kvm_main.c 77 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. *
  9. * Authors:
  10. * Avi Kivity <avi@qumranet.com>
  11. * Yaniv Kamay <yaniv@qumranet.com>
  12. *
  13. * This work is licensed under the terms of the GNU GPL, version 2. See
  14. * the COPYING file in the top-level directory.
  15. *
  16. */
  17. #include "kvm.h"
  18. #include "x86_emulate.h"
  19. #include "segment_descriptor.h"
  20. #include "irq.h"
  21. #include <linux/kvm.h>
  22. #include <linux/module.h>
  23. #include <linux/errno.h>
  24. #include <linux/percpu.h>
  25. #include <linux/gfp.h>
  26. #include <linux/mm.h>
  27. #include <linux/miscdevice.h>
  28. #include <linux/vmalloc.h>
  29. #include <linux/reboot.h>
  30. #include <linux/debugfs.h>
  31. #include <linux/highmem.h>
  32. #include <linux/file.h>
  33. #include <linux/sysdev.h>
  34. #include <linux/cpu.h>
  35. #include <linux/sched.h>
  36. #include <linux/cpumask.h>
  37. #include <linux/smp.h>
  38. #include <linux/anon_inodes.h>
  39. #include <asm/processor.h>
  40. #include <asm/msr.h>
  41. #include <asm/io.h>
  42. #include <asm/uaccess.h>
  43. #include <asm/desc.h>
  44. MODULE_AUTHOR("Qumranet");
  45. MODULE_LICENSE("GPL");
  46. static DEFINE_SPINLOCK(kvm_lock);
  47. static LIST_HEAD(vm_list);
  48. static cpumask_t cpus_hardware_enabled;
  49. struct kvm_x86_ops *kvm_x86_ops;
  50. struct kmem_cache *kvm_vcpu_cache;
  51. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  52. static __read_mostly struct preempt_ops kvm_preempt_ops;
  53. #define STAT_OFFSET(x) offsetof(struct kvm_vcpu, stat.x)
  54. static struct kvm_stats_debugfs_item {
  55. const char *name;
  56. int offset;
  57. struct dentry *dentry;
  58. } debugfs_entries[] = {
  59. { "pf_fixed", STAT_OFFSET(pf_fixed) },
  60. { "pf_guest", STAT_OFFSET(pf_guest) },
  61. { "tlb_flush", STAT_OFFSET(tlb_flush) },
  62. { "invlpg", STAT_OFFSET(invlpg) },
  63. { "exits", STAT_OFFSET(exits) },
  64. { "io_exits", STAT_OFFSET(io_exits) },
  65. { "mmio_exits", STAT_OFFSET(mmio_exits) },
  66. { "signal_exits", STAT_OFFSET(signal_exits) },
  67. { "irq_window", STAT_OFFSET(irq_window_exits) },
  68. { "halt_exits", STAT_OFFSET(halt_exits) },
  69. { "halt_wakeup", STAT_OFFSET(halt_wakeup) },
  70. { "request_irq", STAT_OFFSET(request_irq_exits) },
  71. { "irq_exits", STAT_OFFSET(irq_exits) },
  72. { "light_exits", STAT_OFFSET(light_exits) },
  73. { "efer_reload", STAT_OFFSET(efer_reload) },
  74. { NULL }
  75. };
  76. static struct dentry *debugfs_dir;
  77. #define MAX_IO_MSRS 256
  78. #define CR0_RESERVED_BITS \
  79. (~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
  80. | X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
  81. | X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
  82. #define CR4_RESERVED_BITS \
  83. (~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
  84. | X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
  85. | X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR \
  86. | X86_CR4_OSXMMEXCPT | X86_CR4_VMXE))
  87. #define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
  88. #define EFER_RESERVED_BITS 0xfffffffffffff2fe
  89. #ifdef CONFIG_X86_64
  90. // LDT or TSS descriptor in the GDT. 16 bytes.
  91. struct segment_descriptor_64 {
  92. struct segment_descriptor s;
  93. u32 base_higher;
  94. u32 pad_zero;
  95. };
  96. #endif
  97. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  98. unsigned long arg);
  99. unsigned long segment_base(u16 selector)
  100. {
  101. struct descriptor_table gdt;
  102. struct segment_descriptor *d;
  103. unsigned long table_base;
  104. typedef unsigned long ul;
  105. unsigned long v;
  106. if (selector == 0)
  107. return 0;
  108. asm ("sgdt %0" : "=m"(gdt));
  109. table_base = gdt.base;
  110. if (selector & 4) { /* from ldt */
  111. u16 ldt_selector;
  112. asm ("sldt %0" : "=g"(ldt_selector));
  113. table_base = segment_base(ldt_selector);
  114. }
  115. d = (struct segment_descriptor *)(table_base + (selector & ~7));
  116. v = d->base_low | ((ul)d->base_mid << 16) | ((ul)d->base_high << 24);
  117. #ifdef CONFIG_X86_64
  118. if (d->system == 0
  119. && (d->type == 2 || d->type == 9 || d->type == 11))
  120. v |= ((ul)((struct segment_descriptor_64 *)d)->base_higher) << 32;
  121. #endif
  122. return v;
  123. }
  124. EXPORT_SYMBOL_GPL(segment_base);
  125. static inline int valid_vcpu(int n)
  126. {
  127. return likely(n >= 0 && n < KVM_MAX_VCPUS);
  128. }
  129. void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
  130. {
  131. if (!vcpu->fpu_active || vcpu->guest_fpu_loaded)
  132. return;
  133. vcpu->guest_fpu_loaded = 1;
  134. fx_save(&vcpu->host_fx_image);
  135. fx_restore(&vcpu->guest_fx_image);
  136. }
  137. EXPORT_SYMBOL_GPL(kvm_load_guest_fpu);
  138. void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
  139. {
  140. if (!vcpu->guest_fpu_loaded)
  141. return;
  142. vcpu->guest_fpu_loaded = 0;
  143. fx_save(&vcpu->guest_fx_image);
  144. fx_restore(&vcpu->host_fx_image);
  145. }
  146. EXPORT_SYMBOL_GPL(kvm_put_guest_fpu);
  147. /*
  148. * Switches to specified vcpu, until a matching vcpu_put()
  149. */
  150. static void vcpu_load(struct kvm_vcpu *vcpu)
  151. {
  152. int cpu;
  153. mutex_lock(&vcpu->mutex);
  154. cpu = get_cpu();
  155. preempt_notifier_register(&vcpu->preempt_notifier);
  156. kvm_x86_ops->vcpu_load(vcpu, cpu);
  157. put_cpu();
  158. }
  159. static void vcpu_put(struct kvm_vcpu *vcpu)
  160. {
  161. preempt_disable();
  162. kvm_x86_ops->vcpu_put(vcpu);
  163. preempt_notifier_unregister(&vcpu->preempt_notifier);
  164. preempt_enable();
  165. mutex_unlock(&vcpu->mutex);
  166. }
  167. static void ack_flush(void *_completed)
  168. {
  169. atomic_t *completed = _completed;
  170. atomic_inc(completed);
  171. }
  172. void kvm_flush_remote_tlbs(struct kvm *kvm)
  173. {
  174. int i, cpu, needed;
  175. cpumask_t cpus;
  176. struct kvm_vcpu *vcpu;
  177. atomic_t completed;
  178. atomic_set(&completed, 0);
  179. cpus_clear(cpus);
  180. needed = 0;
  181. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  182. vcpu = kvm->vcpus[i];
  183. if (!vcpu)
  184. continue;
  185. if (test_and_set_bit(KVM_TLB_FLUSH, &vcpu->requests))
  186. continue;
  187. cpu = vcpu->cpu;
  188. if (cpu != -1 && cpu != raw_smp_processor_id())
  189. if (!cpu_isset(cpu, cpus)) {
  190. cpu_set(cpu, cpus);
  191. ++needed;
  192. }
  193. }
  194. /*
  195. * We really want smp_call_function_mask() here. But that's not
  196. * available, so ipi all cpus in parallel and wait for them
  197. * to complete.
  198. */
  199. for (cpu = first_cpu(cpus); cpu != NR_CPUS; cpu = next_cpu(cpu, cpus))
  200. smp_call_function_single(cpu, ack_flush, &completed, 1, 0);
  201. while (atomic_read(&completed) != needed) {
  202. cpu_relax();
  203. barrier();
  204. }
  205. }
  206. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  207. {
  208. struct page *page;
  209. int r;
  210. mutex_init(&vcpu->mutex);
  211. vcpu->cpu = -1;
  212. vcpu->mmu.root_hpa = INVALID_PAGE;
  213. vcpu->kvm = kvm;
  214. vcpu->vcpu_id = id;
  215. if (!irqchip_in_kernel(kvm) || id == 0)
  216. vcpu->mp_state = VCPU_MP_STATE_RUNNABLE;
  217. else
  218. vcpu->mp_state = VCPU_MP_STATE_UNINITIALIZED;
  219. init_waitqueue_head(&vcpu->wq);
  220. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  221. if (!page) {
  222. r = -ENOMEM;
  223. goto fail;
  224. }
  225. vcpu->run = page_address(page);
  226. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  227. if (!page) {
  228. r = -ENOMEM;
  229. goto fail_free_run;
  230. }
  231. vcpu->pio_data = page_address(page);
  232. r = kvm_mmu_create(vcpu);
  233. if (r < 0)
  234. goto fail_free_pio_data;
  235. return 0;
  236. fail_free_pio_data:
  237. free_page((unsigned long)vcpu->pio_data);
  238. fail_free_run:
  239. free_page((unsigned long)vcpu->run);
  240. fail:
  241. return -ENOMEM;
  242. }
  243. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  244. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  245. {
  246. kvm_mmu_destroy(vcpu);
  247. if (vcpu->apic)
  248. hrtimer_cancel(&vcpu->apic->timer.dev);
  249. kvm_free_apic(vcpu->apic);
  250. free_page((unsigned long)vcpu->pio_data);
  251. free_page((unsigned long)vcpu->run);
  252. }
  253. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  254. static struct kvm *kvm_create_vm(void)
  255. {
  256. struct kvm *kvm = kzalloc(sizeof(struct kvm), GFP_KERNEL);
  257. if (!kvm)
  258. return ERR_PTR(-ENOMEM);
  259. kvm_io_bus_init(&kvm->pio_bus);
  260. mutex_init(&kvm->lock);
  261. INIT_LIST_HEAD(&kvm->active_mmu_pages);
  262. kvm_io_bus_init(&kvm->mmio_bus);
  263. spin_lock(&kvm_lock);
  264. list_add(&kvm->vm_list, &vm_list);
  265. spin_unlock(&kvm_lock);
  266. return kvm;
  267. }
  268. /*
  269. * Free any memory in @free but not in @dont.
  270. */
  271. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  272. struct kvm_memory_slot *dont)
  273. {
  274. int i;
  275. if (!dont || free->phys_mem != dont->phys_mem)
  276. if (free->phys_mem) {
  277. for (i = 0; i < free->npages; ++i)
  278. if (free->phys_mem[i])
  279. __free_page(free->phys_mem[i]);
  280. vfree(free->phys_mem);
  281. }
  282. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  283. vfree(free->dirty_bitmap);
  284. free->phys_mem = NULL;
  285. free->npages = 0;
  286. free->dirty_bitmap = NULL;
  287. }
  288. static void kvm_free_physmem(struct kvm *kvm)
  289. {
  290. int i;
  291. for (i = 0; i < kvm->nmemslots; ++i)
  292. kvm_free_physmem_slot(&kvm->memslots[i], NULL);
  293. }
  294. static void free_pio_guest_pages(struct kvm_vcpu *vcpu)
  295. {
  296. int i;
  297. for (i = 0; i < ARRAY_SIZE(vcpu->pio.guest_pages); ++i)
  298. if (vcpu->pio.guest_pages[i]) {
  299. __free_page(vcpu->pio.guest_pages[i]);
  300. vcpu->pio.guest_pages[i] = NULL;
  301. }
  302. }
  303. static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
  304. {
  305. vcpu_load(vcpu);
  306. kvm_mmu_unload(vcpu);
  307. vcpu_put(vcpu);
  308. }
  309. static void kvm_free_vcpus(struct kvm *kvm)
  310. {
  311. unsigned int i;
  312. /*
  313. * Unpin any mmu pages first.
  314. */
  315. for (i = 0; i < KVM_MAX_VCPUS; ++i)
  316. if (kvm->vcpus[i])
  317. kvm_unload_vcpu_mmu(kvm->vcpus[i]);
  318. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  319. if (kvm->vcpus[i]) {
  320. kvm_x86_ops->vcpu_free(kvm->vcpus[i]);
  321. kvm->vcpus[i] = NULL;
  322. }
  323. }
  324. }
  325. static void kvm_destroy_vm(struct kvm *kvm)
  326. {
  327. spin_lock(&kvm_lock);
  328. list_del(&kvm->vm_list);
  329. spin_unlock(&kvm_lock);
  330. kvm_io_bus_destroy(&kvm->pio_bus);
  331. kvm_io_bus_destroy(&kvm->mmio_bus);
  332. kfree(kvm->vpic);
  333. kfree(kvm->vioapic);
  334. kvm_free_vcpus(kvm);
  335. kvm_free_physmem(kvm);
  336. kfree(kvm);
  337. }
  338. static int kvm_vm_release(struct inode *inode, struct file *filp)
  339. {
  340. struct kvm *kvm = filp->private_data;
  341. kvm_destroy_vm(kvm);
  342. return 0;
  343. }
  344. static void inject_gp(struct kvm_vcpu *vcpu)
  345. {
  346. kvm_x86_ops->inject_gp(vcpu, 0);
  347. }
  348. /*
  349. * Load the pae pdptrs. Return true is they are all valid.
  350. */
  351. static int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
  352. {
  353. gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
  354. unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
  355. int i;
  356. u64 *pdpt;
  357. int ret;
  358. struct page *page;
  359. u64 pdpte[ARRAY_SIZE(vcpu->pdptrs)];
  360. mutex_lock(&vcpu->kvm->lock);
  361. page = gfn_to_page(vcpu->kvm, pdpt_gfn);
  362. if (!page) {
  363. ret = 0;
  364. goto out;
  365. }
  366. pdpt = kmap_atomic(page, KM_USER0);
  367. memcpy(pdpte, pdpt+offset, sizeof(pdpte));
  368. kunmap_atomic(pdpt, KM_USER0);
  369. for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
  370. if ((pdpte[i] & 1) && (pdpte[i] & 0xfffffff0000001e6ull)) {
  371. ret = 0;
  372. goto out;
  373. }
  374. }
  375. ret = 1;
  376. memcpy(vcpu->pdptrs, pdpte, sizeof(vcpu->pdptrs));
  377. out:
  378. mutex_unlock(&vcpu->kvm->lock);
  379. return ret;
  380. }
  381. void set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
  382. {
  383. if (cr0 & CR0_RESERVED_BITS) {
  384. printk(KERN_DEBUG "set_cr0: 0x%lx #GP, reserved bits 0x%lx\n",
  385. cr0, vcpu->cr0);
  386. inject_gp(vcpu);
  387. return;
  388. }
  389. if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) {
  390. printk(KERN_DEBUG "set_cr0: #GP, CD == 0 && NW == 1\n");
  391. inject_gp(vcpu);
  392. return;
  393. }
  394. if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) {
  395. printk(KERN_DEBUG "set_cr0: #GP, set PG flag "
  396. "and a clear PE flag\n");
  397. inject_gp(vcpu);
  398. return;
  399. }
  400. if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
  401. #ifdef CONFIG_X86_64
  402. if ((vcpu->shadow_efer & EFER_LME)) {
  403. int cs_db, cs_l;
  404. if (!is_pae(vcpu)) {
  405. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  406. "in long mode while PAE is disabled\n");
  407. inject_gp(vcpu);
  408. return;
  409. }
  410. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  411. if (cs_l) {
  412. printk(KERN_DEBUG "set_cr0: #GP, start paging "
  413. "in long mode while CS.L == 1\n");
  414. inject_gp(vcpu);
  415. return;
  416. }
  417. } else
  418. #endif
  419. if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->cr3)) {
  420. printk(KERN_DEBUG "set_cr0: #GP, pdptrs "
  421. "reserved bits\n");
  422. inject_gp(vcpu);
  423. return;
  424. }
  425. }
  426. kvm_x86_ops->set_cr0(vcpu, cr0);
  427. vcpu->cr0 = cr0;
  428. mutex_lock(&vcpu->kvm->lock);
  429. kvm_mmu_reset_context(vcpu);
  430. mutex_unlock(&vcpu->kvm->lock);
  431. return;
  432. }
  433. EXPORT_SYMBOL_GPL(set_cr0);
  434. void lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
  435. {
  436. set_cr0(vcpu, (vcpu->cr0 & ~0x0ful) | (msw & 0x0f));
  437. }
  438. EXPORT_SYMBOL_GPL(lmsw);
  439. void set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
  440. {
  441. if (cr4 & CR4_RESERVED_BITS) {
  442. printk(KERN_DEBUG "set_cr4: #GP, reserved bits\n");
  443. inject_gp(vcpu);
  444. return;
  445. }
  446. if (is_long_mode(vcpu)) {
  447. if (!(cr4 & X86_CR4_PAE)) {
  448. printk(KERN_DEBUG "set_cr4: #GP, clearing PAE while "
  449. "in long mode\n");
  450. inject_gp(vcpu);
  451. return;
  452. }
  453. } else if (is_paging(vcpu) && !is_pae(vcpu) && (cr4 & X86_CR4_PAE)
  454. && !load_pdptrs(vcpu, vcpu->cr3)) {
  455. printk(KERN_DEBUG "set_cr4: #GP, pdptrs reserved bits\n");
  456. inject_gp(vcpu);
  457. return;
  458. }
  459. if (cr4 & X86_CR4_VMXE) {
  460. printk(KERN_DEBUG "set_cr4: #GP, setting VMXE\n");
  461. inject_gp(vcpu);
  462. return;
  463. }
  464. kvm_x86_ops->set_cr4(vcpu, cr4);
  465. vcpu->cr4 = cr4;
  466. mutex_lock(&vcpu->kvm->lock);
  467. kvm_mmu_reset_context(vcpu);
  468. mutex_unlock(&vcpu->kvm->lock);
  469. }
  470. EXPORT_SYMBOL_GPL(set_cr4);
  471. void set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
  472. {
  473. if (is_long_mode(vcpu)) {
  474. if (cr3 & CR3_L_MODE_RESERVED_BITS) {
  475. printk(KERN_DEBUG "set_cr3: #GP, reserved bits\n");
  476. inject_gp(vcpu);
  477. return;
  478. }
  479. } else {
  480. if (is_pae(vcpu)) {
  481. if (cr3 & CR3_PAE_RESERVED_BITS) {
  482. printk(KERN_DEBUG
  483. "set_cr3: #GP, reserved bits\n");
  484. inject_gp(vcpu);
  485. return;
  486. }
  487. if (is_paging(vcpu) && !load_pdptrs(vcpu, cr3)) {
  488. printk(KERN_DEBUG "set_cr3: #GP, pdptrs "
  489. "reserved bits\n");
  490. inject_gp(vcpu);
  491. return;
  492. }
  493. } else {
  494. if (cr3 & CR3_NONPAE_RESERVED_BITS) {
  495. printk(KERN_DEBUG
  496. "set_cr3: #GP, reserved bits\n");
  497. inject_gp(vcpu);
  498. return;
  499. }
  500. }
  501. }
  502. mutex_lock(&vcpu->kvm->lock);
  503. /*
  504. * Does the new cr3 value map to physical memory? (Note, we
  505. * catch an invalid cr3 even in real-mode, because it would
  506. * cause trouble later on when we turn on paging anyway.)
  507. *
  508. * A real CPU would silently accept an invalid cr3 and would
  509. * attempt to use it - with largely undefined (and often hard
  510. * to debug) behavior on the guest side.
  511. */
  512. if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
  513. inject_gp(vcpu);
  514. else {
  515. vcpu->cr3 = cr3;
  516. vcpu->mmu.new_cr3(vcpu);
  517. }
  518. mutex_unlock(&vcpu->kvm->lock);
  519. }
  520. EXPORT_SYMBOL_GPL(set_cr3);
  521. void set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
  522. {
  523. if (cr8 & CR8_RESERVED_BITS) {
  524. printk(KERN_DEBUG "set_cr8: #GP, reserved bits 0x%lx\n", cr8);
  525. inject_gp(vcpu);
  526. return;
  527. }
  528. if (irqchip_in_kernel(vcpu->kvm))
  529. kvm_lapic_set_tpr(vcpu, cr8);
  530. else
  531. vcpu->cr8 = cr8;
  532. }
  533. EXPORT_SYMBOL_GPL(set_cr8);
  534. unsigned long get_cr8(struct kvm_vcpu *vcpu)
  535. {
  536. if (irqchip_in_kernel(vcpu->kvm))
  537. return kvm_lapic_get_cr8(vcpu);
  538. else
  539. return vcpu->cr8;
  540. }
  541. EXPORT_SYMBOL_GPL(get_cr8);
  542. u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
  543. {
  544. if (irqchip_in_kernel(vcpu->kvm))
  545. return vcpu->apic_base;
  546. else
  547. return vcpu->apic_base;
  548. }
  549. EXPORT_SYMBOL_GPL(kvm_get_apic_base);
  550. void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
  551. {
  552. /* TODO: reserve bits check */
  553. if (irqchip_in_kernel(vcpu->kvm))
  554. kvm_lapic_set_base(vcpu, data);
  555. else
  556. vcpu->apic_base = data;
  557. }
  558. EXPORT_SYMBOL_GPL(kvm_set_apic_base);
  559. void fx_init(struct kvm_vcpu *vcpu)
  560. {
  561. unsigned after_mxcsr_mask;
  562. /* Initialize guest FPU by resetting ours and saving into guest's */
  563. preempt_disable();
  564. fx_save(&vcpu->host_fx_image);
  565. fpu_init();
  566. fx_save(&vcpu->guest_fx_image);
  567. fx_restore(&vcpu->host_fx_image);
  568. preempt_enable();
  569. vcpu->cr0 |= X86_CR0_ET;
  570. after_mxcsr_mask = offsetof(struct i387_fxsave_struct, st_space);
  571. vcpu->guest_fx_image.mxcsr = 0x1f80;
  572. memset((void *)&vcpu->guest_fx_image + after_mxcsr_mask,
  573. 0, sizeof(struct i387_fxsave_struct) - after_mxcsr_mask);
  574. }
  575. EXPORT_SYMBOL_GPL(fx_init);
  576. /*
  577. * Allocate some memory and give it an address in the guest physical address
  578. * space.
  579. *
  580. * Discontiguous memory is allowed, mostly for framebuffers.
  581. */
  582. static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  583. struct kvm_memory_region *mem)
  584. {
  585. int r;
  586. gfn_t base_gfn;
  587. unsigned long npages;
  588. unsigned long i;
  589. struct kvm_memory_slot *memslot;
  590. struct kvm_memory_slot old, new;
  591. r = -EINVAL;
  592. /* General sanity checks */
  593. if (mem->memory_size & (PAGE_SIZE - 1))
  594. goto out;
  595. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  596. goto out;
  597. if (mem->slot >= KVM_MEMORY_SLOTS)
  598. goto out;
  599. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  600. goto out;
  601. memslot = &kvm->memslots[mem->slot];
  602. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  603. npages = mem->memory_size >> PAGE_SHIFT;
  604. if (!npages)
  605. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  606. mutex_lock(&kvm->lock);
  607. new = old = *memslot;
  608. new.base_gfn = base_gfn;
  609. new.npages = npages;
  610. new.flags = mem->flags;
  611. /* Disallow changing a memory slot's size. */
  612. r = -EINVAL;
  613. if (npages && old.npages && npages != old.npages)
  614. goto out_unlock;
  615. /* Check for overlaps */
  616. r = -EEXIST;
  617. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  618. struct kvm_memory_slot *s = &kvm->memslots[i];
  619. if (s == memslot)
  620. continue;
  621. if (!((base_gfn + npages <= s->base_gfn) ||
  622. (base_gfn >= s->base_gfn + s->npages)))
  623. goto out_unlock;
  624. }
  625. /* Deallocate if slot is being removed */
  626. if (!npages)
  627. new.phys_mem = NULL;
  628. /* Free page dirty bitmap if unneeded */
  629. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  630. new.dirty_bitmap = NULL;
  631. r = -ENOMEM;
  632. /* Allocate if a slot is being created */
  633. if (npages && !new.phys_mem) {
  634. new.phys_mem = vmalloc(npages * sizeof(struct page *));
  635. if (!new.phys_mem)
  636. goto out_unlock;
  637. memset(new.phys_mem, 0, npages * sizeof(struct page *));
  638. for (i = 0; i < npages; ++i) {
  639. new.phys_mem[i] = alloc_page(GFP_HIGHUSER
  640. | __GFP_ZERO);
  641. if (!new.phys_mem[i])
  642. goto out_unlock;
  643. set_page_private(new.phys_mem[i],0);
  644. }
  645. }
  646. /* Allocate page dirty bitmap if needed */
  647. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  648. unsigned dirty_bytes = ALIGN(npages, BITS_PER_LONG) / 8;
  649. new.dirty_bitmap = vmalloc(dirty_bytes);
  650. if (!new.dirty_bitmap)
  651. goto out_unlock;
  652. memset(new.dirty_bitmap, 0, dirty_bytes);
  653. }
  654. if (mem->slot >= kvm->nmemslots)
  655. kvm->nmemslots = mem->slot + 1;
  656. *memslot = new;
  657. kvm_mmu_slot_remove_write_access(kvm, mem->slot);
  658. kvm_flush_remote_tlbs(kvm);
  659. mutex_unlock(&kvm->lock);
  660. kvm_free_physmem_slot(&old, &new);
  661. return 0;
  662. out_unlock:
  663. mutex_unlock(&kvm->lock);
  664. kvm_free_physmem_slot(&new, &old);
  665. out:
  666. return r;
  667. }
  668. /*
  669. * Get (and clear) the dirty memory log for a memory slot.
  670. */
  671. static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
  672. struct kvm_dirty_log *log)
  673. {
  674. struct kvm_memory_slot *memslot;
  675. int r, i;
  676. int n;
  677. unsigned long any = 0;
  678. mutex_lock(&kvm->lock);
  679. r = -EINVAL;
  680. if (log->slot >= KVM_MEMORY_SLOTS)
  681. goto out;
  682. memslot = &kvm->memslots[log->slot];
  683. r = -ENOENT;
  684. if (!memslot->dirty_bitmap)
  685. goto out;
  686. n = ALIGN(memslot->npages, BITS_PER_LONG) / 8;
  687. for (i = 0; !any && i < n/sizeof(long); ++i)
  688. any = memslot->dirty_bitmap[i];
  689. r = -EFAULT;
  690. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  691. goto out;
  692. /* If nothing is dirty, don't bother messing with page tables. */
  693. if (any) {
  694. kvm_mmu_slot_remove_write_access(kvm, log->slot);
  695. kvm_flush_remote_tlbs(kvm);
  696. memset(memslot->dirty_bitmap, 0, n);
  697. }
  698. r = 0;
  699. out:
  700. mutex_unlock(&kvm->lock);
  701. return r;
  702. }
  703. /*
  704. * Set a new alias region. Aliases map a portion of physical memory into
  705. * another portion. This is useful for memory windows, for example the PC
  706. * VGA region.
  707. */
  708. static int kvm_vm_ioctl_set_memory_alias(struct kvm *kvm,
  709. struct kvm_memory_alias *alias)
  710. {
  711. int r, n;
  712. struct kvm_mem_alias *p;
  713. r = -EINVAL;
  714. /* General sanity checks */
  715. if (alias->memory_size & (PAGE_SIZE - 1))
  716. goto out;
  717. if (alias->guest_phys_addr & (PAGE_SIZE - 1))
  718. goto out;
  719. if (alias->slot >= KVM_ALIAS_SLOTS)
  720. goto out;
  721. if (alias->guest_phys_addr + alias->memory_size
  722. < alias->guest_phys_addr)
  723. goto out;
  724. if (alias->target_phys_addr + alias->memory_size
  725. < alias->target_phys_addr)
  726. goto out;
  727. mutex_lock(&kvm->lock);
  728. p = &kvm->aliases[alias->slot];
  729. p->base_gfn = alias->guest_phys_addr >> PAGE_SHIFT;
  730. p->npages = alias->memory_size >> PAGE_SHIFT;
  731. p->target_gfn = alias->target_phys_addr >> PAGE_SHIFT;
  732. for (n = KVM_ALIAS_SLOTS; n > 0; --n)
  733. if (kvm->aliases[n - 1].npages)
  734. break;
  735. kvm->naliases = n;
  736. kvm_mmu_zap_all(kvm);
  737. mutex_unlock(&kvm->lock);
  738. return 0;
  739. out:
  740. return r;
  741. }
  742. static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  743. {
  744. int r;
  745. r = 0;
  746. switch (chip->chip_id) {
  747. case KVM_IRQCHIP_PIC_MASTER:
  748. memcpy (&chip->chip.pic,
  749. &pic_irqchip(kvm)->pics[0],
  750. sizeof(struct kvm_pic_state));
  751. break;
  752. case KVM_IRQCHIP_PIC_SLAVE:
  753. memcpy (&chip->chip.pic,
  754. &pic_irqchip(kvm)->pics[1],
  755. sizeof(struct kvm_pic_state));
  756. break;
  757. case KVM_IRQCHIP_IOAPIC:
  758. memcpy (&chip->chip.ioapic,
  759. ioapic_irqchip(kvm),
  760. sizeof(struct kvm_ioapic_state));
  761. break;
  762. default:
  763. r = -EINVAL;
  764. break;
  765. }
  766. return r;
  767. }
  768. static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
  769. {
  770. int r;
  771. r = 0;
  772. switch (chip->chip_id) {
  773. case KVM_IRQCHIP_PIC_MASTER:
  774. memcpy (&pic_irqchip(kvm)->pics[0],
  775. &chip->chip.pic,
  776. sizeof(struct kvm_pic_state));
  777. break;
  778. case KVM_IRQCHIP_PIC_SLAVE:
  779. memcpy (&pic_irqchip(kvm)->pics[1],
  780. &chip->chip.pic,
  781. sizeof(struct kvm_pic_state));
  782. break;
  783. case KVM_IRQCHIP_IOAPIC:
  784. memcpy (ioapic_irqchip(kvm),
  785. &chip->chip.ioapic,
  786. sizeof(struct kvm_ioapic_state));
  787. break;
  788. default:
  789. r = -EINVAL;
  790. break;
  791. }
  792. kvm_pic_update_irq(pic_irqchip(kvm));
  793. return r;
  794. }
  795. static gfn_t unalias_gfn(struct kvm *kvm, gfn_t gfn)
  796. {
  797. int i;
  798. struct kvm_mem_alias *alias;
  799. for (i = 0; i < kvm->naliases; ++i) {
  800. alias = &kvm->aliases[i];
  801. if (gfn >= alias->base_gfn
  802. && gfn < alias->base_gfn + alias->npages)
  803. return alias->target_gfn + gfn - alias->base_gfn;
  804. }
  805. return gfn;
  806. }
  807. static struct kvm_memory_slot *__gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  808. {
  809. int i;
  810. for (i = 0; i < kvm->nmemslots; ++i) {
  811. struct kvm_memory_slot *memslot = &kvm->memslots[i];
  812. if (gfn >= memslot->base_gfn
  813. && gfn < memslot->base_gfn + memslot->npages)
  814. return memslot;
  815. }
  816. return NULL;
  817. }
  818. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  819. {
  820. gfn = unalias_gfn(kvm, gfn);
  821. return __gfn_to_memslot(kvm, gfn);
  822. }
  823. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  824. {
  825. struct kvm_memory_slot *slot;
  826. gfn = unalias_gfn(kvm, gfn);
  827. slot = __gfn_to_memslot(kvm, gfn);
  828. if (!slot)
  829. return NULL;
  830. return slot->phys_mem[gfn - slot->base_gfn];
  831. }
  832. EXPORT_SYMBOL_GPL(gfn_to_page);
  833. /* WARNING: Does not work on aliased pages. */
  834. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  835. {
  836. struct kvm_memory_slot *memslot;
  837. memslot = __gfn_to_memslot(kvm, gfn);
  838. if (memslot && memslot->dirty_bitmap) {
  839. unsigned long rel_gfn = gfn - memslot->base_gfn;
  840. /* avoid RMW */
  841. if (!test_bit(rel_gfn, memslot->dirty_bitmap))
  842. set_bit(rel_gfn, memslot->dirty_bitmap);
  843. }
  844. }
  845. int emulator_read_std(unsigned long addr,
  846. void *val,
  847. unsigned int bytes,
  848. struct kvm_vcpu *vcpu)
  849. {
  850. void *data = val;
  851. while (bytes) {
  852. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  853. unsigned offset = addr & (PAGE_SIZE-1);
  854. unsigned tocopy = min(bytes, (unsigned)PAGE_SIZE - offset);
  855. unsigned long pfn;
  856. struct page *page;
  857. void *page_virt;
  858. if (gpa == UNMAPPED_GVA)
  859. return X86EMUL_PROPAGATE_FAULT;
  860. pfn = gpa >> PAGE_SHIFT;
  861. page = gfn_to_page(vcpu->kvm, pfn);
  862. if (!page)
  863. return X86EMUL_UNHANDLEABLE;
  864. page_virt = kmap_atomic(page, KM_USER0);
  865. memcpy(data, page_virt + offset, tocopy);
  866. kunmap_atomic(page_virt, KM_USER0);
  867. bytes -= tocopy;
  868. data += tocopy;
  869. addr += tocopy;
  870. }
  871. return X86EMUL_CONTINUE;
  872. }
  873. EXPORT_SYMBOL_GPL(emulator_read_std);
  874. static int emulator_write_std(unsigned long addr,
  875. const void *val,
  876. unsigned int bytes,
  877. struct kvm_vcpu *vcpu)
  878. {
  879. pr_unimpl(vcpu, "emulator_write_std: addr %lx n %d\n", addr, bytes);
  880. return X86EMUL_UNHANDLEABLE;
  881. }
  882. /*
  883. * Only apic need an MMIO device hook, so shortcut now..
  884. */
  885. static struct kvm_io_device *vcpu_find_pervcpu_dev(struct kvm_vcpu *vcpu,
  886. gpa_t addr)
  887. {
  888. struct kvm_io_device *dev;
  889. if (vcpu->apic) {
  890. dev = &vcpu->apic->dev;
  891. if (dev->in_range(dev, addr))
  892. return dev;
  893. }
  894. return NULL;
  895. }
  896. static struct kvm_io_device *vcpu_find_mmio_dev(struct kvm_vcpu *vcpu,
  897. gpa_t addr)
  898. {
  899. struct kvm_io_device *dev;
  900. dev = vcpu_find_pervcpu_dev(vcpu, addr);
  901. if (dev == NULL)
  902. dev = kvm_io_bus_find_dev(&vcpu->kvm->mmio_bus, addr);
  903. return dev;
  904. }
  905. static struct kvm_io_device *vcpu_find_pio_dev(struct kvm_vcpu *vcpu,
  906. gpa_t addr)
  907. {
  908. return kvm_io_bus_find_dev(&vcpu->kvm->pio_bus, addr);
  909. }
  910. static int emulator_read_emulated(unsigned long addr,
  911. void *val,
  912. unsigned int bytes,
  913. struct kvm_vcpu *vcpu)
  914. {
  915. struct kvm_io_device *mmio_dev;
  916. gpa_t gpa;
  917. if (vcpu->mmio_read_completed) {
  918. memcpy(val, vcpu->mmio_data, bytes);
  919. vcpu->mmio_read_completed = 0;
  920. return X86EMUL_CONTINUE;
  921. } else if (emulator_read_std(addr, val, bytes, vcpu)
  922. == X86EMUL_CONTINUE)
  923. return X86EMUL_CONTINUE;
  924. gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  925. if (gpa == UNMAPPED_GVA)
  926. return X86EMUL_PROPAGATE_FAULT;
  927. /*
  928. * Is this MMIO handled locally?
  929. */
  930. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  931. if (mmio_dev) {
  932. kvm_iodevice_read(mmio_dev, gpa, bytes, val);
  933. return X86EMUL_CONTINUE;
  934. }
  935. vcpu->mmio_needed = 1;
  936. vcpu->mmio_phys_addr = gpa;
  937. vcpu->mmio_size = bytes;
  938. vcpu->mmio_is_write = 0;
  939. return X86EMUL_UNHANDLEABLE;
  940. }
  941. static int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
  942. const void *val, int bytes)
  943. {
  944. struct page *page;
  945. void *virt;
  946. if (((gpa + bytes - 1) >> PAGE_SHIFT) != (gpa >> PAGE_SHIFT))
  947. return 0;
  948. page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
  949. if (!page)
  950. return 0;
  951. mark_page_dirty(vcpu->kvm, gpa >> PAGE_SHIFT);
  952. virt = kmap_atomic(page, KM_USER0);
  953. kvm_mmu_pte_write(vcpu, gpa, val, bytes);
  954. memcpy(virt + offset_in_page(gpa), val, bytes);
  955. kunmap_atomic(virt, KM_USER0);
  956. return 1;
  957. }
  958. static int emulator_write_emulated_onepage(unsigned long addr,
  959. const void *val,
  960. unsigned int bytes,
  961. struct kvm_vcpu *vcpu)
  962. {
  963. struct kvm_io_device *mmio_dev;
  964. gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, addr);
  965. if (gpa == UNMAPPED_GVA) {
  966. kvm_x86_ops->inject_page_fault(vcpu, addr, 2);
  967. return X86EMUL_PROPAGATE_FAULT;
  968. }
  969. if (emulator_write_phys(vcpu, gpa, val, bytes))
  970. return X86EMUL_CONTINUE;
  971. /*
  972. * Is this MMIO handled locally?
  973. */
  974. mmio_dev = vcpu_find_mmio_dev(vcpu, gpa);
  975. if (mmio_dev) {
  976. kvm_iodevice_write(mmio_dev, gpa, bytes, val);
  977. return X86EMUL_CONTINUE;
  978. }
  979. vcpu->mmio_needed = 1;
  980. vcpu->mmio_phys_addr = gpa;
  981. vcpu->mmio_size = bytes;
  982. vcpu->mmio_is_write = 1;
  983. memcpy(vcpu->mmio_data, val, bytes);
  984. return X86EMUL_CONTINUE;
  985. }
  986. int emulator_write_emulated(unsigned long addr,
  987. const void *val,
  988. unsigned int bytes,
  989. struct kvm_vcpu *vcpu)
  990. {
  991. /* Crossing a page boundary? */
  992. if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
  993. int rc, now;
  994. now = -addr & ~PAGE_MASK;
  995. rc = emulator_write_emulated_onepage(addr, val, now, vcpu);
  996. if (rc != X86EMUL_CONTINUE)
  997. return rc;
  998. addr += now;
  999. val += now;
  1000. bytes -= now;
  1001. }
  1002. return emulator_write_emulated_onepage(addr, val, bytes, vcpu);
  1003. }
  1004. EXPORT_SYMBOL_GPL(emulator_write_emulated);
  1005. static int emulator_cmpxchg_emulated(unsigned long addr,
  1006. const void *old,
  1007. const void *new,
  1008. unsigned int bytes,
  1009. struct kvm_vcpu *vcpu)
  1010. {
  1011. static int reported;
  1012. if (!reported) {
  1013. reported = 1;
  1014. printk(KERN_WARNING "kvm: emulating exchange as write\n");
  1015. }
  1016. return emulator_write_emulated(addr, new, bytes, vcpu);
  1017. }
  1018. static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
  1019. {
  1020. return kvm_x86_ops->get_segment_base(vcpu, seg);
  1021. }
  1022. int emulate_invlpg(struct kvm_vcpu *vcpu, gva_t address)
  1023. {
  1024. return X86EMUL_CONTINUE;
  1025. }
  1026. int emulate_clts(struct kvm_vcpu *vcpu)
  1027. {
  1028. vcpu->cr0 &= ~X86_CR0_TS;
  1029. kvm_x86_ops->set_cr0(vcpu, vcpu->cr0);
  1030. return X86EMUL_CONTINUE;
  1031. }
  1032. int emulator_get_dr(struct x86_emulate_ctxt* ctxt, int dr, unsigned long *dest)
  1033. {
  1034. struct kvm_vcpu *vcpu = ctxt->vcpu;
  1035. switch (dr) {
  1036. case 0 ... 3:
  1037. *dest = kvm_x86_ops->get_dr(vcpu, dr);
  1038. return X86EMUL_CONTINUE;
  1039. default:
  1040. pr_unimpl(vcpu, "%s: unexpected dr %u\n", __FUNCTION__, dr);
  1041. return X86EMUL_UNHANDLEABLE;
  1042. }
  1043. }
  1044. int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
  1045. {
  1046. unsigned long mask = (ctxt->mode == X86EMUL_MODE_PROT64) ? ~0ULL : ~0U;
  1047. int exception;
  1048. kvm_x86_ops->set_dr(ctxt->vcpu, dr, value & mask, &exception);
  1049. if (exception) {
  1050. /* FIXME: better handling */
  1051. return X86EMUL_UNHANDLEABLE;
  1052. }
  1053. return X86EMUL_CONTINUE;
  1054. }
  1055. static void report_emulation_failure(struct x86_emulate_ctxt *ctxt)
  1056. {
  1057. static int reported;
  1058. u8 opcodes[4];
  1059. unsigned long rip = ctxt->vcpu->rip;
  1060. unsigned long rip_linear;
  1061. rip_linear = rip + get_segment_base(ctxt->vcpu, VCPU_SREG_CS);
  1062. if (reported)
  1063. return;
  1064. emulator_read_std(rip_linear, (void *)opcodes, 4, ctxt->vcpu);
  1065. printk(KERN_ERR "emulation failed but !mmio_needed?"
  1066. " rip %lx %02x %02x %02x %02x\n",
  1067. rip, opcodes[0], opcodes[1], opcodes[2], opcodes[3]);
  1068. reported = 1;
  1069. }
  1070. struct x86_emulate_ops emulate_ops = {
  1071. .read_std = emulator_read_std,
  1072. .write_std = emulator_write_std,
  1073. .read_emulated = emulator_read_emulated,
  1074. .write_emulated = emulator_write_emulated,
  1075. .cmpxchg_emulated = emulator_cmpxchg_emulated,
  1076. };
  1077. int emulate_instruction(struct kvm_vcpu *vcpu,
  1078. struct kvm_run *run,
  1079. unsigned long cr2,
  1080. u16 error_code)
  1081. {
  1082. struct x86_emulate_ctxt emulate_ctxt;
  1083. int r;
  1084. int cs_db, cs_l;
  1085. vcpu->mmio_fault_cr2 = cr2;
  1086. kvm_x86_ops->cache_regs(vcpu);
  1087. kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
  1088. emulate_ctxt.vcpu = vcpu;
  1089. emulate_ctxt.eflags = kvm_x86_ops->get_rflags(vcpu);
  1090. emulate_ctxt.cr2 = cr2;
  1091. emulate_ctxt.mode = (emulate_ctxt.eflags & X86_EFLAGS_VM)
  1092. ? X86EMUL_MODE_REAL : cs_l
  1093. ? X86EMUL_MODE_PROT64 : cs_db
  1094. ? X86EMUL_MODE_PROT32 : X86EMUL_MODE_PROT16;
  1095. if (emulate_ctxt.mode == X86EMUL_MODE_PROT64) {
  1096. emulate_ctxt.cs_base = 0;
  1097. emulate_ctxt.ds_base = 0;
  1098. emulate_ctxt.es_base = 0;
  1099. emulate_ctxt.ss_base = 0;
  1100. } else {
  1101. emulate_ctxt.cs_base = get_segment_base(vcpu, VCPU_SREG_CS);
  1102. emulate_ctxt.ds_base = get_segment_base(vcpu, VCPU_SREG_DS);
  1103. emulate_ctxt.es_base = get_segment_base(vcpu, VCPU_SREG_ES);
  1104. emulate_ctxt.ss_base = get_segment_base(vcpu, VCPU_SREG_SS);
  1105. }
  1106. emulate_ctxt.gs_base = get_segment_base(vcpu, VCPU_SREG_GS);
  1107. emulate_ctxt.fs_base = get_segment_base(vcpu, VCPU_SREG_FS);
  1108. vcpu->mmio_is_write = 0;
  1109. vcpu->pio.string = 0;
  1110. r = x86_emulate_memop(&emulate_ctxt, &emulate_ops);
  1111. if (vcpu->pio.string)
  1112. return EMULATE_DO_MMIO;
  1113. if ((r || vcpu->mmio_is_write) && run) {
  1114. run->exit_reason = KVM_EXIT_MMIO;
  1115. run->mmio.phys_addr = vcpu->mmio_phys_addr;
  1116. memcpy(run->mmio.data, vcpu->mmio_data, 8);
  1117. run->mmio.len = vcpu->mmio_size;
  1118. run->mmio.is_write = vcpu->mmio_is_write;
  1119. }
  1120. if (r) {
  1121. if (kvm_mmu_unprotect_page_virt(vcpu, cr2))
  1122. return EMULATE_DONE;
  1123. if (!vcpu->mmio_needed) {
  1124. report_emulation_failure(&emulate_ctxt);
  1125. return EMULATE_FAIL;
  1126. }
  1127. return EMULATE_DO_MMIO;
  1128. }
  1129. kvm_x86_ops->decache_regs(vcpu);
  1130. kvm_x86_ops->set_rflags(vcpu, emulate_ctxt.eflags);
  1131. if (vcpu->mmio_is_write) {
  1132. vcpu->mmio_needed = 0;
  1133. return EMULATE_DO_MMIO;
  1134. }
  1135. return EMULATE_DONE;
  1136. }
  1137. EXPORT_SYMBOL_GPL(emulate_instruction);
  1138. /*
  1139. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1140. */
  1141. static void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1142. {
  1143. DECLARE_WAITQUEUE(wait, current);
  1144. add_wait_queue(&vcpu->wq, &wait);
  1145. /*
  1146. * We will block until either an interrupt or a signal wakes us up
  1147. */
  1148. while (!kvm_cpu_has_interrupt(vcpu)
  1149. && !signal_pending(current)
  1150. && vcpu->mp_state != VCPU_MP_STATE_RUNNABLE
  1151. && vcpu->mp_state != VCPU_MP_STATE_SIPI_RECEIVED) {
  1152. set_current_state(TASK_INTERRUPTIBLE);
  1153. vcpu_put(vcpu);
  1154. schedule();
  1155. vcpu_load(vcpu);
  1156. }
  1157. __set_current_state(TASK_RUNNING);
  1158. remove_wait_queue(&vcpu->wq, &wait);
  1159. }
  1160. int kvm_emulate_halt(struct kvm_vcpu *vcpu)
  1161. {
  1162. ++vcpu->stat.halt_exits;
  1163. if (irqchip_in_kernel(vcpu->kvm)) {
  1164. vcpu->mp_state = VCPU_MP_STATE_HALTED;
  1165. kvm_vcpu_block(vcpu);
  1166. if (vcpu->mp_state != VCPU_MP_STATE_RUNNABLE)
  1167. return -EINTR;
  1168. return 1;
  1169. } else {
  1170. vcpu->run->exit_reason = KVM_EXIT_HLT;
  1171. return 0;
  1172. }
  1173. }
  1174. EXPORT_SYMBOL_GPL(kvm_emulate_halt);
  1175. int kvm_hypercall(struct kvm_vcpu *vcpu, struct kvm_run *run)
  1176. {
  1177. unsigned long nr, a0, a1, a2, a3, a4, a5, ret;
  1178. kvm_x86_ops->cache_regs(vcpu);
  1179. ret = -KVM_EINVAL;
  1180. #ifdef CONFIG_X86_64
  1181. if (is_long_mode(vcpu)) {
  1182. nr = vcpu->regs[VCPU_REGS_RAX];
  1183. a0 = vcpu->regs[VCPU_REGS_RDI];
  1184. a1 = vcpu->regs[VCPU_REGS_RSI];
  1185. a2 = vcpu->regs[VCPU_REGS_RDX];
  1186. a3 = vcpu->regs[VCPU_REGS_RCX];
  1187. a4 = vcpu->regs[VCPU_REGS_R8];
  1188. a5 = vcpu->regs[VCPU_REGS_R9];
  1189. } else
  1190. #endif
  1191. {
  1192. nr = vcpu->regs[VCPU_REGS_RBX] & -1u;
  1193. a0 = vcpu->regs[VCPU_REGS_RAX] & -1u;
  1194. a1 = vcpu->regs[VCPU_REGS_RCX] & -1u;
  1195. a2 = vcpu->regs[VCPU_REGS_RDX] & -1u;
  1196. a3 = vcpu->regs[VCPU_REGS_RSI] & -1u;
  1197. a4 = vcpu->regs[VCPU_REGS_RDI] & -1u;
  1198. a5 = vcpu->regs[VCPU_REGS_RBP] & -1u;
  1199. }
  1200. switch (nr) {
  1201. default:
  1202. run->hypercall.nr = nr;
  1203. run->hypercall.args[0] = a0;
  1204. run->hypercall.args[1] = a1;
  1205. run->hypercall.args[2] = a2;
  1206. run->hypercall.args[3] = a3;
  1207. run->hypercall.args[4] = a4;
  1208. run->hypercall.args[5] = a5;
  1209. run->hypercall.ret = ret;
  1210. run->hypercall.longmode = is_long_mode(vcpu);
  1211. kvm_x86_ops->decache_regs(vcpu);
  1212. return 0;
  1213. }
  1214. vcpu->regs[VCPU_REGS_RAX] = ret;
  1215. kvm_x86_ops->decache_regs(vcpu);
  1216. return 1;
  1217. }
  1218. EXPORT_SYMBOL_GPL(kvm_hypercall);
  1219. static u64 mk_cr_64(u64 curr_cr, u32 new_val)
  1220. {
  1221. return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
  1222. }
  1223. void realmode_lgdt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1224. {
  1225. struct descriptor_table dt = { limit, base };
  1226. kvm_x86_ops->set_gdt(vcpu, &dt);
  1227. }
  1228. void realmode_lidt(struct kvm_vcpu *vcpu, u16 limit, unsigned long base)
  1229. {
  1230. struct descriptor_table dt = { limit, base };
  1231. kvm_x86_ops->set_idt(vcpu, &dt);
  1232. }
  1233. void realmode_lmsw(struct kvm_vcpu *vcpu, unsigned long msw,
  1234. unsigned long *rflags)
  1235. {
  1236. lmsw(vcpu, msw);
  1237. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1238. }
  1239. unsigned long realmode_get_cr(struct kvm_vcpu *vcpu, int cr)
  1240. {
  1241. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1242. switch (cr) {
  1243. case 0:
  1244. return vcpu->cr0;
  1245. case 2:
  1246. return vcpu->cr2;
  1247. case 3:
  1248. return vcpu->cr3;
  1249. case 4:
  1250. return vcpu->cr4;
  1251. default:
  1252. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1253. return 0;
  1254. }
  1255. }
  1256. void realmode_set_cr(struct kvm_vcpu *vcpu, int cr, unsigned long val,
  1257. unsigned long *rflags)
  1258. {
  1259. switch (cr) {
  1260. case 0:
  1261. set_cr0(vcpu, mk_cr_64(vcpu->cr0, val));
  1262. *rflags = kvm_x86_ops->get_rflags(vcpu);
  1263. break;
  1264. case 2:
  1265. vcpu->cr2 = val;
  1266. break;
  1267. case 3:
  1268. set_cr3(vcpu, val);
  1269. break;
  1270. case 4:
  1271. set_cr4(vcpu, mk_cr_64(vcpu->cr4, val));
  1272. break;
  1273. default:
  1274. vcpu_printf(vcpu, "%s: unexpected cr %u\n", __FUNCTION__, cr);
  1275. }
  1276. }
  1277. /*
  1278. * Register the para guest with the host:
  1279. */
  1280. static int vcpu_register_para(struct kvm_vcpu *vcpu, gpa_t para_state_gpa)
  1281. {
  1282. struct kvm_vcpu_para_state *para_state;
  1283. hpa_t para_state_hpa, hypercall_hpa;
  1284. struct page *para_state_page;
  1285. unsigned char *hypercall;
  1286. gpa_t hypercall_gpa;
  1287. printk(KERN_DEBUG "kvm: guest trying to enter paravirtual mode\n");
  1288. printk(KERN_DEBUG ".... para_state_gpa: %08Lx\n", para_state_gpa);
  1289. /*
  1290. * Needs to be page aligned:
  1291. */
  1292. if (para_state_gpa != PAGE_ALIGN(para_state_gpa))
  1293. goto err_gp;
  1294. para_state_hpa = gpa_to_hpa(vcpu, para_state_gpa);
  1295. printk(KERN_DEBUG ".... para_state_hpa: %08Lx\n", para_state_hpa);
  1296. if (is_error_hpa(para_state_hpa))
  1297. goto err_gp;
  1298. mark_page_dirty(vcpu->kvm, para_state_gpa >> PAGE_SHIFT);
  1299. para_state_page = pfn_to_page(para_state_hpa >> PAGE_SHIFT);
  1300. para_state = kmap(para_state_page);
  1301. printk(KERN_DEBUG ".... guest version: %d\n", para_state->guest_version);
  1302. printk(KERN_DEBUG ".... size: %d\n", para_state->size);
  1303. para_state->host_version = KVM_PARA_API_VERSION;
  1304. /*
  1305. * We cannot support guests that try to register themselves
  1306. * with a newer API version than the host supports:
  1307. */
  1308. if (para_state->guest_version > KVM_PARA_API_VERSION) {
  1309. para_state->ret = -KVM_EINVAL;
  1310. goto err_kunmap_skip;
  1311. }
  1312. hypercall_gpa = para_state->hypercall_gpa;
  1313. hypercall_hpa = gpa_to_hpa(vcpu, hypercall_gpa);
  1314. printk(KERN_DEBUG ".... hypercall_hpa: %08Lx\n", hypercall_hpa);
  1315. if (is_error_hpa(hypercall_hpa)) {
  1316. para_state->ret = -KVM_EINVAL;
  1317. goto err_kunmap_skip;
  1318. }
  1319. printk(KERN_DEBUG "kvm: para guest successfully registered.\n");
  1320. vcpu->para_state_page = para_state_page;
  1321. vcpu->para_state_gpa = para_state_gpa;
  1322. vcpu->hypercall_gpa = hypercall_gpa;
  1323. mark_page_dirty(vcpu->kvm, hypercall_gpa >> PAGE_SHIFT);
  1324. hypercall = kmap_atomic(pfn_to_page(hypercall_hpa >> PAGE_SHIFT),
  1325. KM_USER1) + (hypercall_hpa & ~PAGE_MASK);
  1326. kvm_x86_ops->patch_hypercall(vcpu, hypercall);
  1327. kunmap_atomic(hypercall, KM_USER1);
  1328. para_state->ret = 0;
  1329. err_kunmap_skip:
  1330. kunmap(para_state_page);
  1331. return 0;
  1332. err_gp:
  1333. return 1;
  1334. }
  1335. int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
  1336. {
  1337. u64 data;
  1338. switch (msr) {
  1339. case 0xc0010010: /* SYSCFG */
  1340. case 0xc0010015: /* HWCR */
  1341. case MSR_IA32_PLATFORM_ID:
  1342. case MSR_IA32_P5_MC_ADDR:
  1343. case MSR_IA32_P5_MC_TYPE:
  1344. case MSR_IA32_MC0_CTL:
  1345. case MSR_IA32_MCG_STATUS:
  1346. case MSR_IA32_MCG_CAP:
  1347. case MSR_IA32_MC0_MISC:
  1348. case MSR_IA32_MC0_MISC+4:
  1349. case MSR_IA32_MC0_MISC+8:
  1350. case MSR_IA32_MC0_MISC+12:
  1351. case MSR_IA32_MC0_MISC+16:
  1352. case MSR_IA32_UCODE_REV:
  1353. case MSR_IA32_PERF_STATUS:
  1354. case MSR_IA32_EBL_CR_POWERON:
  1355. /* MTRR registers */
  1356. case 0xfe:
  1357. case 0x200 ... 0x2ff:
  1358. data = 0;
  1359. break;
  1360. case 0xcd: /* fsb frequency */
  1361. data = 3;
  1362. break;
  1363. case MSR_IA32_APICBASE:
  1364. data = kvm_get_apic_base(vcpu);
  1365. break;
  1366. case MSR_IA32_MISC_ENABLE:
  1367. data = vcpu->ia32_misc_enable_msr;
  1368. break;
  1369. #ifdef CONFIG_X86_64
  1370. case MSR_EFER:
  1371. data = vcpu->shadow_efer;
  1372. break;
  1373. #endif
  1374. default:
  1375. pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
  1376. return 1;
  1377. }
  1378. *pdata = data;
  1379. return 0;
  1380. }
  1381. EXPORT_SYMBOL_GPL(kvm_get_msr_common);
  1382. /*
  1383. * Reads an msr value (of 'msr_index') into 'pdata'.
  1384. * Returns 0 on success, non-0 otherwise.
  1385. * Assumes vcpu_load() was already called.
  1386. */
  1387. int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
  1388. {
  1389. return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
  1390. }
  1391. #ifdef CONFIG_X86_64
  1392. static void set_efer(struct kvm_vcpu *vcpu, u64 efer)
  1393. {
  1394. if (efer & EFER_RESERVED_BITS) {
  1395. printk(KERN_DEBUG "set_efer: 0x%llx #GP, reserved bits\n",
  1396. efer);
  1397. inject_gp(vcpu);
  1398. return;
  1399. }
  1400. if (is_paging(vcpu)
  1401. && (vcpu->shadow_efer & EFER_LME) != (efer & EFER_LME)) {
  1402. printk(KERN_DEBUG "set_efer: #GP, change LME while paging\n");
  1403. inject_gp(vcpu);
  1404. return;
  1405. }
  1406. kvm_x86_ops->set_efer(vcpu, efer);
  1407. efer &= ~EFER_LMA;
  1408. efer |= vcpu->shadow_efer & EFER_LMA;
  1409. vcpu->shadow_efer = efer;
  1410. }
  1411. #endif
  1412. int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
  1413. {
  1414. switch (msr) {
  1415. #ifdef CONFIG_X86_64
  1416. case MSR_EFER:
  1417. set_efer(vcpu, data);
  1418. break;
  1419. #endif
  1420. case MSR_IA32_MC0_STATUS:
  1421. pr_unimpl(vcpu, "%s: MSR_IA32_MC0_STATUS 0x%llx, nop\n",
  1422. __FUNCTION__, data);
  1423. break;
  1424. case MSR_IA32_MCG_STATUS:
  1425. pr_unimpl(vcpu, "%s: MSR_IA32_MCG_STATUS 0x%llx, nop\n",
  1426. __FUNCTION__, data);
  1427. break;
  1428. case MSR_IA32_UCODE_REV:
  1429. case MSR_IA32_UCODE_WRITE:
  1430. case 0x200 ... 0x2ff: /* MTRRs */
  1431. break;
  1432. case MSR_IA32_APICBASE:
  1433. kvm_set_apic_base(vcpu, data);
  1434. break;
  1435. case MSR_IA32_MISC_ENABLE:
  1436. vcpu->ia32_misc_enable_msr = data;
  1437. break;
  1438. /*
  1439. * This is the 'probe whether the host is KVM' logic:
  1440. */
  1441. case MSR_KVM_API_MAGIC:
  1442. return vcpu_register_para(vcpu, data);
  1443. default:
  1444. pr_unimpl(vcpu, "unhandled wrmsr: 0x%x\n", msr);
  1445. return 1;
  1446. }
  1447. return 0;
  1448. }
  1449. EXPORT_SYMBOL_GPL(kvm_set_msr_common);
  1450. /*
  1451. * Writes msr value into into the appropriate "register".
  1452. * Returns 0 on success, non-0 otherwise.
  1453. * Assumes vcpu_load() was already called.
  1454. */
  1455. int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
  1456. {
  1457. return kvm_x86_ops->set_msr(vcpu, msr_index, data);
  1458. }
  1459. void kvm_resched(struct kvm_vcpu *vcpu)
  1460. {
  1461. if (!need_resched())
  1462. return;
  1463. cond_resched();
  1464. }
  1465. EXPORT_SYMBOL_GPL(kvm_resched);
  1466. void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
  1467. {
  1468. int i;
  1469. u32 function;
  1470. struct kvm_cpuid_entry *e, *best;
  1471. kvm_x86_ops->cache_regs(vcpu);
  1472. function = vcpu->regs[VCPU_REGS_RAX];
  1473. vcpu->regs[VCPU_REGS_RAX] = 0;
  1474. vcpu->regs[VCPU_REGS_RBX] = 0;
  1475. vcpu->regs[VCPU_REGS_RCX] = 0;
  1476. vcpu->regs[VCPU_REGS_RDX] = 0;
  1477. best = NULL;
  1478. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  1479. e = &vcpu->cpuid_entries[i];
  1480. if (e->function == function) {
  1481. best = e;
  1482. break;
  1483. }
  1484. /*
  1485. * Both basic or both extended?
  1486. */
  1487. if (((e->function ^ function) & 0x80000000) == 0)
  1488. if (!best || e->function > best->function)
  1489. best = e;
  1490. }
  1491. if (best) {
  1492. vcpu->regs[VCPU_REGS_RAX] = best->eax;
  1493. vcpu->regs[VCPU_REGS_RBX] = best->ebx;
  1494. vcpu->regs[VCPU_REGS_RCX] = best->ecx;
  1495. vcpu->regs[VCPU_REGS_RDX] = best->edx;
  1496. }
  1497. kvm_x86_ops->decache_regs(vcpu);
  1498. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1499. }
  1500. EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
  1501. static int pio_copy_data(struct kvm_vcpu *vcpu)
  1502. {
  1503. void *p = vcpu->pio_data;
  1504. void *q;
  1505. unsigned bytes;
  1506. int nr_pages = vcpu->pio.guest_pages[1] ? 2 : 1;
  1507. q = vmap(vcpu->pio.guest_pages, nr_pages, VM_READ|VM_WRITE,
  1508. PAGE_KERNEL);
  1509. if (!q) {
  1510. free_pio_guest_pages(vcpu);
  1511. return -ENOMEM;
  1512. }
  1513. q += vcpu->pio.guest_page_offset;
  1514. bytes = vcpu->pio.size * vcpu->pio.cur_count;
  1515. if (vcpu->pio.in)
  1516. memcpy(q, p, bytes);
  1517. else
  1518. memcpy(p, q, bytes);
  1519. q -= vcpu->pio.guest_page_offset;
  1520. vunmap(q);
  1521. free_pio_guest_pages(vcpu);
  1522. return 0;
  1523. }
  1524. static int complete_pio(struct kvm_vcpu *vcpu)
  1525. {
  1526. struct kvm_pio_request *io = &vcpu->pio;
  1527. long delta;
  1528. int r;
  1529. kvm_x86_ops->cache_regs(vcpu);
  1530. if (!io->string) {
  1531. if (io->in)
  1532. memcpy(&vcpu->regs[VCPU_REGS_RAX], vcpu->pio_data,
  1533. io->size);
  1534. } else {
  1535. if (io->in) {
  1536. r = pio_copy_data(vcpu);
  1537. if (r) {
  1538. kvm_x86_ops->cache_regs(vcpu);
  1539. return r;
  1540. }
  1541. }
  1542. delta = 1;
  1543. if (io->rep) {
  1544. delta *= io->cur_count;
  1545. /*
  1546. * The size of the register should really depend on
  1547. * current address size.
  1548. */
  1549. vcpu->regs[VCPU_REGS_RCX] -= delta;
  1550. }
  1551. if (io->down)
  1552. delta = -delta;
  1553. delta *= io->size;
  1554. if (io->in)
  1555. vcpu->regs[VCPU_REGS_RDI] += delta;
  1556. else
  1557. vcpu->regs[VCPU_REGS_RSI] += delta;
  1558. }
  1559. kvm_x86_ops->decache_regs(vcpu);
  1560. io->count -= io->cur_count;
  1561. io->cur_count = 0;
  1562. if (!io->count)
  1563. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1564. return 0;
  1565. }
  1566. static void kernel_pio(struct kvm_io_device *pio_dev,
  1567. struct kvm_vcpu *vcpu,
  1568. void *pd)
  1569. {
  1570. /* TODO: String I/O for in kernel device */
  1571. mutex_lock(&vcpu->kvm->lock);
  1572. if (vcpu->pio.in)
  1573. kvm_iodevice_read(pio_dev, vcpu->pio.port,
  1574. vcpu->pio.size,
  1575. pd);
  1576. else
  1577. kvm_iodevice_write(pio_dev, vcpu->pio.port,
  1578. vcpu->pio.size,
  1579. pd);
  1580. mutex_unlock(&vcpu->kvm->lock);
  1581. }
  1582. static void pio_string_write(struct kvm_io_device *pio_dev,
  1583. struct kvm_vcpu *vcpu)
  1584. {
  1585. struct kvm_pio_request *io = &vcpu->pio;
  1586. void *pd = vcpu->pio_data;
  1587. int i;
  1588. mutex_lock(&vcpu->kvm->lock);
  1589. for (i = 0; i < io->cur_count; i++) {
  1590. kvm_iodevice_write(pio_dev, io->port,
  1591. io->size,
  1592. pd);
  1593. pd += io->size;
  1594. }
  1595. mutex_unlock(&vcpu->kvm->lock);
  1596. }
  1597. int kvm_emulate_pio (struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1598. int size, unsigned port)
  1599. {
  1600. struct kvm_io_device *pio_dev;
  1601. vcpu->run->exit_reason = KVM_EXIT_IO;
  1602. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1603. vcpu->run->io.size = vcpu->pio.size = size;
  1604. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1605. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = 1;
  1606. vcpu->run->io.port = vcpu->pio.port = port;
  1607. vcpu->pio.in = in;
  1608. vcpu->pio.string = 0;
  1609. vcpu->pio.down = 0;
  1610. vcpu->pio.guest_page_offset = 0;
  1611. vcpu->pio.rep = 0;
  1612. kvm_x86_ops->cache_regs(vcpu);
  1613. memcpy(vcpu->pio_data, &vcpu->regs[VCPU_REGS_RAX], 4);
  1614. kvm_x86_ops->decache_regs(vcpu);
  1615. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1616. if (pio_dev) {
  1617. kernel_pio(pio_dev, vcpu, vcpu->pio_data);
  1618. complete_pio(vcpu);
  1619. return 1;
  1620. }
  1621. return 0;
  1622. }
  1623. EXPORT_SYMBOL_GPL(kvm_emulate_pio);
  1624. int kvm_emulate_pio_string(struct kvm_vcpu *vcpu, struct kvm_run *run, int in,
  1625. int size, unsigned long count, int down,
  1626. gva_t address, int rep, unsigned port)
  1627. {
  1628. unsigned now, in_page;
  1629. int i, ret = 0;
  1630. int nr_pages = 1;
  1631. struct page *page;
  1632. struct kvm_io_device *pio_dev;
  1633. vcpu->run->exit_reason = KVM_EXIT_IO;
  1634. vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
  1635. vcpu->run->io.size = vcpu->pio.size = size;
  1636. vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
  1637. vcpu->run->io.count = vcpu->pio.count = vcpu->pio.cur_count = count;
  1638. vcpu->run->io.port = vcpu->pio.port = port;
  1639. vcpu->pio.in = in;
  1640. vcpu->pio.string = 1;
  1641. vcpu->pio.down = down;
  1642. vcpu->pio.guest_page_offset = offset_in_page(address);
  1643. vcpu->pio.rep = rep;
  1644. if (!count) {
  1645. kvm_x86_ops->skip_emulated_instruction(vcpu);
  1646. return 1;
  1647. }
  1648. if (!down)
  1649. in_page = PAGE_SIZE - offset_in_page(address);
  1650. else
  1651. in_page = offset_in_page(address) + size;
  1652. now = min(count, (unsigned long)in_page / size);
  1653. if (!now) {
  1654. /*
  1655. * String I/O straddles page boundary. Pin two guest pages
  1656. * so that we satisfy atomicity constraints. Do just one
  1657. * transaction to avoid complexity.
  1658. */
  1659. nr_pages = 2;
  1660. now = 1;
  1661. }
  1662. if (down) {
  1663. /*
  1664. * String I/O in reverse. Yuck. Kill the guest, fix later.
  1665. */
  1666. pr_unimpl(vcpu, "guest string pio down\n");
  1667. inject_gp(vcpu);
  1668. return 1;
  1669. }
  1670. vcpu->run->io.count = now;
  1671. vcpu->pio.cur_count = now;
  1672. for (i = 0; i < nr_pages; ++i) {
  1673. mutex_lock(&vcpu->kvm->lock);
  1674. page = gva_to_page(vcpu, address + i * PAGE_SIZE);
  1675. if (page)
  1676. get_page(page);
  1677. vcpu->pio.guest_pages[i] = page;
  1678. mutex_unlock(&vcpu->kvm->lock);
  1679. if (!page) {
  1680. inject_gp(vcpu);
  1681. free_pio_guest_pages(vcpu);
  1682. return 1;
  1683. }
  1684. }
  1685. pio_dev = vcpu_find_pio_dev(vcpu, port);
  1686. if (!vcpu->pio.in) {
  1687. /* string PIO write */
  1688. ret = pio_copy_data(vcpu);
  1689. if (ret >= 0 && pio_dev) {
  1690. pio_string_write(pio_dev, vcpu);
  1691. complete_pio(vcpu);
  1692. if (vcpu->pio.count == 0)
  1693. ret = 1;
  1694. }
  1695. } else if (pio_dev)
  1696. pr_unimpl(vcpu, "no string pio read support yet, "
  1697. "port %x size %d count %ld\n",
  1698. port, size, count);
  1699. return ret;
  1700. }
  1701. EXPORT_SYMBOL_GPL(kvm_emulate_pio_string);
  1702. static int kvm_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
  1703. {
  1704. int r;
  1705. sigset_t sigsaved;
  1706. vcpu_load(vcpu);
  1707. if (unlikely(vcpu->mp_state == VCPU_MP_STATE_UNINITIALIZED)) {
  1708. kvm_vcpu_block(vcpu);
  1709. vcpu_put(vcpu);
  1710. return -EAGAIN;
  1711. }
  1712. if (vcpu->sigset_active)
  1713. sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
  1714. /* re-sync apic's tpr */
  1715. if (!irqchip_in_kernel(vcpu->kvm))
  1716. set_cr8(vcpu, kvm_run->cr8);
  1717. if (vcpu->pio.cur_count) {
  1718. r = complete_pio(vcpu);
  1719. if (r)
  1720. goto out;
  1721. }
  1722. if (vcpu->mmio_needed) {
  1723. memcpy(vcpu->mmio_data, kvm_run->mmio.data, 8);
  1724. vcpu->mmio_read_completed = 1;
  1725. vcpu->mmio_needed = 0;
  1726. r = emulate_instruction(vcpu, kvm_run,
  1727. vcpu->mmio_fault_cr2, 0);
  1728. if (r == EMULATE_DO_MMIO) {
  1729. /*
  1730. * Read-modify-write. Back to userspace.
  1731. */
  1732. r = 0;
  1733. goto out;
  1734. }
  1735. }
  1736. if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL) {
  1737. kvm_x86_ops->cache_regs(vcpu);
  1738. vcpu->regs[VCPU_REGS_RAX] = kvm_run->hypercall.ret;
  1739. kvm_x86_ops->decache_regs(vcpu);
  1740. }
  1741. r = kvm_x86_ops->run(vcpu, kvm_run);
  1742. out:
  1743. if (vcpu->sigset_active)
  1744. sigprocmask(SIG_SETMASK, &sigsaved, NULL);
  1745. vcpu_put(vcpu);
  1746. return r;
  1747. }
  1748. static int kvm_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu,
  1749. struct kvm_regs *regs)
  1750. {
  1751. vcpu_load(vcpu);
  1752. kvm_x86_ops->cache_regs(vcpu);
  1753. regs->rax = vcpu->regs[VCPU_REGS_RAX];
  1754. regs->rbx = vcpu->regs[VCPU_REGS_RBX];
  1755. regs->rcx = vcpu->regs[VCPU_REGS_RCX];
  1756. regs->rdx = vcpu->regs[VCPU_REGS_RDX];
  1757. regs->rsi = vcpu->regs[VCPU_REGS_RSI];
  1758. regs->rdi = vcpu->regs[VCPU_REGS_RDI];
  1759. regs->rsp = vcpu->regs[VCPU_REGS_RSP];
  1760. regs->rbp = vcpu->regs[VCPU_REGS_RBP];
  1761. #ifdef CONFIG_X86_64
  1762. regs->r8 = vcpu->regs[VCPU_REGS_R8];
  1763. regs->r9 = vcpu->regs[VCPU_REGS_R9];
  1764. regs->r10 = vcpu->regs[VCPU_REGS_R10];
  1765. regs->r11 = vcpu->regs[VCPU_REGS_R11];
  1766. regs->r12 = vcpu->regs[VCPU_REGS_R12];
  1767. regs->r13 = vcpu->regs[VCPU_REGS_R13];
  1768. regs->r14 = vcpu->regs[VCPU_REGS_R14];
  1769. regs->r15 = vcpu->regs[VCPU_REGS_R15];
  1770. #endif
  1771. regs->rip = vcpu->rip;
  1772. regs->rflags = kvm_x86_ops->get_rflags(vcpu);
  1773. /*
  1774. * Don't leak debug flags in case they were set for guest debugging
  1775. */
  1776. if (vcpu->guest_debug.enabled && vcpu->guest_debug.singlestep)
  1777. regs->rflags &= ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
  1778. vcpu_put(vcpu);
  1779. return 0;
  1780. }
  1781. static int kvm_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu,
  1782. struct kvm_regs *regs)
  1783. {
  1784. vcpu_load(vcpu);
  1785. vcpu->regs[VCPU_REGS_RAX] = regs->rax;
  1786. vcpu->regs[VCPU_REGS_RBX] = regs->rbx;
  1787. vcpu->regs[VCPU_REGS_RCX] = regs->rcx;
  1788. vcpu->regs[VCPU_REGS_RDX] = regs->rdx;
  1789. vcpu->regs[VCPU_REGS_RSI] = regs->rsi;
  1790. vcpu->regs[VCPU_REGS_RDI] = regs->rdi;
  1791. vcpu->regs[VCPU_REGS_RSP] = regs->rsp;
  1792. vcpu->regs[VCPU_REGS_RBP] = regs->rbp;
  1793. #ifdef CONFIG_X86_64
  1794. vcpu->regs[VCPU_REGS_R8] = regs->r8;
  1795. vcpu->regs[VCPU_REGS_R9] = regs->r9;
  1796. vcpu->regs[VCPU_REGS_R10] = regs->r10;
  1797. vcpu->regs[VCPU_REGS_R11] = regs->r11;
  1798. vcpu->regs[VCPU_REGS_R12] = regs->r12;
  1799. vcpu->regs[VCPU_REGS_R13] = regs->r13;
  1800. vcpu->regs[VCPU_REGS_R14] = regs->r14;
  1801. vcpu->regs[VCPU_REGS_R15] = regs->r15;
  1802. #endif
  1803. vcpu->rip = regs->rip;
  1804. kvm_x86_ops->set_rflags(vcpu, regs->rflags);
  1805. kvm_x86_ops->decache_regs(vcpu);
  1806. vcpu_put(vcpu);
  1807. return 0;
  1808. }
  1809. static void get_segment(struct kvm_vcpu *vcpu,
  1810. struct kvm_segment *var, int seg)
  1811. {
  1812. return kvm_x86_ops->get_segment(vcpu, var, seg);
  1813. }
  1814. static int kvm_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
  1815. struct kvm_sregs *sregs)
  1816. {
  1817. struct descriptor_table dt;
  1818. int pending_vec;
  1819. vcpu_load(vcpu);
  1820. get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1821. get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1822. get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1823. get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1824. get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1825. get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1826. get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1827. get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1828. kvm_x86_ops->get_idt(vcpu, &dt);
  1829. sregs->idt.limit = dt.limit;
  1830. sregs->idt.base = dt.base;
  1831. kvm_x86_ops->get_gdt(vcpu, &dt);
  1832. sregs->gdt.limit = dt.limit;
  1833. sregs->gdt.base = dt.base;
  1834. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1835. sregs->cr0 = vcpu->cr0;
  1836. sregs->cr2 = vcpu->cr2;
  1837. sregs->cr3 = vcpu->cr3;
  1838. sregs->cr4 = vcpu->cr4;
  1839. sregs->cr8 = get_cr8(vcpu);
  1840. sregs->efer = vcpu->shadow_efer;
  1841. sregs->apic_base = kvm_get_apic_base(vcpu);
  1842. if (irqchip_in_kernel(vcpu->kvm)) {
  1843. memset(sregs->interrupt_bitmap, 0,
  1844. sizeof sregs->interrupt_bitmap);
  1845. pending_vec = kvm_x86_ops->get_irq(vcpu);
  1846. if (pending_vec >= 0)
  1847. set_bit(pending_vec, (unsigned long *)sregs->interrupt_bitmap);
  1848. } else
  1849. memcpy(sregs->interrupt_bitmap, vcpu->irq_pending,
  1850. sizeof sregs->interrupt_bitmap);
  1851. vcpu_put(vcpu);
  1852. return 0;
  1853. }
  1854. static void set_segment(struct kvm_vcpu *vcpu,
  1855. struct kvm_segment *var, int seg)
  1856. {
  1857. return kvm_x86_ops->set_segment(vcpu, var, seg);
  1858. }
  1859. static int kvm_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
  1860. struct kvm_sregs *sregs)
  1861. {
  1862. int mmu_reset_needed = 0;
  1863. int i, pending_vec, max_bits;
  1864. struct descriptor_table dt;
  1865. vcpu_load(vcpu);
  1866. dt.limit = sregs->idt.limit;
  1867. dt.base = sregs->idt.base;
  1868. kvm_x86_ops->set_idt(vcpu, &dt);
  1869. dt.limit = sregs->gdt.limit;
  1870. dt.base = sregs->gdt.base;
  1871. kvm_x86_ops->set_gdt(vcpu, &dt);
  1872. vcpu->cr2 = sregs->cr2;
  1873. mmu_reset_needed |= vcpu->cr3 != sregs->cr3;
  1874. vcpu->cr3 = sregs->cr3;
  1875. set_cr8(vcpu, sregs->cr8);
  1876. mmu_reset_needed |= vcpu->shadow_efer != sregs->efer;
  1877. #ifdef CONFIG_X86_64
  1878. kvm_x86_ops->set_efer(vcpu, sregs->efer);
  1879. #endif
  1880. kvm_set_apic_base(vcpu, sregs->apic_base);
  1881. kvm_x86_ops->decache_cr4_guest_bits(vcpu);
  1882. mmu_reset_needed |= vcpu->cr0 != sregs->cr0;
  1883. vcpu->cr0 = sregs->cr0;
  1884. kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
  1885. mmu_reset_needed |= vcpu->cr4 != sregs->cr4;
  1886. kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
  1887. if (!is_long_mode(vcpu) && is_pae(vcpu))
  1888. load_pdptrs(vcpu, vcpu->cr3);
  1889. if (mmu_reset_needed)
  1890. kvm_mmu_reset_context(vcpu);
  1891. if (!irqchip_in_kernel(vcpu->kvm)) {
  1892. memcpy(vcpu->irq_pending, sregs->interrupt_bitmap,
  1893. sizeof vcpu->irq_pending);
  1894. vcpu->irq_summary = 0;
  1895. for (i = 0; i < ARRAY_SIZE(vcpu->irq_pending); ++i)
  1896. if (vcpu->irq_pending[i])
  1897. __set_bit(i, &vcpu->irq_summary);
  1898. } else {
  1899. max_bits = (sizeof sregs->interrupt_bitmap) << 3;
  1900. pending_vec = find_first_bit(
  1901. (const unsigned long *)sregs->interrupt_bitmap,
  1902. max_bits);
  1903. /* Only pending external irq is handled here */
  1904. if (pending_vec < max_bits) {
  1905. kvm_x86_ops->set_irq(vcpu, pending_vec);
  1906. printk("Set back pending irq %d\n", pending_vec);
  1907. }
  1908. }
  1909. set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
  1910. set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
  1911. set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
  1912. set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
  1913. set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
  1914. set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
  1915. set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
  1916. set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
  1917. vcpu_put(vcpu);
  1918. return 0;
  1919. }
  1920. void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
  1921. {
  1922. struct kvm_segment cs;
  1923. get_segment(vcpu, &cs, VCPU_SREG_CS);
  1924. *db = cs.db;
  1925. *l = cs.l;
  1926. }
  1927. EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
  1928. /*
  1929. * List of msr numbers which we expose to userspace through KVM_GET_MSRS
  1930. * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
  1931. *
  1932. * This list is modified at module load time to reflect the
  1933. * capabilities of the host cpu.
  1934. */
  1935. static u32 msrs_to_save[] = {
  1936. MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  1937. MSR_K6_STAR,
  1938. #ifdef CONFIG_X86_64
  1939. MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
  1940. #endif
  1941. MSR_IA32_TIME_STAMP_COUNTER,
  1942. };
  1943. static unsigned num_msrs_to_save;
  1944. static u32 emulated_msrs[] = {
  1945. MSR_IA32_MISC_ENABLE,
  1946. };
  1947. static __init void kvm_init_msr_list(void)
  1948. {
  1949. u32 dummy[2];
  1950. unsigned i, j;
  1951. for (i = j = 0; i < ARRAY_SIZE(msrs_to_save); i++) {
  1952. if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
  1953. continue;
  1954. if (j < i)
  1955. msrs_to_save[j] = msrs_to_save[i];
  1956. j++;
  1957. }
  1958. num_msrs_to_save = j;
  1959. }
  1960. /*
  1961. * Adapt set_msr() to msr_io()'s calling convention
  1962. */
  1963. static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
  1964. {
  1965. return kvm_set_msr(vcpu, index, *data);
  1966. }
  1967. /*
  1968. * Read or write a bunch of msrs. All parameters are kernel addresses.
  1969. *
  1970. * @return number of msrs set successfully.
  1971. */
  1972. static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
  1973. struct kvm_msr_entry *entries,
  1974. int (*do_msr)(struct kvm_vcpu *vcpu,
  1975. unsigned index, u64 *data))
  1976. {
  1977. int i;
  1978. vcpu_load(vcpu);
  1979. for (i = 0; i < msrs->nmsrs; ++i)
  1980. if (do_msr(vcpu, entries[i].index, &entries[i].data))
  1981. break;
  1982. vcpu_put(vcpu);
  1983. return i;
  1984. }
  1985. /*
  1986. * Read or write a bunch of msrs. Parameters are user addresses.
  1987. *
  1988. * @return number of msrs set successfully.
  1989. */
  1990. static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
  1991. int (*do_msr)(struct kvm_vcpu *vcpu,
  1992. unsigned index, u64 *data),
  1993. int writeback)
  1994. {
  1995. struct kvm_msrs msrs;
  1996. struct kvm_msr_entry *entries;
  1997. int r, n;
  1998. unsigned size;
  1999. r = -EFAULT;
  2000. if (copy_from_user(&msrs, user_msrs, sizeof msrs))
  2001. goto out;
  2002. r = -E2BIG;
  2003. if (msrs.nmsrs >= MAX_IO_MSRS)
  2004. goto out;
  2005. r = -ENOMEM;
  2006. size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
  2007. entries = vmalloc(size);
  2008. if (!entries)
  2009. goto out;
  2010. r = -EFAULT;
  2011. if (copy_from_user(entries, user_msrs->entries, size))
  2012. goto out_free;
  2013. r = n = __msr_io(vcpu, &msrs, entries, do_msr);
  2014. if (r < 0)
  2015. goto out_free;
  2016. r = -EFAULT;
  2017. if (writeback && copy_to_user(user_msrs->entries, entries, size))
  2018. goto out_free;
  2019. r = n;
  2020. out_free:
  2021. vfree(entries);
  2022. out:
  2023. return r;
  2024. }
  2025. /*
  2026. * Translate a guest virtual address to a guest physical address.
  2027. */
  2028. static int kvm_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
  2029. struct kvm_translation *tr)
  2030. {
  2031. unsigned long vaddr = tr->linear_address;
  2032. gpa_t gpa;
  2033. vcpu_load(vcpu);
  2034. mutex_lock(&vcpu->kvm->lock);
  2035. gpa = vcpu->mmu.gva_to_gpa(vcpu, vaddr);
  2036. tr->physical_address = gpa;
  2037. tr->valid = gpa != UNMAPPED_GVA;
  2038. tr->writeable = 1;
  2039. tr->usermode = 0;
  2040. mutex_unlock(&vcpu->kvm->lock);
  2041. vcpu_put(vcpu);
  2042. return 0;
  2043. }
  2044. static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
  2045. struct kvm_interrupt *irq)
  2046. {
  2047. if (irq->irq < 0 || irq->irq >= 256)
  2048. return -EINVAL;
  2049. if (irqchip_in_kernel(vcpu->kvm))
  2050. return -ENXIO;
  2051. vcpu_load(vcpu);
  2052. set_bit(irq->irq, vcpu->irq_pending);
  2053. set_bit(irq->irq / BITS_PER_LONG, &vcpu->irq_summary);
  2054. vcpu_put(vcpu);
  2055. return 0;
  2056. }
  2057. static int kvm_vcpu_ioctl_debug_guest(struct kvm_vcpu *vcpu,
  2058. struct kvm_debug_guest *dbg)
  2059. {
  2060. int r;
  2061. vcpu_load(vcpu);
  2062. r = kvm_x86_ops->set_guest_debug(vcpu, dbg);
  2063. vcpu_put(vcpu);
  2064. return r;
  2065. }
  2066. static struct page *kvm_vcpu_nopage(struct vm_area_struct *vma,
  2067. unsigned long address,
  2068. int *type)
  2069. {
  2070. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  2071. unsigned long pgoff;
  2072. struct page *page;
  2073. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2074. if (pgoff == 0)
  2075. page = virt_to_page(vcpu->run);
  2076. else if (pgoff == KVM_PIO_PAGE_OFFSET)
  2077. page = virt_to_page(vcpu->pio_data);
  2078. else
  2079. return NOPAGE_SIGBUS;
  2080. get_page(page);
  2081. if (type != NULL)
  2082. *type = VM_FAULT_MINOR;
  2083. return page;
  2084. }
  2085. static struct vm_operations_struct kvm_vcpu_vm_ops = {
  2086. .nopage = kvm_vcpu_nopage,
  2087. };
  2088. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  2089. {
  2090. vma->vm_ops = &kvm_vcpu_vm_ops;
  2091. return 0;
  2092. }
  2093. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  2094. {
  2095. struct kvm_vcpu *vcpu = filp->private_data;
  2096. fput(vcpu->kvm->filp);
  2097. return 0;
  2098. }
  2099. static struct file_operations kvm_vcpu_fops = {
  2100. .release = kvm_vcpu_release,
  2101. .unlocked_ioctl = kvm_vcpu_ioctl,
  2102. .compat_ioctl = kvm_vcpu_ioctl,
  2103. .mmap = kvm_vcpu_mmap,
  2104. };
  2105. /*
  2106. * Allocates an inode for the vcpu.
  2107. */
  2108. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  2109. {
  2110. int fd, r;
  2111. struct inode *inode;
  2112. struct file *file;
  2113. r = anon_inode_getfd(&fd, &inode, &file,
  2114. "kvm-vcpu", &kvm_vcpu_fops, vcpu);
  2115. if (r)
  2116. return r;
  2117. atomic_inc(&vcpu->kvm->filp->f_count);
  2118. return fd;
  2119. }
  2120. /*
  2121. * Creates some virtual cpus. Good luck creating more than one.
  2122. */
  2123. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, int n)
  2124. {
  2125. int r;
  2126. struct kvm_vcpu *vcpu;
  2127. if (!valid_vcpu(n))
  2128. return -EINVAL;
  2129. vcpu = kvm_x86_ops->vcpu_create(kvm, n);
  2130. if (IS_ERR(vcpu))
  2131. return PTR_ERR(vcpu);
  2132. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  2133. /* We do fxsave: this must be aligned. */
  2134. BUG_ON((unsigned long)&vcpu->host_fx_image & 0xF);
  2135. vcpu_load(vcpu);
  2136. r = kvm_mmu_setup(vcpu);
  2137. vcpu_put(vcpu);
  2138. if (r < 0)
  2139. goto free_vcpu;
  2140. mutex_lock(&kvm->lock);
  2141. if (kvm->vcpus[n]) {
  2142. r = -EEXIST;
  2143. mutex_unlock(&kvm->lock);
  2144. goto mmu_unload;
  2145. }
  2146. kvm->vcpus[n] = vcpu;
  2147. mutex_unlock(&kvm->lock);
  2148. /* Now it's all set up, let userspace reach it */
  2149. r = create_vcpu_fd(vcpu);
  2150. if (r < 0)
  2151. goto unlink;
  2152. return r;
  2153. unlink:
  2154. mutex_lock(&kvm->lock);
  2155. kvm->vcpus[n] = NULL;
  2156. mutex_unlock(&kvm->lock);
  2157. mmu_unload:
  2158. vcpu_load(vcpu);
  2159. kvm_mmu_unload(vcpu);
  2160. vcpu_put(vcpu);
  2161. free_vcpu:
  2162. kvm_x86_ops->vcpu_free(vcpu);
  2163. return r;
  2164. }
  2165. static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
  2166. {
  2167. u64 efer;
  2168. int i;
  2169. struct kvm_cpuid_entry *e, *entry;
  2170. rdmsrl(MSR_EFER, efer);
  2171. entry = NULL;
  2172. for (i = 0; i < vcpu->cpuid_nent; ++i) {
  2173. e = &vcpu->cpuid_entries[i];
  2174. if (e->function == 0x80000001) {
  2175. entry = e;
  2176. break;
  2177. }
  2178. }
  2179. if (entry && (entry->edx & (1 << 20)) && !(efer & EFER_NX)) {
  2180. entry->edx &= ~(1 << 20);
  2181. printk(KERN_INFO "kvm: guest NX capability removed\n");
  2182. }
  2183. }
  2184. static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
  2185. struct kvm_cpuid *cpuid,
  2186. struct kvm_cpuid_entry __user *entries)
  2187. {
  2188. int r;
  2189. r = -E2BIG;
  2190. if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
  2191. goto out;
  2192. r = -EFAULT;
  2193. if (copy_from_user(&vcpu->cpuid_entries, entries,
  2194. cpuid->nent * sizeof(struct kvm_cpuid_entry)))
  2195. goto out;
  2196. vcpu->cpuid_nent = cpuid->nent;
  2197. cpuid_fix_nx_cap(vcpu);
  2198. return 0;
  2199. out:
  2200. return r;
  2201. }
  2202. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  2203. {
  2204. if (sigset) {
  2205. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  2206. vcpu->sigset_active = 1;
  2207. vcpu->sigset = *sigset;
  2208. } else
  2209. vcpu->sigset_active = 0;
  2210. return 0;
  2211. }
  2212. /*
  2213. * fxsave fpu state. Taken from x86_64/processor.h. To be killed when
  2214. * we have asm/x86/processor.h
  2215. */
  2216. struct fxsave {
  2217. u16 cwd;
  2218. u16 swd;
  2219. u16 twd;
  2220. u16 fop;
  2221. u64 rip;
  2222. u64 rdp;
  2223. u32 mxcsr;
  2224. u32 mxcsr_mask;
  2225. u32 st_space[32]; /* 8*16 bytes for each FP-reg = 128 bytes */
  2226. #ifdef CONFIG_X86_64
  2227. u32 xmm_space[64]; /* 16*16 bytes for each XMM-reg = 256 bytes */
  2228. #else
  2229. u32 xmm_space[32]; /* 8*16 bytes for each XMM-reg = 128 bytes */
  2230. #endif
  2231. };
  2232. static int kvm_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2233. {
  2234. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2235. vcpu_load(vcpu);
  2236. memcpy(fpu->fpr, fxsave->st_space, 128);
  2237. fpu->fcw = fxsave->cwd;
  2238. fpu->fsw = fxsave->swd;
  2239. fpu->ftwx = fxsave->twd;
  2240. fpu->last_opcode = fxsave->fop;
  2241. fpu->last_ip = fxsave->rip;
  2242. fpu->last_dp = fxsave->rdp;
  2243. memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
  2244. vcpu_put(vcpu);
  2245. return 0;
  2246. }
  2247. static int kvm_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
  2248. {
  2249. struct fxsave *fxsave = (struct fxsave *)&vcpu->guest_fx_image;
  2250. vcpu_load(vcpu);
  2251. memcpy(fxsave->st_space, fpu->fpr, 128);
  2252. fxsave->cwd = fpu->fcw;
  2253. fxsave->swd = fpu->fsw;
  2254. fxsave->twd = fpu->ftwx;
  2255. fxsave->fop = fpu->last_opcode;
  2256. fxsave->rip = fpu->last_ip;
  2257. fxsave->rdp = fpu->last_dp;
  2258. memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
  2259. vcpu_put(vcpu);
  2260. return 0;
  2261. }
  2262. static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
  2263. struct kvm_lapic_state *s)
  2264. {
  2265. vcpu_load(vcpu);
  2266. memcpy(s->regs, vcpu->apic->regs, sizeof *s);
  2267. vcpu_put(vcpu);
  2268. return 0;
  2269. }
  2270. static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
  2271. struct kvm_lapic_state *s)
  2272. {
  2273. vcpu_load(vcpu);
  2274. memcpy(vcpu->apic->regs, s->regs, sizeof *s);
  2275. kvm_apic_post_state_restore(vcpu);
  2276. vcpu_put(vcpu);
  2277. return 0;
  2278. }
  2279. static long kvm_vcpu_ioctl(struct file *filp,
  2280. unsigned int ioctl, unsigned long arg)
  2281. {
  2282. struct kvm_vcpu *vcpu = filp->private_data;
  2283. void __user *argp = (void __user *)arg;
  2284. int r = -EINVAL;
  2285. switch (ioctl) {
  2286. case KVM_RUN:
  2287. r = -EINVAL;
  2288. if (arg)
  2289. goto out;
  2290. r = kvm_vcpu_ioctl_run(vcpu, vcpu->run);
  2291. break;
  2292. case KVM_GET_REGS: {
  2293. struct kvm_regs kvm_regs;
  2294. memset(&kvm_regs, 0, sizeof kvm_regs);
  2295. r = kvm_vcpu_ioctl_get_regs(vcpu, &kvm_regs);
  2296. if (r)
  2297. goto out;
  2298. r = -EFAULT;
  2299. if (copy_to_user(argp, &kvm_regs, sizeof kvm_regs))
  2300. goto out;
  2301. r = 0;
  2302. break;
  2303. }
  2304. case KVM_SET_REGS: {
  2305. struct kvm_regs kvm_regs;
  2306. r = -EFAULT;
  2307. if (copy_from_user(&kvm_regs, argp, sizeof kvm_regs))
  2308. goto out;
  2309. r = kvm_vcpu_ioctl_set_regs(vcpu, &kvm_regs);
  2310. if (r)
  2311. goto out;
  2312. r = 0;
  2313. break;
  2314. }
  2315. case KVM_GET_SREGS: {
  2316. struct kvm_sregs kvm_sregs;
  2317. memset(&kvm_sregs, 0, sizeof kvm_sregs);
  2318. r = kvm_vcpu_ioctl_get_sregs(vcpu, &kvm_sregs);
  2319. if (r)
  2320. goto out;
  2321. r = -EFAULT;
  2322. if (copy_to_user(argp, &kvm_sregs, sizeof kvm_sregs))
  2323. goto out;
  2324. r = 0;
  2325. break;
  2326. }
  2327. case KVM_SET_SREGS: {
  2328. struct kvm_sregs kvm_sregs;
  2329. r = -EFAULT;
  2330. if (copy_from_user(&kvm_sregs, argp, sizeof kvm_sregs))
  2331. goto out;
  2332. r = kvm_vcpu_ioctl_set_sregs(vcpu, &kvm_sregs);
  2333. if (r)
  2334. goto out;
  2335. r = 0;
  2336. break;
  2337. }
  2338. case KVM_TRANSLATE: {
  2339. struct kvm_translation tr;
  2340. r = -EFAULT;
  2341. if (copy_from_user(&tr, argp, sizeof tr))
  2342. goto out;
  2343. r = kvm_vcpu_ioctl_translate(vcpu, &tr);
  2344. if (r)
  2345. goto out;
  2346. r = -EFAULT;
  2347. if (copy_to_user(argp, &tr, sizeof tr))
  2348. goto out;
  2349. r = 0;
  2350. break;
  2351. }
  2352. case KVM_INTERRUPT: {
  2353. struct kvm_interrupt irq;
  2354. r = -EFAULT;
  2355. if (copy_from_user(&irq, argp, sizeof irq))
  2356. goto out;
  2357. r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
  2358. if (r)
  2359. goto out;
  2360. r = 0;
  2361. break;
  2362. }
  2363. case KVM_DEBUG_GUEST: {
  2364. struct kvm_debug_guest dbg;
  2365. r = -EFAULT;
  2366. if (copy_from_user(&dbg, argp, sizeof dbg))
  2367. goto out;
  2368. r = kvm_vcpu_ioctl_debug_guest(vcpu, &dbg);
  2369. if (r)
  2370. goto out;
  2371. r = 0;
  2372. break;
  2373. }
  2374. case KVM_GET_MSRS:
  2375. r = msr_io(vcpu, argp, kvm_get_msr, 1);
  2376. break;
  2377. case KVM_SET_MSRS:
  2378. r = msr_io(vcpu, argp, do_set_msr, 0);
  2379. break;
  2380. case KVM_SET_CPUID: {
  2381. struct kvm_cpuid __user *cpuid_arg = argp;
  2382. struct kvm_cpuid cpuid;
  2383. r = -EFAULT;
  2384. if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
  2385. goto out;
  2386. r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
  2387. if (r)
  2388. goto out;
  2389. break;
  2390. }
  2391. case KVM_SET_SIGNAL_MASK: {
  2392. struct kvm_signal_mask __user *sigmask_arg = argp;
  2393. struct kvm_signal_mask kvm_sigmask;
  2394. sigset_t sigset, *p;
  2395. p = NULL;
  2396. if (argp) {
  2397. r = -EFAULT;
  2398. if (copy_from_user(&kvm_sigmask, argp,
  2399. sizeof kvm_sigmask))
  2400. goto out;
  2401. r = -EINVAL;
  2402. if (kvm_sigmask.len != sizeof sigset)
  2403. goto out;
  2404. r = -EFAULT;
  2405. if (copy_from_user(&sigset, sigmask_arg->sigset,
  2406. sizeof sigset))
  2407. goto out;
  2408. p = &sigset;
  2409. }
  2410. r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
  2411. break;
  2412. }
  2413. case KVM_GET_FPU: {
  2414. struct kvm_fpu fpu;
  2415. memset(&fpu, 0, sizeof fpu);
  2416. r = kvm_vcpu_ioctl_get_fpu(vcpu, &fpu);
  2417. if (r)
  2418. goto out;
  2419. r = -EFAULT;
  2420. if (copy_to_user(argp, &fpu, sizeof fpu))
  2421. goto out;
  2422. r = 0;
  2423. break;
  2424. }
  2425. case KVM_SET_FPU: {
  2426. struct kvm_fpu fpu;
  2427. r = -EFAULT;
  2428. if (copy_from_user(&fpu, argp, sizeof fpu))
  2429. goto out;
  2430. r = kvm_vcpu_ioctl_set_fpu(vcpu, &fpu);
  2431. if (r)
  2432. goto out;
  2433. r = 0;
  2434. break;
  2435. }
  2436. case KVM_GET_LAPIC: {
  2437. struct kvm_lapic_state lapic;
  2438. memset(&lapic, 0, sizeof lapic);
  2439. r = kvm_vcpu_ioctl_get_lapic(vcpu, &lapic);
  2440. if (r)
  2441. goto out;
  2442. r = -EFAULT;
  2443. if (copy_to_user(argp, &lapic, sizeof lapic))
  2444. goto out;
  2445. r = 0;
  2446. break;
  2447. }
  2448. case KVM_SET_LAPIC: {
  2449. struct kvm_lapic_state lapic;
  2450. r = -EFAULT;
  2451. if (copy_from_user(&lapic, argp, sizeof lapic))
  2452. goto out;
  2453. r = kvm_vcpu_ioctl_set_lapic(vcpu, &lapic);;
  2454. if (r)
  2455. goto out;
  2456. r = 0;
  2457. break;
  2458. }
  2459. default:
  2460. ;
  2461. }
  2462. out:
  2463. return r;
  2464. }
  2465. static long kvm_vm_ioctl(struct file *filp,
  2466. unsigned int ioctl, unsigned long arg)
  2467. {
  2468. struct kvm *kvm = filp->private_data;
  2469. void __user *argp = (void __user *)arg;
  2470. int r = -EINVAL;
  2471. switch (ioctl) {
  2472. case KVM_CREATE_VCPU:
  2473. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  2474. if (r < 0)
  2475. goto out;
  2476. break;
  2477. case KVM_SET_MEMORY_REGION: {
  2478. struct kvm_memory_region kvm_mem;
  2479. r = -EFAULT;
  2480. if (copy_from_user(&kvm_mem, argp, sizeof kvm_mem))
  2481. goto out;
  2482. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_mem);
  2483. if (r)
  2484. goto out;
  2485. break;
  2486. }
  2487. case KVM_GET_DIRTY_LOG: {
  2488. struct kvm_dirty_log log;
  2489. r = -EFAULT;
  2490. if (copy_from_user(&log, argp, sizeof log))
  2491. goto out;
  2492. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  2493. if (r)
  2494. goto out;
  2495. break;
  2496. }
  2497. case KVM_SET_MEMORY_ALIAS: {
  2498. struct kvm_memory_alias alias;
  2499. r = -EFAULT;
  2500. if (copy_from_user(&alias, argp, sizeof alias))
  2501. goto out;
  2502. r = kvm_vm_ioctl_set_memory_alias(kvm, &alias);
  2503. if (r)
  2504. goto out;
  2505. break;
  2506. }
  2507. case KVM_CREATE_IRQCHIP:
  2508. r = -ENOMEM;
  2509. kvm->vpic = kvm_create_pic(kvm);
  2510. if (kvm->vpic) {
  2511. r = kvm_ioapic_init(kvm);
  2512. if (r) {
  2513. kfree(kvm->vpic);
  2514. kvm->vpic = NULL;
  2515. goto out;
  2516. }
  2517. }
  2518. else
  2519. goto out;
  2520. break;
  2521. case KVM_IRQ_LINE: {
  2522. struct kvm_irq_level irq_event;
  2523. r = -EFAULT;
  2524. if (copy_from_user(&irq_event, argp, sizeof irq_event))
  2525. goto out;
  2526. if (irqchip_in_kernel(kvm)) {
  2527. mutex_lock(&kvm->lock);
  2528. if (irq_event.irq < 16)
  2529. kvm_pic_set_irq(pic_irqchip(kvm),
  2530. irq_event.irq,
  2531. irq_event.level);
  2532. kvm_ioapic_set_irq(kvm->vioapic,
  2533. irq_event.irq,
  2534. irq_event.level);
  2535. mutex_unlock(&kvm->lock);
  2536. r = 0;
  2537. }
  2538. break;
  2539. }
  2540. case KVM_GET_IRQCHIP: {
  2541. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2542. struct kvm_irqchip chip;
  2543. r = -EFAULT;
  2544. if (copy_from_user(&chip, argp, sizeof chip))
  2545. goto out;
  2546. r = -ENXIO;
  2547. if (!irqchip_in_kernel(kvm))
  2548. goto out;
  2549. r = kvm_vm_ioctl_get_irqchip(kvm, &chip);
  2550. if (r)
  2551. goto out;
  2552. r = -EFAULT;
  2553. if (copy_to_user(argp, &chip, sizeof chip))
  2554. goto out;
  2555. r = 0;
  2556. break;
  2557. }
  2558. case KVM_SET_IRQCHIP: {
  2559. /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
  2560. struct kvm_irqchip chip;
  2561. r = -EFAULT;
  2562. if (copy_from_user(&chip, argp, sizeof chip))
  2563. goto out;
  2564. r = -ENXIO;
  2565. if (!irqchip_in_kernel(kvm))
  2566. goto out;
  2567. r = kvm_vm_ioctl_set_irqchip(kvm, &chip);
  2568. if (r)
  2569. goto out;
  2570. r = 0;
  2571. break;
  2572. }
  2573. default:
  2574. ;
  2575. }
  2576. out:
  2577. return r;
  2578. }
  2579. static struct page *kvm_vm_nopage(struct vm_area_struct *vma,
  2580. unsigned long address,
  2581. int *type)
  2582. {
  2583. struct kvm *kvm = vma->vm_file->private_data;
  2584. unsigned long pgoff;
  2585. struct page *page;
  2586. pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  2587. page = gfn_to_page(kvm, pgoff);
  2588. if (!page)
  2589. return NOPAGE_SIGBUS;
  2590. get_page(page);
  2591. if (type != NULL)
  2592. *type = VM_FAULT_MINOR;
  2593. return page;
  2594. }
  2595. static struct vm_operations_struct kvm_vm_vm_ops = {
  2596. .nopage = kvm_vm_nopage,
  2597. };
  2598. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  2599. {
  2600. vma->vm_ops = &kvm_vm_vm_ops;
  2601. return 0;
  2602. }
  2603. static struct file_operations kvm_vm_fops = {
  2604. .release = kvm_vm_release,
  2605. .unlocked_ioctl = kvm_vm_ioctl,
  2606. .compat_ioctl = kvm_vm_ioctl,
  2607. .mmap = kvm_vm_mmap,
  2608. };
  2609. static int kvm_dev_ioctl_create_vm(void)
  2610. {
  2611. int fd, r;
  2612. struct inode *inode;
  2613. struct file *file;
  2614. struct kvm *kvm;
  2615. kvm = kvm_create_vm();
  2616. if (IS_ERR(kvm))
  2617. return PTR_ERR(kvm);
  2618. r = anon_inode_getfd(&fd, &inode, &file, "kvm-vm", &kvm_vm_fops, kvm);
  2619. if (r) {
  2620. kvm_destroy_vm(kvm);
  2621. return r;
  2622. }
  2623. kvm->filp = file;
  2624. return fd;
  2625. }
  2626. static long kvm_dev_ioctl(struct file *filp,
  2627. unsigned int ioctl, unsigned long arg)
  2628. {
  2629. void __user *argp = (void __user *)arg;
  2630. long r = -EINVAL;
  2631. switch (ioctl) {
  2632. case KVM_GET_API_VERSION:
  2633. r = -EINVAL;
  2634. if (arg)
  2635. goto out;
  2636. r = KVM_API_VERSION;
  2637. break;
  2638. case KVM_CREATE_VM:
  2639. r = -EINVAL;
  2640. if (arg)
  2641. goto out;
  2642. r = kvm_dev_ioctl_create_vm();
  2643. break;
  2644. case KVM_GET_MSR_INDEX_LIST: {
  2645. struct kvm_msr_list __user *user_msr_list = argp;
  2646. struct kvm_msr_list msr_list;
  2647. unsigned n;
  2648. r = -EFAULT;
  2649. if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
  2650. goto out;
  2651. n = msr_list.nmsrs;
  2652. msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
  2653. if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
  2654. goto out;
  2655. r = -E2BIG;
  2656. if (n < num_msrs_to_save)
  2657. goto out;
  2658. r = -EFAULT;
  2659. if (copy_to_user(user_msr_list->indices, &msrs_to_save,
  2660. num_msrs_to_save * sizeof(u32)))
  2661. goto out;
  2662. if (copy_to_user(user_msr_list->indices
  2663. + num_msrs_to_save * sizeof(u32),
  2664. &emulated_msrs,
  2665. ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
  2666. goto out;
  2667. r = 0;
  2668. break;
  2669. }
  2670. case KVM_CHECK_EXTENSION: {
  2671. int ext = (long)argp;
  2672. switch (ext) {
  2673. case KVM_CAP_IRQCHIP:
  2674. case KVM_CAP_HLT:
  2675. r = 1;
  2676. break;
  2677. default:
  2678. r = 0;
  2679. break;
  2680. }
  2681. break;
  2682. }
  2683. case KVM_GET_VCPU_MMAP_SIZE:
  2684. r = -EINVAL;
  2685. if (arg)
  2686. goto out;
  2687. r = 2 * PAGE_SIZE;
  2688. break;
  2689. default:
  2690. ;
  2691. }
  2692. out:
  2693. return r;
  2694. }
  2695. static struct file_operations kvm_chardev_ops = {
  2696. .unlocked_ioctl = kvm_dev_ioctl,
  2697. .compat_ioctl = kvm_dev_ioctl,
  2698. };
  2699. static struct miscdevice kvm_dev = {
  2700. KVM_MINOR,
  2701. "kvm",
  2702. &kvm_chardev_ops,
  2703. };
  2704. /*
  2705. * Make sure that a cpu that is being hot-unplugged does not have any vcpus
  2706. * cached on it.
  2707. */
  2708. static void decache_vcpus_on_cpu(int cpu)
  2709. {
  2710. struct kvm *vm;
  2711. struct kvm_vcpu *vcpu;
  2712. int i;
  2713. spin_lock(&kvm_lock);
  2714. list_for_each_entry(vm, &vm_list, vm_list)
  2715. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2716. vcpu = vm->vcpus[i];
  2717. if (!vcpu)
  2718. continue;
  2719. /*
  2720. * If the vcpu is locked, then it is running on some
  2721. * other cpu and therefore it is not cached on the
  2722. * cpu in question.
  2723. *
  2724. * If it's not locked, check the last cpu it executed
  2725. * on.
  2726. */
  2727. if (mutex_trylock(&vcpu->mutex)) {
  2728. if (vcpu->cpu == cpu) {
  2729. kvm_x86_ops->vcpu_decache(vcpu);
  2730. vcpu->cpu = -1;
  2731. }
  2732. mutex_unlock(&vcpu->mutex);
  2733. }
  2734. }
  2735. spin_unlock(&kvm_lock);
  2736. }
  2737. static void hardware_enable(void *junk)
  2738. {
  2739. int cpu = raw_smp_processor_id();
  2740. if (cpu_isset(cpu, cpus_hardware_enabled))
  2741. return;
  2742. cpu_set(cpu, cpus_hardware_enabled);
  2743. kvm_x86_ops->hardware_enable(NULL);
  2744. }
  2745. static void hardware_disable(void *junk)
  2746. {
  2747. int cpu = raw_smp_processor_id();
  2748. if (!cpu_isset(cpu, cpus_hardware_enabled))
  2749. return;
  2750. cpu_clear(cpu, cpus_hardware_enabled);
  2751. decache_vcpus_on_cpu(cpu);
  2752. kvm_x86_ops->hardware_disable(NULL);
  2753. }
  2754. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  2755. void *v)
  2756. {
  2757. int cpu = (long)v;
  2758. switch (val) {
  2759. case CPU_DYING:
  2760. case CPU_DYING_FROZEN:
  2761. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2762. cpu);
  2763. hardware_disable(NULL);
  2764. break;
  2765. case CPU_UP_CANCELED:
  2766. case CPU_UP_CANCELED_FROZEN:
  2767. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  2768. cpu);
  2769. smp_call_function_single(cpu, hardware_disable, NULL, 0, 1);
  2770. break;
  2771. case CPU_ONLINE:
  2772. case CPU_ONLINE_FROZEN:
  2773. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  2774. cpu);
  2775. smp_call_function_single(cpu, hardware_enable, NULL, 0, 1);
  2776. break;
  2777. }
  2778. return NOTIFY_OK;
  2779. }
  2780. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  2781. void *v)
  2782. {
  2783. if (val == SYS_RESTART) {
  2784. /*
  2785. * Some (well, at least mine) BIOSes hang on reboot if
  2786. * in vmx root mode.
  2787. */
  2788. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  2789. on_each_cpu(hardware_disable, NULL, 0, 1);
  2790. }
  2791. return NOTIFY_OK;
  2792. }
  2793. static struct notifier_block kvm_reboot_notifier = {
  2794. .notifier_call = kvm_reboot,
  2795. .priority = 0,
  2796. };
  2797. void kvm_io_bus_init(struct kvm_io_bus *bus)
  2798. {
  2799. memset(bus, 0, sizeof(*bus));
  2800. }
  2801. void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  2802. {
  2803. int i;
  2804. for (i = 0; i < bus->dev_count; i++) {
  2805. struct kvm_io_device *pos = bus->devs[i];
  2806. kvm_iodevice_destructor(pos);
  2807. }
  2808. }
  2809. struct kvm_io_device *kvm_io_bus_find_dev(struct kvm_io_bus *bus, gpa_t addr)
  2810. {
  2811. int i;
  2812. for (i = 0; i < bus->dev_count; i++) {
  2813. struct kvm_io_device *pos = bus->devs[i];
  2814. if (pos->in_range(pos, addr))
  2815. return pos;
  2816. }
  2817. return NULL;
  2818. }
  2819. void kvm_io_bus_register_dev(struct kvm_io_bus *bus, struct kvm_io_device *dev)
  2820. {
  2821. BUG_ON(bus->dev_count > (NR_IOBUS_DEVS-1));
  2822. bus->devs[bus->dev_count++] = dev;
  2823. }
  2824. static struct notifier_block kvm_cpu_notifier = {
  2825. .notifier_call = kvm_cpu_hotplug,
  2826. .priority = 20, /* must be > scheduler priority */
  2827. };
  2828. static u64 stat_get(void *_offset)
  2829. {
  2830. unsigned offset = (long)_offset;
  2831. u64 total = 0;
  2832. struct kvm *kvm;
  2833. struct kvm_vcpu *vcpu;
  2834. int i;
  2835. spin_lock(&kvm_lock);
  2836. list_for_each_entry(kvm, &vm_list, vm_list)
  2837. for (i = 0; i < KVM_MAX_VCPUS; ++i) {
  2838. vcpu = kvm->vcpus[i];
  2839. if (vcpu)
  2840. total += *(u32 *)((void *)vcpu + offset);
  2841. }
  2842. spin_unlock(&kvm_lock);
  2843. return total;
  2844. }
  2845. DEFINE_SIMPLE_ATTRIBUTE(stat_fops, stat_get, NULL, "%llu\n");
  2846. static __init void kvm_init_debug(void)
  2847. {
  2848. struct kvm_stats_debugfs_item *p;
  2849. debugfs_dir = debugfs_create_dir("kvm", NULL);
  2850. for (p = debugfs_entries; p->name; ++p)
  2851. p->dentry = debugfs_create_file(p->name, 0444, debugfs_dir,
  2852. (void *)(long)p->offset,
  2853. &stat_fops);
  2854. }
  2855. static void kvm_exit_debug(void)
  2856. {
  2857. struct kvm_stats_debugfs_item *p;
  2858. for (p = debugfs_entries; p->name; ++p)
  2859. debugfs_remove(p->dentry);
  2860. debugfs_remove(debugfs_dir);
  2861. }
  2862. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  2863. {
  2864. hardware_disable(NULL);
  2865. return 0;
  2866. }
  2867. static int kvm_resume(struct sys_device *dev)
  2868. {
  2869. hardware_enable(NULL);
  2870. return 0;
  2871. }
  2872. static struct sysdev_class kvm_sysdev_class = {
  2873. set_kset_name("kvm"),
  2874. .suspend = kvm_suspend,
  2875. .resume = kvm_resume,
  2876. };
  2877. static struct sys_device kvm_sysdev = {
  2878. .id = 0,
  2879. .cls = &kvm_sysdev_class,
  2880. };
  2881. hpa_t bad_page_address;
  2882. static inline
  2883. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  2884. {
  2885. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  2886. }
  2887. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  2888. {
  2889. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2890. kvm_x86_ops->vcpu_load(vcpu, cpu);
  2891. }
  2892. static void kvm_sched_out(struct preempt_notifier *pn,
  2893. struct task_struct *next)
  2894. {
  2895. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  2896. kvm_x86_ops->vcpu_put(vcpu);
  2897. }
  2898. int kvm_init_x86(struct kvm_x86_ops *ops, unsigned int vcpu_size,
  2899. struct module *module)
  2900. {
  2901. int r;
  2902. int cpu;
  2903. if (kvm_x86_ops) {
  2904. printk(KERN_ERR "kvm: already loaded the other module\n");
  2905. return -EEXIST;
  2906. }
  2907. if (!ops->cpu_has_kvm_support()) {
  2908. printk(KERN_ERR "kvm: no hardware support\n");
  2909. return -EOPNOTSUPP;
  2910. }
  2911. if (ops->disabled_by_bios()) {
  2912. printk(KERN_ERR "kvm: disabled by bios\n");
  2913. return -EOPNOTSUPP;
  2914. }
  2915. kvm_x86_ops = ops;
  2916. r = kvm_x86_ops->hardware_setup();
  2917. if (r < 0)
  2918. goto out;
  2919. for_each_online_cpu(cpu) {
  2920. smp_call_function_single(cpu,
  2921. kvm_x86_ops->check_processor_compatibility,
  2922. &r, 0, 1);
  2923. if (r < 0)
  2924. goto out_free_0;
  2925. }
  2926. on_each_cpu(hardware_enable, NULL, 0, 1);
  2927. r = register_cpu_notifier(&kvm_cpu_notifier);
  2928. if (r)
  2929. goto out_free_1;
  2930. register_reboot_notifier(&kvm_reboot_notifier);
  2931. r = sysdev_class_register(&kvm_sysdev_class);
  2932. if (r)
  2933. goto out_free_2;
  2934. r = sysdev_register(&kvm_sysdev);
  2935. if (r)
  2936. goto out_free_3;
  2937. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  2938. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size,
  2939. __alignof__(struct kvm_vcpu), 0, 0);
  2940. if (!kvm_vcpu_cache) {
  2941. r = -ENOMEM;
  2942. goto out_free_4;
  2943. }
  2944. kvm_chardev_ops.owner = module;
  2945. r = misc_register(&kvm_dev);
  2946. if (r) {
  2947. printk (KERN_ERR "kvm: misc device register failed\n");
  2948. goto out_free;
  2949. }
  2950. kvm_preempt_ops.sched_in = kvm_sched_in;
  2951. kvm_preempt_ops.sched_out = kvm_sched_out;
  2952. return r;
  2953. out_free:
  2954. kmem_cache_destroy(kvm_vcpu_cache);
  2955. out_free_4:
  2956. sysdev_unregister(&kvm_sysdev);
  2957. out_free_3:
  2958. sysdev_class_unregister(&kvm_sysdev_class);
  2959. out_free_2:
  2960. unregister_reboot_notifier(&kvm_reboot_notifier);
  2961. unregister_cpu_notifier(&kvm_cpu_notifier);
  2962. out_free_1:
  2963. on_each_cpu(hardware_disable, NULL, 0, 1);
  2964. out_free_0:
  2965. kvm_x86_ops->hardware_unsetup();
  2966. out:
  2967. kvm_x86_ops = NULL;
  2968. return r;
  2969. }
  2970. void kvm_exit_x86(void)
  2971. {
  2972. misc_deregister(&kvm_dev);
  2973. kmem_cache_destroy(kvm_vcpu_cache);
  2974. sysdev_unregister(&kvm_sysdev);
  2975. sysdev_class_unregister(&kvm_sysdev_class);
  2976. unregister_reboot_notifier(&kvm_reboot_notifier);
  2977. unregister_cpu_notifier(&kvm_cpu_notifier);
  2978. on_each_cpu(hardware_disable, NULL, 0, 1);
  2979. kvm_x86_ops->hardware_unsetup();
  2980. kvm_x86_ops = NULL;
  2981. }
  2982. static __init int kvm_init(void)
  2983. {
  2984. static struct page *bad_page;
  2985. int r;
  2986. r = kvm_mmu_module_init();
  2987. if (r)
  2988. goto out4;
  2989. kvm_init_debug();
  2990. kvm_init_msr_list();
  2991. if ((bad_page = alloc_page(GFP_KERNEL)) == NULL) {
  2992. r = -ENOMEM;
  2993. goto out;
  2994. }
  2995. bad_page_address = page_to_pfn(bad_page) << PAGE_SHIFT;
  2996. memset(__va(bad_page_address), 0, PAGE_SIZE);
  2997. return 0;
  2998. out:
  2999. kvm_exit_debug();
  3000. kvm_mmu_module_exit();
  3001. out4:
  3002. return r;
  3003. }
  3004. static __exit void kvm_exit(void)
  3005. {
  3006. kvm_exit_debug();
  3007. __free_page(pfn_to_page(bad_page_address >> PAGE_SHIFT));
  3008. kvm_mmu_module_exit();
  3009. }
  3010. module_init(kvm_init)
  3011. module_exit(kvm_exit)
  3012. EXPORT_SYMBOL_GPL(kvm_init_x86);
  3013. EXPORT_SYMBOL_GPL(kvm_exit_x86);