chan, 1);
  732. /* msleep(10); */
  733. }
  734. return ++chan->users;
  735. }
  736. static int ngene_stop_feed(struct dvb_demux_feed *dvbdmxfeed)
  737. {
  738. struct dvb_demux *dvbdmx = dvbdmxfeed->demux;
  739. struct ngene_channel *chan = dvbdmx->priv;
  740. if (--chan->users)
  741. return chan->users;
  742. #ifndef COMMAND_TIMEOUT_WORKAROUND
  743. set_transfer(chan, 0);
  744. #endif
  745. return 0;
  746. }
  747. static int my_dvb_dmx_ts_card_init(struct dvb_demux *dvbdemux, char *id,
  748. int (*start_feed)(struct dvb_demux_feed *),
  749. int (*stop_feed)(struct dvb_demux_feed *),
  750. void *priv)
  751. {
  752. dvbdemux->priv = priv;
  753. dvbdemux->filternum = 256;
  754. dvbdemux->feednum = 256;
  755. dvbdemux->start_feed = start_feed;
  756. dvbdemux->stop_feed = stop_feed;
  757. dvbdemux->write_to_decoder = NULL;
  758. dvbdemux->dmx.capabilities = (DMX_TS_FILTERING |
  759. DMX_SECTION_FILTERING |
  760. DMX_MEMORY_BASED_FILTERING);
  761. return dvb_dmx_init(dvbdemux);
  762. }
  763. static int my_dvb_dmxdev_ts_card_init(struct dmxdev *dmxdev,
  764. struct dvb_demux *dvbdemux,
  765. struct dmx_frontend *hw_frontend,
  766. struct dmx_frontend *mem_frontend,
  767. struct dvb_adapter *dvb_adapter)
  768. {
  769. int ret;
  770. dmxdev->filternum = 256;
  771. dmxdev->demux = &dvbdemux->dmx;
  772. dmxdev->capabilities = 0;
  773. ret = dvb_dmxdev_init(dmxdev, dvb_adapter);
  774. if (ret < 0)
  775. return ret;
  776. hw_frontend->source = DMX_FRONTEND_0;
  777. dvbdemux->dmx.add_frontend(&dvbdemux->dmx, hw_frontend);
  778. mem_frontend->source = DMX_MEMORY_FE;
  779. dvbdemux->dmx.add_frontend(&dvbdemux->dmx, mem_frontend);
  780. return dvbdemux->dmx.connect_frontend(&dvbdemux->dmx, hw_frontend);
  781. }
  782. /****************************************************************************/
  783. /* nGene hardware init and release functions ********************************/
  784. /****************************************************************************/
  785. static void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb)
  786. {
  787. struct SBufferHeader *Cur = rb->Head;
  788. u32 j;
  789. if (!Cur)
  790. return;
  791. for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) {
  792. if (Cur->Buffer1)
  793. pci_free_consistent(dev->pci_dev,
  794. rb->Buffer1Length,
  795. Cur->Buffer1,
  796. Cur->scList1->Address);
  797. if (Cur->Buffer2)
  798. pci_free_consistent(dev->pci_dev,
  799. rb->Buffer2Length,
  800. Cur->Buffer2,
  801. Cur->scList2->Address);
  802. }
  803. if (rb->SCListMem)
  804. pci_free_consistent(dev->pci_dev, rb->SCListMemSize,
  805. rb->SCListMem, rb->PASCListMem);
  806. pci_free_consistent(dev->pci_dev, rb->MemSize, rb->Head, rb->PAHead);
  807. }
  808. static void free_idlebuffer(struct ngene *dev,
  809. struct SRingBufferDescriptor *rb,
  810. struct SRingBufferDescriptor *tb)
  811. {
  812. int j;
  813. struct SBufferHeader *Cur = tb->Head;
  814. if (!rb->Head)
  815. return;
  816. free_ringbuffer(dev, rb);
  817. for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) {
  818. Cur->Buffer2 = NULL;
  819. Cur->scList2 = NULL;
  820. Cur->ngeneBuffer.Address_of_first_entry_2 = 0;
  821. Cur->ngeneBuffer.Number_of_entries_2 = 0;
  822. }
  823. }
  824. static void free_common_buffers(struct ngene *dev)
  825. {
  826. u32 i;
  827. struct ngene_channel *chan;
  828. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  829. chan = &dev->channel[i];
  830. free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer);
  831. free_ringbuffer(dev, &chan->RingBuffer);
  832. free_ringbuffer(dev, &chan->TSRingBuffer);
  833. }
  834. if (dev->OverflowBuffer)
  835. pci_free_consistent(dev->pci_dev,
  836. OVERFLOW_BUFFER_SIZE,
  837. dev->OverflowBuffer, dev->PAOverflowBuffer);
  838. if (dev->FWInterfaceBuffer)
  839. pci_free_consistent(dev->pci_dev,
  840. 4096,
  841. dev->FWInterfaceBuffer,
  842. dev->PAFWInterfaceBuffer);
  843. }
  844. /****************************************************************************/
  845. /* Ring buffer handling *****************************************************/
  846. /****************************************************************************/
  847. static int create_ring_buffer(struct pci_dev *pci_dev,
  848. struct SRingBufferDescriptor *descr, u32 NumBuffers)
  849. {
  850. dma_addr_t tmp;
  851. struct SBufferHeader *Head;
  852. u32 i;
  853. u32 MemSize = SIZEOF_SBufferHeader * NumBuffers;
  854. u64 PARingBufferHead;
  855. u64 PARingBufferCur;
  856. u64 PARingBufferNext;
  857. struct SBufferHeader *Cur, *Next;
  858. descr->Head = NULL;
  859. descr->MemSize = 0;
  860. descr->PAHead = 0;
  861. descr->NumBuffers = 0;
  862. if (MemSize < 4096)
  863. MemSize = 4096;
  864. Head = pci_alloc_consistent(pci_dev, MemSize, &tmp);
  865. PARingBufferHead = tmp;
  866. if (!Head)
  867. return -ENOMEM;
  868. memset(Head, 0, MemSize);
  869. PARingBufferCur = PARingBufferHead;
  870. Cur = Head;
  871. for (i = 0; i < NumBuffers - 1; i++) {
  872. Next = (struct SBufferHeader *)
  873. (((u8 *) Cur) + SIZEOF_SBufferHeader);
  874. PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader;
  875. Cur->Next = Next;
  876. Cur->ngeneBuffer.Next = PARingBufferNext;
  877. Cur = Next;
  878. PARingBufferCur = PARingBufferNext;
  879. }
  880. /* Last Buffer points back to first one */
  881. Cur->Next = Head;
  882. Cur->ngeneBuffer.Next = PARingBufferHead;
  883. descr->Head = Head;
  884. descr->MemSize = MemSize;
  885. descr->PAHead = PARingBufferHead;
  886. descr->NumBuffers = NumBuffers;
  887. return 0;
  888. }
  889. static int AllocateRingBuffers(struct pci_dev *pci_dev,
  890. dma_addr_t of,
  891. struct SRingBufferDescriptor *pRingBuffer,
  892. u32 Buffer1Length, u32 Buffer2Length)
  893. {
  894. dma_addr_t tmp;
  895. u32 i, j;
  896. int status = 0;
  897. u32 SCListMemSize = pRingBuffer->NumBuffers
  898. * ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) :
  899. NUM_SCATTER_GATHER_ENTRIES)
  900. * sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  901. u64 PASCListMem;
  902. struct HW_SCATTER_GATHER_ELEMENT *SCListEntry;
  903. u64 PASCListEntry;
  904. struct SBufferHeader *Cur;
  905. void *SCListMem;
  906. if (SCListMemSize < 4096)
  907. SCListMemSize = 4096;
  908. SCListMem = pci_alloc_consistent(pci_dev, SCListMemSize, &tmp);
  909. PASCListMem = tmp;
  910. if (SCListMem == NULL)
  911. return -ENOMEM;
  912. memset(SCListMem, 0, SCListMemSize);
  913. pRingBuffer->SCListMem = SCListMem;
  914. pRingBuffer->PASCListMem = PASCListMem;
  915. pRingBuffer->SCListMemSize = SCListMemSize;
  916. pRingBuffer->Buffer1Length = Buffer1Length;
  917. pRingBuffer->Buffer2Length = Buffer2Length;
  918. SCListEntry = SCListMem;
  919. PASCListEntry = PASCListMem;
  920. Cur = pRingBuffer->Head;
  921. for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) {
  922. u64 PABuffer;
  923. void *Buffer = pci_alloc_consistent(pci_dev, Buffer1Length,
  924. &tmp);
  925. PABuffer = tmp;
  926. if (Buffer == NULL)
  927. return -ENOMEM;
  928. Cur->Buffer1 = Buffer;
  929. SCListEntry->Address = PABuffer;
  930. SCListEntry->Length = Buffer1Length;
  931. Cur->scList1 = SCListEntry;
  932. Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry;
  933. Cur->ngeneBuffer.Number_of_entries_1 =
  934. NUM_SCATTER_GATHER_ENTRIES;
  935. SCListEntry += 1;
  936. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  937. #if NUM_SCATTER_GATHER_ENTRIES > 1
  938. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) {
  939. SCListEntry->Address = of;
  940. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  941. SCListEntry += 1;
  942. PASCListEntry +=
  943. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  944. }
  945. #endif
  946. if (!Buffer2Length)
  947. continue;
  948. Buffer = pci_alloc_consistent(pci_dev, Buffer2Length, &tmp);
  949. PABuffer = tmp;
  950. if (Buffer == NULL)
  951. return -ENOMEM;
  952. Cur->Buffer2 = Buffer;
  953. SCListEntry->Address = PABuffer;
  954. SCListEntry->Length = Buffer2Length;
  955. Cur->scList2 = SCListEntry;
  956. Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry;
  957. Cur->ngeneBuffer.Number_of_entries_2 =
  958. NUM_SCATTER_GATHER_ENTRIES;
  959. SCListEntry += 1;
  960. PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  961. #if NUM_SCATTER_GATHER_ENTRIES > 1
  962. for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) {
  963. SCListEntry->Address = of;
  964. SCListEntry->Length = OVERFLOW_BUFFER_SIZE;
  965. SCListEntry += 1;
  966. PASCListEntry +=
  967. sizeof(struct HW_SCATTER_GATHER_ELEMENT);
  968. }
  969. #endif
  970. }
  971. return status;
  972. }
  973. static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer,
  974. struct SRingBufferDescriptor *pRingBuffer)
  975. {
  976. int status = 0;
  977. /* Copy pointer to scatter gather list in TSRingbuffer
  978. structure for buffer 2
  979. Load number of buffer
  980. */
  981. u32 n = pRingBuffer->NumBuffers;
  982. /* Point to first buffer entry */
  983. struct SBufferHeader *Cur = pRingBuffer->Head;
  984. int i;
  985. /* Loop thru all buffer and set Buffer 2 pointers to TSIdlebuffer */
  986. for (i = 0; i < n; i++) {
  987. Cur->Buffer2 = pIdleBuffer->Head->Buffer1;
  988. Cur->scList2 = pIdleBuffer->Head->scList1;
  989. Cur->ngeneBuffer.Address_of_first_entry_2 =
  990. pIdleBuffer->Head->ngeneBuffer.
  991. Address_of_first_entry_1;
  992. Cur->ngeneBuffer.Number_of_entries_2 =
  993. pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1;
  994. Cur = Cur->Next;
  995. }
  996. return status;
  997. }
  998. static u32 RingBufferSizes[MAX_STREAM] = {
  999. RING_SIZE_VIDEO,
  1000. RING_SIZE_VIDEO,
  1001. RING_SIZE_AUDIO,
  1002. RING_SIZE_AUDIO,
  1003. RING_SIZE_AUDIO,
  1004. };
  1005. static u32 Buffer1Sizes[MAX_STREAM] = {
  1006. MAX_VIDEO_BUFFER_SIZE,
  1007. MAX_VIDEO_BUFFER_SIZE,
  1008. MAX_AUDIO_BUFFER_SIZE,
  1009. MAX_AUDIO_BUFFER_SIZE,
  1010. MAX_AUDIO_BUFFER_SIZE
  1011. };
  1012. static u32 Buffer2Sizes[MAX_STREAM] = {
  1013. MAX_VBI_BUFFER_SIZE,
  1014. MAX_VBI_BUFFER_SIZE,
  1015. 0,
  1016. 0,
  1017. 0
  1018. };
  1019. static int AllocCommonBuffers(struct ngene *dev)
  1020. {
  1021. int status = 0, i;
  1022. dev->FWInterfaceBuffer = pci_alloc_consistent(dev->pci_dev, 4096,
  1023. &dev->PAFWInterfaceBuffer);
  1024. if (!dev->FWInterfaceBuffer)
  1025. return -ENOMEM;
  1026. dev->hosttongene = dev->FWInterfaceBuffer;
  1027. dev->ngenetohost = dev->FWInterfaceBuffer + 256;
  1028. dev->EventBuffer = dev->FWInterfaceBuffer + 512;
  1029. dev->OverflowBuffer = pci_alloc_consistent(dev->pci_dev,
  1030. OVERFLOW_BUFFER_SIZE,
  1031. &dev->PAOverflowBuffer);
  1032. if (!dev->OverflowBuffer)
  1033. return -ENOMEM;
  1034. memset(dev->OverflowBuffer, 0, OVERFLOW_BUFFER_SIZE);
  1035. for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) {
  1036. int type = dev->card_info->io_type[i];
  1037. dev->channel[i].State = KSSTATE_STOP;
  1038. if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) {
  1039. status = create_ring_buffer(dev->pci_dev,
  1040. &dev->channel[i].RingBuffer,
  1041. RingBufferSizes[i]);
  1042. if (status < 0)
  1043. break;
  1044. if (type & (NGENE_IO_TV | NGENE_IO_AIN)) {
  1045. status = AllocateRingBuffers(dev->pci_dev,
  1046. dev->
  1047. PAOverflowBuffer,
  1048. &dev->channel[i].
  1049. RingBuffer,
  1050. Buffer1Sizes[i],
  1051. Buffer2Sizes[i]);
  1052. if (status < 0)
  1053. break;
  1054. } else if (type & NGENE_IO_HDTV) {
  1055. status = AllocateRingBuffers(dev->pci_dev,
  1056. dev->
  1057. PAOverflowBuffer,
  1058. &dev->channel[i].
  1059. RingBuffer,
  1060. MAX_HDTV_BUFFER_SIZE,
  1061. 0);
  1062. if (status < 0)
  1063. break;
  1064. }
  1065. }
  1066. if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1067. status = create_ring_buffer(dev->pci_dev,
  1068. &dev->channel[i].
  1069. TSRingBuffer, RING_SIZE_TS);
  1070. if (status < 0)
  1071. break;
  1072. status = AllocateRingBuffers(dev->pci_dev,
  1073. dev->PAOverflowBuffer,
  1074. &dev->channel[i].
  1075. TSRingBuffer,
  1076. MAX_TS_BUFFER_SIZE, 0);
  1077. if (status)
  1078. break;
  1079. }
  1080. if (type & NGENE_IO_TSOUT) {
  1081. status = create_ring_buffer(dev->pci_dev,
  1082. &dev->channel[i].
  1083. TSIdleBuffer, 1);
  1084. if (status < 0)
  1085. break;
  1086. status = AllocateRingBuffers(dev->pci_dev,
  1087. dev->PAOverflowBuffer,
  1088. &dev->channel[i].
  1089. TSIdleBuffer,
  1090. MAX_TS_BUFFER_SIZE, 0);
  1091. if (status)
  1092. break;
  1093. FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer,
  1094. &dev->channel[i].TSRingBuffer);
  1095. }
  1096. }
  1097. return status;
  1098. }
  1099. static void ngene_release_buffers(struct ngene *dev)
  1100. {
  1101. if (dev->iomem)
  1102. iounmap(dev->iomem);
  1103. free_common_buffers(dev);
  1104. vfree(dev->tsout_buf);
  1105. vfree(dev->ain_buf);
  1106. vfree(dev->vin_buf);
  1107. vfree(dev);
  1108. }
  1109. static int ngene_get_buffers(struct ngene *dev)
  1110. {
  1111. if (AllocCommonBuffers(dev))
  1112. return -ENOMEM;
  1113. if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) {
  1114. dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE);
  1115. if (!dev->tsout_buf)
  1116. return -ENOMEM;
  1117. dvb_ringbuffer_init(&dev->tsout_rbuf,
  1118. dev->tsout_buf, TSOUT_BUF_SIZE);
  1119. }
  1120. if (dev->card_info->io_type[2] & NGENE_IO_AIN) {
  1121. dev->ain_buf = vmalloc(AIN_BUF_SIZE);
  1122. if (!dev->ain_buf)
  1123. return -ENOMEM;
  1124. dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE);
  1125. }
  1126. if (dev->card_info->io_type[0] & NGENE_IO_HDTV) {
  1127. dev->vin_buf = vmalloc(VIN_BUF_SIZE);
  1128. if (!dev->vin_buf)
  1129. return -ENOMEM;
  1130. dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE);
  1131. }
  1132. dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0),
  1133. pci_resource_len(dev->pci_dev, 0));
  1134. if (!dev->iomem)
  1135. return -ENOMEM;
  1136. return 0;
  1137. }
  1138. static void ngene_init(struct ngene *dev)
  1139. {
  1140. int i;
  1141. tasklet_init(&dev->event_tasklet, event_tasklet, (unsigned long)dev);
  1142. memset_io(dev->iomem + 0xc000, 0x00, 0x220);
  1143. memset_io(dev->iomem + 0xc400, 0x00, 0x100);
  1144. for (i = 0; i < MAX_STREAM; i++) {
  1145. dev->channel[i].dev = dev;
  1146. dev->channel[i].number = i;
  1147. }
  1148. dev->fw_interface_version = 0;
  1149. ngwritel(0, NGENE_INT_ENABLE);
  1150. dev->icounts = ngreadl(NGENE_INT_COUNTS);
  1151. dev->device_version = ngreadl(DEV_VER) & 0x0f;
  1152. printk(KERN_INFO DEVICE_NAME ": Device version %d\n",
  1153. dev->device_version);
  1154. }
  1155. static int ngene_load_firm(struct ngene *dev)
  1156. {
  1157. u32 size;
  1158. const struct firmware *fw = NULL;
  1159. u8 *ngene_fw;
  1160. char *fw_name;
  1161. int err, version;
  1162. version = dev->card_info->fw_version;
  1163. switch (version) {
  1164. default:
  1165. case 15:
  1166. version = 15;
  1167. size = 23466;
  1168. fw_name = "ngene_15.fw";
  1169. break;
  1170. case 16:
  1171. size = 23498;
  1172. fw_name = "ngene_16.fw";
  1173. break;
  1174. case 17:
  1175. size = 24446;
  1176. fw_name = "ngene_17.fw";
  1177. break;
  1178. }
  1179. if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) {
  1180. printk(KERN_ERR DEVICE_NAME
  1181. ": Could not load firmware file %s.\n", fw_name);
  1182. printk(KERN_INFO DEVICE_NAME
  1183. ": Copy %s to your hotplug directory!\n", fw_name);
  1184. return -1;
  1185. }
  1186. if (size != fw->size) {
  1187. printk(KERN_ERR DEVICE_NAME
  1188. ": Firmware %s has invalid size!", fw_name);
  1189. err = -1;
  1190. } else {
  1191. printk(KERN_INFO DEVICE_NAME
  1192. ": Loading firmware file %s.\n", fw_name);
  1193. ngene_fw = (u8 *) fw->data;
  1194. err = ngene_command_load_firmware(dev, ngene_fw, size);
  1195. }
  1196. release_firmware(fw);
  1197. return err;
  1198. }
  1199. static void ngene_stop(struct ngene *dev)
  1200. {
  1201. down(&dev->cmd_mutex);
  1202. i2c_del_adapter(&(dev->channel[0].i2c_adapter));
  1203. i2c_del_adapter(&(dev->channel[1].i2c_adapter));
  1204. ngwritel(0, NGENE_INT_ENABLE);
  1205. ngwritel(0, NGENE_COMMAND);
  1206. ngwritel(0, NGENE_COMMAND_HI);
  1207. ngwritel(0, NGENE_STATUS);
  1208. ngwritel(0, NGENE_STATUS_HI);
  1209. ngwritel(0, NGENE_EVENT);
  1210. ngwritel(0, NGENE_EVENT_HI);
  1211. free_irq(dev->pci_dev->irq, dev);
  1212. }
  1213. static int ngene_start(struct ngene *dev)
  1214. {
  1215. int stat;
  1216. int i;
  1217. pci_set_master(dev->pci_dev);
  1218. ngene_init(dev);
  1219. stat = request_irq(dev->pci_dev->irq, irq_handler,
  1220. IRQF_SHARED, "nGene",
  1221. (void *)dev);
  1222. if (stat < 0)
  1223. return stat;
  1224. init_waitqueue_head(&dev->cmd_wq);
  1225. init_waitqueue_head(&dev->tx_wq);
  1226. init_waitqueue_head(&dev->rx_wq);
  1227. sema_init(&dev->cmd_mutex, 1);
  1228. sema_init(&dev->stream_mutex, 1);
  1229. sema_init(&dev->pll_mutex, 1);
  1230. sema_init(&dev->i2c_switch_mutex, 1);
  1231. spin_lock_init(&dev->cmd_lock);
  1232. for (i = 0; i < MAX_STREAM; i++)
  1233. spin_lock_init(&dev->channel[i].state_lock);
  1234. ngwritel(1, TIMESTAMPS);
  1235. ngwritel(1, NGENE_INT_ENABLE);
  1236. stat = ngene_load_firm(dev);
  1237. if (stat < 0)
  1238. goto fail;
  1239. stat = ngene_i2c_init(dev, 0);
  1240. if (stat < 0)
  1241. goto fail;
  1242. stat = ngene_i2c_init(dev, 1);
  1243. if (stat < 0)
  1244. goto fail;
  1245. if (dev->card_info->fw_version == 17) {
  1246. u8 tsin4_config[6] = {
  1247. 3072 / 64, 3072 / 64, 0, 3072 / 64, 3072 / 64, 0};
  1248. u8 default_config[6] = {
  1249. 4096 / 64, 4096 / 64, 0, 2048 / 64, 2048 / 64, 0};
  1250. u8 *bconf = default_config;
  1251. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1252. bconf = tsin4_config;
  1253. dprintk(KERN_DEBUG DEVICE_NAME ": FW 17 buffer config\n");
  1254. stat = ngene_command_config_free_buf(dev, bconf);
  1255. } else {
  1256. int bconf = BUFFER_CONFIG_4422;
  1257. if (dev->card_info->io_type[3] == NGENE_IO_TSIN)
  1258. bconf = BUFFER_CONFIG_3333;
  1259. stat = ngene_command_config_buf(dev, bconf);
  1260. }
  1261. return stat;
  1262. fail:
  1263. ngwritel(0, NGENE_INT_ENABLE);
  1264. free_irq(dev->pci_dev->irq, dev);
  1265. return stat;
  1266. }
  1267. /****************************************************************************/
  1268. /****************************************************************************/
  1269. /****************************************************************************/
  1270. static void release_channel(struct ngene_channel *chan)
  1271. {
  1272. struct dvb_demux *dvbdemux = &chan->demux;
  1273. struct ngene *dev = chan->dev;
  1274. struct ngene_info *ni = dev->card_info;
  1275. int io = ni->io_type[chan->number];
  1276. #ifdef COMMAND_TIMEOUT_WORKAROUND
  1277. if (chan->running)
  1278. set_transfer(chan, 0);
  1279. #endif
  1280. tasklet_kill(&chan->demux_tasklet);
  1281. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1282. if (chan->fe) {
  1283. dvb_unregister_frontend(chan->fe);
  1284. dvb_frontend_detach(chan->fe);
  1285. chan->fe = NULL;
  1286. }
  1287. dvbdemux->dmx.close(&dvbdemux->dmx);
  1288. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1289. &chan->hw_frontend);
  1290. dvbdemux->dmx.remove_frontend(&dvbdemux->dmx,
  1291. &chan->mem_frontend);
  1292. dvb_dmxdev_release(&chan->dmxdev);
  1293. dvb_dmx_release(&chan->demux);
  1294. if (chan->number == 0 || !one_adapter)
  1295. dvb_unregister_adapter(&dev->adapter[chan->number]);
  1296. }
  1297. }
  1298. static int init_channel(struct ngene_channel *chan)
  1299. {
  1300. int ret = 0, nr = chan->number;
  1301. struct dvb_adapter *adapter = NULL;
  1302. struct dvb_demux *dvbdemux = &chan->demux;
  1303. struct ngene *dev = chan->dev;
  1304. struct ngene_info *ni = dev->card_info;
  1305. int io = ni->io_type[nr];
  1306. tasklet_init(&chan->demux_tasklet, demux_tasklet, (unsigned long)chan);
  1307. chan->users = 0;
  1308. chan->type = io;
  1309. chan->mode = chan->type; /* for now only one mode */
  1310. if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) {
  1311. if (nr >= STREAM_AUDIOIN1)
  1312. chan->DataFormatFlags = DF_SWAP32;
  1313. if (nr == 0 || !one_adapter || dev->first_adapter == NULL) {
  1314. adapter = &dev->adapter[nr];
  1315. ret = dvb_register_adapter(adapter, "nGene",
  1316. THIS_MODULE,
  1317. &chan->dev->pci_dev->dev,
  1318. adapter_nr);
  1319. if (ret < 0)
  1320. return ret;
  1321. if (dev->first_adapter == NULL)
  1322. dev->first_adapter = adapter;
  1323. } else {
  1324. adapter = dev->first_adapter;
  1325. }
  1326. ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux",
  1327. ngene_start_feed,
  1328. ngene_stop_feed, chan);
  1329. ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux,
  1330. &chan->hw_frontend,
  1331. &chan->mem_frontend, adapter);
  1332. }
  1333. if (io & NGENE_IO_TSIN) {
  1334. chan->fe = NULL;
  1335. if (ni->demod_attach[nr])
  1336. ni->demod_attach[nr](chan);
  1337. if (chan->fe) {
  1338. if (dvb_register_frontend(adapter, chan->fe) < 0) {
  1339. if (chan->fe->ops.release)
  1340. chan->fe->ops.release(chan->fe);
  1341. chan->fe = NULL;
  1342. }
  1343. }
  1344. if (chan->fe && ni->tuner_attach[nr])
  1345. if (ni->tuner_attach[nr] (chan) < 0) {
  1346. printk(KERN_ERR DEVICE_NAME
  1347. ": Tuner attach failed on channel %d!\n",
  1348. nr);
  1349. }
  1350. }
  1351. return ret;
  1352. }
  1353. static int init_channels(struct ngene *dev)
  1354. {
  1355. int i, j;
  1356. for (i = 0; i < MAX_STREAM; i++) {
  1357. dev->channel[i].number = i;
  1358. if (init_channel(&dev->channel[i]) < 0) {
  1359. for (j = i - 1; j >= 0; j--)
  1360. release_channel(&dev->channel[j]);
  1361. return -1;
  1362. }
  1363. }
  1364. return 0;
  1365. }
  1366. /****************************************************************************/
  1367. /* device probe/remove calls ************************************************/
  1368. /****************************************************************************/
  1369. void __devexit ngene_remove(struct pci_dev *pdev)
  1370. {
  1371. struct ngene *dev = (struct ngene *)pci_get_drvdata(pdev);
  1372. int i;
  1373. tasklet_kill(&dev->event_tasklet);
  1374. for (i = MAX_STREAM - 1; i >= 0; i--)
  1375. release_channel(&dev->channel[i]);
  1376. ngene_stop(dev);
  1377. ngene_release_buffers(dev);
  1378. pci_set_drvdata(pdev, NULL);
  1379. pci_disable_device(pdev);
  1380. }
  1381. int __devinit ngene_probe(struct pci_dev *pci_dev,
  1382. const struct pci_device_id *id)
  1383. {
  1384. struct ngene *dev;
  1385. int stat = 0;
  1386. if (pci_enable_device(pci_dev) < 0)
  1387. return -ENODEV;
  1388. dev = vmalloc(sizeof(struct ngene));
  1389. if (dev == NULL) {
  1390. stat = -ENOMEM;
  1391. goto fail0;
  1392. }
  1393. memset(dev, 0, sizeof(struct ngene));
  1394. dev->pci_dev = pci_dev;
  1395. dev->card_info = (struct ngene_info *)id->driver_data;
  1396. printk(KERN_INFO DEVICE_NAME ": Found %s\n", dev->card_info->name);
  1397. pci_set_drvdata(pci_dev, dev);
  1398. /* Alloc buffers and start nGene */
  1399. stat = ngene_get_buffers(dev);
  1400. if (stat < 0)
  1401. goto fail1;
  1402. stat = ngene_start(dev);
  1403. if (stat < 0)
  1404. goto fail1;
  1405. dev->i2c_current_bus = -1;
  1406. /* Register DVB adapters and devices for both channels */
  1407. if (init_channels(dev) < 0)
  1408. goto fail2;
  1409. return 0;
  1410. fail2:
  1411. ngene_stop(dev);
  1412. fail1:
  1413. ngene_release_buffers(dev);
  1414. fail0:
  1415. pci_disable_device(pci_dev);
  1416. pci_set_drvdata(pci_dev, NULL);
  1417. return stat;
  1418. }