vmx.c 66 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "irq.h"
  20. #include "vmx.h"
  21. #include "segment_descriptor.h"
  22. #include <linux/module.h>
  23. #include <linux/kernel.h>
  24. #include <linux/mm.h>
  25. #include <linux/highmem.h>
  26. #include <linux/profile.h>
  27. #include <linux/sched.h>
  28. #include <asm/io.h>
  29. #include <asm/desc.h>
  30. MODULE_AUTHOR("Qumranet");
  31. MODULE_LICENSE("GPL");
  32. struct vmcs {
  33. u32 revision_id;
  34. u32 abort;
  35. char data[0];
  36. };
  37. struct vcpu_vmx {
  38. struct kvm_vcpu vcpu;
  39. int launched;
  40. struct kvm_msr_entry *guest_msrs;
  41. struct kvm_msr_entry *host_msrs;
  42. int nmsrs;
  43. int save_nmsrs;
  44. int msr_offset_efer;
  45. #ifdef CONFIG_X86_64
  46. int msr_offset_kernel_gs_base;
  47. #endif
  48. struct vmcs *vmcs;
  49. struct {
  50. int loaded;
  51. u16 fs_sel, gs_sel, ldt_sel;
  52. int gs_ldt_reload_needed;
  53. int fs_reload_needed;
  54. }host_state;
  55. };
  56. static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
  57. {
  58. return container_of(vcpu, struct vcpu_vmx, vcpu);
  59. }
  60. static int init_rmode_tss(struct kvm *kvm);
  61. static DEFINE_PER_CPU(struct vmcs *, vmxarea);
  62. static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
  63. static struct page *vmx_io_bitmap_a;
  64. static struct page *vmx_io_bitmap_b;
  65. #define EFER_SAVE_RESTORE_BITS ((u64)EFER_SCE)
  66. static struct vmcs_config {
  67. int size;
  68. int order;
  69. u32 revision_id;
  70. u32 pin_based_exec_ctrl;
  71. u32 cpu_based_exec_ctrl;
  72. u32 vmexit_ctrl;
  73. u32 vmentry_ctrl;
  74. } vmcs_config;
  75. #define VMX_SEGMENT_FIELD(seg) \
  76. [VCPU_SREG_##seg] = { \
  77. .selector = GUEST_##seg##_SELECTOR, \
  78. .base = GUEST_##seg##_BASE, \
  79. .limit = GUEST_##seg##_LIMIT, \
  80. .ar_bytes = GUEST_##seg##_AR_BYTES, \
  81. }
  82. static struct kvm_vmx_segment_field {
  83. unsigned selector;
  84. unsigned base;
  85. unsigned limit;
  86. unsigned ar_bytes;
  87. } kvm_vmx_segment_fields[] = {
  88. VMX_SEGMENT_FIELD(CS),
  89. VMX_SEGMENT_FIELD(DS),
  90. VMX_SEGMENT_FIELD(ES),
  91. VMX_SEGMENT_FIELD(FS),
  92. VMX_SEGMENT_FIELD(GS),
  93. VMX_SEGMENT_FIELD(SS),
  94. VMX_SEGMENT_FIELD(TR),
  95. VMX_SEGMENT_FIELD(LDTR),
  96. };
  97. /*
  98. * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
  99. * away by decrementing the array size.
  100. */
  101. static const u32 vmx_msr_index[] = {
  102. #ifdef CONFIG_X86_64
  103. MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, MSR_KERNEL_GS_BASE,
  104. #endif
  105. MSR_EFER, MSR_K6_STAR,
  106. };
  107. #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
  108. static void load_msrs(struct kvm_msr_entry *e, int n)
  109. {
  110. int i;
  111. for (i = 0; i < n; ++i)
  112. wrmsrl(e[i].index, e[i].data);
  113. }
  114. static void save_msrs(struct kvm_msr_entry *e, int n)
  115. {
  116. int i;
  117. for (i = 0; i < n; ++i)
  118. rdmsrl(e[i].index, e[i].data);
  119. }
  120. static inline u64 msr_efer_save_restore_bits(struct kvm_msr_entry msr)
  121. {
  122. return (u64)msr.data & EFER_SAVE_RESTORE_BITS;
  123. }
  124. static inline int msr_efer_need_save_restore(struct vcpu_vmx *vmx)
  125. {
  126. int efer_offset = vmx->msr_offset_efer;
  127. return msr_efer_save_restore_bits(vmx->host_msrs[efer_offset]) !=
  128. msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  129. }
  130. static inline int is_page_fault(u32 intr_info)
  131. {
  132. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  133. INTR_INFO_VALID_MASK)) ==
  134. (INTR_TYPE_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
  135. }
  136. static inline int is_no_device(u32 intr_info)
  137. {
  138. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
  139. INTR_INFO_VALID_MASK)) ==
  140. (INTR_TYPE_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
  141. }
  142. static inline int is_external_interrupt(u32 intr_info)
  143. {
  144. return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
  145. == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  146. }
  147. static inline int cpu_has_vmx_tpr_shadow(void)
  148. {
  149. return (vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW);
  150. }
  151. static inline int vm_need_tpr_shadow(struct kvm *kvm)
  152. {
  153. return ((cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)));
  154. }
  155. static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
  156. {
  157. int i;
  158. for (i = 0; i < vmx->nmsrs; ++i)
  159. if (vmx->guest_msrs[i].index == msr)
  160. return i;
  161. return -1;
  162. }
  163. static struct kvm_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
  164. {
  165. int i;
  166. i = __find_msr_index(vmx, msr);
  167. if (i >= 0)
  168. return &vmx->guest_msrs[i];
  169. return NULL;
  170. }
  171. static void vmcs_clear(struct vmcs *vmcs)
  172. {
  173. u64 phys_addr = __pa(vmcs);
  174. u8 error;
  175. asm volatile (ASM_VMX_VMCLEAR_RAX "; setna %0"
  176. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  177. : "cc", "memory");
  178. if (error)
  179. printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
  180. vmcs, phys_addr);
  181. }
  182. static void __vcpu_clear(void *arg)
  183. {
  184. struct vcpu_vmx *vmx = arg;
  185. int cpu = raw_smp_processor_id();
  186. if (vmx->vcpu.cpu == cpu)
  187. vmcs_clear(vmx->vmcs);
  188. if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
  189. per_cpu(current_vmcs, cpu) = NULL;
  190. rdtscll(vmx->vcpu.host_tsc);
  191. }
  192. static void vcpu_clear(struct vcpu_vmx *vmx)
  193. {
  194. if (vmx->vcpu.cpu != raw_smp_processor_id() && vmx->vcpu.cpu != -1)
  195. smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear,
  196. vmx, 0, 1);
  197. else
  198. __vcpu_clear(vmx);
  199. vmx->launched = 0;
  200. }
  201. static unsigned long vmcs_readl(unsigned long field)
  202. {
  203. unsigned long value;
  204. asm volatile (ASM_VMX_VMREAD_RDX_RAX
  205. : "=a"(value) : "d"(field) : "cc");
  206. return value;
  207. }
  208. static u16 vmcs_read16(unsigned long field)
  209. {
  210. return vmcs_readl(field);
  211. }
  212. static u32 vmcs_read32(unsigned long field)
  213. {
  214. return vmcs_readl(field);
  215. }
  216. static u64 vmcs_read64(unsigned long field)
  217. {
  218. #ifdef CONFIG_X86_64
  219. return vmcs_readl(field);
  220. #else
  221. return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
  222. #endif
  223. }
  224. static noinline void vmwrite_error(unsigned long field, unsigned long value)
  225. {
  226. printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
  227. field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
  228. dump_stack();
  229. }
  230. static void vmcs_writel(unsigned long field, unsigned long value)
  231. {
  232. u8 error;
  233. asm volatile (ASM_VMX_VMWRITE_RAX_RDX "; setna %0"
  234. : "=q"(error) : "a"(value), "d"(field) : "cc" );
  235. if (unlikely(error))
  236. vmwrite_error(field, value);
  237. }
  238. static void vmcs_write16(unsigned long field, u16 value)
  239. {
  240. vmcs_writel(field, value);
  241. }
  242. static void vmcs_write32(unsigned long field, u32 value)
  243. {
  244. vmcs_writel(field, value);
  245. }
  246. static void vmcs_write64(unsigned long field, u64 value)
  247. {
  248. #ifdef CONFIG_X86_64
  249. vmcs_writel(field, value);
  250. #else
  251. vmcs_writel(field, value);
  252. asm volatile ("");
  253. vmcs_writel(field+1, value >> 32);
  254. #endif
  255. }
  256. static void vmcs_clear_bits(unsigned long field, u32 mask)
  257. {
  258. vmcs_writel(field, vmcs_readl(field) & ~mask);
  259. }
  260. static void vmcs_set_bits(unsigned long field, u32 mask)
  261. {
  262. vmcs_writel(field, vmcs_readl(field) | mask);
  263. }
  264. static void update_exception_bitmap(struct kvm_vcpu *vcpu)
  265. {
  266. u32 eb;
  267. eb = 1u << PF_VECTOR;
  268. if (!vcpu->fpu_active)
  269. eb |= 1u << NM_VECTOR;
  270. if (vcpu->guest_debug.enabled)
  271. eb |= 1u << 1;
  272. if (vcpu->rmode.active)
  273. eb = ~0;
  274. vmcs_write32(EXCEPTION_BITMAP, eb);
  275. }
  276. static void reload_tss(void)
  277. {
  278. #ifndef CONFIG_X86_64
  279. /*
  280. * VT restores TR but not its size. Useless.
  281. */
  282. struct descriptor_table gdt;
  283. struct segment_descriptor *descs;
  284. get_gdt(&gdt);
  285. descs = (void *)gdt.base;
  286. descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
  287. load_TR_desc();
  288. #endif
  289. }
  290. static void load_transition_efer(struct vcpu_vmx *vmx)
  291. {
  292. u64 trans_efer;
  293. int efer_offset = vmx->msr_offset_efer;
  294. trans_efer = vmx->host_msrs[efer_offset].data;
  295. trans_efer &= ~EFER_SAVE_RESTORE_BITS;
  296. trans_efer |= msr_efer_save_restore_bits(vmx->guest_msrs[efer_offset]);
  297. wrmsrl(MSR_EFER, trans_efer);
  298. vmx->vcpu.stat.efer_reload++;
  299. }
  300. static void vmx_save_host_state(struct vcpu_vmx *vmx)
  301. {
  302. if (vmx->host_state.loaded)
  303. return;
  304. vmx->host_state.loaded = 1;
  305. /*
  306. * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
  307. * allow segment selectors with cpl > 0 or ti == 1.
  308. */
  309. vmx->host_state.ldt_sel = read_ldt();
  310. vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
  311. vmx->host_state.fs_sel = read_fs();
  312. if (!(vmx->host_state.fs_sel & 7)) {
  313. vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
  314. vmx->host_state.fs_reload_needed = 0;
  315. } else {
  316. vmcs_write16(HOST_FS_SELECTOR, 0);
  317. vmx->host_state.fs_reload_needed = 1;
  318. }
  319. vmx->host_state.gs_sel = read_gs();
  320. if (!(vmx->host_state.gs_sel & 7))
  321. vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
  322. else {
  323. vmcs_write16(HOST_GS_SELECTOR, 0);
  324. vmx->host_state.gs_ldt_reload_needed = 1;
  325. }
  326. #ifdef CONFIG_X86_64
  327. vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
  328. vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
  329. #else
  330. vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
  331. vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
  332. #endif
  333. #ifdef CONFIG_X86_64
  334. if (is_long_mode(&vmx->vcpu)) {
  335. save_msrs(vmx->host_msrs +
  336. vmx->msr_offset_kernel_gs_base, 1);
  337. }
  338. #endif
  339. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  340. if (msr_efer_need_save_restore(vmx))
  341. load_transition_efer(vmx);
  342. }
  343. static void vmx_load_host_state(struct vcpu_vmx *vmx)
  344. {
  345. unsigned long flags;
  346. if (!vmx->host_state.loaded)
  347. return;
  348. vmx->host_state.loaded = 0;
  349. if (vmx->host_state.fs_reload_needed)
  350. load_fs(vmx->host_state.fs_sel);
  351. if (vmx->host_state.gs_ldt_reload_needed) {
  352. load_ldt(vmx->host_state.ldt_sel);
  353. /*
  354. * If we have to reload gs, we must take care to
  355. * preserve our gs base.
  356. */
  357. local_irq_save(flags);
  358. load_gs(vmx->host_state.gs_sel);
  359. #ifdef CONFIG_X86_64
  360. wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
  361. #endif
  362. local_irq_restore(flags);
  363. }
  364. reload_tss();
  365. save_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  366. load_msrs(vmx->host_msrs, vmx->save_nmsrs);
  367. if (msr_efer_need_save_restore(vmx))
  368. load_msrs(vmx->host_msrs + vmx->msr_offset_efer, 1);
  369. }
  370. /*
  371. * Switches to specified vcpu, until a matching vcpu_put(), but assumes
  372. * vcpu mutex is already taken.
  373. */
  374. static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
  375. {
  376. struct vcpu_vmx *vmx = to_vmx(vcpu);
  377. u64 phys_addr = __pa(vmx->vmcs);
  378. u64 tsc_this, delta;
  379. if (vcpu->cpu != cpu) {
  380. vcpu_clear(vmx);
  381. kvm_migrate_apic_timer(vcpu);
  382. }
  383. if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
  384. u8 error;
  385. per_cpu(current_vmcs, cpu) = vmx->vmcs;
  386. asm volatile (ASM_VMX_VMPTRLD_RAX "; setna %0"
  387. : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
  388. : "cc");
  389. if (error)
  390. printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
  391. vmx->vmcs, phys_addr);
  392. }
  393. if (vcpu->cpu != cpu) {
  394. struct descriptor_table dt;
  395. unsigned long sysenter_esp;
  396. vcpu->cpu = cpu;
  397. /*
  398. * Linux uses per-cpu TSS and GDT, so set these when switching
  399. * processors.
  400. */
  401. vmcs_writel(HOST_TR_BASE, read_tr_base()); /* 22.2.4 */
  402. get_gdt(&dt);
  403. vmcs_writel(HOST_GDTR_BASE, dt.base); /* 22.2.4 */
  404. rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
  405. vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
  406. /*
  407. * Make sure the time stamp counter is monotonous.
  408. */
  409. rdtscll(tsc_this);
  410. delta = vcpu->host_tsc - tsc_this;
  411. vmcs_write64(TSC_OFFSET, vmcs_read64(TSC_OFFSET) + delta);
  412. }
  413. }
  414. static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
  415. {
  416. vmx_load_host_state(to_vmx(vcpu));
  417. kvm_put_guest_fpu(vcpu);
  418. }
  419. static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
  420. {
  421. if (vcpu->fpu_active)
  422. return;
  423. vcpu->fpu_active = 1;
  424. vmcs_clear_bits(GUEST_CR0, X86_CR0_TS);
  425. if (vcpu->cr0 & X86_CR0_TS)
  426. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  427. update_exception_bitmap(vcpu);
  428. }
  429. static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
  430. {
  431. if (!vcpu->fpu_active)
  432. return;
  433. vcpu->fpu_active = 0;
  434. vmcs_set_bits(GUEST_CR0, X86_CR0_TS);
  435. update_exception_bitmap(vcpu);
  436. }
  437. static void vmx_vcpu_decache(struct kvm_vcpu *vcpu)
  438. {
  439. vcpu_clear(to_vmx(vcpu));
  440. }
  441. static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
  442. {
  443. return vmcs_readl(GUEST_RFLAGS);
  444. }
  445. static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
  446. {
  447. vmcs_writel(GUEST_RFLAGS, rflags);
  448. }
  449. static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
  450. {
  451. unsigned long rip;
  452. u32 interruptibility;
  453. rip = vmcs_readl(GUEST_RIP);
  454. rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
  455. vmcs_writel(GUEST_RIP, rip);
  456. /*
  457. * We emulated an instruction, so temporary interrupt blocking
  458. * should be removed, if set.
  459. */
  460. interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
  461. if (interruptibility & 3)
  462. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
  463. interruptibility & ~3);
  464. vcpu->interrupt_window_open = 1;
  465. }
  466. static void vmx_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code)
  467. {
  468. printk(KERN_DEBUG "inject_general_protection: rip 0x%lx\n",
  469. vmcs_readl(GUEST_RIP));
  470. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
  471. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  472. GP_VECTOR |
  473. INTR_TYPE_EXCEPTION |
  474. INTR_INFO_DELIEVER_CODE_MASK |
  475. INTR_INFO_VALID_MASK);
  476. }
  477. /*
  478. * Swap MSR entry in host/guest MSR entry array.
  479. */
  480. #ifdef CONFIG_X86_64
  481. static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
  482. {
  483. struct kvm_msr_entry tmp;
  484. tmp = vmx->guest_msrs[to];
  485. vmx->guest_msrs[to] = vmx->guest_msrs[from];
  486. vmx->guest_msrs[from] = tmp;
  487. tmp = vmx->host_msrs[to];
  488. vmx->host_msrs[to] = vmx->host_msrs[from];
  489. vmx->host_msrs[from] = tmp;
  490. }
  491. #endif
  492. /*
  493. * Set up the vmcs to automatically save and restore system
  494. * msrs. Don't touch the 64-bit msrs if the guest is in legacy
  495. * mode, as fiddling with msrs is very expensive.
  496. */
  497. static void setup_msrs(struct vcpu_vmx *vmx)
  498. {
  499. int save_nmsrs;
  500. save_nmsrs = 0;
  501. #ifdef CONFIG_X86_64
  502. if (is_long_mode(&vmx->vcpu)) {
  503. int index;
  504. index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
  505. if (index >= 0)
  506. move_msr_up(vmx, index, save_nmsrs++);
  507. index = __find_msr_index(vmx, MSR_LSTAR);
  508. if (index >= 0)
  509. move_msr_up(vmx, index, save_nmsrs++);
  510. index = __find_msr_index(vmx, MSR_CSTAR);
  511. if (index >= 0)
  512. move_msr_up(vmx, index, save_nmsrs++);
  513. index = __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  514. if (index >= 0)
  515. move_msr_up(vmx, index, save_nmsrs++);
  516. /*
  517. * MSR_K6_STAR is only needed on long mode guests, and only
  518. * if efer.sce is enabled.
  519. */
  520. index = __find_msr_index(vmx, MSR_K6_STAR);
  521. if ((index >= 0) && (vmx->vcpu.shadow_efer & EFER_SCE))
  522. move_msr_up(vmx, index, save_nmsrs++);
  523. }
  524. #endif
  525. vmx->save_nmsrs = save_nmsrs;
  526. #ifdef CONFIG_X86_64
  527. vmx->msr_offset_kernel_gs_base =
  528. __find_msr_index(vmx, MSR_KERNEL_GS_BASE);
  529. #endif
  530. vmx->msr_offset_efer = __find_msr_index(vmx, MSR_EFER);
  531. }
  532. /*
  533. * reads and returns guest's timestamp counter "register"
  534. * guest_tsc = host_tsc + tsc_offset -- 21.3
  535. */
  536. static u64 guest_read_tsc(void)
  537. {
  538. u64 host_tsc, tsc_offset;
  539. rdtscll(host_tsc);
  540. tsc_offset = vmcs_read64(TSC_OFFSET);
  541. return host_tsc + tsc_offset;
  542. }
  543. /*
  544. * writes 'guest_tsc' into guest's timestamp counter "register"
  545. * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
  546. */
  547. static void guest_write_tsc(u64 guest_tsc)
  548. {
  549. u64 host_tsc;
  550. rdtscll(host_tsc);
  551. vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
  552. }
  553. /*
  554. * Reads an msr value (of 'msr_index') into 'pdata'.
  555. * Returns 0 on success, non-0 otherwise.
  556. * Assumes vcpu_load() was already called.
  557. */
  558. static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  559. {
  560. u64 data;
  561. struct kvm_msr_entry *msr;
  562. if (!pdata) {
  563. printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
  564. return -EINVAL;
  565. }
  566. switch (msr_index) {
  567. #ifdef CONFIG_X86_64
  568. case MSR_FS_BASE:
  569. data = vmcs_readl(GUEST_FS_BASE);
  570. break;
  571. case MSR_GS_BASE:
  572. data = vmcs_readl(GUEST_GS_BASE);
  573. break;
  574. case MSR_EFER:
  575. return kvm_get_msr_common(vcpu, msr_index, pdata);
  576. #endif
  577. case MSR_IA32_TIME_STAMP_COUNTER:
  578. data = guest_read_tsc();
  579. break;
  580. case MSR_IA32_SYSENTER_CS:
  581. data = vmcs_read32(GUEST_SYSENTER_CS);
  582. break;
  583. case MSR_IA32_SYSENTER_EIP:
  584. data = vmcs_readl(GUEST_SYSENTER_EIP);
  585. break;
  586. case MSR_IA32_SYSENTER_ESP:
  587. data = vmcs_readl(GUEST_SYSENTER_ESP);
  588. break;
  589. default:
  590. msr = find_msr_entry(to_vmx(vcpu), msr_index);
  591. if (msr) {
  592. data = msr->data;
  593. break;
  594. }
  595. return kvm_get_msr_common(vcpu, msr_index, pdata);
  596. }
  597. *pdata = data;
  598. return 0;
  599. }
  600. /*
  601. * Writes msr value into into the appropriate "register".
  602. * Returns 0 on success, non-0 otherwise.
  603. * Assumes vcpu_load() was already called.
  604. */
  605. static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  606. {
  607. struct vcpu_vmx *vmx = to_vmx(vcpu);
  608. struct kvm_msr_entry *msr;
  609. int ret = 0;
  610. switch (msr_index) {
  611. #ifdef CONFIG_X86_64
  612. case MSR_EFER:
  613. ret = kvm_set_msr_common(vcpu, msr_index, data);
  614. if (vmx->host_state.loaded)
  615. load_transition_efer(vmx);
  616. break;
  617. case MSR_FS_BASE:
  618. vmcs_writel(GUEST_FS_BASE, data);
  619. break;
  620. case MSR_GS_BASE:
  621. vmcs_writel(GUEST_GS_BASE, data);
  622. break;
  623. #endif
  624. case MSR_IA32_SYSENTER_CS:
  625. vmcs_write32(GUEST_SYSENTER_CS, data);
  626. break;
  627. case MSR_IA32_SYSENTER_EIP:
  628. vmcs_writel(GUEST_SYSENTER_EIP, data);
  629. break;
  630. case MSR_IA32_SYSENTER_ESP:
  631. vmcs_writel(GUEST_SYSENTER_ESP, data);
  632. break;
  633. case MSR_IA32_TIME_STAMP_COUNTER:
  634. guest_write_tsc(data);
  635. break;
  636. default:
  637. msr = find_msr_entry(vmx, msr_index);
  638. if (msr) {
  639. msr->data = data;
  640. if (vmx->host_state.loaded)
  641. load_msrs(vmx->guest_msrs, vmx->save_nmsrs);
  642. break;
  643. }
  644. ret = kvm_set_msr_common(vcpu, msr_index, data);
  645. }
  646. return ret;
  647. }
  648. /*
  649. * Sync the rsp and rip registers into the vcpu structure. This allows
  650. * registers to be accessed by indexing vcpu->regs.
  651. */
  652. static void vcpu_load_rsp_rip(struct kvm_vcpu *vcpu)
  653. {
  654. vcpu->regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
  655. vcpu->rip = vmcs_readl(GUEST_RIP);
  656. }
  657. /*
  658. * Syncs rsp and rip back into the vmcs. Should be called after possible
  659. * modification.
  660. */
  661. static void vcpu_put_rsp_rip(struct kvm_vcpu *vcpu)
  662. {
  663. vmcs_writel(GUEST_RSP, vcpu->regs[VCPU_REGS_RSP]);
  664. vmcs_writel(GUEST_RIP, vcpu->rip);
  665. }
  666. static int set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg)
  667. {
  668. unsigned long dr7 = 0x400;
  669. int old_singlestep;
  670. old_singlestep = vcpu->guest_debug.singlestep;
  671. vcpu->guest_debug.enabled = dbg->enabled;
  672. if (vcpu->guest_debug.enabled) {
  673. int i;
  674. dr7 |= 0x200; /* exact */
  675. for (i = 0; i < 4; ++i) {
  676. if (!dbg->breakpoints[i].enabled)
  677. continue;
  678. vcpu->guest_debug.bp[i] = dbg->breakpoints[i].address;
  679. dr7 |= 2 << (i*2); /* global enable */
  680. dr7 |= 0 << (i*4+16); /* execution breakpoint */
  681. }
  682. vcpu->guest_debug.singlestep = dbg->singlestep;
  683. } else
  684. vcpu->guest_debug.singlestep = 0;
  685. if (old_singlestep && !vcpu->guest_debug.singlestep) {
  686. unsigned long flags;
  687. flags = vmcs_readl(GUEST_RFLAGS);
  688. flags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  689. vmcs_writel(GUEST_RFLAGS, flags);
  690. }
  691. update_exception_bitmap(vcpu);
  692. vmcs_writel(GUEST_DR7, dr7);
  693. return 0;
  694. }
  695. static int vmx_get_irq(struct kvm_vcpu *vcpu)
  696. {
  697. u32 idtv_info_field;
  698. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  699. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  700. if (is_external_interrupt(idtv_info_field))
  701. return idtv_info_field & VECTORING_INFO_VECTOR_MASK;
  702. else
  703. printk("pending exception: not handled yet\n");
  704. }
  705. return -1;
  706. }
  707. static __init int cpu_has_kvm_support(void)
  708. {
  709. unsigned long ecx = cpuid_ecx(1);
  710. return test_bit(5, &ecx); /* CPUID.1:ECX.VMX[bit 5] -> VT */
  711. }
  712. static __init int vmx_disabled_by_bios(void)
  713. {
  714. u64 msr;
  715. rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
  716. return (msr & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  717. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  718. == MSR_IA32_FEATURE_CONTROL_LOCKED;
  719. /* locked but not enabled */
  720. }
  721. static void hardware_enable(void *garbage)
  722. {
  723. int cpu = raw_smp_processor_id();
  724. u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
  725. u64 old;
  726. rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
  727. if ((old & (MSR_IA32_FEATURE_CONTROL_LOCKED |
  728. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  729. != (MSR_IA32_FEATURE_CONTROL_LOCKED |
  730. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED))
  731. /* enable and lock */
  732. wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
  733. MSR_IA32_FEATURE_CONTROL_LOCKED |
  734. MSR_IA32_FEATURE_CONTROL_VMXON_ENABLED);
  735. write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
  736. asm volatile (ASM_VMX_VMXON_RAX : : "a"(&phys_addr), "m"(phys_addr)
  737. : "memory", "cc");
  738. }
  739. static void hardware_disable(void *garbage)
  740. {
  741. asm volatile (ASM_VMX_VMXOFF : : : "cc");
  742. }
  743. static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
  744. u32 msr, u32* result)
  745. {
  746. u32 vmx_msr_low, vmx_msr_high;
  747. u32 ctl = ctl_min | ctl_opt;
  748. rdmsr(msr, vmx_msr_low, vmx_msr_high);
  749. ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
  750. ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
  751. /* Ensure minimum (required) set of control bits are supported. */
  752. if (ctl_min & ~ctl)
  753. return -EIO;
  754. *result = ctl;
  755. return 0;
  756. }
  757. static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
  758. {
  759. u32 vmx_msr_low, vmx_msr_high;
  760. u32 min, opt;
  761. u32 _pin_based_exec_control = 0;
  762. u32 _cpu_based_exec_control = 0;
  763. u32 _vmexit_control = 0;
  764. u32 _vmentry_control = 0;
  765. min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
  766. opt = 0;
  767. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
  768. &_pin_based_exec_control) < 0)
  769. return -EIO;
  770. min = CPU_BASED_HLT_EXITING |
  771. #ifdef CONFIG_X86_64
  772. CPU_BASED_CR8_LOAD_EXITING |
  773. CPU_BASED_CR8_STORE_EXITING |
  774. #endif
  775. CPU_BASED_USE_IO_BITMAPS |
  776. CPU_BASED_MOV_DR_EXITING |
  777. CPU_BASED_USE_TSC_OFFSETING;
  778. #ifdef CONFIG_X86_64
  779. opt = CPU_BASED_TPR_SHADOW;
  780. #else
  781. opt = 0;
  782. #endif
  783. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
  784. &_cpu_based_exec_control) < 0)
  785. return -EIO;
  786. #ifdef CONFIG_X86_64
  787. if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
  788. _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
  789. ~CPU_BASED_CR8_STORE_EXITING;
  790. #endif
  791. min = 0;
  792. #ifdef CONFIG_X86_64
  793. min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
  794. #endif
  795. opt = 0;
  796. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
  797. &_vmexit_control) < 0)
  798. return -EIO;
  799. min = opt = 0;
  800. if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
  801. &_vmentry_control) < 0)
  802. return -EIO;
  803. rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
  804. /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
  805. if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
  806. return -EIO;
  807. #ifdef CONFIG_X86_64
  808. /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
  809. if (vmx_msr_high & (1u<<16))
  810. return -EIO;
  811. #endif
  812. /* Require Write-Back (WB) memory type for VMCS accesses. */
  813. if (((vmx_msr_high >> 18) & 15) != 6)
  814. return -EIO;
  815. vmcs_conf->size = vmx_msr_high & 0x1fff;
  816. vmcs_conf->order = get_order(vmcs_config.size);
  817. vmcs_conf->revision_id = vmx_msr_low;
  818. vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
  819. vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
  820. vmcs_conf->vmexit_ctrl = _vmexit_control;
  821. vmcs_conf->vmentry_ctrl = _vmentry_control;
  822. return 0;
  823. }
  824. static struct vmcs *alloc_vmcs_cpu(int cpu)
  825. {
  826. int node = cpu_to_node(cpu);
  827. struct page *pages;
  828. struct vmcs *vmcs;
  829. pages = alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
  830. if (!pages)
  831. return NULL;
  832. vmcs = page_address(pages);
  833. memset(vmcs, 0, vmcs_config.size);
  834. vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
  835. return vmcs;
  836. }
  837. static struct vmcs *alloc_vmcs(void)
  838. {
  839. return alloc_vmcs_cpu(raw_smp_processor_id());
  840. }
  841. static void free_vmcs(struct vmcs *vmcs)
  842. {
  843. free_pages((unsigned long)vmcs, vmcs_config.order);
  844. }
  845. static void free_kvm_area(void)
  846. {
  847. int cpu;
  848. for_each_online_cpu(cpu)
  849. free_vmcs(per_cpu(vmxarea, cpu));
  850. }
  851. static __init int alloc_kvm_area(void)
  852. {
  853. int cpu;
  854. for_each_online_cpu(cpu) {
  855. struct vmcs *vmcs;
  856. vmcs = alloc_vmcs_cpu(cpu);
  857. if (!vmcs) {
  858. free_kvm_area();
  859. return -ENOMEM;
  860. }
  861. per_cpu(vmxarea, cpu) = vmcs;
  862. }
  863. return 0;
  864. }
  865. static __init int hardware_setup(void)
  866. {
  867. if (setup_vmcs_config(&vmcs_config) < 0)
  868. return -EIO;
  869. return alloc_kvm_area();
  870. }
  871. static __exit void hardware_unsetup(void)
  872. {
  873. free_kvm_area();
  874. }
  875. static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
  876. {
  877. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  878. if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
  879. vmcs_write16(sf->selector, save->selector);
  880. vmcs_writel(sf->base, save->base);
  881. vmcs_write32(sf->limit, save->limit);
  882. vmcs_write32(sf->ar_bytes, save->ar);
  883. } else {
  884. u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
  885. << AR_DPL_SHIFT;
  886. vmcs_write32(sf->ar_bytes, 0x93 | dpl);
  887. }
  888. }
  889. static void enter_pmode(struct kvm_vcpu *vcpu)
  890. {
  891. unsigned long flags;
  892. vcpu->rmode.active = 0;
  893. vmcs_writel(GUEST_TR_BASE, vcpu->rmode.tr.base);
  894. vmcs_write32(GUEST_TR_LIMIT, vcpu->rmode.tr.limit);
  895. vmcs_write32(GUEST_TR_AR_BYTES, vcpu->rmode.tr.ar);
  896. flags = vmcs_readl(GUEST_RFLAGS);
  897. flags &= ~(IOPL_MASK | X86_EFLAGS_VM);
  898. flags |= (vcpu->rmode.save_iopl << IOPL_SHIFT);
  899. vmcs_writel(GUEST_RFLAGS, flags);
  900. vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
  901. (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
  902. update_exception_bitmap(vcpu);
  903. fix_pmode_dataseg(VCPU_SREG_ES, &vcpu->rmode.es);
  904. fix_pmode_dataseg(VCPU_SREG_DS, &vcpu->rmode.ds);
  905. fix_pmode_dataseg(VCPU_SREG_GS, &vcpu->rmode.gs);
  906. fix_pmode_dataseg(VCPU_SREG_FS, &vcpu->rmode.fs);
  907. vmcs_write16(GUEST_SS_SELECTOR, 0);
  908. vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
  909. vmcs_write16(GUEST_CS_SELECTOR,
  910. vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
  911. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  912. }
  913. static gva_t rmode_tss_base(struct kvm* kvm)
  914. {
  915. gfn_t base_gfn = kvm->memslots[0].base_gfn + kvm->memslots[0].npages - 3;
  916. return base_gfn << PAGE_SHIFT;
  917. }
  918. static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
  919. {
  920. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  921. save->selector = vmcs_read16(sf->selector);
  922. save->base = vmcs_readl(sf->base);
  923. save->limit = vmcs_read32(sf->limit);
  924. save->ar = vmcs_read32(sf->ar_bytes);
  925. vmcs_write16(sf->selector, vmcs_readl(sf->base) >> 4);
  926. vmcs_write32(sf->limit, 0xffff);
  927. vmcs_write32(sf->ar_bytes, 0xf3);
  928. }
  929. static void enter_rmode(struct kvm_vcpu *vcpu)
  930. {
  931. unsigned long flags;
  932. vcpu->rmode.active = 1;
  933. vcpu->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
  934. vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
  935. vcpu->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
  936. vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
  937. vcpu->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
  938. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  939. flags = vmcs_readl(GUEST_RFLAGS);
  940. vcpu->rmode.save_iopl = (flags & IOPL_MASK) >> IOPL_SHIFT;
  941. flags |= IOPL_MASK | X86_EFLAGS_VM;
  942. vmcs_writel(GUEST_RFLAGS, flags);
  943. vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
  944. update_exception_bitmap(vcpu);
  945. vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
  946. vmcs_write32(GUEST_SS_LIMIT, 0xffff);
  947. vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
  948. vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
  949. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  950. if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
  951. vmcs_writel(GUEST_CS_BASE, 0xf0000);
  952. vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
  953. fix_rmode_seg(VCPU_SREG_ES, &vcpu->rmode.es);
  954. fix_rmode_seg(VCPU_SREG_DS, &vcpu->rmode.ds);
  955. fix_rmode_seg(VCPU_SREG_GS, &vcpu->rmode.gs);
  956. fix_rmode_seg(VCPU_SREG_FS, &vcpu->rmode.fs);
  957. init_rmode_tss(vcpu->kvm);
  958. }
  959. #ifdef CONFIG_X86_64
  960. static void enter_lmode(struct kvm_vcpu *vcpu)
  961. {
  962. u32 guest_tr_ar;
  963. guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
  964. if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
  965. printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
  966. __FUNCTION__);
  967. vmcs_write32(GUEST_TR_AR_BYTES,
  968. (guest_tr_ar & ~AR_TYPE_MASK)
  969. | AR_TYPE_BUSY_64_TSS);
  970. }
  971. vcpu->shadow_efer |= EFER_LMA;
  972. find_msr_entry(to_vmx(vcpu), MSR_EFER)->data |= EFER_LMA | EFER_LME;
  973. vmcs_write32(VM_ENTRY_CONTROLS,
  974. vmcs_read32(VM_ENTRY_CONTROLS)
  975. | VM_ENTRY_IA32E_MODE);
  976. }
  977. static void exit_lmode(struct kvm_vcpu *vcpu)
  978. {
  979. vcpu->shadow_efer &= ~EFER_LMA;
  980. vmcs_write32(VM_ENTRY_CONTROLS,
  981. vmcs_read32(VM_ENTRY_CONTROLS)
  982. & ~VM_ENTRY_IA32E_MODE);
  983. }
  984. #endif
  985. static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
  986. {
  987. vcpu->cr4 &= KVM_GUEST_CR4_MASK;
  988. vcpu->cr4 |= vmcs_readl(GUEST_CR4) & ~KVM_GUEST_CR4_MASK;
  989. }
  990. static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  991. {
  992. vmx_fpu_deactivate(vcpu);
  993. if (vcpu->rmode.active && (cr0 & X86_CR0_PE))
  994. enter_pmode(vcpu);
  995. if (!vcpu->rmode.active && !(cr0 & X86_CR0_PE))
  996. enter_rmode(vcpu);
  997. #ifdef CONFIG_X86_64
  998. if (vcpu->shadow_efer & EFER_LME) {
  999. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
  1000. enter_lmode(vcpu);
  1001. if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
  1002. exit_lmode(vcpu);
  1003. }
  1004. #endif
  1005. vmcs_writel(CR0_READ_SHADOW, cr0);
  1006. vmcs_writel(GUEST_CR0,
  1007. (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON);
  1008. vcpu->cr0 = cr0;
  1009. if (!(cr0 & X86_CR0_TS) || !(cr0 & X86_CR0_PE))
  1010. vmx_fpu_activate(vcpu);
  1011. }
  1012. static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  1013. {
  1014. vmcs_writel(GUEST_CR3, cr3);
  1015. if (vcpu->cr0 & X86_CR0_PE)
  1016. vmx_fpu_deactivate(vcpu);
  1017. }
  1018. static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  1019. {
  1020. vmcs_writel(CR4_READ_SHADOW, cr4);
  1021. vmcs_writel(GUEST_CR4, cr4 | (vcpu->rmode.active ?
  1022. KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON));
  1023. vcpu->cr4 = cr4;
  1024. }
  1025. #ifdef CONFIG_X86_64
  1026. static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1027. {
  1028. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1029. struct kvm_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
  1030. vcpu->shadow_efer = efer;
  1031. if (efer & EFER_LMA) {
  1032. vmcs_write32(VM_ENTRY_CONTROLS,
  1033. vmcs_read32(VM_ENTRY_CONTROLS) |
  1034. VM_ENTRY_IA32E_MODE);
  1035. msr->data = efer;
  1036. } else {
  1037. vmcs_write32(VM_ENTRY_CONTROLS,
  1038. vmcs_read32(VM_ENTRY_CONTROLS) &
  1039. ~VM_ENTRY_IA32E_MODE);
  1040. msr->data = efer & ~EFER_LME;
  1041. }
  1042. setup_msrs(vmx);
  1043. }
  1044. #endif
  1045. static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1046. {
  1047. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1048. return vmcs_readl(sf->base);
  1049. }
  1050. static void vmx_get_segment(struct kvm_vcpu *vcpu,
  1051. struct kvm_segment *var, int seg)
  1052. {
  1053. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1054. u32 ar;
  1055. var->base = vmcs_readl(sf->base);
  1056. var->limit = vmcs_read32(sf->limit);
  1057. var->selector = vmcs_read16(sf->selector);
  1058. ar = vmcs_read32(sf->ar_bytes);
  1059. if (ar & AR_UNUSABLE_MASK)
  1060. ar = 0;
  1061. var->type = ar & 15;
  1062. var->s = (ar >> 4) & 1;
  1063. var->dpl = (ar >> 5) & 3;
  1064. var->present = (ar >> 7) & 1;
  1065. var->avl = (ar >> 12) & 1;
  1066. var->l = (ar >> 13) & 1;
  1067. var->db = (ar >> 14) & 1;
  1068. var->g = (ar >> 15) & 1;
  1069. var->unusable = (ar >> 16) & 1;
  1070. }
  1071. static u32 vmx_segment_access_rights(struct kvm_segment *var)
  1072. {
  1073. u32 ar;
  1074. if (var->unusable)
  1075. ar = 1 << 16;
  1076. else {
  1077. ar = var->type & 15;
  1078. ar |= (var->s & 1) << 4;
  1079. ar |= (var->dpl & 3) << 5;
  1080. ar |= (var->present & 1) << 7;
  1081. ar |= (var->avl & 1) << 12;
  1082. ar |= (var->l & 1) << 13;
  1083. ar |= (var->db & 1) << 14;
  1084. ar |= (var->g & 1) << 15;
  1085. }
  1086. if (ar == 0) /* a 0 value means unusable */
  1087. ar = AR_UNUSABLE_MASK;
  1088. return ar;
  1089. }
  1090. static void vmx_set_segment(struct kvm_vcpu *vcpu,
  1091. struct kvm_segment *var, int seg)
  1092. {
  1093. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1094. u32 ar;
  1095. if (vcpu->rmode.active && seg == VCPU_SREG_TR) {
  1096. vcpu->rmode.tr.selector = var->selector;
  1097. vcpu->rmode.tr.base = var->base;
  1098. vcpu->rmode.tr.limit = var->limit;
  1099. vcpu->rmode.tr.ar = vmx_segment_access_rights(var);
  1100. return;
  1101. }
  1102. vmcs_writel(sf->base, var->base);
  1103. vmcs_write32(sf->limit, var->limit);
  1104. vmcs_write16(sf->selector, var->selector);
  1105. if (vcpu->rmode.active && var->s) {
  1106. /*
  1107. * Hack real-mode segments into vm86 compatibility.
  1108. */
  1109. if (var->base == 0xffff0000 && var->selector == 0xf000)
  1110. vmcs_writel(sf->base, 0xf0000);
  1111. ar = 0xf3;
  1112. } else
  1113. ar = vmx_segment_access_rights(var);
  1114. vmcs_write32(sf->ar_bytes, ar);
  1115. }
  1116. static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1117. {
  1118. u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
  1119. *db = (ar >> 14) & 1;
  1120. *l = (ar >> 13) & 1;
  1121. }
  1122. static void vmx_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1123. {
  1124. dt->limit = vmcs_read32(GUEST_IDTR_LIMIT);
  1125. dt->base = vmcs_readl(GUEST_IDTR_BASE);
  1126. }
  1127. static void vmx_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1128. {
  1129. vmcs_write32(GUEST_IDTR_LIMIT, dt->limit);
  1130. vmcs_writel(GUEST_IDTR_BASE, dt->base);
  1131. }
  1132. static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1133. {
  1134. dt->limit = vmcs_read32(GUEST_GDTR_LIMIT);
  1135. dt->base = vmcs_readl(GUEST_GDTR_BASE);
  1136. }
  1137. static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt)
  1138. {
  1139. vmcs_write32(GUEST_GDTR_LIMIT, dt->limit);
  1140. vmcs_writel(GUEST_GDTR_BASE, dt->base);
  1141. }
  1142. static int init_rmode_tss(struct kvm* kvm)
  1143. {
  1144. struct page *p1, *p2, *p3;
  1145. gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
  1146. char *page;
  1147. p1 = gfn_to_page(kvm, fn++);
  1148. p2 = gfn_to_page(kvm, fn++);
  1149. p3 = gfn_to_page(kvm, fn);
  1150. if (!p1 || !p2 || !p3) {
  1151. kvm_printf(kvm,"%s: gfn_to_page failed\n", __FUNCTION__);
  1152. return 0;
  1153. }
  1154. page = kmap_atomic(p1, KM_USER0);
  1155. clear_page(page);
  1156. *(u16*)(page + 0x66) = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
  1157. kunmap_atomic(page, KM_USER0);
  1158. page = kmap_atomic(p2, KM_USER0);
  1159. clear_page(page);
  1160. kunmap_atomic(page, KM_USER0);
  1161. page = kmap_atomic(p3, KM_USER0);
  1162. clear_page(page);
  1163. *(page + RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1) = ~0;
  1164. kunmap_atomic(page, KM_USER0);
  1165. return 1;
  1166. }
  1167. static void seg_setup(int seg)
  1168. {
  1169. struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
  1170. vmcs_write16(sf->selector, 0);
  1171. vmcs_writel(sf->base, 0);
  1172. vmcs_write32(sf->limit, 0xffff);
  1173. vmcs_write32(sf->ar_bytes, 0x93);
  1174. }
  1175. /*
  1176. * Sets up the vmcs for emulated real mode.
  1177. */
  1178. static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
  1179. {
  1180. u32 host_sysenter_cs;
  1181. u32 junk;
  1182. unsigned long a;
  1183. struct descriptor_table dt;
  1184. int i;
  1185. int ret = 0;
  1186. unsigned long kvm_vmx_return;
  1187. u64 msr;
  1188. u32 exec_control;
  1189. if (!init_rmode_tss(vmx->vcpu.kvm)) {
  1190. ret = -ENOMEM;
  1191. goto out;
  1192. }
  1193. vmx->vcpu.rmode.active = 0;
  1194. vmx->vcpu.regs[VCPU_REGS_RDX] = get_rdx_init_val();
  1195. set_cr8(&vmx->vcpu, 0);
  1196. msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
  1197. if (vmx->vcpu.vcpu_id == 0)
  1198. msr |= MSR_IA32_APICBASE_BSP;
  1199. kvm_set_apic_base(&vmx->vcpu, msr);
  1200. fx_init(&vmx->vcpu);
  1201. /*
  1202. * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
  1203. * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
  1204. */
  1205. if (vmx->vcpu.vcpu_id == 0) {
  1206. vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
  1207. vmcs_writel(GUEST_CS_BASE, 0x000f0000);
  1208. } else {
  1209. vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.sipi_vector << 8);
  1210. vmcs_writel(GUEST_CS_BASE, vmx->vcpu.sipi_vector << 12);
  1211. }
  1212. vmcs_write32(GUEST_CS_LIMIT, 0xffff);
  1213. vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
  1214. seg_setup(VCPU_SREG_DS);
  1215. seg_setup(VCPU_SREG_ES);
  1216. seg_setup(VCPU_SREG_FS);
  1217. seg_setup(VCPU_SREG_GS);
  1218. seg_setup(VCPU_SREG_SS);
  1219. vmcs_write16(GUEST_TR_SELECTOR, 0);
  1220. vmcs_writel(GUEST_TR_BASE, 0);
  1221. vmcs_write32(GUEST_TR_LIMIT, 0xffff);
  1222. vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
  1223. vmcs_write16(GUEST_LDTR_SELECTOR, 0);
  1224. vmcs_writel(GUEST_LDTR_BASE, 0);
  1225. vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
  1226. vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
  1227. vmcs_write32(GUEST_SYSENTER_CS, 0);
  1228. vmcs_writel(GUEST_SYSENTER_ESP, 0);
  1229. vmcs_writel(GUEST_SYSENTER_EIP, 0);
  1230. vmcs_writel(GUEST_RFLAGS, 0x02);
  1231. if (vmx->vcpu.vcpu_id == 0)
  1232. vmcs_writel(GUEST_RIP, 0xfff0);
  1233. else
  1234. vmcs_writel(GUEST_RIP, 0);
  1235. vmcs_writel(GUEST_RSP, 0);
  1236. //todo: dr0 = dr1 = dr2 = dr3 = 0; dr6 = 0xffff0ff0
  1237. vmcs_writel(GUEST_DR7, 0x400);
  1238. vmcs_writel(GUEST_GDTR_BASE, 0);
  1239. vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
  1240. vmcs_writel(GUEST_IDTR_BASE, 0);
  1241. vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
  1242. vmcs_write32(GUEST_ACTIVITY_STATE, 0);
  1243. vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
  1244. vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
  1245. /* I/O */
  1246. vmcs_write64(IO_BITMAP_A, page_to_phys(vmx_io_bitmap_a));
  1247. vmcs_write64(IO_BITMAP_B, page_to_phys(vmx_io_bitmap_b));
  1248. guest_write_tsc(0);
  1249. vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
  1250. /* Special registers */
  1251. vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
  1252. /* Control */
  1253. vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
  1254. vmcs_config.pin_based_exec_ctrl);
  1255. exec_control = vmcs_config.cpu_based_exec_ctrl;
  1256. if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
  1257. exec_control &= ~CPU_BASED_TPR_SHADOW;
  1258. #ifdef CONFIG_X86_64
  1259. exec_control |= CPU_BASED_CR8_STORE_EXITING |
  1260. CPU_BASED_CR8_LOAD_EXITING;
  1261. #endif
  1262. }
  1263. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
  1264. vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
  1265. vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
  1266. vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
  1267. vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
  1268. vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
  1269. vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
  1270. vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
  1271. vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1272. vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1273. vmcs_write16(HOST_FS_SELECTOR, read_fs()); /* 22.2.4 */
  1274. vmcs_write16(HOST_GS_SELECTOR, read_gs()); /* 22.2.4 */
  1275. vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
  1276. #ifdef CONFIG_X86_64
  1277. rdmsrl(MSR_FS_BASE, a);
  1278. vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
  1279. rdmsrl(MSR_GS_BASE, a);
  1280. vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
  1281. #else
  1282. vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
  1283. vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
  1284. #endif
  1285. vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
  1286. get_idt(&dt);
  1287. vmcs_writel(HOST_IDTR_BASE, dt.base); /* 22.2.4 */
  1288. asm ("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
  1289. vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
  1290. vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
  1291. vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
  1292. vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
  1293. rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
  1294. vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
  1295. rdmsrl(MSR_IA32_SYSENTER_ESP, a);
  1296. vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
  1297. rdmsrl(MSR_IA32_SYSENTER_EIP, a);
  1298. vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
  1299. for (i = 0; i < NR_VMX_MSR; ++i) {
  1300. u32 index = vmx_msr_index[i];
  1301. u32 data_low, data_high;
  1302. u64 data;
  1303. int j = vmx->nmsrs;
  1304. if (rdmsr_safe(index, &data_low, &data_high) < 0)
  1305. continue;
  1306. if (wrmsr_safe(index, data_low, data_high) < 0)
  1307. continue;
  1308. data = data_low | ((u64)data_high << 32);
  1309. vmx->host_msrs[j].index = index;
  1310. vmx->host_msrs[j].reserved = 0;
  1311. vmx->host_msrs[j].data = data;
  1312. vmx->guest_msrs[j] = vmx->host_msrs[j];
  1313. ++vmx->nmsrs;
  1314. }
  1315. setup_msrs(vmx);
  1316. vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
  1317. /* 22.2.1, 20.8.1 */
  1318. vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
  1319. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
  1320. #ifdef CONFIG_X86_64
  1321. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
  1322. if (vm_need_tpr_shadow(vmx->vcpu.kvm))
  1323. vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
  1324. page_to_phys(vmx->vcpu.apic->regs_page));
  1325. vmcs_write32(TPR_THRESHOLD, 0);
  1326. #endif
  1327. vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
  1328. vmcs_writel(CR4_GUEST_HOST_MASK, KVM_GUEST_CR4_MASK);
  1329. vmx->vcpu.cr0 = 0x60000010;
  1330. vmx_set_cr0(&vmx->vcpu, vmx->vcpu.cr0); // enter rmode
  1331. vmx_set_cr4(&vmx->vcpu, 0);
  1332. #ifdef CONFIG_X86_64
  1333. vmx_set_efer(&vmx->vcpu, 0);
  1334. #endif
  1335. vmx_fpu_activate(&vmx->vcpu);
  1336. update_exception_bitmap(&vmx->vcpu);
  1337. return 0;
  1338. out:
  1339. return ret;
  1340. }
  1341. static void inject_rmode_irq(struct kvm_vcpu *vcpu, int irq)
  1342. {
  1343. u16 ent[2];
  1344. u16 cs;
  1345. u16 ip;
  1346. unsigned long flags;
  1347. unsigned long ss_base = vmcs_readl(GUEST_SS_BASE);
  1348. u16 sp = vmcs_readl(GUEST_RSP);
  1349. u32 ss_limit = vmcs_read32(GUEST_SS_LIMIT);
  1350. if (sp > ss_limit || sp < 6 ) {
  1351. vcpu_printf(vcpu, "%s: #SS, rsp 0x%lx ss 0x%lx limit 0x%x\n",
  1352. __FUNCTION__,
  1353. vmcs_readl(GUEST_RSP),
  1354. vmcs_readl(GUEST_SS_BASE),
  1355. vmcs_read32(GUEST_SS_LIMIT));
  1356. return;
  1357. }
  1358. if (emulator_read_std(irq * sizeof(ent), &ent, sizeof(ent), vcpu) !=
  1359. X86EMUL_CONTINUE) {
  1360. vcpu_printf(vcpu, "%s: read guest err\n", __FUNCTION__);
  1361. return;
  1362. }
  1363. flags = vmcs_readl(GUEST_RFLAGS);
  1364. cs = vmcs_readl(GUEST_CS_BASE) >> 4;
  1365. ip = vmcs_readl(GUEST_RIP);
  1366. if (emulator_write_emulated(ss_base + sp - 2, &flags, 2, vcpu) != X86EMUL_CONTINUE ||
  1367. emulator_write_emulated(ss_base + sp - 4, &cs, 2, vcpu) != X86EMUL_CONTINUE ||
  1368. emulator_write_emulated(ss_base + sp - 6, &ip, 2, vcpu) != X86EMUL_CONTINUE) {
  1369. vcpu_printf(vcpu, "%s: write guest err\n", __FUNCTION__);
  1370. return;
  1371. }
  1372. vmcs_writel(GUEST_RFLAGS, flags &
  1373. ~( X86_EFLAGS_IF | X86_EFLAGS_AC | X86_EFLAGS_TF));
  1374. vmcs_write16(GUEST_CS_SELECTOR, ent[1]) ;
  1375. vmcs_writel(GUEST_CS_BASE, ent[1] << 4);
  1376. vmcs_writel(GUEST_RIP, ent[0]);
  1377. vmcs_writel(GUEST_RSP, (vmcs_readl(GUEST_RSP) & ~0xffff) | (sp - 6));
  1378. }
  1379. static void vmx_inject_irq(struct kvm_vcpu *vcpu, int irq)
  1380. {
  1381. if (vcpu->rmode.active) {
  1382. inject_rmode_irq(vcpu, irq);
  1383. return;
  1384. }
  1385. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  1386. irq | INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
  1387. }
  1388. static void kvm_do_inject_irq(struct kvm_vcpu *vcpu)
  1389. {
  1390. int word_index = __ffs(vcpu->irq_summary);
  1391. int bit_index = __ffs(vcpu->irq_pending[word_index]);
  1392. int irq = word_index * BITS_PER_LONG + bit_index;
  1393. clear_bit(bit_index, &vcpu->irq_pending[word_index]);
  1394. if (!vcpu->irq_pending[word_index])
  1395. clear_bit(word_index, &vcpu->irq_summary);
  1396. vmx_inject_irq(vcpu, irq);
  1397. }
  1398. static void do_interrupt_requests(struct kvm_vcpu *vcpu,
  1399. struct kvm_run *kvm_run)
  1400. {
  1401. u32 cpu_based_vm_exec_control;
  1402. vcpu->interrupt_window_open =
  1403. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1404. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1405. if (vcpu->interrupt_window_open &&
  1406. vcpu->irq_summary &&
  1407. !(vmcs_read32(VM_ENTRY_INTR_INFO_FIELD) & INTR_INFO_VALID_MASK))
  1408. /*
  1409. * If interrupts enabled, and not blocked by sti or mov ss. Good.
  1410. */
  1411. kvm_do_inject_irq(vcpu);
  1412. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1413. if (!vcpu->interrupt_window_open &&
  1414. (vcpu->irq_summary || kvm_run->request_interrupt_window))
  1415. /*
  1416. * Interrupts blocked. Wait for unblock.
  1417. */
  1418. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1419. else
  1420. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1421. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1422. }
  1423. static void kvm_guest_debug_pre(struct kvm_vcpu *vcpu)
  1424. {
  1425. struct kvm_guest_debug *dbg = &vcpu->guest_debug;
  1426. set_debugreg(dbg->bp[0], 0);
  1427. set_debugreg(dbg->bp[1], 1);
  1428. set_debugreg(dbg->bp[2], 2);
  1429. set_debugreg(dbg->bp[3], 3);
  1430. if (dbg->singlestep) {
  1431. unsigned long flags;
  1432. flags = vmcs_readl(GUEST_RFLAGS);
  1433. flags |= X86_EFLAGS_TF | X86_EFLAGS_RF;
  1434. vmcs_writel(GUEST_RFLAGS, flags);
  1435. }
  1436. }
  1437. static int handle_rmode_exception(struct kvm_vcpu *vcpu,
  1438. int vec, u32 err_code)
  1439. {
  1440. if (!vcpu->rmode.active)
  1441. return 0;
  1442. /*
  1443. * Instruction with address size override prefix opcode 0x67
  1444. * Cause the #SS fault with 0 error code in VM86 mode.
  1445. */
  1446. if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
  1447. if (emulate_instruction(vcpu, NULL, 0, 0) == EMULATE_DONE)
  1448. return 1;
  1449. return 0;
  1450. }
  1451. static int handle_exception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1452. {
  1453. u32 intr_info, error_code;
  1454. unsigned long cr2, rip;
  1455. u32 vect_info;
  1456. enum emulation_result er;
  1457. int r;
  1458. vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1459. intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
  1460. if ((vect_info & VECTORING_INFO_VALID_MASK) &&
  1461. !is_page_fault(intr_info)) {
  1462. printk(KERN_ERR "%s: unexpected, vectoring info 0x%x "
  1463. "intr info 0x%x\n", __FUNCTION__, vect_info, intr_info);
  1464. }
  1465. if (!irqchip_in_kernel(vcpu->kvm) && is_external_interrupt(vect_info)) {
  1466. int irq = vect_info & VECTORING_INFO_VECTOR_MASK;
  1467. set_bit(irq, vcpu->irq_pending);
  1468. set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary);
  1469. }
  1470. if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == 0x200) { /* nmi */
  1471. asm ("int $2");
  1472. return 1;
  1473. }
  1474. if (is_no_device(intr_info)) {
  1475. vmx_fpu_activate(vcpu);
  1476. return 1;
  1477. }
  1478. error_code = 0;
  1479. rip = vmcs_readl(GUEST_RIP);
  1480. if (intr_info & INTR_INFO_DELIEVER_CODE_MASK)
  1481. error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
  1482. if (is_page_fault(intr_info)) {
  1483. cr2 = vmcs_readl(EXIT_QUALIFICATION);
  1484. mutex_lock(&vcpu->kvm->lock);
  1485. r = kvm_mmu_page_fault(vcpu, cr2, error_code);
  1486. if (r < 0) {
  1487. mutex_unlock(&vcpu->kvm->lock);
  1488. return r;
  1489. }
  1490. if (!r) {
  1491. mutex_unlock(&vcpu->kvm->lock);
  1492. return 1;
  1493. }
  1494. er = emulate_instruction(vcpu, kvm_run, cr2, error_code);
  1495. mutex_unlock(&vcpu->kvm->lock);
  1496. switch (er) {
  1497. case EMULATE_DONE:
  1498. return 1;
  1499. case EMULATE_DO_MMIO:
  1500. ++vcpu->stat.mmio_exits;
  1501. return 0;
  1502. case EMULATE_FAIL:
  1503. vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__);
  1504. break;
  1505. default:
  1506. BUG();
  1507. }
  1508. }
  1509. if (vcpu->rmode.active &&
  1510. handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
  1511. error_code)) {
  1512. if (vcpu->halt_request) {
  1513. vcpu->halt_request = 0;
  1514. return kvm_emulate_halt(vcpu);
  1515. }
  1516. return 1;
  1517. }
  1518. if ((intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK)) == (INTR_TYPE_EXCEPTION | 1)) {
  1519. kvm_run->exit_reason = KVM_EXIT_DEBUG;
  1520. return 0;
  1521. }
  1522. kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
  1523. kvm_run->ex.exception = intr_info & INTR_INFO_VECTOR_MASK;
  1524. kvm_run->ex.error_code = error_code;
  1525. return 0;
  1526. }
  1527. static int handle_external_interrupt(struct kvm_vcpu *vcpu,
  1528. struct kvm_run *kvm_run)
  1529. {
  1530. ++vcpu->stat.irq_exits;
  1531. return 1;
  1532. }
  1533. static int handle_triple_fault(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1534. {
  1535. kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
  1536. return 0;
  1537. }
  1538. static int handle_io(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1539. {
  1540. u64 exit_qualification;
  1541. int size, down, in, string, rep;
  1542. unsigned port;
  1543. ++vcpu->stat.io_exits;
  1544. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1545. string = (exit_qualification & 16) != 0;
  1546. if (string) {
  1547. if (emulate_instruction(vcpu, kvm_run, 0, 0) == EMULATE_DO_MMIO)
  1548. return 0;
  1549. return 1;
  1550. }
  1551. size = (exit_qualification & 7) + 1;
  1552. in = (exit_qualification & 8) != 0;
  1553. down = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_DF) != 0;
  1554. rep = (exit_qualification & 32) != 0;
  1555. port = exit_qualification >> 16;
  1556. return kvm_emulate_pio(vcpu, kvm_run, in, size, port);
  1557. }
  1558. static void
  1559. vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
  1560. {
  1561. /*
  1562. * Patch in the VMCALL instruction:
  1563. */
  1564. hypercall[0] = 0x0f;
  1565. hypercall[1] = 0x01;
  1566. hypercall[2] = 0xc1;
  1567. hypercall[3] = 0xc3;
  1568. }
  1569. static int handle_cr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1570. {
  1571. u64 exit_qualification;
  1572. int cr;
  1573. int reg;
  1574. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1575. cr = exit_qualification & 15;
  1576. reg = (exit_qualification >> 8) & 15;
  1577. switch ((exit_qualification >> 4) & 3) {
  1578. case 0: /* mov to cr */
  1579. switch (cr) {
  1580. case 0:
  1581. vcpu_load_rsp_rip(vcpu);
  1582. set_cr0(vcpu, vcpu->regs[reg]);
  1583. skip_emulated_instruction(vcpu);
  1584. return 1;
  1585. case 3:
  1586. vcpu_load_rsp_rip(vcpu);
  1587. set_cr3(vcpu, vcpu->regs[reg]);
  1588. skip_emulated_instruction(vcpu);
  1589. return 1;
  1590. case 4:
  1591. vcpu_load_rsp_rip(vcpu);
  1592. set_cr4(vcpu, vcpu->regs[reg]);
  1593. skip_emulated_instruction(vcpu);
  1594. return 1;
  1595. case 8:
  1596. vcpu_load_rsp_rip(vcpu);
  1597. set_cr8(vcpu, vcpu->regs[reg]);
  1598. skip_emulated_instruction(vcpu);
  1599. kvm_run->exit_reason = KVM_EXIT_SET_TPR;
  1600. return 0;
  1601. };
  1602. break;
  1603. case 2: /* clts */
  1604. vcpu_load_rsp_rip(vcpu);
  1605. vmx_fpu_deactivate(vcpu);
  1606. vcpu->cr0 &= ~X86_CR0_TS;
  1607. vmcs_writel(CR0_READ_SHADOW, vcpu->cr0);
  1608. vmx_fpu_activate(vcpu);
  1609. skip_emulated_instruction(vcpu);
  1610. return 1;
  1611. case 1: /*mov from cr*/
  1612. switch (cr) {
  1613. case 3:
  1614. vcpu_load_rsp_rip(vcpu);
  1615. vcpu->regs[reg] = vcpu->cr3;
  1616. vcpu_put_rsp_rip(vcpu);
  1617. skip_emulated_instruction(vcpu);
  1618. return 1;
  1619. case 8:
  1620. vcpu_load_rsp_rip(vcpu);
  1621. vcpu->regs[reg] = get_cr8(vcpu);
  1622. vcpu_put_rsp_rip(vcpu);
  1623. skip_emulated_instruction(vcpu);
  1624. return 1;
  1625. }
  1626. break;
  1627. case 3: /* lmsw */
  1628. lmsw(vcpu, (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f);
  1629. skip_emulated_instruction(vcpu);
  1630. return 1;
  1631. default:
  1632. break;
  1633. }
  1634. kvm_run->exit_reason = 0;
  1635. pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
  1636. (int)(exit_qualification >> 4) & 3, cr);
  1637. return 0;
  1638. }
  1639. static int handle_dr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1640. {
  1641. u64 exit_qualification;
  1642. unsigned long val;
  1643. int dr, reg;
  1644. /*
  1645. * FIXME: this code assumes the host is debugging the guest.
  1646. * need to deal with guest debugging itself too.
  1647. */
  1648. exit_qualification = vmcs_read64(EXIT_QUALIFICATION);
  1649. dr = exit_qualification & 7;
  1650. reg = (exit_qualification >> 8) & 15;
  1651. vcpu_load_rsp_rip(vcpu);
  1652. if (exit_qualification & 16) {
  1653. /* mov from dr */
  1654. switch (dr) {
  1655. case 6:
  1656. val = 0xffff0ff0;
  1657. break;
  1658. case 7:
  1659. val = 0x400;
  1660. break;
  1661. default:
  1662. val = 0;
  1663. }
  1664. vcpu->regs[reg] = val;
  1665. } else {
  1666. /* mov to dr */
  1667. }
  1668. vcpu_put_rsp_rip(vcpu);
  1669. skip_emulated_instruction(vcpu);
  1670. return 1;
  1671. }
  1672. static int handle_cpuid(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1673. {
  1674. kvm_emulate_cpuid(vcpu);
  1675. return 1;
  1676. }
  1677. static int handle_rdmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1678. {
  1679. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1680. u64 data;
  1681. if (vmx_get_msr(vcpu, ecx, &data)) {
  1682. vmx_inject_gp(vcpu, 0);
  1683. return 1;
  1684. }
  1685. /* FIXME: handling of bits 32:63 of rax, rdx */
  1686. vcpu->regs[VCPU_REGS_RAX] = data & -1u;
  1687. vcpu->regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
  1688. skip_emulated_instruction(vcpu);
  1689. return 1;
  1690. }
  1691. static int handle_wrmsr(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1692. {
  1693. u32 ecx = vcpu->regs[VCPU_REGS_RCX];
  1694. u64 data = (vcpu->regs[VCPU_REGS_RAX] & -1u)
  1695. | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32);
  1696. if (vmx_set_msr(vcpu, ecx, data) != 0) {
  1697. vmx_inject_gp(vcpu, 0);
  1698. return 1;
  1699. }
  1700. skip_emulated_instruction(vcpu);
  1701. return 1;
  1702. }
  1703. static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu,
  1704. struct kvm_run *kvm_run)
  1705. {
  1706. return 1;
  1707. }
  1708. static void post_kvm_run_save(struct kvm_vcpu *vcpu,
  1709. struct kvm_run *kvm_run)
  1710. {
  1711. kvm_run->if_flag = (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) != 0;
  1712. kvm_run->cr8 = get_cr8(vcpu);
  1713. kvm_run->apic_base = kvm_get_apic_base(vcpu);
  1714. if (irqchip_in_kernel(vcpu->kvm))
  1715. kvm_run->ready_for_interrupt_injection = 1;
  1716. else
  1717. kvm_run->ready_for_interrupt_injection =
  1718. (vcpu->interrupt_window_open &&
  1719. vcpu->irq_summary == 0);
  1720. }
  1721. static int handle_interrupt_window(struct kvm_vcpu *vcpu,
  1722. struct kvm_run *kvm_run)
  1723. {
  1724. u32 cpu_based_vm_exec_control;
  1725. /* clear pending irq */
  1726. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1727. cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
  1728. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1729. /*
  1730. * If the user space waits to inject interrupts, exit as soon as
  1731. * possible
  1732. */
  1733. if (kvm_run->request_interrupt_window &&
  1734. !vcpu->irq_summary) {
  1735. kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
  1736. ++vcpu->stat.irq_window_exits;
  1737. return 0;
  1738. }
  1739. return 1;
  1740. }
  1741. static int handle_halt(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1742. {
  1743. skip_emulated_instruction(vcpu);
  1744. return kvm_emulate_halt(vcpu);
  1745. }
  1746. static int handle_vmcall(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1747. {
  1748. skip_emulated_instruction(vcpu);
  1749. return kvm_hypercall(vcpu, kvm_run);
  1750. }
  1751. /*
  1752. * The exit handlers return 1 if the exit was handled fully and guest execution
  1753. * may resume. Otherwise they set the kvm_run parameter to indicate what needs
  1754. * to be done to userspace and return 0.
  1755. */
  1756. static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu,
  1757. struct kvm_run *kvm_run) = {
  1758. [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
  1759. [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
  1760. [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
  1761. [EXIT_REASON_IO_INSTRUCTION] = handle_io,
  1762. [EXIT_REASON_CR_ACCESS] = handle_cr,
  1763. [EXIT_REASON_DR_ACCESS] = handle_dr,
  1764. [EXIT_REASON_CPUID] = handle_cpuid,
  1765. [EXIT_REASON_MSR_READ] = handle_rdmsr,
  1766. [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
  1767. [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
  1768. [EXIT_REASON_HLT] = handle_halt,
  1769. [EXIT_REASON_VMCALL] = handle_vmcall,
  1770. [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold
  1771. };
  1772. static const int kvm_vmx_max_exit_handlers =
  1773. ARRAY_SIZE(kvm_vmx_exit_handlers);
  1774. /*
  1775. * The guest has exited. See if we can fix it or if we need userspace
  1776. * assistance.
  1777. */
  1778. static int kvm_handle_exit(struct kvm_run *kvm_run, struct kvm_vcpu *vcpu)
  1779. {
  1780. u32 vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1781. u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
  1782. if ( (vectoring_info & VECTORING_INFO_VALID_MASK) &&
  1783. exit_reason != EXIT_REASON_EXCEPTION_NMI )
  1784. printk(KERN_WARNING "%s: unexpected, valid vectoring info and "
  1785. "exit reason is 0x%x\n", __FUNCTION__, exit_reason);
  1786. if (exit_reason < kvm_vmx_max_exit_handlers
  1787. && kvm_vmx_exit_handlers[exit_reason])
  1788. return kvm_vmx_exit_handlers[exit_reason](vcpu, kvm_run);
  1789. else {
  1790. kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
  1791. kvm_run->hw.hardware_exit_reason = exit_reason;
  1792. }
  1793. return 0;
  1794. }
  1795. /*
  1796. * Check if userspace requested an interrupt window, and that the
  1797. * interrupt window is open.
  1798. *
  1799. * No need to exit to userspace if we already have an interrupt queued.
  1800. */
  1801. static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu,
  1802. struct kvm_run *kvm_run)
  1803. {
  1804. return (!vcpu->irq_summary &&
  1805. kvm_run->request_interrupt_window &&
  1806. vcpu->interrupt_window_open &&
  1807. (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF));
  1808. }
  1809. static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
  1810. {
  1811. }
  1812. static void update_tpr_threshold(struct kvm_vcpu *vcpu)
  1813. {
  1814. int max_irr, tpr;
  1815. if (!vm_need_tpr_shadow(vcpu->kvm))
  1816. return;
  1817. if (!kvm_lapic_enabled(vcpu) ||
  1818. ((max_irr = kvm_lapic_find_highest_irr(vcpu)) == -1)) {
  1819. vmcs_write32(TPR_THRESHOLD, 0);
  1820. return;
  1821. }
  1822. tpr = (kvm_lapic_get_cr8(vcpu) & 0x0f) << 4;
  1823. vmcs_write32(TPR_THRESHOLD, (max_irr > tpr) ? tpr >> 4 : max_irr >> 4);
  1824. }
  1825. static void enable_irq_window(struct kvm_vcpu *vcpu)
  1826. {
  1827. u32 cpu_based_vm_exec_control;
  1828. cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
  1829. cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
  1830. vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
  1831. }
  1832. static void vmx_intr_assist(struct kvm_vcpu *vcpu)
  1833. {
  1834. u32 idtv_info_field, intr_info_field;
  1835. int has_ext_irq, interrupt_window_open;
  1836. int vector;
  1837. kvm_inject_pending_timer_irqs(vcpu);
  1838. update_tpr_threshold(vcpu);
  1839. has_ext_irq = kvm_cpu_has_interrupt(vcpu);
  1840. intr_info_field = vmcs_read32(VM_ENTRY_INTR_INFO_FIELD);
  1841. idtv_info_field = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  1842. if (intr_info_field & INTR_INFO_VALID_MASK) {
  1843. if (idtv_info_field & INTR_INFO_VALID_MASK) {
  1844. /* TODO: fault when IDT_Vectoring */
  1845. printk(KERN_ERR "Fault when IDT_Vectoring\n");
  1846. }
  1847. if (has_ext_irq)
  1848. enable_irq_window(vcpu);
  1849. return;
  1850. }
  1851. if (unlikely(idtv_info_field & INTR_INFO_VALID_MASK)) {
  1852. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, idtv_info_field);
  1853. vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
  1854. vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
  1855. if (unlikely(idtv_info_field & INTR_INFO_DELIEVER_CODE_MASK))
  1856. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
  1857. vmcs_read32(IDT_VECTORING_ERROR_CODE));
  1858. if (unlikely(has_ext_irq))
  1859. enable_irq_window(vcpu);
  1860. return;
  1861. }
  1862. if (!has_ext_irq)
  1863. return;
  1864. interrupt_window_open =
  1865. ((vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
  1866. (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0);
  1867. if (interrupt_window_open) {
  1868. vector = kvm_cpu_get_interrupt(vcpu);
  1869. vmx_inject_irq(vcpu, vector);
  1870. kvm_timer_intr_post(vcpu, vector);
  1871. } else
  1872. enable_irq_window(vcpu);
  1873. }
  1874. static int vmx_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1875. {
  1876. struct vcpu_vmx *vmx = to_vmx(vcpu);
  1877. u8 fail;
  1878. int r;
  1879. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_SIPI_RECEIVED)) {
  1880. printk("vcpu %d received sipi with vector # %x\n",
  1881. vcpu->vcpu_id, vcpu->sipi_vector);
  1882. kvm_lapic_reset(vcpu);
  1883. vmx_vcpu_setup(vmx);
  1884. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  1885. }
  1886. preempted:
  1887. if (vcpu->guest_debug.enabled)
  1888. kvm_guest_debug_pre(vcpu);
  1889. again:
  1890. r = kvm_mmu_reload(vcpu);
  1891. if (unlikely(r))
  1892. goto out;
  1893. preempt_disable();
  1894. vmx_save_host_state(vmx);
  1895. kvm_load_guest_fpu(vcpu);
  1896. /*
  1897. * Loading guest fpu may have cleared host cr0.ts
  1898. */
  1899. vmcs_writel(HOST_CR0, read_cr0());
  1900. local_irq_disable();
  1901. if (signal_pending(current)) {
  1902. local_irq_enable();
  1903. preempt_enable();
  1904. r = -EINTR;
  1905. kvm_run->exit_reason = KVM_EXIT_INTR;
  1906. ++vcpu->stat.signal_exits;
  1907. goto out;
  1908. }
  1909. if (irqchip_in_kernel(vcpu->kvm))
  1910. vmx_intr_assist(vcpu);
  1911. else if (!vcpu->mmio_read_completed)
  1912. do_interrupt_requests(vcpu, kvm_run);
  1913. vcpu->guest_mode = 1;
  1914. if (vcpu->requests)
  1915. if (test_and_clear_bit(KVM_TLB_FLUSH, &vcpu->requests))
  1916. vmx_flush_tlb(vcpu);
  1917. asm (
  1918. /* Store host registers */
  1919. #ifdef CONFIG_X86_64
  1920. "push %%rax; push %%rbx; push %%rdx;"
  1921. "push %%rsi; push %%rdi; push %%rbp;"
  1922. "push %%r8; push %%r9; push %%r10; push %%r11;"
  1923. "push %%r12; push %%r13; push %%r14; push %%r15;"
  1924. "push %%rcx \n\t"
  1925. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1926. #else
  1927. "pusha; push %%ecx \n\t"
  1928. ASM_VMX_VMWRITE_RSP_RDX "\n\t"
  1929. #endif
  1930. /* Check if vmlaunch of vmresume is needed */
  1931. "cmp $0, %1 \n\t"
  1932. /* Load guest registers. Don't clobber flags. */
  1933. #ifdef CONFIG_X86_64
  1934. "mov %c[cr2](%3), %%rax \n\t"
  1935. "mov %%rax, %%cr2 \n\t"
  1936. "mov %c[rax](%3), %%rax \n\t"
  1937. "mov %c[rbx](%3), %%rbx \n\t"
  1938. "mov %c[rdx](%3), %%rdx \n\t"
  1939. "mov %c[rsi](%3), %%rsi \n\t"
  1940. "mov %c[rdi](%3), %%rdi \n\t"
  1941. "mov %c[rbp](%3), %%rbp \n\t"
  1942. "mov %c[r8](%3), %%r8 \n\t"
  1943. "mov %c[r9](%3), %%r9 \n\t"
  1944. "mov %c[r10](%3), %%r10 \n\t"
  1945. "mov %c[r11](%3), %%r11 \n\t"
  1946. "mov %c[r12](%3), %%r12 \n\t"
  1947. "mov %c[r13](%3), %%r13 \n\t"
  1948. "mov %c[r14](%3), %%r14 \n\t"
  1949. "mov %c[r15](%3), %%r15 \n\t"
  1950. "mov %c[rcx](%3), %%rcx \n\t" /* kills %3 (rcx) */
  1951. #else
  1952. "mov %c[cr2](%3), %%eax \n\t"
  1953. "mov %%eax, %%cr2 \n\t"
  1954. "mov %c[rax](%3), %%eax \n\t"
  1955. "mov %c[rbx](%3), %%ebx \n\t"
  1956. "mov %c[rdx](%3), %%edx \n\t"
  1957. "mov %c[rsi](%3), %%esi \n\t"
  1958. "mov %c[rdi](%3), %%edi \n\t"
  1959. "mov %c[rbp](%3), %%ebp \n\t"
  1960. "mov %c[rcx](%3), %%ecx \n\t" /* kills %3 (ecx) */
  1961. #endif
  1962. /* Enter guest mode */
  1963. "jne .Llaunched \n\t"
  1964. ASM_VMX_VMLAUNCH "\n\t"
  1965. "jmp .Lkvm_vmx_return \n\t"
  1966. ".Llaunched: " ASM_VMX_VMRESUME "\n\t"
  1967. ".Lkvm_vmx_return: "
  1968. /* Save guest registers, load host registers, keep flags */
  1969. #ifdef CONFIG_X86_64
  1970. "xchg %3, (%%rsp) \n\t"
  1971. "mov %%rax, %c[rax](%3) \n\t"
  1972. "mov %%rbx, %c[rbx](%3) \n\t"
  1973. "pushq (%%rsp); popq %c[rcx](%3) \n\t"
  1974. "mov %%rdx, %c[rdx](%3) \n\t"
  1975. "mov %%rsi, %c[rsi](%3) \n\t"
  1976. "mov %%rdi, %c[rdi](%3) \n\t"
  1977. "mov %%rbp, %c[rbp](%3) \n\t"
  1978. "mov %%r8, %c[r8](%3) \n\t"
  1979. "mov %%r9, %c[r9](%3) \n\t"
  1980. "mov %%r10, %c[r10](%3) \n\t"
  1981. "mov %%r11, %c[r11](%3) \n\t"
  1982. "mov %%r12, %c[r12](%3) \n\t"
  1983. "mov %%r13, %c[r13](%3) \n\t"
  1984. "mov %%r14, %c[r14](%3) \n\t"
  1985. "mov %%r15, %c[r15](%3) \n\t"
  1986. "mov %%cr2, %%rax \n\t"
  1987. "mov %%rax, %c[cr2](%3) \n\t"
  1988. "mov (%%rsp), %3 \n\t"
  1989. "pop %%rcx; pop %%r15; pop %%r14; pop %%r13; pop %%r12;"
  1990. "pop %%r11; pop %%r10; pop %%r9; pop %%r8;"
  1991. "pop %%rbp; pop %%rdi; pop %%rsi;"
  1992. "pop %%rdx; pop %%rbx; pop %%rax \n\t"
  1993. #else
  1994. "xchg %3, (%%esp) \n\t"
  1995. "mov %%eax, %c[rax](%3) \n\t"
  1996. "mov %%ebx, %c[rbx](%3) \n\t"
  1997. "pushl (%%esp); popl %c[rcx](%3) \n\t"
  1998. "mov %%edx, %c[rdx](%3) \n\t"
  1999. "mov %%esi, %c[rsi](%3) \n\t"
  2000. "mov %%edi, %c[rdi](%3) \n\t"
  2001. "mov %%ebp, %c[rbp](%3) \n\t"
  2002. "mov %%cr2, %%eax \n\t"
  2003. "mov %%eax, %c[cr2](%3) \n\t"
  2004. "mov (%%esp), %3 \n\t"
  2005. "pop %%ecx; popa \n\t"
  2006. #endif
  2007. "setbe %0 \n\t"
  2008. : "=q" (fail)
  2009. : "r"(vmx->launched), "d"((unsigned long)HOST_RSP),
  2010. "c"(vcpu),
  2011. [rax]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RAX])),
  2012. [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])),
  2013. [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])),
  2014. [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])),
  2015. [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])),
  2016. [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])),
  2017. [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])),
  2018. #ifdef CONFIG_X86_64
  2019. [r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])),
  2020. [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])),
  2021. [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])),
  2022. [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])),
  2023. [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])),
  2024. [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])),
  2025. [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])),
  2026. [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])),
  2027. #endif
  2028. [cr2]"i"(offsetof(struct kvm_vcpu, cr2))
  2029. : "cc", "memory" );
  2030. vcpu->guest_mode = 0;
  2031. local_irq_enable();
  2032. ++vcpu->stat.exits;
  2033. vcpu->interrupt_window_open = (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & 3) == 0;
  2034. asm ("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
  2035. vmx->launched = 1;
  2036. preempt_enable();
  2037. if (unlikely(fail)) {
  2038. kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
  2039. kvm_run->fail_entry.hardware_entry_failure_reason
  2040. = vmcs_read32(VM_INSTRUCTION_ERROR);
  2041. r = 0;
  2042. goto out;
  2043. }
  2044. /*
  2045. * Profile KVM exit RIPs:
  2046. */
  2047. if (unlikely(prof_on == KVM_PROFILING))
  2048. profile_hit(KVM_PROFILING, (void *)vmcs_readl(GUEST_RIP));
  2049. r = kvm_handle_exit(kvm_run, vcpu);
  2050. if (r > 0) {
  2051. if (dm_request_for_irq_injection(vcpu, kvm_run)) {
  2052. r = -EINTR;
  2053. kvm_run->exit_reason = KVM_EXIT_INTR;
  2054. ++vcpu->stat.request_irq_exits;
  2055. goto out;
  2056. }
  2057. if (!need_resched()) {
  2058. ++vcpu->stat.light_exits;
  2059. goto again;
  2060. }
  2061. }
  2062. out:
  2063. if (r > 0) {
  2064. kvm_resched(vcpu);
  2065. goto preempted;
  2066. }
  2067. post_kvm_run_save(vcpu, kvm_run);
  2068. return r;
  2069. }
  2070. static void vmx_inject_page_fault(struct kvm_vcpu *vcpu,
  2071. unsigned long addr,
  2072. u32 err_code)
  2073. {
  2074. u32 vect_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
  2075. ++vcpu->stat.pf_guest;
  2076. if (is_page_fault(vect_info)) {
  2077. printk(KERN_DEBUG "inject_page_fault: "
  2078. "double fault 0x%lx @ 0x%lx\n",
  2079. addr, vmcs_readl(GUEST_RIP));
  2080. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, 0);
  2081. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2082. DF_VECTOR |
  2083. INTR_TYPE_EXCEPTION |
  2084. INTR_INFO_DELIEVER_CODE_MASK |
  2085. INTR_INFO_VALID_MASK);
  2086. return;
  2087. }
  2088. vcpu->cr2 = addr;
  2089. vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, err_code);
  2090. vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
  2091. PF_VECTOR |
  2092. INTR_TYPE_EXCEPTION |
  2093. INTR_INFO_DELIEVER_CODE_MASK |
  2094. INTR_INFO_VALID_MASK);
  2095. }
  2096. static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
  2097. {
  2098. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2099. if (vmx->vmcs) {
  2100. on_each_cpu(__vcpu_clear, vmx, 0, 1);
  2101. free_vmcs(vmx->vmcs);
  2102. vmx->vmcs = NULL;
  2103. }
  2104. }
  2105. static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
  2106. {
  2107. struct vcpu_vmx *vmx = to_vmx(vcpu);
  2108. vmx_free_vmcs(vcpu);
  2109. kfree(vmx->host_msrs);
  2110. kfree(vmx->guest_msrs);
  2111. kvm_vcpu_uninit(vcpu);
  2112. kmem_cache_free(kvm_vcpu_cache, vmx);
  2113. }
  2114. static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
  2115. {
  2116. int err;
  2117. struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
  2118. int cpu;
  2119. if (!vmx)
  2120. return ERR_PTR(-ENOMEM);
  2121. err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
  2122. if (err)
  2123. goto free_vcpu;
  2124. if (irqchip_in_kernel(kvm)) {
  2125. err = kvm_create_lapic(&vmx->vcpu);
  2126. if (err < 0)
  2127. goto free_vcpu;
  2128. }
  2129. vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2130. if (!vmx->guest_msrs) {
  2131. err = -ENOMEM;
  2132. goto uninit_vcpu;
  2133. }
  2134. vmx->host_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
  2135. if (!vmx->host_msrs)
  2136. goto free_guest_msrs;
  2137. vmx->vmcs = alloc_vmcs();
  2138. if (!vmx->vmcs)
  2139. goto free_msrs;
  2140. vmcs_clear(vmx->vmcs);
  2141. cpu = get_cpu();
  2142. vmx_vcpu_load(&vmx->vcpu, cpu);
  2143. err = vmx_vcpu_setup(vmx);
  2144. vmx_vcpu_put(&vmx->vcpu);
  2145. put_cpu();
  2146. if (err)
  2147. goto free_vmcs;
  2148. return &vmx->vcpu;
  2149. free_vmcs:
  2150. free_vmcs(vmx->vmcs);
  2151. free_msrs:
  2152. kfree(vmx->host_msrs);
  2153. free_guest_msrs:
  2154. kfree(vmx->guest_msrs);
  2155. uninit_vcpu:
  2156. kvm_vcpu_uninit(&vmx->vcpu);
  2157. free_vcpu:
  2158. kmem_cache_free(kvm_vcpu_cache, vmx);
  2159. return ERR_PTR(err);
  2160. }
  2161. static void __init vmx_check_processor_compat(void *rtn)
  2162. {
  2163. struct vmcs_config vmcs_conf;
  2164. *(int *)rtn = 0;
  2165. if (setup_vmcs_config(&vmcs_conf) < 0)
  2166. *(int *)rtn = -EIO;
  2167. if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
  2168. printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
  2169. smp_processor_id());
  2170. *(int *)rtn = -EIO;
  2171. }
  2172. }
  2173. static struct kvm_x86_ops vmx_x86_ops = {
  2174. .cpu_has_kvm_support = cpu_has_kvm_support,
  2175. .disabled_by_bios = vmx_disabled_by_bios,
  2176. .hardware_setup = hardware_setup,
  2177. .hardware_unsetup = hardware_unsetup,
  2178. .check_processor_compatibility = vmx_check_processor_compat,
  2179. .hardware_enable = hardware_enable,
  2180. .hardware_disable = hardware_disable,
  2181. .vcpu_create = vmx_create_vcpu,
  2182. .vcpu_free = vmx_free_vcpu,
  2183. .vcpu_load = vmx_vcpu_load,
  2184. .vcpu_put = vmx_vcpu_put,
  2185. .vcpu_decache = vmx_vcpu_decache,
  2186. .set_guest_debug = set_guest_debug,
  2187. .get_msr = vmx_get_msr,
  2188. .set_msr = vmx_set_msr,
  2189. .get_segment_base = vmx_get_segment_base,
  2190. .get_segment = vmx_get_segment,
  2191. .set_segment = vmx_set_segment,
  2192. .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
  2193. .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
  2194. .set_cr0 = vmx_set_cr0,
  2195. .set_cr3 = vmx_set_cr3,
  2196. .set_cr4 = vmx_set_cr4,
  2197. #ifdef CONFIG_X86_64
  2198. .set_efer = vmx_set_efer,
  2199. #endif
  2200. .get_idt = vmx_get_idt,
  2201. .set_idt = vmx_set_idt,
  2202. .get_gdt = vmx_get_gdt,
  2203. .set_gdt = vmx_set_gdt,
  2204. .cache_regs = vcpu_load_rsp_rip,
  2205. .decache_regs = vcpu_put_rsp_rip,
  2206. .get_rflags = vmx_get_rflags,
  2207. .set_rflags = vmx_set_rflags,
  2208. .tlb_flush = vmx_flush_tlb,
  2209. .inject_page_fault = vmx_inject_page_fault,
  2210. .inject_gp = vmx_inject_gp,
  2211. .run = vmx_vcpu_run,
  2212. .skip_emulated_instruction = skip_emulated_instruction,
  2213. .patch_hypercall = vmx_patch_hypercall,
  2214. .get_irq = vmx_get_irq,
  2215. .set_irq = vmx_inject_irq,
  2216. };
  2217. static int __init vmx_init(void)
  2218. {
  2219. void *iova;
  2220. int r;
  2221. vmx_io_bitmap_a = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2222. if (!vmx_io_bitmap_a)
  2223. return -ENOMEM;
  2224. vmx_io_bitmap_b = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
  2225. if (!vmx_io_bitmap_b) {
  2226. r = -ENOMEM;
  2227. goto out;
  2228. }
  2229. /*
  2230. * Allow direct access to the PC debug port (it is often used for I/O
  2231. * delays, but the vmexits simply slow things down).
  2232. */
  2233. iova = kmap(vmx_io_bitmap_a);
  2234. memset(iova, 0xff, PAGE_SIZE);
  2235. clear_bit(0x80, iova);
  2236. kunmap(vmx_io_bitmap_a);
  2237. iova = kmap(vmx_io_bitmap_b);
  2238. memset(iova, 0xff, PAGE_SIZE);
  2239. kunmap(vmx_io_bitmap_b);
  2240. r = kvm_init_x86(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
  2241. if (r)
  2242. goto out1;
  2243. return 0;
  2244. out1:
  2245. __free_page(vmx_io_bitmap_b);
  2246. out:
  2247. __free_page(vmx_io_bitmap_a);
  2248. return r;
  2249. }
  2250. static void __exit vmx_exit(void)
  2251. {
  2252. __free_page(vmx_io_bitmap_b);
  2253. __free_page(vmx_io_bitmap_a);
  2254. kvm_exit_x86();
  2255. }
  2256. module_init(vmx_init)
  2257. module_exit(vmx_exit)