mmu.c 35 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * MMU support
  8. *
  9. * Copyright (C) 2006 Qumranet, Inc.
  10. *
  11. * Authors:
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. * Avi Kivity <avi@qumranet.com>
  14. *
  15. * This work is licensed under the terms of the GNU GPL, version 2. See
  16. * the COPYING file in the top-level directory.
  17. *
  18. */
  19. #include "vmx.h"
  20. #include "kvm.h"
  21. #include <linux/types.h>
  22. #include <linux/string.h>
  23. #include <linux/mm.h>
  24. #include <linux/highmem.h>
  25. #include <linux/module.h>
  26. #include <asm/page.h>
  27. #include <asm/cmpxchg.h>
  28. #undef MMU_DEBUG
  29. #undef AUDIT
  30. #ifdef AUDIT
  31. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg);
  32. #else
  33. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {}
  34. #endif
  35. #ifdef MMU_DEBUG
  36. #define pgprintk(x...) do { if (dbg) printk(x); } while (0)
  37. #define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
  38. #else
  39. #define pgprintk(x...) do { } while (0)
  40. #define rmap_printk(x...) do { } while (0)
  41. #endif
  42. #if defined(MMU_DEBUG) || defined(AUDIT)
  43. static int dbg = 1;
  44. #endif
  45. #ifndef MMU_DEBUG
  46. #define ASSERT(x) do { } while (0)
  47. #else
  48. #define ASSERT(x) \
  49. if (!(x)) { \
  50. printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
  51. __FILE__, __LINE__, #x); \
  52. }
  53. #endif
  54. #define PT64_PT_BITS 9
  55. #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  56. #define PT32_PT_BITS 10
  57. #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
  58. #define PT_WRITABLE_SHIFT 1
  59. #define PT_PRESENT_MASK (1ULL << 0)
  60. #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
  61. #define PT_USER_MASK (1ULL << 2)
  62. #define PT_PWT_MASK (1ULL << 3)
  63. #define PT_PCD_MASK (1ULL << 4)
  64. #define PT_ACCESSED_MASK (1ULL << 5)
  65. #define PT_DIRTY_MASK (1ULL << 6)
  66. #define PT_PAGE_SIZE_MASK (1ULL << 7)
  67. #define PT_PAT_MASK (1ULL << 7)
  68. #define PT_GLOBAL_MASK (1ULL << 8)
  69. #define PT64_NX_MASK (1ULL << 63)
  70. #define PT_PAT_SHIFT 7
  71. #define PT_DIR_PAT_SHIFT 12
  72. #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
  73. #define PT32_DIR_PSE36_SIZE 4
  74. #define PT32_DIR_PSE36_SHIFT 13
  75. #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
  76. #define PT_FIRST_AVAIL_BITS_SHIFT 9
  77. #define PT64_SECOND_AVAIL_BITS_SHIFT 52
  78. #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
  79. #define VALID_PAGE(x) ((x) != INVALID_PAGE)
  80. #define PT64_LEVEL_BITS 9
  81. #define PT64_LEVEL_SHIFT(level) \
  82. ( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS )
  83. #define PT64_LEVEL_MASK(level) \
  84. (((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level))
  85. #define PT64_INDEX(address, level)\
  86. (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
  87. #define PT32_LEVEL_BITS 10
  88. #define PT32_LEVEL_SHIFT(level) \
  89. ( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS )
  90. #define PT32_LEVEL_MASK(level) \
  91. (((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level))
  92. #define PT32_INDEX(address, level)\
  93. (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
  94. #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
  95. #define PT64_DIR_BASE_ADDR_MASK \
  96. (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
  97. #define PT32_BASE_ADDR_MASK PAGE_MASK
  98. #define PT32_DIR_BASE_ADDR_MASK \
  99. (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
  100. #define PFERR_PRESENT_MASK (1U << 0)
  101. #define PFERR_WRITE_MASK (1U << 1)
  102. #define PFERR_USER_MASK (1U << 2)
  103. #define PFERR_FETCH_MASK (1U << 4)
  104. #define PT64_ROOT_LEVEL 4
  105. #define PT32_ROOT_LEVEL 2
  106. #define PT32E_ROOT_LEVEL 3
  107. #define PT_DIRECTORY_LEVEL 2
  108. #define PT_PAGE_TABLE_LEVEL 1
  109. #define RMAP_EXT 4
  110. struct kvm_rmap_desc {
  111. u64 *shadow_ptes[RMAP_EXT];
  112. struct kvm_rmap_desc *more;
  113. };
  114. static struct kmem_cache *pte_chain_cache;
  115. static struct kmem_cache *rmap_desc_cache;
  116. static struct kmem_cache *mmu_page_header_cache;
  117. static int is_write_protection(struct kvm_vcpu *vcpu)
  118. {
  119. return vcpu->cr0 & X86_CR0_WP;
  120. }
  121. static int is_cpuid_PSE36(void)
  122. {
  123. return 1;
  124. }
  125. static int is_nx(struct kvm_vcpu *vcpu)
  126. {
  127. return vcpu->shadow_efer & EFER_NX;
  128. }
  129. static int is_present_pte(unsigned long pte)
  130. {
  131. return pte & PT_PRESENT_MASK;
  132. }
  133. static int is_writeble_pte(unsigned long pte)
  134. {
  135. return pte & PT_WRITABLE_MASK;
  136. }
  137. static int is_io_pte(unsigned long pte)
  138. {
  139. return pte & PT_SHADOW_IO_MARK;
  140. }
  141. static int is_rmap_pte(u64 pte)
  142. {
  143. return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK))
  144. == (PT_WRITABLE_MASK | PT_PRESENT_MASK);
  145. }
  146. static void set_shadow_pte(u64 *sptep, u64 spte)
  147. {
  148. #ifdef CONFIG_X86_64
  149. set_64bit((unsigned long *)sptep, spte);
  150. #else
  151. set_64bit((unsigned long long *)sptep, spte);
  152. #endif
  153. }
  154. static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
  155. struct kmem_cache *base_cache, int min,
  156. gfp_t gfp_flags)
  157. {
  158. void *obj;
  159. if (cache->nobjs >= min)
  160. return 0;
  161. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  162. obj = kmem_cache_zalloc(base_cache, gfp_flags);
  163. if (!obj)
  164. return -ENOMEM;
  165. cache->objects[cache->nobjs++] = obj;
  166. }
  167. return 0;
  168. }
  169. static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
  170. {
  171. while (mc->nobjs)
  172. kfree(mc->objects[--mc->nobjs]);
  173. }
  174. static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
  175. int min, gfp_t gfp_flags)
  176. {
  177. struct page *page;
  178. if (cache->nobjs >= min)
  179. return 0;
  180. while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
  181. page = alloc_page(gfp_flags);
  182. if (!page)
  183. return -ENOMEM;
  184. set_page_private(page, 0);
  185. cache->objects[cache->nobjs++] = page_address(page);
  186. }
  187. return 0;
  188. }
  189. static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
  190. {
  191. while (mc->nobjs)
  192. free_page((unsigned long)mc->objects[--mc->nobjs]);
  193. }
  194. static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags)
  195. {
  196. int r;
  197. r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache,
  198. pte_chain_cache, 4, gfp_flags);
  199. if (r)
  200. goto out;
  201. r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache,
  202. rmap_desc_cache, 1, gfp_flags);
  203. if (r)
  204. goto out;
  205. r = mmu_topup_memory_cache_page(&vcpu->mmu_page_cache, 4, gfp_flags);
  206. if (r)
  207. goto out;
  208. r = mmu_topup_memory_cache(&vcpu->mmu_page_header_cache,
  209. mmu_page_header_cache, 4, gfp_flags);
  210. out:
  211. return r;
  212. }
  213. static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
  214. {
  215. int r;
  216. r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT);
  217. kvm_mmu_free_some_pages(vcpu);
  218. if (r < 0) {
  219. mutex_unlock(&vcpu->kvm->lock);
  220. r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL);
  221. mutex_lock(&vcpu->kvm->lock);
  222. }
  223. return r;
  224. }
  225. static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
  226. {
  227. mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache);
  228. mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache);
  229. mmu_free_memory_cache_page(&vcpu->mmu_page_cache);
  230. mmu_free_memory_cache(&vcpu->mmu_page_header_cache);
  231. }
  232. static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc,
  233. size_t size)
  234. {
  235. void *p;
  236. BUG_ON(!mc->nobjs);
  237. p = mc->objects[--mc->nobjs];
  238. memset(p, 0, size);
  239. return p;
  240. }
  241. static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu)
  242. {
  243. return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache,
  244. sizeof(struct kvm_pte_chain));
  245. }
  246. static void mmu_free_pte_chain(struct kvm_pte_chain *pc)
  247. {
  248. kfree(pc);
  249. }
  250. static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu)
  251. {
  252. return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache,
  253. sizeof(struct kvm_rmap_desc));
  254. }
  255. static void mmu_free_rmap_desc(struct kvm_rmap_desc *rd)
  256. {
  257. kfree(rd);
  258. }
  259. /*
  260. * Reverse mapping data structures:
  261. *
  262. * If page->private bit zero is zero, then page->private points to the
  263. * shadow page table entry that points to page_address(page).
  264. *
  265. * If page->private bit zero is one, (then page->private & ~1) points
  266. * to a struct kvm_rmap_desc containing more mappings.
  267. */
  268. static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte)
  269. {
  270. struct page *page;
  271. struct kvm_rmap_desc *desc;
  272. int i;
  273. if (!is_rmap_pte(*spte))
  274. return;
  275. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  276. if (!page_private(page)) {
  277. rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte);
  278. set_page_private(page,(unsigned long)spte);
  279. } else if (!(page_private(page) & 1)) {
  280. rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte);
  281. desc = mmu_alloc_rmap_desc(vcpu);
  282. desc->shadow_ptes[0] = (u64 *)page_private(page);
  283. desc->shadow_ptes[1] = spte;
  284. set_page_private(page,(unsigned long)desc | 1);
  285. } else {
  286. rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte);
  287. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  288. while (desc->shadow_ptes[RMAP_EXT-1] && desc->more)
  289. desc = desc->more;
  290. if (desc->shadow_ptes[RMAP_EXT-1]) {
  291. desc->more = mmu_alloc_rmap_desc(vcpu);
  292. desc = desc->more;
  293. }
  294. for (i = 0; desc->shadow_ptes[i]; ++i)
  295. ;
  296. desc->shadow_ptes[i] = spte;
  297. }
  298. }
  299. static void rmap_desc_remove_entry(struct page *page,
  300. struct kvm_rmap_desc *desc,
  301. int i,
  302. struct kvm_rmap_desc *prev_desc)
  303. {
  304. int j;
  305. for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j)
  306. ;
  307. desc->shadow_ptes[i] = desc->shadow_ptes[j];
  308. desc->shadow_ptes[j] = NULL;
  309. if (j != 0)
  310. return;
  311. if (!prev_desc && !desc->more)
  312. set_page_private(page,(unsigned long)desc->shadow_ptes[0]);
  313. else
  314. if (prev_desc)
  315. prev_desc->more = desc->more;
  316. else
  317. set_page_private(page,(unsigned long)desc->more | 1);
  318. mmu_free_rmap_desc(desc);
  319. }
  320. static void rmap_remove(u64 *spte)
  321. {
  322. struct page *page;
  323. struct kvm_rmap_desc *desc;
  324. struct kvm_rmap_desc *prev_desc;
  325. int i;
  326. if (!is_rmap_pte(*spte))
  327. return;
  328. page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT);
  329. if (!page_private(page)) {
  330. printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte);
  331. BUG();
  332. } else if (!(page_private(page) & 1)) {
  333. rmap_printk("rmap_remove: %p %llx 1->0\n", spte, *spte);
  334. if ((u64 *)page_private(page) != spte) {
  335. printk(KERN_ERR "rmap_remove: %p %llx 1->BUG\n",
  336. spte, *spte);
  337. BUG();
  338. }
  339. set_page_private(page,0);
  340. } else {
  341. rmap_printk("rmap_remove: %p %llx many->many\n", spte, *spte);
  342. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  343. prev_desc = NULL;
  344. while (desc) {
  345. for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i)
  346. if (desc->shadow_ptes[i] == spte) {
  347. rmap_desc_remove_entry(page,
  348. desc, i,
  349. prev_desc);
  350. return;
  351. }
  352. prev_desc = desc;
  353. desc = desc->more;
  354. }
  355. BUG();
  356. }
  357. }
  358. static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
  359. {
  360. struct kvm *kvm = vcpu->kvm;
  361. struct page *page;
  362. struct kvm_rmap_desc *desc;
  363. u64 *spte;
  364. page = gfn_to_page(kvm, gfn);
  365. BUG_ON(!page);
  366. while (page_private(page)) {
  367. if (!(page_private(page) & 1))
  368. spte = (u64 *)page_private(page);
  369. else {
  370. desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul);
  371. spte = desc->shadow_ptes[0];
  372. }
  373. BUG_ON(!spte);
  374. BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT
  375. != page_to_pfn(page));
  376. BUG_ON(!(*spte & PT_PRESENT_MASK));
  377. BUG_ON(!(*spte & PT_WRITABLE_MASK));
  378. rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte);
  379. rmap_remove(spte);
  380. set_shadow_pte(spte, *spte & ~PT_WRITABLE_MASK);
  381. kvm_flush_remote_tlbs(vcpu->kvm);
  382. }
  383. }
  384. #ifdef MMU_DEBUG
  385. static int is_empty_shadow_page(u64 *spt)
  386. {
  387. u64 *pos;
  388. u64 *end;
  389. for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
  390. if (*pos != 0) {
  391. printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__,
  392. pos, *pos);
  393. return 0;
  394. }
  395. return 1;
  396. }
  397. #endif
  398. static void kvm_mmu_free_page(struct kvm *kvm,
  399. struct kvm_mmu_page *page_head)
  400. {
  401. ASSERT(is_empty_shadow_page(page_head->spt));
  402. list_del(&page_head->link);
  403. __free_page(virt_to_page(page_head->spt));
  404. kfree(page_head);
  405. ++kvm->n_free_mmu_pages;
  406. }
  407. static unsigned kvm_page_table_hashfn(gfn_t gfn)
  408. {
  409. return gfn;
  410. }
  411. static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
  412. u64 *parent_pte)
  413. {
  414. struct kvm_mmu_page *page;
  415. if (!vcpu->kvm->n_free_mmu_pages)
  416. return NULL;
  417. page = mmu_memory_cache_alloc(&vcpu->mmu_page_header_cache,
  418. sizeof *page);
  419. page->spt = mmu_memory_cache_alloc(&vcpu->mmu_page_cache, PAGE_SIZE);
  420. set_page_private(virt_to_page(page->spt), (unsigned long)page);
  421. list_add(&page->link, &vcpu->kvm->active_mmu_pages);
  422. ASSERT(is_empty_shadow_page(page->spt));
  423. page->slot_bitmap = 0;
  424. page->multimapped = 0;
  425. page->parent_pte = parent_pte;
  426. --vcpu->kvm->n_free_mmu_pages;
  427. return page;
  428. }
  429. static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
  430. struct kvm_mmu_page *page, u64 *parent_pte)
  431. {
  432. struct kvm_pte_chain *pte_chain;
  433. struct hlist_node *node;
  434. int i;
  435. if (!parent_pte)
  436. return;
  437. if (!page->multimapped) {
  438. u64 *old = page->parent_pte;
  439. if (!old) {
  440. page->parent_pte = parent_pte;
  441. return;
  442. }
  443. page->multimapped = 1;
  444. pte_chain = mmu_alloc_pte_chain(vcpu);
  445. INIT_HLIST_HEAD(&page->parent_ptes);
  446. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  447. pte_chain->parent_ptes[0] = old;
  448. }
  449. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) {
  450. if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1])
  451. continue;
  452. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i)
  453. if (!pte_chain->parent_ptes[i]) {
  454. pte_chain->parent_ptes[i] = parent_pte;
  455. return;
  456. }
  457. }
  458. pte_chain = mmu_alloc_pte_chain(vcpu);
  459. BUG_ON(!pte_chain);
  460. hlist_add_head(&pte_chain->link, &page->parent_ptes);
  461. pte_chain->parent_ptes[0] = parent_pte;
  462. }
  463. static void mmu_page_remove_parent_pte(struct kvm_mmu_page *page,
  464. u64 *parent_pte)
  465. {
  466. struct kvm_pte_chain *pte_chain;
  467. struct hlist_node *node;
  468. int i;
  469. if (!page->multimapped) {
  470. BUG_ON(page->parent_pte != parent_pte);
  471. page->parent_pte = NULL;
  472. return;
  473. }
  474. hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link)
  475. for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) {
  476. if (!pte_chain->parent_ptes[i])
  477. break;
  478. if (pte_chain->parent_ptes[i] != parent_pte)
  479. continue;
  480. while (i + 1 < NR_PTE_CHAIN_ENTRIES
  481. && pte_chain->parent_ptes[i + 1]) {
  482. pte_chain->parent_ptes[i]
  483. = pte_chain->parent_ptes[i + 1];
  484. ++i;
  485. }
  486. pte_chain->parent_ptes[i] = NULL;
  487. if (i == 0) {
  488. hlist_del(&pte_chain->link);
  489. mmu_free_pte_chain(pte_chain);
  490. if (hlist_empty(&page->parent_ptes)) {
  491. page->multimapped = 0;
  492. page->parent_pte = NULL;
  493. }
  494. }
  495. return;
  496. }
  497. BUG();
  498. }
  499. static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu,
  500. gfn_t gfn)
  501. {
  502. unsigned index;
  503. struct hlist_head *bucket;
  504. struct kvm_mmu_page *page;
  505. struct hlist_node *node;
  506. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  507. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  508. bucket = &vcpu->kvm->mmu_page_hash[index];
  509. hlist_for_each_entry(page, node, bucket, hash_link)
  510. if (page->gfn == gfn && !page->role.metaphysical) {
  511. pgprintk("%s: found role %x\n",
  512. __FUNCTION__, page->role.word);
  513. return page;
  514. }
  515. return NULL;
  516. }
  517. static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
  518. gfn_t gfn,
  519. gva_t gaddr,
  520. unsigned level,
  521. int metaphysical,
  522. unsigned hugepage_access,
  523. u64 *parent_pte)
  524. {
  525. union kvm_mmu_page_role role;
  526. unsigned index;
  527. unsigned quadrant;
  528. struct hlist_head *bucket;
  529. struct kvm_mmu_page *page;
  530. struct hlist_node *node;
  531. role.word = 0;
  532. role.glevels = vcpu->mmu.root_level;
  533. role.level = level;
  534. role.metaphysical = metaphysical;
  535. role.hugepage_access = hugepage_access;
  536. if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) {
  537. quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
  538. quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
  539. role.quadrant = quadrant;
  540. }
  541. pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__,
  542. gfn, role.word);
  543. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  544. bucket = &vcpu->kvm->mmu_page_hash[index];
  545. hlist_for_each_entry(page, node, bucket, hash_link)
  546. if (page->gfn == gfn && page->role.word == role.word) {
  547. mmu_page_add_parent_pte(vcpu, page, parent_pte);
  548. pgprintk("%s: found\n", __FUNCTION__);
  549. return page;
  550. }
  551. page = kvm_mmu_alloc_page(vcpu, parent_pte);
  552. if (!page)
  553. return page;
  554. pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word);
  555. page->gfn = gfn;
  556. page->role = role;
  557. hlist_add_head(&page->hash_link, bucket);
  558. if (!metaphysical)
  559. rmap_write_protect(vcpu, gfn);
  560. return page;
  561. }
  562. static void kvm_mmu_page_unlink_children(struct kvm *kvm,
  563. struct kvm_mmu_page *page)
  564. {
  565. unsigned i;
  566. u64 *pt;
  567. u64 ent;
  568. pt = page->spt;
  569. if (page->role.level == PT_PAGE_TABLE_LEVEL) {
  570. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  571. if (pt[i] & PT_PRESENT_MASK)
  572. rmap_remove(&pt[i]);
  573. pt[i] = 0;
  574. }
  575. kvm_flush_remote_tlbs(kvm);
  576. return;
  577. }
  578. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  579. ent = pt[i];
  580. pt[i] = 0;
  581. if (!(ent & PT_PRESENT_MASK))
  582. continue;
  583. ent &= PT64_BASE_ADDR_MASK;
  584. mmu_page_remove_parent_pte(page_header(ent), &pt[i]);
  585. }
  586. kvm_flush_remote_tlbs(kvm);
  587. }
  588. static void kvm_mmu_put_page(struct kvm_mmu_page *page,
  589. u64 *parent_pte)
  590. {
  591. mmu_page_remove_parent_pte(page, parent_pte);
  592. }
  593. static void kvm_mmu_zap_page(struct kvm *kvm,
  594. struct kvm_mmu_page *page)
  595. {
  596. u64 *parent_pte;
  597. while (page->multimapped || page->parent_pte) {
  598. if (!page->multimapped)
  599. parent_pte = page->parent_pte;
  600. else {
  601. struct kvm_pte_chain *chain;
  602. chain = container_of(page->parent_ptes.first,
  603. struct kvm_pte_chain, link);
  604. parent_pte = chain->parent_ptes[0];
  605. }
  606. BUG_ON(!parent_pte);
  607. kvm_mmu_put_page(page, parent_pte);
  608. set_shadow_pte(parent_pte, 0);
  609. }
  610. kvm_mmu_page_unlink_children(kvm, page);
  611. if (!page->root_count) {
  612. hlist_del(&page->hash_link);
  613. kvm_mmu_free_page(kvm, page);
  614. } else
  615. list_move(&page->link, &kvm->active_mmu_pages);
  616. }
  617. static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn)
  618. {
  619. unsigned index;
  620. struct hlist_head *bucket;
  621. struct kvm_mmu_page *page;
  622. struct hlist_node *node, *n;
  623. int r;
  624. pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn);
  625. r = 0;
  626. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  627. bucket = &vcpu->kvm->mmu_page_hash[index];
  628. hlist_for_each_entry_safe(page, node, n, bucket, hash_link)
  629. if (page->gfn == gfn && !page->role.metaphysical) {
  630. pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn,
  631. page->role.word);
  632. kvm_mmu_zap_page(vcpu->kvm, page);
  633. r = 1;
  634. }
  635. return r;
  636. }
  637. static void mmu_unshadow(struct kvm_vcpu *vcpu, gfn_t gfn)
  638. {
  639. struct kvm_mmu_page *page;
  640. while ((page = kvm_mmu_lookup_page(vcpu, gfn)) != NULL) {
  641. pgprintk("%s: zap %lx %x\n",
  642. __FUNCTION__, gfn, page->role.word);
  643. kvm_mmu_zap_page(vcpu->kvm, page);
  644. }
  645. }
  646. static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa)
  647. {
  648. int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT));
  649. struct kvm_mmu_page *page_head = page_header(__pa(pte));
  650. __set_bit(slot, &page_head->slot_bitmap);
  651. }
  652. hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  653. {
  654. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  655. return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa;
  656. }
  657. hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa)
  658. {
  659. struct page *page;
  660. ASSERT((gpa & HPA_ERR_MASK) == 0);
  661. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  662. if (!page)
  663. return gpa | HPA_ERR_MASK;
  664. return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT)
  665. | (gpa & (PAGE_SIZE-1));
  666. }
  667. hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva)
  668. {
  669. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  670. if (gpa == UNMAPPED_GVA)
  671. return UNMAPPED_GVA;
  672. return gpa_to_hpa(vcpu, gpa);
  673. }
  674. struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva)
  675. {
  676. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  677. if (gpa == UNMAPPED_GVA)
  678. return NULL;
  679. return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT);
  680. }
  681. static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
  682. {
  683. }
  684. static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p)
  685. {
  686. int level = PT32E_ROOT_LEVEL;
  687. hpa_t table_addr = vcpu->mmu.root_hpa;
  688. for (; ; level--) {
  689. u32 index = PT64_INDEX(v, level);
  690. u64 *table;
  691. u64 pte;
  692. ASSERT(VALID_PAGE(table_addr));
  693. table = __va(table_addr);
  694. if (level == 1) {
  695. pte = table[index];
  696. if (is_present_pte(pte) && is_writeble_pte(pte))
  697. return 0;
  698. mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT);
  699. page_header_update_slot(vcpu->kvm, table, v);
  700. table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK |
  701. PT_USER_MASK;
  702. rmap_add(vcpu, &table[index]);
  703. return 0;
  704. }
  705. if (table[index] == 0) {
  706. struct kvm_mmu_page *new_table;
  707. gfn_t pseudo_gfn;
  708. pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK)
  709. >> PAGE_SHIFT;
  710. new_table = kvm_mmu_get_page(vcpu, pseudo_gfn,
  711. v, level - 1,
  712. 1, 0, &table[index]);
  713. if (!new_table) {
  714. pgprintk("nonpaging_map: ENOMEM\n");
  715. return -ENOMEM;
  716. }
  717. table[index] = __pa(new_table->spt) | PT_PRESENT_MASK
  718. | PT_WRITABLE_MASK | PT_USER_MASK;
  719. }
  720. table_addr = table[index] & PT64_BASE_ADDR_MASK;
  721. }
  722. }
  723. static void mmu_free_roots(struct kvm_vcpu *vcpu)
  724. {
  725. int i;
  726. struct kvm_mmu_page *page;
  727. if (!VALID_PAGE(vcpu->mmu.root_hpa))
  728. return;
  729. #ifdef CONFIG_X86_64
  730. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  731. hpa_t root = vcpu->mmu.root_hpa;
  732. page = page_header(root);
  733. --page->root_count;
  734. vcpu->mmu.root_hpa = INVALID_PAGE;
  735. return;
  736. }
  737. #endif
  738. for (i = 0; i < 4; ++i) {
  739. hpa_t root = vcpu->mmu.pae_root[i];
  740. if (root) {
  741. root &= PT64_BASE_ADDR_MASK;
  742. page = page_header(root);
  743. --page->root_count;
  744. }
  745. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  746. }
  747. vcpu->mmu.root_hpa = INVALID_PAGE;
  748. }
  749. static void mmu_alloc_roots(struct kvm_vcpu *vcpu)
  750. {
  751. int i;
  752. gfn_t root_gfn;
  753. struct kvm_mmu_page *page;
  754. root_gfn = vcpu->cr3 >> PAGE_SHIFT;
  755. #ifdef CONFIG_X86_64
  756. if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) {
  757. hpa_t root = vcpu->mmu.root_hpa;
  758. ASSERT(!VALID_PAGE(root));
  759. page = kvm_mmu_get_page(vcpu, root_gfn, 0,
  760. PT64_ROOT_LEVEL, 0, 0, NULL);
  761. root = __pa(page->spt);
  762. ++page->root_count;
  763. vcpu->mmu.root_hpa = root;
  764. return;
  765. }
  766. #endif
  767. for (i = 0; i < 4; ++i) {
  768. hpa_t root = vcpu->mmu.pae_root[i];
  769. ASSERT(!VALID_PAGE(root));
  770. if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) {
  771. if (!is_present_pte(vcpu->pdptrs[i])) {
  772. vcpu->mmu.pae_root[i] = 0;
  773. continue;
  774. }
  775. root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT;
  776. } else if (vcpu->mmu.root_level == 0)
  777. root_gfn = 0;
  778. page = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
  779. PT32_ROOT_LEVEL, !is_paging(vcpu),
  780. 0, NULL);
  781. root = __pa(page->spt);
  782. ++page->root_count;
  783. vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK;
  784. }
  785. vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root);
  786. }
  787. static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr)
  788. {
  789. return vaddr;
  790. }
  791. static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
  792. u32 error_code)
  793. {
  794. gpa_t addr = gva;
  795. hpa_t paddr;
  796. int r;
  797. r = mmu_topup_memory_caches(vcpu);
  798. if (r)
  799. return r;
  800. ASSERT(vcpu);
  801. ASSERT(VALID_PAGE(vcpu->mmu.root_hpa));
  802. paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK);
  803. if (is_error_hpa(paddr))
  804. return 1;
  805. return nonpaging_map(vcpu, addr & PAGE_MASK, paddr);
  806. }
  807. static void nonpaging_free(struct kvm_vcpu *vcpu)
  808. {
  809. mmu_free_roots(vcpu);
  810. }
  811. static int nonpaging_init_context(struct kvm_vcpu *vcpu)
  812. {
  813. struct kvm_mmu *context = &vcpu->mmu;
  814. context->new_cr3 = nonpaging_new_cr3;
  815. context->page_fault = nonpaging_page_fault;
  816. context->gva_to_gpa = nonpaging_gva_to_gpa;
  817. context->free = nonpaging_free;
  818. context->root_level = 0;
  819. context->shadow_root_level = PT32E_ROOT_LEVEL;
  820. context->root_hpa = INVALID_PAGE;
  821. return 0;
  822. }
  823. static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
  824. {
  825. ++vcpu->stat.tlb_flush;
  826. kvm_x86_ops->tlb_flush(vcpu);
  827. }
  828. static void paging_new_cr3(struct kvm_vcpu *vcpu)
  829. {
  830. pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3);
  831. mmu_free_roots(vcpu);
  832. }
  833. static void inject_page_fault(struct kvm_vcpu *vcpu,
  834. u64 addr,
  835. u32 err_code)
  836. {
  837. kvm_x86_ops->inject_page_fault(vcpu, addr, err_code);
  838. }
  839. static void paging_free(struct kvm_vcpu *vcpu)
  840. {
  841. nonpaging_free(vcpu);
  842. }
  843. #define PTTYPE 64
  844. #include "paging_tmpl.h"
  845. #undef PTTYPE
  846. #define PTTYPE 32
  847. #include "paging_tmpl.h"
  848. #undef PTTYPE
  849. static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level)
  850. {
  851. struct kvm_mmu *context = &vcpu->mmu;
  852. ASSERT(is_pae(vcpu));
  853. context->new_cr3 = paging_new_cr3;
  854. context->page_fault = paging64_page_fault;
  855. context->gva_to_gpa = paging64_gva_to_gpa;
  856. context->free = paging_free;
  857. context->root_level = level;
  858. context->shadow_root_level = level;
  859. context->root_hpa = INVALID_PAGE;
  860. return 0;
  861. }
  862. static int paging64_init_context(struct kvm_vcpu *vcpu)
  863. {
  864. return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL);
  865. }
  866. static int paging32_init_context(struct kvm_vcpu *vcpu)
  867. {
  868. struct kvm_mmu *context = &vcpu->mmu;
  869. context->new_cr3 = paging_new_cr3;
  870. context->page_fault = paging32_page_fault;
  871. context->gva_to_gpa = paging32_gva_to_gpa;
  872. context->free = paging_free;
  873. context->root_level = PT32_ROOT_LEVEL;
  874. context->shadow_root_level = PT32E_ROOT_LEVEL;
  875. context->root_hpa = INVALID_PAGE;
  876. return 0;
  877. }
  878. static int paging32E_init_context(struct kvm_vcpu *vcpu)
  879. {
  880. return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL);
  881. }
  882. static int init_kvm_mmu(struct kvm_vcpu *vcpu)
  883. {
  884. ASSERT(vcpu);
  885. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  886. if (!is_paging(vcpu))
  887. return nonpaging_init_context(vcpu);
  888. else if (is_long_mode(vcpu))
  889. return paging64_init_context(vcpu);
  890. else if (is_pae(vcpu))
  891. return paging32E_init_context(vcpu);
  892. else
  893. return paging32_init_context(vcpu);
  894. }
  895. static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
  896. {
  897. ASSERT(vcpu);
  898. if (VALID_PAGE(vcpu->mmu.root_hpa)) {
  899. vcpu->mmu.free(vcpu);
  900. vcpu->mmu.root_hpa = INVALID_PAGE;
  901. }
  902. }
  903. int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
  904. {
  905. destroy_kvm_mmu(vcpu);
  906. return init_kvm_mmu(vcpu);
  907. }
  908. int kvm_mmu_load(struct kvm_vcpu *vcpu)
  909. {
  910. int r;
  911. mutex_lock(&vcpu->kvm->lock);
  912. r = mmu_topup_memory_caches(vcpu);
  913. if (r)
  914. goto out;
  915. mmu_alloc_roots(vcpu);
  916. kvm_x86_ops->set_cr3(vcpu, vcpu->mmu.root_hpa);
  917. kvm_mmu_flush_tlb(vcpu);
  918. out:
  919. mutex_unlock(&vcpu->kvm->lock);
  920. return r;
  921. }
  922. EXPORT_SYMBOL_GPL(kvm_mmu_load);
  923. void kvm_mmu_unload(struct kvm_vcpu *vcpu)
  924. {
  925. mmu_free_roots(vcpu);
  926. }
  927. static void mmu_pte_write_zap_pte(struct kvm_vcpu *vcpu,
  928. struct kvm_mmu_page *page,
  929. u64 *spte)
  930. {
  931. u64 pte;
  932. struct kvm_mmu_page *child;
  933. pte = *spte;
  934. if (is_present_pte(pte)) {
  935. if (page->role.level == PT_PAGE_TABLE_LEVEL)
  936. rmap_remove(spte);
  937. else {
  938. child = page_header(pte & PT64_BASE_ADDR_MASK);
  939. mmu_page_remove_parent_pte(child, spte);
  940. }
  941. }
  942. *spte = 0;
  943. kvm_flush_remote_tlbs(vcpu->kvm);
  944. }
  945. static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
  946. struct kvm_mmu_page *page,
  947. u64 *spte,
  948. const void *new, int bytes)
  949. {
  950. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  951. return;
  952. if (page->role.glevels == PT32_ROOT_LEVEL)
  953. paging32_update_pte(vcpu, page, spte, new, bytes);
  954. else
  955. paging64_update_pte(vcpu, page, spte, new, bytes);
  956. }
  957. void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
  958. const u8 *new, int bytes)
  959. {
  960. gfn_t gfn = gpa >> PAGE_SHIFT;
  961. struct kvm_mmu_page *page;
  962. struct hlist_node *node, *n;
  963. struct hlist_head *bucket;
  964. unsigned index;
  965. u64 *spte;
  966. unsigned offset = offset_in_page(gpa);
  967. unsigned pte_size;
  968. unsigned page_offset;
  969. unsigned misaligned;
  970. unsigned quadrant;
  971. int level;
  972. int flooded = 0;
  973. int npte;
  974. pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes);
  975. if (gfn == vcpu->last_pt_write_gfn) {
  976. ++vcpu->last_pt_write_count;
  977. if (vcpu->last_pt_write_count >= 3)
  978. flooded = 1;
  979. } else {
  980. vcpu->last_pt_write_gfn = gfn;
  981. vcpu->last_pt_write_count = 1;
  982. }
  983. index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES;
  984. bucket = &vcpu->kvm->mmu_page_hash[index];
  985. hlist_for_each_entry_safe(page, node, n, bucket, hash_link) {
  986. if (page->gfn != gfn || page->role.metaphysical)
  987. continue;
  988. pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8;
  989. misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
  990. misaligned |= bytes < 4;
  991. if (misaligned || flooded) {
  992. /*
  993. * Misaligned accesses are too much trouble to fix
  994. * up; also, they usually indicate a page is not used
  995. * as a page table.
  996. *
  997. * If we're seeing too many writes to a page,
  998. * it may no longer be a page table, or we may be
  999. * forking, in which case it is better to unmap the
  1000. * page.
  1001. */
  1002. pgprintk("misaligned: gpa %llx bytes %d role %x\n",
  1003. gpa, bytes, page->role.word);
  1004. kvm_mmu_zap_page(vcpu->kvm, page);
  1005. continue;
  1006. }
  1007. page_offset = offset;
  1008. level = page->role.level;
  1009. npte = 1;
  1010. if (page->role.glevels == PT32_ROOT_LEVEL) {
  1011. page_offset <<= 1; /* 32->64 */
  1012. /*
  1013. * A 32-bit pde maps 4MB while the shadow pdes map
  1014. * only 2MB. So we need to double the offset again
  1015. * and zap two pdes instead of one.
  1016. */
  1017. if (level == PT32_ROOT_LEVEL) {
  1018. page_offset &= ~7; /* kill rounding error */
  1019. page_offset <<= 1;
  1020. npte = 2;
  1021. }
  1022. quadrant = page_offset >> PAGE_SHIFT;
  1023. page_offset &= ~PAGE_MASK;
  1024. if (quadrant != page->role.quadrant)
  1025. continue;
  1026. }
  1027. spte = &page->spt[page_offset / sizeof(*spte)];
  1028. while (npte--) {
  1029. mmu_pte_write_zap_pte(vcpu, page, spte);
  1030. mmu_pte_write_new_pte(vcpu, page, spte, new, bytes);
  1031. ++spte;
  1032. }
  1033. }
  1034. }
  1035. int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
  1036. {
  1037. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva);
  1038. return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT);
  1039. }
  1040. void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
  1041. {
  1042. while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) {
  1043. struct kvm_mmu_page *page;
  1044. page = container_of(vcpu->kvm->active_mmu_pages.prev,
  1045. struct kvm_mmu_page, link);
  1046. kvm_mmu_zap_page(vcpu->kvm, page);
  1047. }
  1048. }
  1049. static void free_mmu_pages(struct kvm_vcpu *vcpu)
  1050. {
  1051. struct kvm_mmu_page *page;
  1052. while (!list_empty(&vcpu->kvm->active_mmu_pages)) {
  1053. page = container_of(vcpu->kvm->active_mmu_pages.next,
  1054. struct kvm_mmu_page, link);
  1055. kvm_mmu_zap_page(vcpu->kvm, page);
  1056. }
  1057. free_page((unsigned long)vcpu->mmu.pae_root);
  1058. }
  1059. static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
  1060. {
  1061. struct page *page;
  1062. int i;
  1063. ASSERT(vcpu);
  1064. vcpu->kvm->n_free_mmu_pages = KVM_NUM_MMU_PAGES;
  1065. /*
  1066. * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
  1067. * Therefore we need to allocate shadow page tables in the first
  1068. * 4GB of memory, which happens to fit the DMA32 zone.
  1069. */
  1070. page = alloc_page(GFP_KERNEL | __GFP_DMA32);
  1071. if (!page)
  1072. goto error_1;
  1073. vcpu->mmu.pae_root = page_address(page);
  1074. for (i = 0; i < 4; ++i)
  1075. vcpu->mmu.pae_root[i] = INVALID_PAGE;
  1076. return 0;
  1077. error_1:
  1078. free_mmu_pages(vcpu);
  1079. return -ENOMEM;
  1080. }
  1081. int kvm_mmu_create(struct kvm_vcpu *vcpu)
  1082. {
  1083. ASSERT(vcpu);
  1084. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1085. return alloc_mmu_pages(vcpu);
  1086. }
  1087. int kvm_mmu_setup(struct kvm_vcpu *vcpu)
  1088. {
  1089. ASSERT(vcpu);
  1090. ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa));
  1091. return init_kvm_mmu(vcpu);
  1092. }
  1093. void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
  1094. {
  1095. ASSERT(vcpu);
  1096. destroy_kvm_mmu(vcpu);
  1097. free_mmu_pages(vcpu);
  1098. mmu_free_memory_caches(vcpu);
  1099. }
  1100. void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
  1101. {
  1102. struct kvm_mmu_page *page;
  1103. list_for_each_entry(page, &kvm->active_mmu_pages, link) {
  1104. int i;
  1105. u64 *pt;
  1106. if (!test_bit(slot, &page->slot_bitmap))
  1107. continue;
  1108. pt = page->spt;
  1109. for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
  1110. /* avoid RMW */
  1111. if (pt[i] & PT_WRITABLE_MASK) {
  1112. rmap_remove(&pt[i]);
  1113. pt[i] &= ~PT_WRITABLE_MASK;
  1114. }
  1115. }
  1116. }
  1117. void kvm_mmu_zap_all(struct kvm *kvm)
  1118. {
  1119. struct kvm_mmu_page *page, *node;
  1120. list_for_each_entry_safe(page, node, &kvm->active_mmu_pages, link)
  1121. kvm_mmu_zap_page(kvm, page);
  1122. kvm_flush_remote_tlbs(kvm);
  1123. }
  1124. void kvm_mmu_module_exit(void)
  1125. {
  1126. if (pte_chain_cache)
  1127. kmem_cache_destroy(pte_chain_cache);
  1128. if (rmap_desc_cache)
  1129. kmem_cache_destroy(rmap_desc_cache);
  1130. if (mmu_page_header_cache)
  1131. kmem_cache_destroy(mmu_page_header_cache);
  1132. }
  1133. int kvm_mmu_module_init(void)
  1134. {
  1135. pte_chain_cache = kmem_cache_create("kvm_pte_chain",
  1136. sizeof(struct kvm_pte_chain),
  1137. 0, 0, NULL);
  1138. if (!pte_chain_cache)
  1139. goto nomem;
  1140. rmap_desc_cache = kmem_cache_create("kvm_rmap_desc",
  1141. sizeof(struct kvm_rmap_desc),
  1142. 0, 0, NULL);
  1143. if (!rmap_desc_cache)
  1144. goto nomem;
  1145. mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
  1146. sizeof(struct kvm_mmu_page),
  1147. 0, 0, NULL);
  1148. if (!mmu_page_header_cache)
  1149. goto nomem;
  1150. return 0;
  1151. nomem:
  1152. kvm_mmu_module_exit();
  1153. return -ENOMEM;
  1154. }
  1155. #ifdef AUDIT
  1156. static const char *audit_msg;
  1157. static gva_t canonicalize(gva_t gva)
  1158. {
  1159. #ifdef CONFIG_X86_64
  1160. gva = (long long)(gva << 16) >> 16;
  1161. #endif
  1162. return gva;
  1163. }
  1164. static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte,
  1165. gva_t va, int level)
  1166. {
  1167. u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK);
  1168. int i;
  1169. gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1));
  1170. for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) {
  1171. u64 ent = pt[i];
  1172. if (!(ent & PT_PRESENT_MASK))
  1173. continue;
  1174. va = canonicalize(va);
  1175. if (level > 1)
  1176. audit_mappings_page(vcpu, ent, va, level - 1);
  1177. else {
  1178. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va);
  1179. hpa_t hpa = gpa_to_hpa(vcpu, gpa);
  1180. if ((ent & PT_PRESENT_MASK)
  1181. && (ent & PT64_BASE_ADDR_MASK) != hpa)
  1182. printk(KERN_ERR "audit error: (%s) levels %d"
  1183. " gva %lx gpa %llx hpa %llx ent %llx\n",
  1184. audit_msg, vcpu->mmu.root_level,
  1185. va, gpa, hpa, ent);
  1186. }
  1187. }
  1188. }
  1189. static void audit_mappings(struct kvm_vcpu *vcpu)
  1190. {
  1191. unsigned i;
  1192. if (vcpu->mmu.root_level == 4)
  1193. audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4);
  1194. else
  1195. for (i = 0; i < 4; ++i)
  1196. if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK)
  1197. audit_mappings_page(vcpu,
  1198. vcpu->mmu.pae_root[i],
  1199. i << 30,
  1200. 2);
  1201. }
  1202. static int count_rmaps(struct kvm_vcpu *vcpu)
  1203. {
  1204. int nmaps = 0;
  1205. int i, j, k;
  1206. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  1207. struct kvm_memory_slot *m = &vcpu->kvm->memslots[i];
  1208. struct kvm_rmap_desc *d;
  1209. for (j = 0; j < m->npages; ++j) {
  1210. struct page *page = m->phys_mem[j];
  1211. if (!page->private)
  1212. continue;
  1213. if (!(page->private & 1)) {
  1214. ++nmaps;
  1215. continue;
  1216. }
  1217. d = (struct kvm_rmap_desc *)(page->private & ~1ul);
  1218. while (d) {
  1219. for (k = 0; k < RMAP_EXT; ++k)
  1220. if (d->shadow_ptes[k])
  1221. ++nmaps;
  1222. else
  1223. break;
  1224. d = d->more;
  1225. }
  1226. }
  1227. }
  1228. return nmaps;
  1229. }
  1230. static int count_writable_mappings(struct kvm_vcpu *vcpu)
  1231. {
  1232. int nmaps = 0;
  1233. struct kvm_mmu_page *page;
  1234. int i;
  1235. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1236. u64 *pt = page->spt;
  1237. if (page->role.level != PT_PAGE_TABLE_LEVEL)
  1238. continue;
  1239. for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
  1240. u64 ent = pt[i];
  1241. if (!(ent & PT_PRESENT_MASK))
  1242. continue;
  1243. if (!(ent & PT_WRITABLE_MASK))
  1244. continue;
  1245. ++nmaps;
  1246. }
  1247. }
  1248. return nmaps;
  1249. }
  1250. static void audit_rmap(struct kvm_vcpu *vcpu)
  1251. {
  1252. int n_rmap = count_rmaps(vcpu);
  1253. int n_actual = count_writable_mappings(vcpu);
  1254. if (n_rmap != n_actual)
  1255. printk(KERN_ERR "%s: (%s) rmap %d actual %d\n",
  1256. __FUNCTION__, audit_msg, n_rmap, n_actual);
  1257. }
  1258. static void audit_write_protection(struct kvm_vcpu *vcpu)
  1259. {
  1260. struct kvm_mmu_page *page;
  1261. list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) {
  1262. hfn_t hfn;
  1263. struct page *pg;
  1264. if (page->role.metaphysical)
  1265. continue;
  1266. hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT)
  1267. >> PAGE_SHIFT;
  1268. pg = pfn_to_page(hfn);
  1269. if (pg->private)
  1270. printk(KERN_ERR "%s: (%s) shadow page has writable"
  1271. " mappings: gfn %lx role %x\n",
  1272. __FUNCTION__, audit_msg, page->gfn,
  1273. page->role.word);
  1274. }
  1275. }
  1276. static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg)
  1277. {
  1278. int olddbg = dbg;
  1279. dbg = 0;
  1280. audit_msg = msg;
  1281. audit_rmap(vcpu);
  1282. audit_write_protection(vcpu);
  1283. audit_mappings(vcpu);
  1284. dbg = olddbg;
  1285. }
  1286. #endif