sched.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943
  1. /* sched.c - SPU scheduler.
  2. *
  3. * Copyright (C) IBM 2005
  4. * Author: Mark Nutter <mnutter@us.ibm.com>
  5. *
  6. * 2006-03-31 NUMA domains added.
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation; either version 2, or (at your option)
  11. * any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program; if not, write to the Free Software
  20. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21. */
  22. #undef DEBUG
  23. #include <linux/module.h>
  24. #include <linux/errno.h>
  25. #include <linux/sched.h>
  26. #include <linux/kernel.h>
  27. #include <linux/mm.h>
  28. #include <linux/completion.h>
  29. #include <linux/vmalloc.h>
  30. #include <linux/smp.h>
  31. #include <linux/stddef.h>
  32. #include <linux/unistd.h>
  33. #include <linux/numa.h>
  34. #include <linux/mutex.h>
  35. #include <linux/notifier.h>
  36. #include <linux/kthread.h>
  37. #include <linux/pid_namespace.h>
  38. #include <linux/proc_fs.h>
  39. #include <linux/seq_file.h>
  40. #include <asm/io.h>
  41. #include <asm/mmu_context.h>
  42. #include <asm/spu.h>
  43. #include <asm/spu_csa.h>
  44. #include <asm/spu_priv1.h>
  45. #include "spufs.h"
  46. struct spu_prio_array {
  47. DECLARE_BITMAP(bitmap, MAX_PRIO);
  48. struct list_head runq[MAX_PRIO];
  49. spinlock_t runq_lock;
  50. struct list_head active_list[MAX_NUMNODES];
  51. struct mutex active_mutex[MAX_NUMNODES];
  52. int nr_active[MAX_NUMNODES];
  53. int nr_waiting;
  54. };
  55. static unsigned long spu_avenrun[3];
  56. static struct spu_prio_array *spu_prio;
  57. static struct task_struct *spusched_task;
  58. static struct timer_list spusched_timer;
  59. /*
  60. * Priority of a normal, non-rt, non-niced'd process (aka nice level 0).
  61. */
  62. #define NORMAL_PRIO 120
  63. /*
  64. * Frequency of the spu scheduler tick. By default we do one SPU scheduler
  65. * tick for every 10 CPU scheduler ticks.
  66. */
  67. #define SPUSCHED_TICK (10)
  68. /*
  69. * These are the 'tuning knobs' of the scheduler:
  70. *
  71. * Minimum timeslice is 5 msecs (or 1 spu scheduler tick, whichever is
  72. * larger), default timeslice is 100 msecs, maximum timeslice is 800 msecs.
  73. */
  74. #define MIN_SPU_TIMESLICE max(5 * HZ / (1000 * SPUSCHED_TICK), 1)
  75. #define DEF_SPU_TIMESLICE (100 * HZ / (1000 * SPUSCHED_TICK))
  76. #define MAX_USER_PRIO (MAX_PRIO - MAX_RT_PRIO)
  77. #define SCALE_PRIO(x, prio) \
  78. max(x * (MAX_PRIO - prio) / (MAX_USER_PRIO / 2), MIN_SPU_TIMESLICE)
  79. /*
  80. * scale user-nice values [ -20 ... 0 ... 19 ] to time slice values:
  81. * [800ms ... 100ms ... 5ms]
  82. *
  83. * The higher a thread's priority, the bigger timeslices
  84. * it gets during one round of execution. But even the lowest
  85. * priority thread gets MIN_TIMESLICE worth of execution time.
  86. */
  87. void spu_set_timeslice(struct spu_context *ctx)
  88. {
  89. if (ctx->prio < NORMAL_PRIO)
  90. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE * 4, ctx->prio);
  91. else
  92. ctx->time_slice = SCALE_PRIO(DEF_SPU_TIMESLICE, ctx->prio);
  93. }
  94. /*
  95. * Update scheduling information from the owning thread.
  96. */
  97. void __spu_update_sched_info(struct spu_context *ctx)
  98. {
  99. /*
  100. * 32-Bit assignment are atomic on powerpc, and we don't care about
  101. * memory ordering here because retriving the controlling thread is
  102. * per defintion racy.
  103. */
  104. ctx->tid = current->pid;
  105. /*
  106. * We do our own priority calculations, so we normally want
  107. * ->static_prio to start with. Unfortunately thies field
  108. * contains junk for threads with a realtime scheduling
  109. * policy so we have to look at ->prio in this case.
  110. */
  111. if (rt_prio(current->prio))
  112. ctx->prio = current->prio;
  113. else
  114. ctx->prio = current->static_prio;
  115. ctx->policy = current->policy;
  116. /*
  117. * A lot of places that don't hold active_mutex poke into
  118. * cpus_allowed, including grab_runnable_context which
  119. * already holds the runq_lock. So abuse runq_lock
  120. * to protect this field aswell.
  121. */
  122. spin_lock(&spu_prio->runq_lock);
  123. ctx->cpus_allowed = current->cpus_allowed;
  124. spin_unlock(&spu_prio->runq_lock);
  125. }
  126. void spu_update_sched_info(struct spu_context *ctx)
  127. {
  128. int node = ctx->spu->node;
  129. mutex_lock(&spu_prio->active_mutex[node]);
  130. __spu_update_sched_info(ctx);
  131. mutex_unlock(&spu_prio->active_mutex[node]);
  132. }
  133. static int __node_allowed(struct spu_context *ctx, int node)
  134. {
  135. if (nr_cpus_node(node)) {
  136. cpumask_t mask = node_to_cpumask(node);
  137. if (cpus_intersects(mask, ctx->cpus_allowed))
  138. return 1;
  139. }
  140. return 0;
  141. }
  142. static int node_allowed(struct spu_context *ctx, int node)
  143. {
  144. int rval;
  145. spin_lock(&spu_prio->runq_lock);
  146. rval = __node_allowed(ctx, node);
  147. spin_unlock(&spu_prio->runq_lock);
  148. return rval;
  149. }
  150. /**
  151. * spu_add_to_active_list - add spu to active list
  152. * @spu: spu to add to the active list
  153. */
  154. static void spu_add_to_active_list(struct spu *spu)
  155. {
  156. int node = spu->node;
  157. mutex_lock(&spu_prio->active_mutex[node]);
  158. spu_prio->nr_active[node]++;
  159. list_add_tail(&spu->list, &spu_prio->active_list[node]);
  160. mutex_unlock(&spu_prio->active_mutex[node]);
  161. }
  162. static void __spu_remove_from_active_list(struct spu *spu)
  163. {
  164. list_del_init(&spu->list);
  165. spu_prio->nr_active[spu->node]--;
  166. }
  167. /**
  168. * spu_remove_from_active_list - remove spu from active list
  169. * @spu: spu to remove from the active list
  170. */
  171. static void spu_remove_from_active_list(struct spu *spu)
  172. {
  173. int node = spu->node;
  174. mutex_lock(&spu_prio->active_mutex[node]);
  175. __spu_remove_from_active_list(spu);
  176. mutex_unlock(&spu_prio->active_mutex[node]);
  177. }
  178. static BLOCKING_NOTIFIER_HEAD(spu_switch_notifier);
  179. static void spu_switch_notify(struct spu *spu, struct spu_context *ctx)
  180. {
  181. blocking_notifier_call_chain(&spu_switch_notifier,
  182. ctx ? ctx->object_id : 0, spu);
  183. }
  184. int spu_switch_event_register(struct notifier_block * n)
  185. {
  186. return blocking_notifier_chain_register(&spu_switch_notifier, n);
  187. }
  188. int spu_switch_event_unregister(struct notifier_block * n)
  189. {
  190. return blocking_notifier_chain_unregister(&spu_switch_notifier, n);
  191. }
  192. /**
  193. * spu_bind_context - bind spu context to physical spu
  194. * @spu: physical spu to bind to
  195. * @ctx: context to bind
  196. */
  197. static void spu_bind_context(struct spu *spu, struct spu_context *ctx)
  198. {
  199. pr_debug("%s: pid=%d SPU=%d NODE=%d\n", __FUNCTION__, current->pid,
  200. spu->number, spu->node);
  201. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  202. if (ctx->flags & SPU_CREATE_NOSCHED)
  203. atomic_inc(&cbe_spu_info[spu->node].reserved_spus);
  204. if (!list_empty(&ctx->aff_list))
  205. atomic_inc(&ctx->gang->aff_sched_count);
  206. ctx->stats.slb_flt_base = spu->stats.slb_flt;
  207. ctx->stats.class2_intr_base = spu->stats.class2_intr;
  208. spu->ctx = ctx;
  209. spu->flags = 0;
  210. ctx->spu = spu;
  211. ctx->ops = &spu_hw_ops;
  212. spu->pid = current->pid;
  213. spu_associate_mm(spu, ctx->owner);
  214. spu->ibox_callback = spufs_ibox_callback;
  215. spu->wbox_callback = spufs_wbox_callback;
  216. spu->stop_callback = spufs_stop_callback;
  217. spu->mfc_callback = spufs_mfc_callback;
  218. spu->dma_callback = spufs_dma_callback;
  219. mb();
  220. spu_unmap_mappings(ctx);
  221. spu_restore(&ctx->csa, spu);
  222. spu->timestamp = jiffies;
  223. spu_cpu_affinity_set(spu, raw_smp_processor_id());
  224. spu_switch_notify(spu, ctx);
  225. ctx->state = SPU_STATE_RUNNABLE;
  226. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  227. }
  228. /*
  229. * XXX(hch): needs locking.
  230. */
  231. static inline int sched_spu(struct spu *spu)
  232. {
  233. return (!spu->ctx || !(spu->ctx->flags & SPU_CREATE_NOSCHED));
  234. }
  235. static void aff_merge_remaining_ctxs(struct spu_gang *gang)
  236. {
  237. struct spu_context *ctx;
  238. list_for_each_entry(ctx, &gang->aff_list_head, aff_list) {
  239. if (list_empty(&ctx->aff_list))
  240. list_add(&ctx->aff_list, &gang->aff_list_head);
  241. }
  242. gang->aff_flags |= AFF_MERGED;
  243. }
  244. static void aff_set_offsets(struct spu_gang *gang)
  245. {
  246. struct spu_context *ctx;
  247. int offset;
  248. offset = -1;
  249. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  250. aff_list) {
  251. if (&ctx->aff_list == &gang->aff_list_head)
  252. break;
  253. ctx->aff_offset = offset--;
  254. }
  255. offset = 0;
  256. list_for_each_entry(ctx, gang->aff_ref_ctx->aff_list.prev, aff_list) {
  257. if (&ctx->aff_list == &gang->aff_list_head)
  258. break;
  259. ctx->aff_offset = offset++;
  260. }
  261. gang->aff_flags |= AFF_OFFSETS_SET;
  262. }
  263. static struct spu *aff_ref_location(struct spu_context *ctx, int mem_aff,
  264. int group_size, int lowest_offset)
  265. {
  266. struct spu *spu;
  267. int node, n;
  268. /*
  269. * TODO: A better algorithm could be used to find a good spu to be
  270. * used as reference location for the ctxs chain.
  271. */
  272. node = cpu_to_node(raw_smp_processor_id());
  273. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  274. node = (node < MAX_NUMNODES) ? node : 0;
  275. if (!node_allowed(ctx, node))
  276. continue;
  277. list_for_each_entry(spu, &cbe_spu_info[node].spus, cbe_list) {
  278. if ((!mem_aff || spu->has_mem_affinity) &&
  279. sched_spu(spu))
  280. return spu;
  281. }
  282. }
  283. return NULL;
  284. }
  285. static void aff_set_ref_point_location(struct spu_gang *gang)
  286. {
  287. int mem_aff, gs, lowest_offset;
  288. struct spu_context *ctx;
  289. struct spu *tmp;
  290. mem_aff = gang->aff_ref_ctx->flags & SPU_CREATE_AFFINITY_MEM;
  291. lowest_offset = 0;
  292. gs = 0;
  293. list_for_each_entry(tmp, &gang->aff_list_head, aff_list)
  294. gs++;
  295. list_for_each_entry_reverse(ctx, &gang->aff_ref_ctx->aff_list,
  296. aff_list) {
  297. if (&ctx->aff_list == &gang->aff_list_head)
  298. break;
  299. lowest_offset = ctx->aff_offset;
  300. }
  301. gang->aff_ref_spu = aff_ref_location(ctx, mem_aff, gs, lowest_offset);
  302. }
  303. static struct spu *ctx_location(struct spu *ref, int offset)
  304. {
  305. struct spu *spu;
  306. spu = NULL;
  307. if (offset >= 0) {
  308. list_for_each_entry(spu, ref->aff_list.prev, aff_list) {
  309. if (offset == 0)
  310. break;
  311. if (sched_spu(spu))
  312. offset--;
  313. }
  314. } else {
  315. list_for_each_entry_reverse(spu, ref->aff_list.next, aff_list) {
  316. if (offset == 0)
  317. break;
  318. if (sched_spu(spu))
  319. offset++;
  320. }
  321. }
  322. return spu;
  323. }
  324. /*
  325. * affinity_check is called each time a context is going to be scheduled.
  326. * It returns the spu ptr on which the context must run.
  327. */
  328. struct spu *affinity_check(struct spu_context *ctx)
  329. {
  330. struct spu_gang *gang;
  331. if (list_empty(&ctx->aff_list))
  332. return NULL;
  333. gang = ctx->gang;
  334. mutex_lock(&gang->aff_mutex);
  335. if (!gang->aff_ref_spu) {
  336. if (!(gang->aff_flags & AFF_MERGED))
  337. aff_merge_remaining_ctxs(gang);
  338. if (!(gang->aff_flags & AFF_OFFSETS_SET))
  339. aff_set_offsets(gang);
  340. aff_set_ref_point_location(gang);
  341. }
  342. mutex_unlock(&gang->aff_mutex);
  343. if (!gang->aff_ref_spu)
  344. return NULL;
  345. return ctx_location(gang->aff_ref_spu, ctx->aff_offset);
  346. }
  347. /**
  348. * spu_unbind_context - unbind spu context from physical spu
  349. * @spu: physical spu to unbind from
  350. * @ctx: context to unbind
  351. */
  352. static void spu_unbind_context(struct spu *spu, struct spu_context *ctx)
  353. {
  354. pr_debug("%s: unbind pid=%d SPU=%d NODE=%d\n", __FUNCTION__,
  355. spu->pid, spu->number, spu->node);
  356. spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
  357. if (spu->ctx->flags & SPU_CREATE_NOSCHED)
  358. atomic_dec(&cbe_spu_info[spu->node].reserved_spus);
  359. if (!list_empty(&ctx->aff_list))
  360. if (atomic_dec_and_test(&ctx->gang->aff_sched_count))
  361. ctx->gang->aff_ref_spu = NULL;
  362. spu_switch_notify(spu, NULL);
  363. spu_unmap_mappings(ctx);
  364. spu_save(&ctx->csa, spu);
  365. spu->timestamp = jiffies;
  366. ctx->state = SPU_STATE_SAVED;
  367. spu->ibox_callback = NULL;
  368. spu->wbox_callback = NULL;
  369. spu->stop_callback = NULL;
  370. spu->mfc_callback = NULL;
  371. spu->dma_callback = NULL;
  372. spu_associate_mm(spu, NULL);
  373. spu->pid = 0;
  374. ctx->ops = &spu_backing_ops;
  375. spu->flags = 0;
  376. spu->ctx = NULL;
  377. ctx->stats.slb_flt +=
  378. (spu->stats.slb_flt - ctx->stats.slb_flt_base);
  379. ctx->stats.class2_intr +=
  380. (spu->stats.class2_intr - ctx->stats.class2_intr_base);
  381. /* This maps the underlying spu state to idle */
  382. spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
  383. ctx->spu = NULL;
  384. }
  385. /**
  386. * spu_add_to_rq - add a context to the runqueue
  387. * @ctx: context to add
  388. */
  389. static void __spu_add_to_rq(struct spu_context *ctx)
  390. {
  391. /*
  392. * Unfortunately this code path can be called from multiple threads
  393. * on behalf of a single context due to the way the problem state
  394. * mmap support works.
  395. *
  396. * Fortunately we need to wake up all these threads at the same time
  397. * and can simply skip the runqueue addition for every but the first
  398. * thread getting into this codepath.
  399. *
  400. * It's still quite hacky, and long-term we should proxy all other
  401. * threads through the owner thread so that spu_run is in control
  402. * of all the scheduling activity for a given context.
  403. */
  404. if (list_empty(&ctx->rq)) {
  405. list_add_tail(&ctx->rq, &spu_prio->runq[ctx->prio]);
  406. set_bit(ctx->prio, spu_prio->bitmap);
  407. if (!spu_prio->nr_waiting++)
  408. __mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  409. }
  410. }
  411. static void __spu_del_from_rq(struct spu_context *ctx)
  412. {
  413. int prio = ctx->prio;
  414. if (!list_empty(&ctx->rq)) {
  415. if (!--spu_prio->nr_waiting)
  416. del_timer(&spusched_timer);
  417. list_del_init(&ctx->rq);
  418. if (list_empty(&spu_prio->runq[prio]))
  419. clear_bit(prio, spu_prio->bitmap);
  420. }
  421. }
  422. static void spu_prio_wait(struct spu_context *ctx)
  423. {
  424. DEFINE_WAIT(wait);
  425. spin_lock(&spu_prio->runq_lock);
  426. prepare_to_wait_exclusive(&ctx->stop_wq, &wait, TASK_INTERRUPTIBLE);
  427. if (!signal_pending(current)) {
  428. __spu_add_to_rq(ctx);
  429. spin_unlock(&spu_prio->runq_lock);
  430. mutex_unlock(&ctx->state_mutex);
  431. schedule();
  432. mutex_lock(&ctx->state_mutex);
  433. spin_lock(&spu_prio->runq_lock);
  434. __spu_del_from_rq(ctx);
  435. }
  436. spin_unlock(&spu_prio->runq_lock);
  437. __set_current_state(TASK_RUNNING);
  438. remove_wait_queue(&ctx->stop_wq, &wait);
  439. }
  440. static struct spu *spu_get_idle(struct spu_context *ctx)
  441. {
  442. struct spu *spu = NULL;
  443. int node = cpu_to_node(raw_smp_processor_id());
  444. int n;
  445. spu = affinity_check(ctx);
  446. if (spu)
  447. return spu_alloc_spu(spu);
  448. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  449. node = (node < MAX_NUMNODES) ? node : 0;
  450. if (!node_allowed(ctx, node))
  451. continue;
  452. spu = spu_alloc_node(node);
  453. if (spu)
  454. break;
  455. }
  456. return spu;
  457. }
  458. /**
  459. * find_victim - find a lower priority context to preempt
  460. * @ctx: canidate context for running
  461. *
  462. * Returns the freed physical spu to run the new context on.
  463. */
  464. static struct spu *find_victim(struct spu_context *ctx)
  465. {
  466. struct spu_context *victim = NULL;
  467. struct spu *spu;
  468. int node, n;
  469. /*
  470. * Look for a possible preemption candidate on the local node first.
  471. * If there is no candidate look at the other nodes. This isn't
  472. * exactly fair, but so far the whole spu schedule tries to keep
  473. * a strong node affinity. We might want to fine-tune this in
  474. * the future.
  475. */
  476. restart:
  477. node = cpu_to_node(raw_smp_processor_id());
  478. for (n = 0; n < MAX_NUMNODES; n++, node++) {
  479. node = (node < MAX_NUMNODES) ? node : 0;
  480. if (!node_allowed(ctx, node))
  481. continue;
  482. mutex_lock(&spu_prio->active_mutex[node]);
  483. list_for_each_entry(spu, &spu_prio->active_list[node], list) {
  484. struct spu_context *tmp = spu->ctx;
  485. if (tmp->prio > ctx->prio &&
  486. (!victim || tmp->prio > victim->prio))
  487. victim = spu->ctx;
  488. }
  489. mutex_unlock(&spu_prio->active_mutex[node]);
  490. if (victim) {
  491. /*
  492. * This nests ctx->state_mutex, but we always lock
  493. * higher priority contexts before lower priority
  494. * ones, so this is safe until we introduce
  495. * priority inheritance schemes.
  496. */
  497. if (!mutex_trylock(&victim->state_mutex)) {
  498. victim = NULL;
  499. goto restart;
  500. }
  501. spu = victim->spu;
  502. if (!spu) {
  503. /*
  504. * This race can happen because we've dropped
  505. * the active list mutex. No a problem, just
  506. * restart the search.
  507. */
  508. mutex_unlock(&victim->state_mutex);
  509. victim = NULL;
  510. goto restart;
  511. }
  512. spu_remove_from_active_list(spu);
  513. spu_unbind_context(spu, victim);
  514. victim->stats.invol_ctx_switch++;
  515. spu->stats.invol_ctx_switch++;
  516. mutex_unlock(&victim->state_mutex);
  517. /*
  518. * We need to break out of the wait loop in spu_run
  519. * manually to ensure this context gets put on the
  520. * runqueue again ASAP.
  521. */
  522. wake_up(&victim->stop_wq);
  523. return spu;
  524. }
  525. }
  526. return NULL;
  527. }
  528. /**
  529. * spu_activate - find a free spu for a context and execute it
  530. * @ctx: spu context to schedule
  531. * @flags: flags (currently ignored)
  532. *
  533. * Tries to find a free spu to run @ctx. If no free spu is available
  534. * add the context to the runqueue so it gets woken up once an spu
  535. * is available.
  536. */
  537. int spu_activate(struct spu_context *ctx, unsigned long flags)
  538. {
  539. do {
  540. struct spu *spu;
  541. /*
  542. * If there are multiple threads waiting for a single context
  543. * only one actually binds the context while the others will
  544. * only be able to acquire the state_mutex once the context
  545. * already is in runnable state.
  546. */
  547. if (ctx->spu)
  548. return 0;
  549. spu = spu_get_idle(ctx);
  550. /*
  551. * If this is a realtime thread we try to get it running by
  552. * preempting a lower priority thread.
  553. */
  554. if (!spu && rt_prio(ctx->prio))
  555. spu = find_victim(ctx);
  556. if (spu) {
  557. spu_bind_context(spu, ctx);
  558. spu_add_to_active_list(spu);
  559. return 0;
  560. }
  561. spu_prio_wait(ctx);
  562. } while (!signal_pending(current));
  563. return -ERESTARTSYS;
  564. }
  565. /**
  566. * grab_runnable_context - try to find a runnable context
  567. *
  568. * Remove the highest priority context on the runqueue and return it
  569. * to the caller. Returns %NULL if no runnable context was found.
  570. */
  571. static struct spu_context *grab_runnable_context(int prio, int node)
  572. {
  573. struct spu_context *ctx;
  574. int best;
  575. spin_lock(&spu_prio->runq_lock);
  576. best = find_first_bit(spu_prio->bitmap, prio);
  577. while (best < prio) {
  578. struct list_head *rq = &spu_prio->runq[best];
  579. list_for_each_entry(ctx, rq, rq) {
  580. /* XXX(hch): check for affinity here aswell */
  581. if (__node_allowed(ctx, node)) {
  582. __spu_del_from_rq(ctx);
  583. goto found;
  584. }
  585. }
  586. best++;
  587. }
  588. ctx = NULL;
  589. found:
  590. spin_unlock(&spu_prio->runq_lock);
  591. return ctx;
  592. }
  593. static int __spu_deactivate(struct spu_context *ctx, int force, int max_prio)
  594. {
  595. struct spu *spu = ctx->spu;
  596. struct spu_context *new = NULL;
  597. if (spu) {
  598. new = grab_runnable_context(max_prio, spu->node);
  599. if (new || force) {
  600. spu_remove_from_active_list(spu);
  601. spu_unbind_context(spu, ctx);
  602. ctx->stats.vol_ctx_switch++;
  603. spu->stats.vol_ctx_switch++;
  604. spu_free(spu);
  605. if (new)
  606. wake_up(&new->stop_wq);
  607. }
  608. }
  609. return new != NULL;
  610. }
  611. /**
  612. * spu_deactivate - unbind a context from it's physical spu
  613. * @ctx: spu context to unbind
  614. *
  615. * Unbind @ctx from the physical spu it is running on and schedule
  616. * the highest priority context to run on the freed physical spu.
  617. */
  618. void spu_deactivate(struct spu_context *ctx)
  619. {
  620. __spu_deactivate(ctx, 1, MAX_PRIO);
  621. }
  622. /**
  623. * spu_yield - yield a physical spu if others are waiting
  624. * @ctx: spu context to yield
  625. *
  626. * Check if there is a higher priority context waiting and if yes
  627. * unbind @ctx from the physical spu and schedule the highest
  628. * priority context to run on the freed physical spu instead.
  629. */
  630. void spu_yield(struct spu_context *ctx)
  631. {
  632. if (!(ctx->flags & SPU_CREATE_NOSCHED)) {
  633. mutex_lock(&ctx->state_mutex);
  634. __spu_deactivate(ctx, 0, MAX_PRIO);
  635. mutex_unlock(&ctx->state_mutex);
  636. }
  637. }
  638. static void spusched_tick(struct spu_context *ctx)
  639. {
  640. if (ctx->flags & SPU_CREATE_NOSCHED)
  641. return;
  642. if (ctx->policy == SCHED_FIFO)
  643. return;
  644. if (--ctx->time_slice)
  645. return;
  646. /*
  647. * Unfortunately active_mutex ranks outside of state_mutex, so
  648. * we have to trylock here. If we fail give the context another
  649. * tick and try again.
  650. */
  651. if (mutex_trylock(&ctx->state_mutex)) {
  652. struct spu *spu = ctx->spu;
  653. struct spu_context *new;
  654. new = grab_runnable_context(ctx->prio + 1, spu->node);
  655. if (new) {
  656. __spu_remove_from_active_list(spu);
  657. spu_unbind_context(spu, ctx);
  658. ctx->stats.invol_ctx_switch++;
  659. spu->stats.invol_ctx_switch++;
  660. spu_free(spu);
  661. wake_up(&new->stop_wq);
  662. /*
  663. * We need to break out of the wait loop in
  664. * spu_run manually to ensure this context
  665. * gets put on the runqueue again ASAP.
  666. */
  667. wake_up(&ctx->stop_wq);
  668. }
  669. spu_set_timeslice(ctx);
  670. mutex_unlock(&ctx->state_mutex);
  671. } else {
  672. ctx->time_slice++;
  673. }
  674. }
  675. /**
  676. * count_active_contexts - count nr of active tasks
  677. *
  678. * Return the number of tasks currently running or waiting to run.
  679. *
  680. * Note that we don't take runq_lock / active_mutex here. Reading
  681. * a single 32bit value is atomic on powerpc, and we don't care
  682. * about memory ordering issues here.
  683. */
  684. static unsigned long count_active_contexts(void)
  685. {
  686. int nr_active = 0, node;
  687. for (node = 0; node < MAX_NUMNODES; node++)
  688. nr_active += spu_prio->nr_active[node];
  689. nr_active += spu_prio->nr_waiting;
  690. return nr_active;
  691. }
  692. /**
  693. * spu_calc_load - given tick count, update the avenrun load estimates.
  694. * @tick: tick count
  695. *
  696. * No locking against reading these values from userspace, as for
  697. * the CPU loadavg code.
  698. */
  699. static void spu_calc_load(unsigned long ticks)
  700. {
  701. unsigned long active_tasks; /* fixed-point */
  702. static int count = LOAD_FREQ;
  703. count -= ticks;
  704. if (unlikely(count < 0)) {
  705. active_tasks = count_active_contexts() * FIXED_1;
  706. do {
  707. CALC_LOAD(spu_avenrun[0], EXP_1, active_tasks);
  708. CALC_LOAD(spu_avenrun[1], EXP_5, active_tasks);
  709. CALC_LOAD(spu_avenrun[2], EXP_15, active_tasks);
  710. count += LOAD_FREQ;
  711. } while (count < 0);
  712. }
  713. }
  714. static void spusched_wake(unsigned long data)
  715. {
  716. mod_timer(&spusched_timer, jiffies + SPUSCHED_TICK);
  717. wake_up_process(spusched_task);
  718. spu_calc_load(SPUSCHED_TICK);
  719. }
  720. static int spusched_thread(void *unused)
  721. {
  722. struct spu *spu, *next;
  723. int node;
  724. while (!kthread_should_stop()) {
  725. set_current_state(TASK_INTERRUPTIBLE);
  726. schedule();
  727. for (node = 0; node < MAX_NUMNODES; node++) {
  728. mutex_lock(&spu_prio->active_mutex[node]);
  729. list_for_each_entry_safe(spu, next,
  730. &spu_prio->active_list[node],
  731. list)
  732. spusched_tick(spu->ctx);
  733. mutex_unlock(&spu_prio->active_mutex[node]);
  734. }
  735. }
  736. return 0;
  737. }
  738. #define LOAD_INT(x) ((x) >> FSHIFT)
  739. #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
  740. static int show_spu_loadavg(struct seq_file *s, void *private)
  741. {
  742. int a, b, c;
  743. a = spu_avenrun[0] + (FIXED_1/200);
  744. b = spu_avenrun[1] + (FIXED_1/200);
  745. c = spu_avenrun[2] + (FIXED_1/200);
  746. /*
  747. * Note that last_pid doesn't really make much sense for the
  748. * SPU loadavg (it even seems very odd on the CPU side..),
  749. * but we include it here to have a 100% compatible interface.
  750. */
  751. seq_printf(s, "%d.%02d %d.%02d %d.%02d %ld/%d %d\n",
  752. LOAD_INT(a), LOAD_FRAC(a),
  753. LOAD_INT(b), LOAD_FRAC(b),
  754. LOAD_INT(c), LOAD_FRAC(c),
  755. count_active_contexts(),
  756. atomic_read(&nr_spu_contexts),
  757. current->nsproxy->pid_ns->last_pid);
  758. return 0;
  759. }
  760. static int spu_loadavg_open(struct inode *inode, struct file *file)
  761. {
  762. return single_open(file, show_spu_loadavg, NULL);
  763. }
  764. static const struct file_operations spu_loadavg_fops = {
  765. .open = spu_loadavg_open,
  766. .read = seq_read,
  767. .llseek = seq_lseek,
  768. .release = single_release,
  769. };
  770. int __init spu_sched_init(void)
  771. {
  772. struct proc_dir_entry *entry;
  773. int err = -ENOMEM, i;
  774. spu_prio = kzalloc(sizeof(struct spu_prio_array), GFP_KERNEL);
  775. if (!spu_prio)
  776. goto out;
  777. for (i = 0; i < MAX_PRIO; i++) {
  778. INIT_LIST_HEAD(&spu_prio->runq[i]);
  779. __clear_bit(i, spu_prio->bitmap);
  780. }
  781. for (i = 0; i < MAX_NUMNODES; i++) {
  782. mutex_init(&spu_prio->active_mutex[i]);
  783. INIT_LIST_HEAD(&spu_prio->active_list[i]);
  784. }
  785. spin_lock_init(&spu_prio->runq_lock);
  786. setup_timer(&spusched_timer, spusched_wake, 0);
  787. spusched_task = kthread_run(spusched_thread, NULL, "spusched");
  788. if (IS_ERR(spusched_task)) {
  789. err = PTR_ERR(spusched_task);
  790. goto out_free_spu_prio;
  791. }
  792. entry = create_proc_entry("spu_loadavg", 0, NULL);
  793. if (!entry)
  794. goto out_stop_kthread;
  795. entry->proc_fops = &spu_loadavg_fops;
  796. pr_debug("spusched: tick: %d, min ticks: %d, default ticks: %d\n",
  797. SPUSCHED_TICK, MIN_SPU_TIMESLICE, DEF_SPU_TIMESLICE);
  798. return 0;
  799. out_stop_kthread:
  800. kthread_stop(spusched_task);
  801. out_free_spu_prio:
  802. kfree(spu_prio);
  803. out:
  804. return err;
  805. }
  806. void spu_sched_exit(void)
  807. {
  808. struct spu *spu, *tmp;
  809. int node;
  810. remove_proc_entry("spu_loadavg", NULL);
  811. del_timer_sync(&spusched_timer);
  812. kthread_stop(spusched_task);
  813. for (node = 0; node < MAX_NUMNODES; node++) {
  814. mutex_lock(&spu_prio->active_mutex[node]);
  815. list_for_each_entry_safe(spu, tmp, &spu_prio->active_list[node],
  816. list) {
  817. list_del_init(&spu->list);
  818. spu_free(spu);
  819. }
  820. mutex_unlock(&spu_prio->active_mutex[node]);
  821. }
  822. kfree(spu_prio);
  823. }