skge.c 89 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450
  1. /*
  2. * New driver for Marvell Yukon chipset and SysKonnect Gigabit
  3. * Ethernet adapters. Based on earlier sk98lin, e100 and
  4. * FreeBSD if_sk drivers.
  5. *
  6. * This driver intentionally does not support all the features
  7. * of the original driver such as link fail-over and link management because
  8. * those should be done at higher levels.
  9. *
  10. * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
  11. *
  12. * This program is free software; you can redistribute it and/or modify
  13. * it under the terms of the GNU General Public License as published by
  14. * the Free Software Foundation; either version 2 of the License, or
  15. * (at your option) any later version.
  16. *
  17. * This program is distributed in the hope that it will be useful,
  18. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  19. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  20. * GNU General Public License for more details.
  21. *
  22. * You should have received a copy of the GNU General Public License
  23. * along with this program; if not, write to the Free Software
  24. * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  25. */
  26. #include <linux/config.h>
  27. #include <linux/in.h>
  28. #include <linux/kernel.h>
  29. #include <linux/module.h>
  30. #include <linux/moduleparam.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/etherdevice.h>
  33. #include <linux/ethtool.h>
  34. #include <linux/pci.h>
  35. #include <linux/if_vlan.h>
  36. #include <linux/ip.h>
  37. #include <linux/delay.h>
  38. #include <linux/crc32.h>
  39. #include <linux/dma-mapping.h>
  40. #include <linux/mii.h>
  41. #include <asm/irq.h>
  42. #include "skge.h"
  43. #define DRV_NAME "skge"
  44. #define DRV_VERSION "1.3"
  45. #define PFX DRV_NAME " "
  46. #define DEFAULT_TX_RING_SIZE 128
  47. #define DEFAULT_RX_RING_SIZE 512
  48. #define MAX_TX_RING_SIZE 1024
  49. #define MAX_RX_RING_SIZE 4096
  50. #define RX_COPY_THRESHOLD 128
  51. #define RX_BUF_SIZE 1536
  52. #define PHY_RETRIES 1000
  53. #define ETH_JUMBO_MTU 9000
  54. #define TX_WATCHDOG (5 * HZ)
  55. #define NAPI_WEIGHT 64
  56. #define BLINK_MS 250
  57. MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
  58. MODULE_AUTHOR("Stephen Hemminger <shemminger@osdl.org>");
  59. MODULE_LICENSE("GPL");
  60. MODULE_VERSION(DRV_VERSION);
  61. static const u32 default_msg
  62. = NETIF_MSG_DRV| NETIF_MSG_PROBE| NETIF_MSG_LINK
  63. | NETIF_MSG_IFUP| NETIF_MSG_IFDOWN;
  64. static int debug = -1; /* defaults above */
  65. module_param(debug, int, 0);
  66. MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  67. static const struct pci_device_id skge_id_table[] = {
  68. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
  69. { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
  70. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
  71. { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
  72. { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T), },
  73. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
  74. { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
  75. { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
  76. { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
  77. { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015, },
  78. { 0 }
  79. };
  80. MODULE_DEVICE_TABLE(pci, skge_id_table);
  81. static int skge_up(struct net_device *dev);
  82. static int skge_down(struct net_device *dev);
  83. static void skge_phy_reset(struct skge_port *skge);
  84. static void skge_tx_clean(struct skge_port *skge);
  85. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  86. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
  87. static void genesis_get_stats(struct skge_port *skge, u64 *data);
  88. static void yukon_get_stats(struct skge_port *skge, u64 *data);
  89. static void yukon_init(struct skge_hw *hw, int port);
  90. static void genesis_mac_init(struct skge_hw *hw, int port);
  91. static void genesis_link_up(struct skge_port *skge);
  92. /* Avoid conditionals by using array */
  93. static const int txqaddr[] = { Q_XA1, Q_XA2 };
  94. static const int rxqaddr[] = { Q_R1, Q_R2 };
  95. static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
  96. static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
  97. static const u32 portirqmask[] = { IS_PORT_1, IS_PORT_2 };
  98. static int skge_get_regs_len(struct net_device *dev)
  99. {
  100. return 0x4000;
  101. }
  102. /*
  103. * Returns copy of whole control register region
  104. * Note: skip RAM address register because accessing it will
  105. * cause bus hangs!
  106. */
  107. static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
  108. void *p)
  109. {
  110. const struct skge_port *skge = netdev_priv(dev);
  111. const void __iomem *io = skge->hw->regs;
  112. regs->version = 1;
  113. memset(p, 0, regs->len);
  114. memcpy_fromio(p, io, B3_RAM_ADDR);
  115. memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
  116. regs->len - B3_RI_WTO_R1);
  117. }
  118. /* Wake on Lan only supported on Yukon chips with rev 1 or above */
  119. static int wol_supported(const struct skge_hw *hw)
  120. {
  121. return !((hw->chip_id == CHIP_ID_GENESIS ||
  122. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)));
  123. }
  124. static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  125. {
  126. struct skge_port *skge = netdev_priv(dev);
  127. wol->supported = wol_supported(skge->hw) ? WAKE_MAGIC : 0;
  128. wol->wolopts = skge->wol ? WAKE_MAGIC : 0;
  129. }
  130. static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
  131. {
  132. struct skge_port *skge = netdev_priv(dev);
  133. struct skge_hw *hw = skge->hw;
  134. if (wol->wolopts != WAKE_MAGIC && wol->wolopts != 0)
  135. return -EOPNOTSUPP;
  136. if (wol->wolopts == WAKE_MAGIC && !wol_supported(hw))
  137. return -EOPNOTSUPP;
  138. skge->wol = wol->wolopts == WAKE_MAGIC;
  139. if (skge->wol) {
  140. memcpy_toio(hw->regs + WOL_MAC_ADDR, dev->dev_addr, ETH_ALEN);
  141. skge_write16(hw, WOL_CTRL_STAT,
  142. WOL_CTL_ENA_PME_ON_MAGIC_PKT |
  143. WOL_CTL_ENA_MAGIC_PKT_UNIT);
  144. } else
  145. skge_write16(hw, WOL_CTRL_STAT, WOL_CTL_DEFAULT);
  146. return 0;
  147. }
  148. /* Determine supported/advertised modes based on hardware.
  149. * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
  150. */
  151. static u32 skge_supported_modes(const struct skge_hw *hw)
  152. {
  153. u32 supported;
  154. if (hw->copper) {
  155. supported = SUPPORTED_10baseT_Half
  156. | SUPPORTED_10baseT_Full
  157. | SUPPORTED_100baseT_Half
  158. | SUPPORTED_100baseT_Full
  159. | SUPPORTED_1000baseT_Half
  160. | SUPPORTED_1000baseT_Full
  161. | SUPPORTED_Autoneg| SUPPORTED_TP;
  162. if (hw->chip_id == CHIP_ID_GENESIS)
  163. supported &= ~(SUPPORTED_10baseT_Half
  164. | SUPPORTED_10baseT_Full
  165. | SUPPORTED_100baseT_Half
  166. | SUPPORTED_100baseT_Full);
  167. else if (hw->chip_id == CHIP_ID_YUKON)
  168. supported &= ~SUPPORTED_1000baseT_Half;
  169. } else
  170. supported = SUPPORTED_1000baseT_Full | SUPPORTED_FIBRE
  171. | SUPPORTED_Autoneg;
  172. return supported;
  173. }
  174. static int skge_get_settings(struct net_device *dev,
  175. struct ethtool_cmd *ecmd)
  176. {
  177. struct skge_port *skge = netdev_priv(dev);
  178. struct skge_hw *hw = skge->hw;
  179. ecmd->transceiver = XCVR_INTERNAL;
  180. ecmd->supported = skge_supported_modes(hw);
  181. if (hw->copper) {
  182. ecmd->port = PORT_TP;
  183. ecmd->phy_address = hw->phy_addr;
  184. } else
  185. ecmd->port = PORT_FIBRE;
  186. ecmd->advertising = skge->advertising;
  187. ecmd->autoneg = skge->autoneg;
  188. ecmd->speed = skge->speed;
  189. ecmd->duplex = skge->duplex;
  190. return 0;
  191. }
  192. static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
  193. {
  194. struct skge_port *skge = netdev_priv(dev);
  195. const struct skge_hw *hw = skge->hw;
  196. u32 supported = skge_supported_modes(hw);
  197. if (ecmd->autoneg == AUTONEG_ENABLE) {
  198. ecmd->advertising = supported;
  199. skge->duplex = -1;
  200. skge->speed = -1;
  201. } else {
  202. u32 setting;
  203. switch (ecmd->speed) {
  204. case SPEED_1000:
  205. if (ecmd->duplex == DUPLEX_FULL)
  206. setting = SUPPORTED_1000baseT_Full;
  207. else if (ecmd->duplex == DUPLEX_HALF)
  208. setting = SUPPORTED_1000baseT_Half;
  209. else
  210. return -EINVAL;
  211. break;
  212. case SPEED_100:
  213. if (ecmd->duplex == DUPLEX_FULL)
  214. setting = SUPPORTED_100baseT_Full;
  215. else if (ecmd->duplex == DUPLEX_HALF)
  216. setting = SUPPORTED_100baseT_Half;
  217. else
  218. return -EINVAL;
  219. break;
  220. case SPEED_10:
  221. if (ecmd->duplex == DUPLEX_FULL)
  222. setting = SUPPORTED_10baseT_Full;
  223. else if (ecmd->duplex == DUPLEX_HALF)
  224. setting = SUPPORTED_10baseT_Half;
  225. else
  226. return -EINVAL;
  227. break;
  228. default:
  229. return -EINVAL;
  230. }
  231. if ((setting & supported) == 0)
  232. return -EINVAL;
  233. skge->speed = ecmd->speed;
  234. skge->duplex = ecmd->duplex;
  235. }
  236. skge->autoneg = ecmd->autoneg;
  237. skge->advertising = ecmd->advertising;
  238. if (netif_running(dev))
  239. skge_phy_reset(skge);
  240. return (0);
  241. }
  242. static void skge_get_drvinfo(struct net_device *dev,
  243. struct ethtool_drvinfo *info)
  244. {
  245. struct skge_port *skge = netdev_priv(dev);
  246. strcpy(info->driver, DRV_NAME);
  247. strcpy(info->version, DRV_VERSION);
  248. strcpy(info->fw_version, "N/A");
  249. strcpy(info->bus_info, pci_name(skge->hw->pdev));
  250. }
  251. static const struct skge_stat {
  252. char name[ETH_GSTRING_LEN];
  253. u16 xmac_offset;
  254. u16 gma_offset;
  255. } skge_stats[] = {
  256. { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
  257. { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
  258. { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
  259. { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
  260. { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
  261. { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
  262. { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
  263. { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
  264. { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
  265. { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
  266. { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
  267. { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
  268. { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
  269. { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
  270. { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
  271. { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
  272. { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  273. { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
  274. { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
  275. { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
  276. { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
  277. };
  278. static int skge_get_stats_count(struct net_device *dev)
  279. {
  280. return ARRAY_SIZE(skge_stats);
  281. }
  282. static void skge_get_ethtool_stats(struct net_device *dev,
  283. struct ethtool_stats *stats, u64 *data)
  284. {
  285. struct skge_port *skge = netdev_priv(dev);
  286. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  287. genesis_get_stats(skge, data);
  288. else
  289. yukon_get_stats(skge, data);
  290. }
  291. /* Use hardware MIB variables for critical path statistics and
  292. * transmit feedback not reported at interrupt.
  293. * Other errors are accounted for in interrupt handler.
  294. */
  295. static struct net_device_stats *skge_get_stats(struct net_device *dev)
  296. {
  297. struct skge_port *skge = netdev_priv(dev);
  298. u64 data[ARRAY_SIZE(skge_stats)];
  299. if (skge->hw->chip_id == CHIP_ID_GENESIS)
  300. genesis_get_stats(skge, data);
  301. else
  302. yukon_get_stats(skge, data);
  303. skge->net_stats.tx_bytes = data[0];
  304. skge->net_stats.rx_bytes = data[1];
  305. skge->net_stats.tx_packets = data[2] + data[4] + data[6];
  306. skge->net_stats.rx_packets = data[3] + data[5] + data[7];
  307. skge->net_stats.multicast = data[5] + data[7];
  308. skge->net_stats.collisions = data[10];
  309. skge->net_stats.tx_aborted_errors = data[12];
  310. return &skge->net_stats;
  311. }
  312. static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
  313. {
  314. int i;
  315. switch (stringset) {
  316. case ETH_SS_STATS:
  317. for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
  318. memcpy(data + i * ETH_GSTRING_LEN,
  319. skge_stats[i].name, ETH_GSTRING_LEN);
  320. break;
  321. }
  322. }
  323. static void skge_get_ring_param(struct net_device *dev,
  324. struct ethtool_ringparam *p)
  325. {
  326. struct skge_port *skge = netdev_priv(dev);
  327. p->rx_max_pending = MAX_RX_RING_SIZE;
  328. p->tx_max_pending = MAX_TX_RING_SIZE;
  329. p->rx_mini_max_pending = 0;
  330. p->rx_jumbo_max_pending = 0;
  331. p->rx_pending = skge->rx_ring.count;
  332. p->tx_pending = skge->tx_ring.count;
  333. p->rx_mini_pending = 0;
  334. p->rx_jumbo_pending = 0;
  335. }
  336. static int skge_set_ring_param(struct net_device *dev,
  337. struct ethtool_ringparam *p)
  338. {
  339. struct skge_port *skge = netdev_priv(dev);
  340. int err;
  341. if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
  342. p->tx_pending == 0 || p->tx_pending > MAX_TX_RING_SIZE)
  343. return -EINVAL;
  344. skge->rx_ring.count = p->rx_pending;
  345. skge->tx_ring.count = p->tx_pending;
  346. if (netif_running(dev)) {
  347. skge_down(dev);
  348. err = skge_up(dev);
  349. if (err)
  350. dev_close(dev);
  351. }
  352. return 0;
  353. }
  354. static u32 skge_get_msglevel(struct net_device *netdev)
  355. {
  356. struct skge_port *skge = netdev_priv(netdev);
  357. return skge->msg_enable;
  358. }
  359. static void skge_set_msglevel(struct net_device *netdev, u32 value)
  360. {
  361. struct skge_port *skge = netdev_priv(netdev);
  362. skge->msg_enable = value;
  363. }
  364. static int skge_nway_reset(struct net_device *dev)
  365. {
  366. struct skge_port *skge = netdev_priv(dev);
  367. if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
  368. return -EINVAL;
  369. skge_phy_reset(skge);
  370. return 0;
  371. }
  372. static int skge_set_sg(struct net_device *dev, u32 data)
  373. {
  374. struct skge_port *skge = netdev_priv(dev);
  375. struct skge_hw *hw = skge->hw;
  376. if (hw->chip_id == CHIP_ID_GENESIS && data)
  377. return -EOPNOTSUPP;
  378. return ethtool_op_set_sg(dev, data);
  379. }
  380. static int skge_set_tx_csum(struct net_device *dev, u32 data)
  381. {
  382. struct skge_port *skge = netdev_priv(dev);
  383. struct skge_hw *hw = skge->hw;
  384. if (hw->chip_id == CHIP_ID_GENESIS && data)
  385. return -EOPNOTSUPP;
  386. return ethtool_op_set_tx_csum(dev, data);
  387. }
  388. static u32 skge_get_rx_csum(struct net_device *dev)
  389. {
  390. struct skge_port *skge = netdev_priv(dev);
  391. return skge->rx_csum;
  392. }
  393. /* Only Yukon supports checksum offload. */
  394. static int skge_set_rx_csum(struct net_device *dev, u32 data)
  395. {
  396. struct skge_port *skge = netdev_priv(dev);
  397. if (skge->hw->chip_id == CHIP_ID_GENESIS && data)
  398. return -EOPNOTSUPP;
  399. skge->rx_csum = data;
  400. return 0;
  401. }
  402. static void skge_get_pauseparam(struct net_device *dev,
  403. struct ethtool_pauseparam *ecmd)
  404. {
  405. struct skge_port *skge = netdev_priv(dev);
  406. ecmd->tx_pause = (skge->flow_control == FLOW_MODE_LOC_SEND)
  407. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  408. ecmd->rx_pause = (skge->flow_control == FLOW_MODE_REM_SEND)
  409. || (skge->flow_control == FLOW_MODE_SYMMETRIC);
  410. ecmd->autoneg = skge->autoneg;
  411. }
  412. static int skge_set_pauseparam(struct net_device *dev,
  413. struct ethtool_pauseparam *ecmd)
  414. {
  415. struct skge_port *skge = netdev_priv(dev);
  416. skge->autoneg = ecmd->autoneg;
  417. if (ecmd->rx_pause && ecmd->tx_pause)
  418. skge->flow_control = FLOW_MODE_SYMMETRIC;
  419. else if (ecmd->rx_pause && !ecmd->tx_pause)
  420. skge->flow_control = FLOW_MODE_REM_SEND;
  421. else if (!ecmd->rx_pause && ecmd->tx_pause)
  422. skge->flow_control = FLOW_MODE_LOC_SEND;
  423. else
  424. skge->flow_control = FLOW_MODE_NONE;
  425. if (netif_running(dev))
  426. skge_phy_reset(skge);
  427. return 0;
  428. }
  429. /* Chip internal frequency for clock calculations */
  430. static inline u32 hwkhz(const struct skge_hw *hw)
  431. {
  432. if (hw->chip_id == CHIP_ID_GENESIS)
  433. return 53215; /* or: 53.125 MHz */
  434. else
  435. return 78215; /* or: 78.125 MHz */
  436. }
  437. /* Chip HZ to microseconds */
  438. static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
  439. {
  440. return (ticks * 1000) / hwkhz(hw);
  441. }
  442. /* Microseconds to chip HZ */
  443. static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
  444. {
  445. return hwkhz(hw) * usec / 1000;
  446. }
  447. static int skge_get_coalesce(struct net_device *dev,
  448. struct ethtool_coalesce *ecmd)
  449. {
  450. struct skge_port *skge = netdev_priv(dev);
  451. struct skge_hw *hw = skge->hw;
  452. int port = skge->port;
  453. ecmd->rx_coalesce_usecs = 0;
  454. ecmd->tx_coalesce_usecs = 0;
  455. if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
  456. u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
  457. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  458. if (msk & rxirqmask[port])
  459. ecmd->rx_coalesce_usecs = delay;
  460. if (msk & txirqmask[port])
  461. ecmd->tx_coalesce_usecs = delay;
  462. }
  463. return 0;
  464. }
  465. /* Note: interrupt timer is per board, but can turn on/off per port */
  466. static int skge_set_coalesce(struct net_device *dev,
  467. struct ethtool_coalesce *ecmd)
  468. {
  469. struct skge_port *skge = netdev_priv(dev);
  470. struct skge_hw *hw = skge->hw;
  471. int port = skge->port;
  472. u32 msk = skge_read32(hw, B2_IRQM_MSK);
  473. u32 delay = 25;
  474. if (ecmd->rx_coalesce_usecs == 0)
  475. msk &= ~rxirqmask[port];
  476. else if (ecmd->rx_coalesce_usecs < 25 ||
  477. ecmd->rx_coalesce_usecs > 33333)
  478. return -EINVAL;
  479. else {
  480. msk |= rxirqmask[port];
  481. delay = ecmd->rx_coalesce_usecs;
  482. }
  483. if (ecmd->tx_coalesce_usecs == 0)
  484. msk &= ~txirqmask[port];
  485. else if (ecmd->tx_coalesce_usecs < 25 ||
  486. ecmd->tx_coalesce_usecs > 33333)
  487. return -EINVAL;
  488. else {
  489. msk |= txirqmask[port];
  490. delay = min(delay, ecmd->rx_coalesce_usecs);
  491. }
  492. skge_write32(hw, B2_IRQM_MSK, msk);
  493. if (msk == 0)
  494. skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
  495. else {
  496. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
  497. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  498. }
  499. return 0;
  500. }
  501. enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
  502. static void skge_led(struct skge_port *skge, enum led_mode mode)
  503. {
  504. struct skge_hw *hw = skge->hw;
  505. int port = skge->port;
  506. spin_lock_bh(&hw->phy_lock);
  507. if (hw->chip_id == CHIP_ID_GENESIS) {
  508. switch (mode) {
  509. case LED_MODE_OFF:
  510. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
  511. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
  512. skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
  513. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
  514. break;
  515. case LED_MODE_ON:
  516. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
  517. skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
  518. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  519. skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
  520. break;
  521. case LED_MODE_TST:
  522. skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
  523. skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
  524. skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
  525. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
  526. break;
  527. }
  528. } else {
  529. switch (mode) {
  530. case LED_MODE_OFF:
  531. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  532. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  533. PHY_M_LED_MO_DUP(MO_LED_OFF) |
  534. PHY_M_LED_MO_10(MO_LED_OFF) |
  535. PHY_M_LED_MO_100(MO_LED_OFF) |
  536. PHY_M_LED_MO_1000(MO_LED_OFF) |
  537. PHY_M_LED_MO_RX(MO_LED_OFF));
  538. break;
  539. case LED_MODE_ON:
  540. gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
  541. PHY_M_LED_PULS_DUR(PULS_170MS) |
  542. PHY_M_LED_BLINK_RT(BLINK_84MS) |
  543. PHY_M_LEDC_TX_CTRL |
  544. PHY_M_LEDC_DP_CTRL);
  545. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  546. PHY_M_LED_MO_RX(MO_LED_OFF) |
  547. (skge->speed == SPEED_100 ?
  548. PHY_M_LED_MO_100(MO_LED_ON) : 0));
  549. break;
  550. case LED_MODE_TST:
  551. gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
  552. gm_phy_write(hw, port, PHY_MARV_LED_OVER,
  553. PHY_M_LED_MO_DUP(MO_LED_ON) |
  554. PHY_M_LED_MO_10(MO_LED_ON) |
  555. PHY_M_LED_MO_100(MO_LED_ON) |
  556. PHY_M_LED_MO_1000(MO_LED_ON) |
  557. PHY_M_LED_MO_RX(MO_LED_ON));
  558. }
  559. }
  560. spin_unlock_bh(&hw->phy_lock);
  561. }
  562. /* blink LED's for finding board */
  563. static int skge_phys_id(struct net_device *dev, u32 data)
  564. {
  565. struct skge_port *skge = netdev_priv(dev);
  566. unsigned long ms;
  567. enum led_mode mode = LED_MODE_TST;
  568. if (!data || data > (u32)(MAX_SCHEDULE_TIMEOUT / HZ))
  569. ms = jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT / HZ) * 1000;
  570. else
  571. ms = data * 1000;
  572. while (ms > 0) {
  573. skge_led(skge, mode);
  574. mode ^= LED_MODE_TST;
  575. if (msleep_interruptible(BLINK_MS))
  576. break;
  577. ms -= BLINK_MS;
  578. }
  579. /* back to regular LED state */
  580. skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
  581. return 0;
  582. }
  583. static struct ethtool_ops skge_ethtool_ops = {
  584. .get_settings = skge_get_settings,
  585. .set_settings = skge_set_settings,
  586. .get_drvinfo = skge_get_drvinfo,
  587. .get_regs_len = skge_get_regs_len,
  588. .get_regs = skge_get_regs,
  589. .get_wol = skge_get_wol,
  590. .set_wol = skge_set_wol,
  591. .get_msglevel = skge_get_msglevel,
  592. .set_msglevel = skge_set_msglevel,
  593. .nway_reset = skge_nway_reset,
  594. .get_link = ethtool_op_get_link,
  595. .get_ringparam = skge_get_ring_param,
  596. .set_ringparam = skge_set_ring_param,
  597. .get_pauseparam = skge_get_pauseparam,
  598. .set_pauseparam = skge_set_pauseparam,
  599. .get_coalesce = skge_get_coalesce,
  600. .set_coalesce = skge_set_coalesce,
  601. .get_sg = ethtool_op_get_sg,
  602. .set_sg = skge_set_sg,
  603. .get_tx_csum = ethtool_op_get_tx_csum,
  604. .set_tx_csum = skge_set_tx_csum,
  605. .get_rx_csum = skge_get_rx_csum,
  606. .set_rx_csum = skge_set_rx_csum,
  607. .get_strings = skge_get_strings,
  608. .phys_id = skge_phys_id,
  609. .get_stats_count = skge_get_stats_count,
  610. .get_ethtool_stats = skge_get_ethtool_stats,
  611. .get_perm_addr = ethtool_op_get_perm_addr,
  612. };
  613. /*
  614. * Allocate ring elements and chain them together
  615. * One-to-one association of board descriptors with ring elements
  616. */
  617. static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u64 base)
  618. {
  619. struct skge_tx_desc *d;
  620. struct skge_element *e;
  621. int i;
  622. ring->start = kmalloc(sizeof(*e)*ring->count, GFP_KERNEL);
  623. if (!ring->start)
  624. return -ENOMEM;
  625. for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
  626. e->desc = d;
  627. e->skb = NULL;
  628. if (i == ring->count - 1) {
  629. e->next = ring->start;
  630. d->next_offset = base;
  631. } else {
  632. e->next = e + 1;
  633. d->next_offset = base + (i+1) * sizeof(*d);
  634. }
  635. }
  636. ring->to_use = ring->to_clean = ring->start;
  637. return 0;
  638. }
  639. /* Allocate and setup a new buffer for receiving */
  640. static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
  641. struct sk_buff *skb, unsigned int bufsize)
  642. {
  643. struct skge_rx_desc *rd = e->desc;
  644. u64 map;
  645. map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
  646. PCI_DMA_FROMDEVICE);
  647. rd->dma_lo = map;
  648. rd->dma_hi = map >> 32;
  649. e->skb = skb;
  650. rd->csum1_start = ETH_HLEN;
  651. rd->csum2_start = ETH_HLEN;
  652. rd->csum1 = 0;
  653. rd->csum2 = 0;
  654. wmb();
  655. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
  656. pci_unmap_addr_set(e, mapaddr, map);
  657. pci_unmap_len_set(e, maplen, bufsize);
  658. }
  659. /* Resume receiving using existing skb,
  660. * Note: DMA address is not changed by chip.
  661. * MTU not changed while receiver active.
  662. */
  663. static void skge_rx_reuse(struct skge_element *e, unsigned int size)
  664. {
  665. struct skge_rx_desc *rd = e->desc;
  666. rd->csum2 = 0;
  667. rd->csum2_start = ETH_HLEN;
  668. wmb();
  669. rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
  670. }
  671. /* Free all buffers in receive ring, assumes receiver stopped */
  672. static void skge_rx_clean(struct skge_port *skge)
  673. {
  674. struct skge_hw *hw = skge->hw;
  675. struct skge_ring *ring = &skge->rx_ring;
  676. struct skge_element *e;
  677. e = ring->start;
  678. do {
  679. struct skge_rx_desc *rd = e->desc;
  680. rd->control = 0;
  681. if (e->skb) {
  682. pci_unmap_single(hw->pdev,
  683. pci_unmap_addr(e, mapaddr),
  684. pci_unmap_len(e, maplen),
  685. PCI_DMA_FROMDEVICE);
  686. dev_kfree_skb(e->skb);
  687. e->skb = NULL;
  688. }
  689. } while ((e = e->next) != ring->start);
  690. }
  691. /* Allocate buffers for receive ring
  692. * For receive: to_clean is next received frame.
  693. */
  694. static int skge_rx_fill(struct skge_port *skge)
  695. {
  696. struct skge_ring *ring = &skge->rx_ring;
  697. struct skge_element *e;
  698. e = ring->start;
  699. do {
  700. struct sk_buff *skb;
  701. skb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
  702. if (!skb)
  703. return -ENOMEM;
  704. skb_reserve(skb, NET_IP_ALIGN);
  705. skge_rx_setup(skge, e, skb, skge->rx_buf_size);
  706. } while ( (e = e->next) != ring->start);
  707. ring->to_clean = ring->start;
  708. return 0;
  709. }
  710. static void skge_link_up(struct skge_port *skge)
  711. {
  712. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
  713. LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
  714. netif_carrier_on(skge->netdev);
  715. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  716. netif_wake_queue(skge->netdev);
  717. if (netif_msg_link(skge))
  718. printk(KERN_INFO PFX
  719. "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
  720. skge->netdev->name, skge->speed,
  721. skge->duplex == DUPLEX_FULL ? "full" : "half",
  722. (skge->flow_control == FLOW_MODE_NONE) ? "none" :
  723. (skge->flow_control == FLOW_MODE_LOC_SEND) ? "tx only" :
  724. (skge->flow_control == FLOW_MODE_REM_SEND) ? "rx only" :
  725. (skge->flow_control == FLOW_MODE_SYMMETRIC) ? "tx and rx" :
  726. "unknown");
  727. }
  728. static void skge_link_down(struct skge_port *skge)
  729. {
  730. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  731. netif_carrier_off(skge->netdev);
  732. netif_stop_queue(skge->netdev);
  733. if (netif_msg_link(skge))
  734. printk(KERN_INFO PFX "%s: Link is down.\n", skge->netdev->name);
  735. }
  736. static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  737. {
  738. int i;
  739. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  740. xm_read16(hw, port, XM_PHY_DATA);
  741. /* Need to wait for external PHY */
  742. for (i = 0; i < PHY_RETRIES; i++) {
  743. udelay(1);
  744. if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
  745. goto ready;
  746. }
  747. return -ETIMEDOUT;
  748. ready:
  749. *val = xm_read16(hw, port, XM_PHY_DATA);
  750. return 0;
  751. }
  752. static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
  753. {
  754. u16 v = 0;
  755. if (__xm_phy_read(hw, port, reg, &v))
  756. printk(KERN_WARNING PFX "%s: phy read timed out\n",
  757. hw->dev[port]->name);
  758. return v;
  759. }
  760. static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  761. {
  762. int i;
  763. xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
  764. for (i = 0; i < PHY_RETRIES; i++) {
  765. if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
  766. goto ready;
  767. udelay(1);
  768. }
  769. return -EIO;
  770. ready:
  771. xm_write16(hw, port, XM_PHY_DATA, val);
  772. return 0;
  773. }
  774. static void genesis_init(struct skge_hw *hw)
  775. {
  776. /* set blink source counter */
  777. skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
  778. skge_write8(hw, B2_BSC_CTRL, BSC_START);
  779. /* configure mac arbiter */
  780. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  781. /* configure mac arbiter timeout values */
  782. skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
  783. skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
  784. skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
  785. skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
  786. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  787. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  788. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  789. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  790. /* configure packet arbiter timeout */
  791. skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
  792. skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
  793. skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
  794. skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
  795. skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
  796. }
  797. static void genesis_reset(struct skge_hw *hw, int port)
  798. {
  799. const u8 zero[8] = { 0 };
  800. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  801. /* reset the statistics module */
  802. xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
  803. xm_write16(hw, port, XM_IMSK, 0xffff); /* disable XMAC IRQs */
  804. xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
  805. xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
  806. xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
  807. /* disable Broadcom PHY IRQ */
  808. xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
  809. xm_outhash(hw, port, XM_HSM, zero);
  810. }
  811. /* Convert mode to MII values */
  812. static const u16 phy_pause_map[] = {
  813. [FLOW_MODE_NONE] = 0,
  814. [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
  815. [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
  816. [FLOW_MODE_REM_SEND] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
  817. };
  818. /* Check status of Broadcom phy link */
  819. static void bcom_check_link(struct skge_hw *hw, int port)
  820. {
  821. struct net_device *dev = hw->dev[port];
  822. struct skge_port *skge = netdev_priv(dev);
  823. u16 status;
  824. /* read twice because of latch */
  825. (void) xm_phy_read(hw, port, PHY_BCOM_STAT);
  826. status = xm_phy_read(hw, port, PHY_BCOM_STAT);
  827. if ((status & PHY_ST_LSYNC) == 0) {
  828. u16 cmd = xm_read16(hw, port, XM_MMU_CMD);
  829. cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  830. xm_write16(hw, port, XM_MMU_CMD, cmd);
  831. /* dummy read to ensure writing */
  832. (void) xm_read16(hw, port, XM_MMU_CMD);
  833. if (netif_carrier_ok(dev))
  834. skge_link_down(skge);
  835. } else {
  836. if (skge->autoneg == AUTONEG_ENABLE &&
  837. (status & PHY_ST_AN_OVER)) {
  838. u16 lpa = xm_phy_read(hw, port, PHY_BCOM_AUNE_LP);
  839. u16 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
  840. if (lpa & PHY_B_AN_RF) {
  841. printk(KERN_NOTICE PFX "%s: remote fault\n",
  842. dev->name);
  843. return;
  844. }
  845. /* Check Duplex mismatch */
  846. switch (aux & PHY_B_AS_AN_RES_MSK) {
  847. case PHY_B_RES_1000FD:
  848. skge->duplex = DUPLEX_FULL;
  849. break;
  850. case PHY_B_RES_1000HD:
  851. skge->duplex = DUPLEX_HALF;
  852. break;
  853. default:
  854. printk(KERN_NOTICE PFX "%s: duplex mismatch\n",
  855. dev->name);
  856. return;
  857. }
  858. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  859. switch (aux & PHY_B_AS_PAUSE_MSK) {
  860. case PHY_B_AS_PAUSE_MSK:
  861. skge->flow_control = FLOW_MODE_SYMMETRIC;
  862. break;
  863. case PHY_B_AS_PRR:
  864. skge->flow_control = FLOW_MODE_REM_SEND;
  865. break;
  866. case PHY_B_AS_PRT:
  867. skge->flow_control = FLOW_MODE_LOC_SEND;
  868. break;
  869. default:
  870. skge->flow_control = FLOW_MODE_NONE;
  871. }
  872. skge->speed = SPEED_1000;
  873. }
  874. if (!netif_carrier_ok(dev))
  875. genesis_link_up(skge);
  876. }
  877. }
  878. /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
  879. * Phy on for 100 or 10Mbit operation
  880. */
  881. static void bcom_phy_init(struct skge_port *skge, int jumbo)
  882. {
  883. struct skge_hw *hw = skge->hw;
  884. int port = skge->port;
  885. int i;
  886. u16 id1, r, ext, ctl;
  887. /* magic workaround patterns for Broadcom */
  888. static const struct {
  889. u16 reg;
  890. u16 val;
  891. } A1hack[] = {
  892. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
  893. { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
  894. { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
  895. { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
  896. }, C0hack[] = {
  897. { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
  898. { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
  899. };
  900. /* read Id from external PHY (all have the same address) */
  901. id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
  902. /* Optimize MDIO transfer by suppressing preamble. */
  903. r = xm_read16(hw, port, XM_MMU_CMD);
  904. r |= XM_MMU_NO_PRE;
  905. xm_write16(hw, port, XM_MMU_CMD,r);
  906. switch (id1) {
  907. case PHY_BCOM_ID1_C0:
  908. /*
  909. * Workaround BCOM Errata for the C0 type.
  910. * Write magic patterns to reserved registers.
  911. */
  912. for (i = 0; i < ARRAY_SIZE(C0hack); i++)
  913. xm_phy_write(hw, port,
  914. C0hack[i].reg, C0hack[i].val);
  915. break;
  916. case PHY_BCOM_ID1_A1:
  917. /*
  918. * Workaround BCOM Errata for the A1 type.
  919. * Write magic patterns to reserved registers.
  920. */
  921. for (i = 0; i < ARRAY_SIZE(A1hack); i++)
  922. xm_phy_write(hw, port,
  923. A1hack[i].reg, A1hack[i].val);
  924. break;
  925. }
  926. /*
  927. * Workaround BCOM Errata (#10523) for all BCom PHYs.
  928. * Disable Power Management after reset.
  929. */
  930. r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
  931. r |= PHY_B_AC_DIS_PM;
  932. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
  933. /* Dummy read */
  934. xm_read16(hw, port, XM_ISRC);
  935. ext = PHY_B_PEC_EN_LTR; /* enable tx led */
  936. ctl = PHY_CT_SP1000; /* always 1000mbit */
  937. if (skge->autoneg == AUTONEG_ENABLE) {
  938. /*
  939. * Workaround BCOM Errata #1 for the C5 type.
  940. * 1000Base-T Link Acquisition Failure in Slave Mode
  941. * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
  942. */
  943. u16 adv = PHY_B_1000C_RD;
  944. if (skge->advertising & ADVERTISED_1000baseT_Half)
  945. adv |= PHY_B_1000C_AHD;
  946. if (skge->advertising & ADVERTISED_1000baseT_Full)
  947. adv |= PHY_B_1000C_AFD;
  948. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
  949. ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  950. } else {
  951. if (skge->duplex == DUPLEX_FULL)
  952. ctl |= PHY_CT_DUP_MD;
  953. /* Force to slave */
  954. xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
  955. }
  956. /* Set autonegotiation pause parameters */
  957. xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
  958. phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
  959. /* Handle Jumbo frames */
  960. if (jumbo) {
  961. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  962. PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
  963. ext |= PHY_B_PEC_HIGH_LA;
  964. }
  965. xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
  966. xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
  967. /* Use link status change interrupt */
  968. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  969. bcom_check_link(hw, port);
  970. }
  971. static void genesis_mac_init(struct skge_hw *hw, int port)
  972. {
  973. struct net_device *dev = hw->dev[port];
  974. struct skge_port *skge = netdev_priv(dev);
  975. int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
  976. int i;
  977. u32 r;
  978. const u8 zero[6] = { 0 };
  979. /* Clear MIB counters */
  980. xm_write16(hw, port, XM_STAT_CMD,
  981. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  982. /* Clear two times according to Errata #3 */
  983. xm_write16(hw, port, XM_STAT_CMD,
  984. XM_SC_CLR_RXC | XM_SC_CLR_TXC);
  985. /* Unreset the XMAC. */
  986. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
  987. /*
  988. * Perform additional initialization for external PHYs,
  989. * namely for the 1000baseTX cards that use the XMAC's
  990. * GMII mode.
  991. */
  992. /* Take external Phy out of reset */
  993. r = skge_read32(hw, B2_GP_IO);
  994. if (port == 0)
  995. r |= GP_DIR_0|GP_IO_0;
  996. else
  997. r |= GP_DIR_2|GP_IO_2;
  998. skge_write32(hw, B2_GP_IO, r);
  999. skge_read32(hw, B2_GP_IO);
  1000. /* Enable GMII interface */
  1001. xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
  1002. bcom_phy_init(skge, jumbo);
  1003. /* Set Station Address */
  1004. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  1005. /* We don't use match addresses so clear */
  1006. for (i = 1; i < 16; i++)
  1007. xm_outaddr(hw, port, XM_EXM(i), zero);
  1008. /* configure Rx High Water Mark (XM_RX_HI_WM) */
  1009. xm_write16(hw, port, XM_RX_HI_WM, 1450);
  1010. /* We don't need the FCS appended to the packet. */
  1011. r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
  1012. if (jumbo)
  1013. r |= XM_RX_BIG_PK_OK;
  1014. if (skge->duplex == DUPLEX_HALF) {
  1015. /*
  1016. * If in manual half duplex mode the other side might be in
  1017. * full duplex mode, so ignore if a carrier extension is not seen
  1018. * on frames received
  1019. */
  1020. r |= XM_RX_DIS_CEXT;
  1021. }
  1022. xm_write16(hw, port, XM_RX_CMD, r);
  1023. /* We want short frames padded to 60 bytes. */
  1024. xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
  1025. /*
  1026. * Bump up the transmit threshold. This helps hold off transmit
  1027. * underruns when we're blasting traffic from both ports at once.
  1028. */
  1029. xm_write16(hw, port, XM_TX_THR, 512);
  1030. /*
  1031. * Enable the reception of all error frames. This is is
  1032. * a necessary evil due to the design of the XMAC. The
  1033. * XMAC's receive FIFO is only 8K in size, however jumbo
  1034. * frames can be up to 9000 bytes in length. When bad
  1035. * frame filtering is enabled, the XMAC's RX FIFO operates
  1036. * in 'store and forward' mode. For this to work, the
  1037. * entire frame has to fit into the FIFO, but that means
  1038. * that jumbo frames larger than 8192 bytes will be
  1039. * truncated. Disabling all bad frame filtering causes
  1040. * the RX FIFO to operate in streaming mode, in which
  1041. * case the XMAC will start transferring frames out of the
  1042. * RX FIFO as soon as the FIFO threshold is reached.
  1043. */
  1044. xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
  1045. /*
  1046. * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
  1047. * - Enable all bits excepting 'Octets Rx OK Low CntOv'
  1048. * and 'Octets Rx OK Hi Cnt Ov'.
  1049. */
  1050. xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
  1051. /*
  1052. * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
  1053. * - Enable all bits excepting 'Octets Tx OK Low CntOv'
  1054. * and 'Octets Tx OK Hi Cnt Ov'.
  1055. */
  1056. xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
  1057. /* Configure MAC arbiter */
  1058. skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
  1059. /* configure timeout values */
  1060. skge_write8(hw, B3_MA_TOINI_RX1, 72);
  1061. skge_write8(hw, B3_MA_TOINI_RX2, 72);
  1062. skge_write8(hw, B3_MA_TOINI_TX1, 72);
  1063. skge_write8(hw, B3_MA_TOINI_TX2, 72);
  1064. skge_write8(hw, B3_MA_RCINI_RX1, 0);
  1065. skge_write8(hw, B3_MA_RCINI_RX2, 0);
  1066. skge_write8(hw, B3_MA_RCINI_TX1, 0);
  1067. skge_write8(hw, B3_MA_RCINI_TX2, 0);
  1068. /* Configure Rx MAC FIFO */
  1069. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
  1070. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
  1071. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
  1072. /* Configure Tx MAC FIFO */
  1073. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
  1074. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
  1075. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
  1076. if (jumbo) {
  1077. /* Enable frame flushing if jumbo frames used */
  1078. skge_write16(hw, SK_REG(port,RX_MFF_CTRL1), MFF_ENA_FLUSH);
  1079. } else {
  1080. /* enable timeout timers if normal frames */
  1081. skge_write16(hw, B3_PA_CTRL,
  1082. (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
  1083. }
  1084. }
  1085. static void genesis_stop(struct skge_port *skge)
  1086. {
  1087. struct skge_hw *hw = skge->hw;
  1088. int port = skge->port;
  1089. u32 reg;
  1090. genesis_reset(hw, port);
  1091. /* Clear Tx packet arbiter timeout IRQ */
  1092. skge_write16(hw, B3_PA_CTRL,
  1093. port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
  1094. /*
  1095. * If the transfer sticks at the MAC the STOP command will not
  1096. * terminate if we don't flush the XMAC's transmit FIFO !
  1097. */
  1098. xm_write32(hw, port, XM_MODE,
  1099. xm_read32(hw, port, XM_MODE)|XM_MD_FTF);
  1100. /* Reset the MAC */
  1101. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
  1102. /* For external PHYs there must be special handling */
  1103. reg = skge_read32(hw, B2_GP_IO);
  1104. if (port == 0) {
  1105. reg |= GP_DIR_0;
  1106. reg &= ~GP_IO_0;
  1107. } else {
  1108. reg |= GP_DIR_2;
  1109. reg &= ~GP_IO_2;
  1110. }
  1111. skge_write32(hw, B2_GP_IO, reg);
  1112. skge_read32(hw, B2_GP_IO);
  1113. xm_write16(hw, port, XM_MMU_CMD,
  1114. xm_read16(hw, port, XM_MMU_CMD)
  1115. & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
  1116. xm_read16(hw, port, XM_MMU_CMD);
  1117. }
  1118. static void genesis_get_stats(struct skge_port *skge, u64 *data)
  1119. {
  1120. struct skge_hw *hw = skge->hw;
  1121. int port = skge->port;
  1122. int i;
  1123. unsigned long timeout = jiffies + HZ;
  1124. xm_write16(hw, port,
  1125. XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
  1126. /* wait for update to complete */
  1127. while (xm_read16(hw, port, XM_STAT_CMD)
  1128. & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
  1129. if (time_after(jiffies, timeout))
  1130. break;
  1131. udelay(10);
  1132. }
  1133. /* special case for 64 bit octet counter */
  1134. data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
  1135. | xm_read32(hw, port, XM_TXO_OK_LO);
  1136. data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
  1137. | xm_read32(hw, port, XM_RXO_OK_LO);
  1138. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1139. data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
  1140. }
  1141. static void genesis_mac_intr(struct skge_hw *hw, int port)
  1142. {
  1143. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1144. u16 status = xm_read16(hw, port, XM_ISRC);
  1145. if (netif_msg_intr(skge))
  1146. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1147. skge->netdev->name, status);
  1148. if (status & XM_IS_TXF_UR) {
  1149. xm_write32(hw, port, XM_MODE, XM_MD_FTF);
  1150. ++skge->net_stats.tx_fifo_errors;
  1151. }
  1152. if (status & XM_IS_RXF_OV) {
  1153. xm_write32(hw, port, XM_MODE, XM_MD_FRF);
  1154. ++skge->net_stats.rx_fifo_errors;
  1155. }
  1156. }
  1157. static void genesis_link_up(struct skge_port *skge)
  1158. {
  1159. struct skge_hw *hw = skge->hw;
  1160. int port = skge->port;
  1161. u16 cmd;
  1162. u32 mode, msk;
  1163. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1164. /*
  1165. * enabling pause frame reception is required for 1000BT
  1166. * because the XMAC is not reset if the link is going down
  1167. */
  1168. if (skge->flow_control == FLOW_MODE_NONE ||
  1169. skge->flow_control == FLOW_MODE_LOC_SEND)
  1170. /* Disable Pause Frame Reception */
  1171. cmd |= XM_MMU_IGN_PF;
  1172. else
  1173. /* Enable Pause Frame Reception */
  1174. cmd &= ~XM_MMU_IGN_PF;
  1175. xm_write16(hw, port, XM_MMU_CMD, cmd);
  1176. mode = xm_read32(hw, port, XM_MODE);
  1177. if (skge->flow_control == FLOW_MODE_SYMMETRIC ||
  1178. skge->flow_control == FLOW_MODE_LOC_SEND) {
  1179. /*
  1180. * Configure Pause Frame Generation
  1181. * Use internal and external Pause Frame Generation.
  1182. * Sending pause frames is edge triggered.
  1183. * Send a Pause frame with the maximum pause time if
  1184. * internal oder external FIFO full condition occurs.
  1185. * Send a zero pause time frame to re-start transmission.
  1186. */
  1187. /* XM_PAUSE_DA = '010000C28001' (default) */
  1188. /* XM_MAC_PTIME = 0xffff (maximum) */
  1189. /* remember this value is defined in big endian (!) */
  1190. xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
  1191. mode |= XM_PAUSE_MODE;
  1192. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
  1193. } else {
  1194. /*
  1195. * disable pause frame generation is required for 1000BT
  1196. * because the XMAC is not reset if the link is going down
  1197. */
  1198. /* Disable Pause Mode in Mode Register */
  1199. mode &= ~XM_PAUSE_MODE;
  1200. skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
  1201. }
  1202. xm_write32(hw, port, XM_MODE, mode);
  1203. msk = XM_DEF_MSK;
  1204. /* disable GP0 interrupt bit for external Phy */
  1205. msk |= XM_IS_INP_ASS;
  1206. xm_write16(hw, port, XM_IMSK, msk);
  1207. xm_read16(hw, port, XM_ISRC);
  1208. /* get MMU Command Reg. */
  1209. cmd = xm_read16(hw, port, XM_MMU_CMD);
  1210. if (skge->duplex == DUPLEX_FULL)
  1211. cmd |= XM_MMU_GMII_FD;
  1212. /*
  1213. * Workaround BCOM Errata (#10523) for all BCom Phys
  1214. * Enable Power Management after link up
  1215. */
  1216. xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
  1217. xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
  1218. & ~PHY_B_AC_DIS_PM);
  1219. xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
  1220. /* enable Rx/Tx */
  1221. xm_write16(hw, port, XM_MMU_CMD,
  1222. cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
  1223. skge_link_up(skge);
  1224. }
  1225. static inline void bcom_phy_intr(struct skge_port *skge)
  1226. {
  1227. struct skge_hw *hw = skge->hw;
  1228. int port = skge->port;
  1229. u16 isrc;
  1230. isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
  1231. if (netif_msg_intr(skge))
  1232. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x\n",
  1233. skge->netdev->name, isrc);
  1234. if (isrc & PHY_B_IS_PSE)
  1235. printk(KERN_ERR PFX "%s: uncorrectable pair swap error\n",
  1236. hw->dev[port]->name);
  1237. /* Workaround BCom Errata:
  1238. * enable and disable loopback mode if "NO HCD" occurs.
  1239. */
  1240. if (isrc & PHY_B_IS_NO_HDCL) {
  1241. u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
  1242. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1243. ctrl | PHY_CT_LOOP);
  1244. xm_phy_write(hw, port, PHY_BCOM_CTRL,
  1245. ctrl & ~PHY_CT_LOOP);
  1246. }
  1247. if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
  1248. bcom_check_link(hw, port);
  1249. }
  1250. static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
  1251. {
  1252. int i;
  1253. gma_write16(hw, port, GM_SMI_DATA, val);
  1254. gma_write16(hw, port, GM_SMI_CTRL,
  1255. GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
  1256. for (i = 0; i < PHY_RETRIES; i++) {
  1257. udelay(1);
  1258. if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
  1259. return 0;
  1260. }
  1261. printk(KERN_WARNING PFX "%s: phy write timeout\n",
  1262. hw->dev[port]->name);
  1263. return -EIO;
  1264. }
  1265. static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
  1266. {
  1267. int i;
  1268. gma_write16(hw, port, GM_SMI_CTRL,
  1269. GM_SMI_CT_PHY_AD(hw->phy_addr)
  1270. | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
  1271. for (i = 0; i < PHY_RETRIES; i++) {
  1272. udelay(1);
  1273. if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
  1274. goto ready;
  1275. }
  1276. return -ETIMEDOUT;
  1277. ready:
  1278. *val = gma_read16(hw, port, GM_SMI_DATA);
  1279. return 0;
  1280. }
  1281. static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
  1282. {
  1283. u16 v = 0;
  1284. if (__gm_phy_read(hw, port, reg, &v))
  1285. printk(KERN_WARNING PFX "%s: phy read timeout\n",
  1286. hw->dev[port]->name);
  1287. return v;
  1288. }
  1289. /* Marvell Phy Initialization */
  1290. static void yukon_init(struct skge_hw *hw, int port)
  1291. {
  1292. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1293. u16 ctrl, ct1000, adv;
  1294. if (skge->autoneg == AUTONEG_ENABLE) {
  1295. u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
  1296. ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
  1297. PHY_M_EC_MAC_S_MSK);
  1298. ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
  1299. ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
  1300. gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
  1301. }
  1302. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1303. if (skge->autoneg == AUTONEG_DISABLE)
  1304. ctrl &= ~PHY_CT_ANE;
  1305. ctrl |= PHY_CT_RESET;
  1306. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1307. ctrl = 0;
  1308. ct1000 = 0;
  1309. adv = PHY_AN_CSMA;
  1310. if (skge->autoneg == AUTONEG_ENABLE) {
  1311. if (hw->copper) {
  1312. if (skge->advertising & ADVERTISED_1000baseT_Full)
  1313. ct1000 |= PHY_M_1000C_AFD;
  1314. if (skge->advertising & ADVERTISED_1000baseT_Half)
  1315. ct1000 |= PHY_M_1000C_AHD;
  1316. if (skge->advertising & ADVERTISED_100baseT_Full)
  1317. adv |= PHY_M_AN_100_FD;
  1318. if (skge->advertising & ADVERTISED_100baseT_Half)
  1319. adv |= PHY_M_AN_100_HD;
  1320. if (skge->advertising & ADVERTISED_10baseT_Full)
  1321. adv |= PHY_M_AN_10_FD;
  1322. if (skge->advertising & ADVERTISED_10baseT_Half)
  1323. adv |= PHY_M_AN_10_HD;
  1324. } else /* special defines for FIBER (88E1011S only) */
  1325. adv |= PHY_M_AN_1000X_AHD | PHY_M_AN_1000X_AFD;
  1326. /* Set Flow-control capabilities */
  1327. adv |= phy_pause_map[skge->flow_control];
  1328. /* Restart Auto-negotiation */
  1329. ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
  1330. } else {
  1331. /* forced speed/duplex settings */
  1332. ct1000 = PHY_M_1000C_MSE;
  1333. if (skge->duplex == DUPLEX_FULL)
  1334. ctrl |= PHY_CT_DUP_MD;
  1335. switch (skge->speed) {
  1336. case SPEED_1000:
  1337. ctrl |= PHY_CT_SP1000;
  1338. break;
  1339. case SPEED_100:
  1340. ctrl |= PHY_CT_SP100;
  1341. break;
  1342. }
  1343. ctrl |= PHY_CT_RESET;
  1344. }
  1345. gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
  1346. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
  1347. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1348. /* Enable phy interrupt on autonegotiation complete (or link up) */
  1349. if (skge->autoneg == AUTONEG_ENABLE)
  1350. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
  1351. else
  1352. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1353. }
  1354. static void yukon_reset(struct skge_hw *hw, int port)
  1355. {
  1356. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
  1357. gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
  1358. gma_write16(hw, port, GM_MC_ADDR_H2, 0);
  1359. gma_write16(hw, port, GM_MC_ADDR_H3, 0);
  1360. gma_write16(hw, port, GM_MC_ADDR_H4, 0);
  1361. gma_write16(hw, port, GM_RX_CTRL,
  1362. gma_read16(hw, port, GM_RX_CTRL)
  1363. | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  1364. }
  1365. /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
  1366. static int is_yukon_lite_a0(struct skge_hw *hw)
  1367. {
  1368. u32 reg;
  1369. int ret;
  1370. if (hw->chip_id != CHIP_ID_YUKON)
  1371. return 0;
  1372. reg = skge_read32(hw, B2_FAR);
  1373. skge_write8(hw, B2_FAR + 3, 0xff);
  1374. ret = (skge_read8(hw, B2_FAR + 3) != 0);
  1375. skge_write32(hw, B2_FAR, reg);
  1376. return ret;
  1377. }
  1378. static void yukon_mac_init(struct skge_hw *hw, int port)
  1379. {
  1380. struct skge_port *skge = netdev_priv(hw->dev[port]);
  1381. int i;
  1382. u32 reg;
  1383. const u8 *addr = hw->dev[port]->dev_addr;
  1384. /* WA code for COMA mode -- set PHY reset */
  1385. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1386. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1387. reg = skge_read32(hw, B2_GP_IO);
  1388. reg |= GP_DIR_9 | GP_IO_9;
  1389. skge_write32(hw, B2_GP_IO, reg);
  1390. }
  1391. /* hard reset */
  1392. skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1393. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1394. /* WA code for COMA mode -- clear PHY reset */
  1395. if (hw->chip_id == CHIP_ID_YUKON_LITE &&
  1396. hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
  1397. reg = skge_read32(hw, B2_GP_IO);
  1398. reg |= GP_DIR_9;
  1399. reg &= ~GP_IO_9;
  1400. skge_write32(hw, B2_GP_IO, reg);
  1401. }
  1402. /* Set hardware config mode */
  1403. reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
  1404. GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
  1405. reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
  1406. /* Clear GMC reset */
  1407. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
  1408. skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
  1409. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
  1410. if (skge->autoneg == AUTONEG_DISABLE) {
  1411. reg = GM_GPCR_AU_ALL_DIS;
  1412. gma_write16(hw, port, GM_GP_CTRL,
  1413. gma_read16(hw, port, GM_GP_CTRL) | reg);
  1414. switch (skge->speed) {
  1415. case SPEED_1000:
  1416. reg |= GM_GPCR_SPEED_1000;
  1417. /* fallthru */
  1418. case SPEED_100:
  1419. reg |= GM_GPCR_SPEED_100;
  1420. }
  1421. if (skge->duplex == DUPLEX_FULL)
  1422. reg |= GM_GPCR_DUP_FULL;
  1423. } else
  1424. reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
  1425. switch (skge->flow_control) {
  1426. case FLOW_MODE_NONE:
  1427. skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1428. reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1429. break;
  1430. case FLOW_MODE_LOC_SEND:
  1431. /* disable Rx flow-control */
  1432. reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
  1433. }
  1434. gma_write16(hw, port, GM_GP_CTRL, reg);
  1435. skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
  1436. yukon_init(hw, port);
  1437. /* MIB clear */
  1438. reg = gma_read16(hw, port, GM_PHY_ADDR);
  1439. gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
  1440. for (i = 0; i < GM_MIB_CNT_SIZE; i++)
  1441. gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
  1442. gma_write16(hw, port, GM_PHY_ADDR, reg);
  1443. /* transmit control */
  1444. gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
  1445. /* receive control reg: unicast + multicast + no FCS */
  1446. gma_write16(hw, port, GM_RX_CTRL,
  1447. GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
  1448. /* transmit flow control */
  1449. gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
  1450. /* transmit parameter */
  1451. gma_write16(hw, port, GM_TX_PARAM,
  1452. TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
  1453. TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
  1454. TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
  1455. /* serial mode register */
  1456. reg = GM_SMOD_VLAN_ENA | IPG_DATA_VAL(IPG_DATA_DEF);
  1457. if (hw->dev[port]->mtu > 1500)
  1458. reg |= GM_SMOD_JUMBO_ENA;
  1459. gma_write16(hw, port, GM_SERIAL_MODE, reg);
  1460. /* physical address: used for pause frames */
  1461. gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
  1462. /* virtual address for data */
  1463. gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
  1464. /* enable interrupt mask for counter overflows */
  1465. gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
  1466. gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
  1467. gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
  1468. /* Initialize Mac Fifo */
  1469. /* Configure Rx MAC FIFO */
  1470. skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
  1471. reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
  1472. /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
  1473. if (is_yukon_lite_a0(hw))
  1474. reg &= ~GMF_RX_F_FL_ON;
  1475. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
  1476. skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
  1477. /*
  1478. * because Pause Packet Truncation in GMAC is not working
  1479. * we have to increase the Flush Threshold to 64 bytes
  1480. * in order to flush pause packets in Rx FIFO on Yukon-1
  1481. */
  1482. skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
  1483. /* Configure Tx MAC FIFO */
  1484. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
  1485. skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
  1486. }
  1487. /* Go into power down mode */
  1488. static void yukon_suspend(struct skge_hw *hw, int port)
  1489. {
  1490. u16 ctrl;
  1491. ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
  1492. ctrl |= PHY_M_PC_POL_R_DIS;
  1493. gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
  1494. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1495. ctrl |= PHY_CT_RESET;
  1496. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1497. /* switch IEEE compatible power down mode on */
  1498. ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
  1499. ctrl |= PHY_CT_PDOWN;
  1500. gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
  1501. }
  1502. static void yukon_stop(struct skge_port *skge)
  1503. {
  1504. struct skge_hw *hw = skge->hw;
  1505. int port = skge->port;
  1506. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
  1507. yukon_reset(hw, port);
  1508. gma_write16(hw, port, GM_GP_CTRL,
  1509. gma_read16(hw, port, GM_GP_CTRL)
  1510. & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
  1511. gma_read16(hw, port, GM_GP_CTRL);
  1512. yukon_suspend(hw, port);
  1513. /* set GPHY Control reset */
  1514. skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
  1515. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
  1516. }
  1517. static void yukon_get_stats(struct skge_port *skge, u64 *data)
  1518. {
  1519. struct skge_hw *hw = skge->hw;
  1520. int port = skge->port;
  1521. int i;
  1522. data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
  1523. | gma_read32(hw, port, GM_TXO_OK_LO);
  1524. data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
  1525. | gma_read32(hw, port, GM_RXO_OK_LO);
  1526. for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
  1527. data[i] = gma_read32(hw, port,
  1528. skge_stats[i].gma_offset);
  1529. }
  1530. static void yukon_mac_intr(struct skge_hw *hw, int port)
  1531. {
  1532. struct net_device *dev = hw->dev[port];
  1533. struct skge_port *skge = netdev_priv(dev);
  1534. u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
  1535. if (netif_msg_intr(skge))
  1536. printk(KERN_DEBUG PFX "%s: mac interrupt status 0x%x\n",
  1537. dev->name, status);
  1538. if (status & GM_IS_RX_FF_OR) {
  1539. ++skge->net_stats.rx_fifo_errors;
  1540. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
  1541. }
  1542. if (status & GM_IS_TX_FF_UR) {
  1543. ++skge->net_stats.tx_fifo_errors;
  1544. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
  1545. }
  1546. }
  1547. static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
  1548. {
  1549. switch (aux & PHY_M_PS_SPEED_MSK) {
  1550. case PHY_M_PS_SPEED_1000:
  1551. return SPEED_1000;
  1552. case PHY_M_PS_SPEED_100:
  1553. return SPEED_100;
  1554. default:
  1555. return SPEED_10;
  1556. }
  1557. }
  1558. static void yukon_link_up(struct skge_port *skge)
  1559. {
  1560. struct skge_hw *hw = skge->hw;
  1561. int port = skge->port;
  1562. u16 reg;
  1563. /* Enable Transmit FIFO Underrun */
  1564. skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
  1565. reg = gma_read16(hw, port, GM_GP_CTRL);
  1566. if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
  1567. reg |= GM_GPCR_DUP_FULL;
  1568. /* enable Rx/Tx */
  1569. reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
  1570. gma_write16(hw, port, GM_GP_CTRL, reg);
  1571. gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
  1572. skge_link_up(skge);
  1573. }
  1574. static void yukon_link_down(struct skge_port *skge)
  1575. {
  1576. struct skge_hw *hw = skge->hw;
  1577. int port = skge->port;
  1578. u16 ctrl;
  1579. gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);
  1580. ctrl = gma_read16(hw, port, GM_GP_CTRL);
  1581. ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
  1582. gma_write16(hw, port, GM_GP_CTRL, ctrl);
  1583. if (skge->flow_control == FLOW_MODE_REM_SEND) {
  1584. /* restore Asymmetric Pause bit */
  1585. gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
  1586. gm_phy_read(hw, port,
  1587. PHY_MARV_AUNE_ADV)
  1588. | PHY_M_AN_ASP);
  1589. }
  1590. yukon_reset(hw, port);
  1591. skge_link_down(skge);
  1592. yukon_init(hw, port);
  1593. }
  1594. static void yukon_phy_intr(struct skge_port *skge)
  1595. {
  1596. struct skge_hw *hw = skge->hw;
  1597. int port = skge->port;
  1598. const char *reason = NULL;
  1599. u16 istatus, phystat;
  1600. istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
  1601. phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
  1602. if (netif_msg_intr(skge))
  1603. printk(KERN_DEBUG PFX "%s: phy interrupt status 0x%x 0x%x\n",
  1604. skge->netdev->name, istatus, phystat);
  1605. if (istatus & PHY_M_IS_AN_COMPL) {
  1606. if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
  1607. & PHY_M_AN_RF) {
  1608. reason = "remote fault";
  1609. goto failed;
  1610. }
  1611. if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
  1612. reason = "master/slave fault";
  1613. goto failed;
  1614. }
  1615. if (!(phystat & PHY_M_PS_SPDUP_RES)) {
  1616. reason = "speed/duplex";
  1617. goto failed;
  1618. }
  1619. skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
  1620. ? DUPLEX_FULL : DUPLEX_HALF;
  1621. skge->speed = yukon_speed(hw, phystat);
  1622. /* We are using IEEE 802.3z/D5.0 Table 37-4 */
  1623. switch (phystat & PHY_M_PS_PAUSE_MSK) {
  1624. case PHY_M_PS_PAUSE_MSK:
  1625. skge->flow_control = FLOW_MODE_SYMMETRIC;
  1626. break;
  1627. case PHY_M_PS_RX_P_EN:
  1628. skge->flow_control = FLOW_MODE_REM_SEND;
  1629. break;
  1630. case PHY_M_PS_TX_P_EN:
  1631. skge->flow_control = FLOW_MODE_LOC_SEND;
  1632. break;
  1633. default:
  1634. skge->flow_control = FLOW_MODE_NONE;
  1635. }
  1636. if (skge->flow_control == FLOW_MODE_NONE ||
  1637. (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
  1638. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
  1639. else
  1640. skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
  1641. yukon_link_up(skge);
  1642. return;
  1643. }
  1644. if (istatus & PHY_M_IS_LSP_CHANGE)
  1645. skge->speed = yukon_speed(hw, phystat);
  1646. if (istatus & PHY_M_IS_DUP_CHANGE)
  1647. skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
  1648. if (istatus & PHY_M_IS_LST_CHANGE) {
  1649. if (phystat & PHY_M_PS_LINK_UP)
  1650. yukon_link_up(skge);
  1651. else
  1652. yukon_link_down(skge);
  1653. }
  1654. return;
  1655. failed:
  1656. printk(KERN_ERR PFX "%s: autonegotiation failed (%s)\n",
  1657. skge->netdev->name, reason);
  1658. /* XXX restart autonegotiation? */
  1659. }
  1660. static void skge_phy_reset(struct skge_port *skge)
  1661. {
  1662. struct skge_hw *hw = skge->hw;
  1663. int port = skge->port;
  1664. netif_stop_queue(skge->netdev);
  1665. netif_carrier_off(skge->netdev);
  1666. spin_lock_bh(&hw->phy_lock);
  1667. if (hw->chip_id == CHIP_ID_GENESIS) {
  1668. genesis_reset(hw, port);
  1669. genesis_mac_init(hw, port);
  1670. } else {
  1671. yukon_reset(hw, port);
  1672. yukon_init(hw, port);
  1673. }
  1674. spin_unlock_bh(&hw->phy_lock);
  1675. }
  1676. /* Basic MII support */
  1677. static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
  1678. {
  1679. struct mii_ioctl_data *data = if_mii(ifr);
  1680. struct skge_port *skge = netdev_priv(dev);
  1681. struct skge_hw *hw = skge->hw;
  1682. int err = -EOPNOTSUPP;
  1683. if (!netif_running(dev))
  1684. return -ENODEV; /* Phy still in reset */
  1685. switch(cmd) {
  1686. case SIOCGMIIPHY:
  1687. data->phy_id = hw->phy_addr;
  1688. /* fallthru */
  1689. case SIOCGMIIREG: {
  1690. u16 val = 0;
  1691. spin_lock_bh(&hw->phy_lock);
  1692. if (hw->chip_id == CHIP_ID_GENESIS)
  1693. err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1694. else
  1695. err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
  1696. spin_unlock_bh(&hw->phy_lock);
  1697. data->val_out = val;
  1698. break;
  1699. }
  1700. case SIOCSMIIREG:
  1701. if (!capable(CAP_NET_ADMIN))
  1702. return -EPERM;
  1703. spin_lock_bh(&hw->phy_lock);
  1704. if (hw->chip_id == CHIP_ID_GENESIS)
  1705. err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1706. data->val_in);
  1707. else
  1708. err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
  1709. data->val_in);
  1710. spin_unlock_bh(&hw->phy_lock);
  1711. break;
  1712. }
  1713. return err;
  1714. }
  1715. static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
  1716. {
  1717. u32 end;
  1718. start /= 8;
  1719. len /= 8;
  1720. end = start + len - 1;
  1721. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
  1722. skge_write32(hw, RB_ADDR(q, RB_START), start);
  1723. skge_write32(hw, RB_ADDR(q, RB_WP), start);
  1724. skge_write32(hw, RB_ADDR(q, RB_RP), start);
  1725. skge_write32(hw, RB_ADDR(q, RB_END), end);
  1726. if (q == Q_R1 || q == Q_R2) {
  1727. /* Set thresholds on receive queue's */
  1728. skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
  1729. start + (2*len)/3);
  1730. skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
  1731. start + (len/3));
  1732. } else {
  1733. /* Enable store & forward on Tx queue's because
  1734. * Tx FIFO is only 4K on Genesis and 1K on Yukon
  1735. */
  1736. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
  1737. }
  1738. skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
  1739. }
  1740. /* Setup Bus Memory Interface */
  1741. static void skge_qset(struct skge_port *skge, u16 q,
  1742. const struct skge_element *e)
  1743. {
  1744. struct skge_hw *hw = skge->hw;
  1745. u32 watermark = 0x600;
  1746. u64 base = skge->dma + (e->desc - skge->mem);
  1747. /* optimization to reduce window on 32bit/33mhz */
  1748. if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
  1749. watermark /= 2;
  1750. skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
  1751. skge_write32(hw, Q_ADDR(q, Q_F), watermark);
  1752. skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
  1753. skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
  1754. }
  1755. static int skge_up(struct net_device *dev)
  1756. {
  1757. struct skge_port *skge = netdev_priv(dev);
  1758. struct skge_hw *hw = skge->hw;
  1759. int port = skge->port;
  1760. u32 chunk, ram_addr;
  1761. size_t rx_size, tx_size;
  1762. int err;
  1763. if (netif_msg_ifup(skge))
  1764. printk(KERN_INFO PFX "%s: enabling interface\n", dev->name);
  1765. if (dev->mtu > RX_BUF_SIZE)
  1766. skge->rx_buf_size = dev->mtu + ETH_HLEN + NET_IP_ALIGN;
  1767. else
  1768. skge->rx_buf_size = RX_BUF_SIZE;
  1769. rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
  1770. tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
  1771. skge->mem_size = tx_size + rx_size;
  1772. skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
  1773. if (!skge->mem)
  1774. return -ENOMEM;
  1775. memset(skge->mem, 0, skge->mem_size);
  1776. if ((err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma)))
  1777. goto free_pci_mem;
  1778. err = skge_rx_fill(skge);
  1779. if (err)
  1780. goto free_rx_ring;
  1781. if ((err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
  1782. skge->dma + rx_size)))
  1783. goto free_rx_ring;
  1784. skge->tx_avail = skge->tx_ring.count - 1;
  1785. /* Enable IRQ from port */
  1786. hw->intr_mask |= portirqmask[port];
  1787. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1788. /* Initialize MAC */
  1789. spin_lock_bh(&hw->phy_lock);
  1790. if (hw->chip_id == CHIP_ID_GENESIS)
  1791. genesis_mac_init(hw, port);
  1792. else
  1793. yukon_mac_init(hw, port);
  1794. spin_unlock_bh(&hw->phy_lock);
  1795. /* Configure RAMbuffers */
  1796. chunk = hw->ram_size / ((hw->ports + 1)*2);
  1797. ram_addr = hw->ram_offset + 2 * chunk * port;
  1798. skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
  1799. skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
  1800. BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
  1801. skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
  1802. skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
  1803. /* Start receiver BMU */
  1804. wmb();
  1805. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
  1806. skge_led(skge, LED_MODE_ON);
  1807. return 0;
  1808. free_rx_ring:
  1809. skge_rx_clean(skge);
  1810. kfree(skge->rx_ring.start);
  1811. free_pci_mem:
  1812. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1813. skge->mem = NULL;
  1814. return err;
  1815. }
  1816. static int skge_down(struct net_device *dev)
  1817. {
  1818. struct skge_port *skge = netdev_priv(dev);
  1819. struct skge_hw *hw = skge->hw;
  1820. int port = skge->port;
  1821. if (skge->mem == NULL)
  1822. return 0;
  1823. if (netif_msg_ifdown(skge))
  1824. printk(KERN_INFO PFX "%s: disabling interface\n", dev->name);
  1825. netif_stop_queue(dev);
  1826. skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
  1827. if (hw->chip_id == CHIP_ID_GENESIS)
  1828. genesis_stop(skge);
  1829. else
  1830. yukon_stop(skge);
  1831. hw->intr_mask &= ~portirqmask[skge->port];
  1832. skge_write32(hw, B0_IMSK, hw->intr_mask);
  1833. /* Stop transmitter */
  1834. skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
  1835. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
  1836. RB_RST_SET|RB_DIS_OP_MD);
  1837. /* Disable Force Sync bit and Enable Alloc bit */
  1838. skge_write8(hw, SK_REG(port, TXA_CTRL),
  1839. TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
  1840. /* Stop Interval Timer and Limit Counter of Tx Arbiter */
  1841. skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
  1842. skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
  1843. /* Reset PCI FIFO */
  1844. skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
  1845. skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
  1846. /* Reset the RAM Buffer async Tx queue */
  1847. skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
  1848. /* stop receiver */
  1849. skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
  1850. skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
  1851. RB_RST_SET|RB_DIS_OP_MD);
  1852. skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
  1853. if (hw->chip_id == CHIP_ID_GENESIS) {
  1854. skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
  1855. skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
  1856. } else {
  1857. skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
  1858. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
  1859. }
  1860. skge_led(skge, LED_MODE_OFF);
  1861. skge_tx_clean(skge);
  1862. skge_rx_clean(skge);
  1863. kfree(skge->rx_ring.start);
  1864. kfree(skge->tx_ring.start);
  1865. pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
  1866. skge->mem = NULL;
  1867. return 0;
  1868. }
  1869. static int skge_xmit_frame(struct sk_buff *skb, struct net_device *dev)
  1870. {
  1871. struct skge_port *skge = netdev_priv(dev);
  1872. struct skge_hw *hw = skge->hw;
  1873. struct skge_ring *ring = &skge->tx_ring;
  1874. struct skge_element *e;
  1875. struct skge_tx_desc *td;
  1876. int i;
  1877. u32 control, len;
  1878. u64 map;
  1879. unsigned long flags;
  1880. skb = skb_padto(skb, ETH_ZLEN);
  1881. if (!skb)
  1882. return NETDEV_TX_OK;
  1883. local_irq_save(flags);
  1884. if (!spin_trylock(&skge->tx_lock)) {
  1885. /* Collision - tell upper layer to requeue */
  1886. local_irq_restore(flags);
  1887. return NETDEV_TX_LOCKED;
  1888. }
  1889. if (unlikely(skge->tx_avail < skb_shinfo(skb)->nr_frags +1)) {
  1890. if (!netif_queue_stopped(dev)) {
  1891. netif_stop_queue(dev);
  1892. printk(KERN_WARNING PFX "%s: ring full when queue awake!\n",
  1893. dev->name);
  1894. }
  1895. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1896. return NETDEV_TX_BUSY;
  1897. }
  1898. e = ring->to_use;
  1899. td = e->desc;
  1900. e->skb = skb;
  1901. len = skb_headlen(skb);
  1902. map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
  1903. pci_unmap_addr_set(e, mapaddr, map);
  1904. pci_unmap_len_set(e, maplen, len);
  1905. td->dma_lo = map;
  1906. td->dma_hi = map >> 32;
  1907. if (skb->ip_summed == CHECKSUM_HW) {
  1908. int offset = skb->h.raw - skb->data;
  1909. /* This seems backwards, but it is what the sk98lin
  1910. * does. Looks like hardware is wrong?
  1911. */
  1912. if (skb->h.ipiph->protocol == IPPROTO_UDP
  1913. && hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
  1914. control = BMU_TCP_CHECK;
  1915. else
  1916. control = BMU_UDP_CHECK;
  1917. td->csum_offs = 0;
  1918. td->csum_start = offset;
  1919. td->csum_write = offset + skb->csum;
  1920. } else
  1921. control = BMU_CHECK;
  1922. if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
  1923. control |= BMU_EOF| BMU_IRQ_EOF;
  1924. else {
  1925. struct skge_tx_desc *tf = td;
  1926. control |= BMU_STFWD;
  1927. for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
  1928. skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
  1929. map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
  1930. frag->size, PCI_DMA_TODEVICE);
  1931. e = e->next;
  1932. e->skb = NULL;
  1933. tf = e->desc;
  1934. tf->dma_lo = map;
  1935. tf->dma_hi = (u64) map >> 32;
  1936. pci_unmap_addr_set(e, mapaddr, map);
  1937. pci_unmap_len_set(e, maplen, frag->size);
  1938. tf->control = BMU_OWN | BMU_SW | control | frag->size;
  1939. }
  1940. tf->control |= BMU_EOF | BMU_IRQ_EOF;
  1941. }
  1942. /* Make sure all the descriptors written */
  1943. wmb();
  1944. td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
  1945. wmb();
  1946. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
  1947. if (netif_msg_tx_queued(skge))
  1948. printk(KERN_DEBUG "%s: tx queued, slot %td, len %d\n",
  1949. dev->name, e - ring->start, skb->len);
  1950. ring->to_use = e->next;
  1951. skge->tx_avail -= skb_shinfo(skb)->nr_frags + 1;
  1952. if (skge->tx_avail <= MAX_SKB_FRAGS + 1) {
  1953. pr_debug("%s: transmit queue full\n", dev->name);
  1954. netif_stop_queue(dev);
  1955. }
  1956. dev->trans_start = jiffies;
  1957. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1958. return NETDEV_TX_OK;
  1959. }
  1960. static inline void skge_tx_free(struct skge_hw *hw, struct skge_element *e)
  1961. {
  1962. /* This ring element can be skb or fragment */
  1963. if (e->skb) {
  1964. pci_unmap_single(hw->pdev,
  1965. pci_unmap_addr(e, mapaddr),
  1966. pci_unmap_len(e, maplen),
  1967. PCI_DMA_TODEVICE);
  1968. dev_kfree_skb_any(e->skb);
  1969. e->skb = NULL;
  1970. } else {
  1971. pci_unmap_page(hw->pdev,
  1972. pci_unmap_addr(e, mapaddr),
  1973. pci_unmap_len(e, maplen),
  1974. PCI_DMA_TODEVICE);
  1975. }
  1976. }
  1977. static void skge_tx_clean(struct skge_port *skge)
  1978. {
  1979. struct skge_ring *ring = &skge->tx_ring;
  1980. struct skge_element *e;
  1981. unsigned long flags;
  1982. spin_lock_irqsave(&skge->tx_lock, flags);
  1983. for (e = ring->to_clean; e != ring->to_use; e = e->next) {
  1984. ++skge->tx_avail;
  1985. skge_tx_free(skge->hw, e);
  1986. }
  1987. ring->to_clean = e;
  1988. spin_unlock_irqrestore(&skge->tx_lock, flags);
  1989. }
  1990. static void skge_tx_timeout(struct net_device *dev)
  1991. {
  1992. struct skge_port *skge = netdev_priv(dev);
  1993. if (netif_msg_timer(skge))
  1994. printk(KERN_DEBUG PFX "%s: tx timeout\n", dev->name);
  1995. skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
  1996. skge_tx_clean(skge);
  1997. }
  1998. static int skge_change_mtu(struct net_device *dev, int new_mtu)
  1999. {
  2000. int err;
  2001. if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
  2002. return -EINVAL;
  2003. if (!netif_running(dev)) {
  2004. dev->mtu = new_mtu;
  2005. return 0;
  2006. }
  2007. skge_down(dev);
  2008. dev->mtu = new_mtu;
  2009. err = skge_up(dev);
  2010. if (err)
  2011. dev_close(dev);
  2012. return err;
  2013. }
  2014. static void genesis_set_multicast(struct net_device *dev)
  2015. {
  2016. struct skge_port *skge = netdev_priv(dev);
  2017. struct skge_hw *hw = skge->hw;
  2018. int port = skge->port;
  2019. int i, count = dev->mc_count;
  2020. struct dev_mc_list *list = dev->mc_list;
  2021. u32 mode;
  2022. u8 filter[8];
  2023. mode = xm_read32(hw, port, XM_MODE);
  2024. mode |= XM_MD_ENA_HASH;
  2025. if (dev->flags & IFF_PROMISC)
  2026. mode |= XM_MD_ENA_PROM;
  2027. else
  2028. mode &= ~XM_MD_ENA_PROM;
  2029. if (dev->flags & IFF_ALLMULTI)
  2030. memset(filter, 0xff, sizeof(filter));
  2031. else {
  2032. memset(filter, 0, sizeof(filter));
  2033. for (i = 0; list && i < count; i++, list = list->next) {
  2034. u32 crc, bit;
  2035. crc = ether_crc_le(ETH_ALEN, list->dmi_addr);
  2036. bit = ~crc & 0x3f;
  2037. filter[bit/8] |= 1 << (bit%8);
  2038. }
  2039. }
  2040. xm_write32(hw, port, XM_MODE, mode);
  2041. xm_outhash(hw, port, XM_HSM, filter);
  2042. }
  2043. static void yukon_set_multicast(struct net_device *dev)
  2044. {
  2045. struct skge_port *skge = netdev_priv(dev);
  2046. struct skge_hw *hw = skge->hw;
  2047. int port = skge->port;
  2048. struct dev_mc_list *list = dev->mc_list;
  2049. u16 reg;
  2050. u8 filter[8];
  2051. memset(filter, 0, sizeof(filter));
  2052. reg = gma_read16(hw, port, GM_RX_CTRL);
  2053. reg |= GM_RXCR_UCF_ENA;
  2054. if (dev->flags & IFF_PROMISC) /* promiscuous */
  2055. reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
  2056. else if (dev->flags & IFF_ALLMULTI) /* all multicast */
  2057. memset(filter, 0xff, sizeof(filter));
  2058. else if (dev->mc_count == 0) /* no multicast */
  2059. reg &= ~GM_RXCR_MCF_ENA;
  2060. else {
  2061. int i;
  2062. reg |= GM_RXCR_MCF_ENA;
  2063. for (i = 0; list && i < dev->mc_count; i++, list = list->next) {
  2064. u32 bit = ether_crc(ETH_ALEN, list->dmi_addr) & 0x3f;
  2065. filter[bit/8] |= 1 << (bit%8);
  2066. }
  2067. }
  2068. gma_write16(hw, port, GM_MC_ADDR_H1,
  2069. (u16)filter[0] | ((u16)filter[1] << 8));
  2070. gma_write16(hw, port, GM_MC_ADDR_H2,
  2071. (u16)filter[2] | ((u16)filter[3] << 8));
  2072. gma_write16(hw, port, GM_MC_ADDR_H3,
  2073. (u16)filter[4] | ((u16)filter[5] << 8));
  2074. gma_write16(hw, port, GM_MC_ADDR_H4,
  2075. (u16)filter[6] | ((u16)filter[7] << 8));
  2076. gma_write16(hw, port, GM_RX_CTRL, reg);
  2077. }
  2078. static inline u16 phy_length(const struct skge_hw *hw, u32 status)
  2079. {
  2080. if (hw->chip_id == CHIP_ID_GENESIS)
  2081. return status >> XMR_FS_LEN_SHIFT;
  2082. else
  2083. return status >> GMR_FS_LEN_SHIFT;
  2084. }
  2085. static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
  2086. {
  2087. if (hw->chip_id == CHIP_ID_GENESIS)
  2088. return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
  2089. else
  2090. return (status & GMR_FS_ANY_ERR) ||
  2091. (status & GMR_FS_RX_OK) == 0;
  2092. }
  2093. /* Get receive buffer from descriptor.
  2094. * Handles copy of small buffers and reallocation failures
  2095. */
  2096. static inline struct sk_buff *skge_rx_get(struct skge_port *skge,
  2097. struct skge_element *e,
  2098. u32 control, u32 status, u16 csum)
  2099. {
  2100. struct sk_buff *skb;
  2101. u16 len = control & BMU_BBC;
  2102. if (unlikely(netif_msg_rx_status(skge)))
  2103. printk(KERN_DEBUG PFX "%s: rx slot %td status 0x%x len %d\n",
  2104. skge->netdev->name, e - skge->rx_ring.start,
  2105. status, len);
  2106. if (len > skge->rx_buf_size)
  2107. goto error;
  2108. if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
  2109. goto error;
  2110. if (bad_phy_status(skge->hw, status))
  2111. goto error;
  2112. if (phy_length(skge->hw, status) != len)
  2113. goto error;
  2114. if (len < RX_COPY_THRESHOLD) {
  2115. skb = dev_alloc_skb(len + 2);
  2116. if (!skb)
  2117. goto resubmit;
  2118. skb_reserve(skb, 2);
  2119. pci_dma_sync_single_for_cpu(skge->hw->pdev,
  2120. pci_unmap_addr(e, mapaddr),
  2121. len, PCI_DMA_FROMDEVICE);
  2122. memcpy(skb->data, e->skb->data, len);
  2123. pci_dma_sync_single_for_device(skge->hw->pdev,
  2124. pci_unmap_addr(e, mapaddr),
  2125. len, PCI_DMA_FROMDEVICE);
  2126. skge_rx_reuse(e, skge->rx_buf_size);
  2127. } else {
  2128. struct sk_buff *nskb;
  2129. nskb = dev_alloc_skb(skge->rx_buf_size + NET_IP_ALIGN);
  2130. if (!nskb)
  2131. goto resubmit;
  2132. pci_unmap_single(skge->hw->pdev,
  2133. pci_unmap_addr(e, mapaddr),
  2134. pci_unmap_len(e, maplen),
  2135. PCI_DMA_FROMDEVICE);
  2136. skb = e->skb;
  2137. prefetch(skb->data);
  2138. skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
  2139. }
  2140. skb_put(skb, len);
  2141. skb->dev = skge->netdev;
  2142. if (skge->rx_csum) {
  2143. skb->csum = csum;
  2144. skb->ip_summed = CHECKSUM_HW;
  2145. }
  2146. skb->protocol = eth_type_trans(skb, skge->netdev);
  2147. return skb;
  2148. error:
  2149. if (netif_msg_rx_err(skge))
  2150. printk(KERN_DEBUG PFX "%s: rx err, slot %td control 0x%x status 0x%x\n",
  2151. skge->netdev->name, e - skge->rx_ring.start,
  2152. control, status);
  2153. if (skge->hw->chip_id == CHIP_ID_GENESIS) {
  2154. if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
  2155. skge->net_stats.rx_length_errors++;
  2156. if (status & XMR_FS_FRA_ERR)
  2157. skge->net_stats.rx_frame_errors++;
  2158. if (status & XMR_FS_FCS_ERR)
  2159. skge->net_stats.rx_crc_errors++;
  2160. } else {
  2161. if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
  2162. skge->net_stats.rx_length_errors++;
  2163. if (status & GMR_FS_FRAGMENT)
  2164. skge->net_stats.rx_frame_errors++;
  2165. if (status & GMR_FS_CRC_ERR)
  2166. skge->net_stats.rx_crc_errors++;
  2167. }
  2168. resubmit:
  2169. skge_rx_reuse(e, skge->rx_buf_size);
  2170. return NULL;
  2171. }
  2172. static int skge_poll(struct net_device *dev, int *budget)
  2173. {
  2174. struct skge_port *skge = netdev_priv(dev);
  2175. struct skge_hw *hw = skge->hw;
  2176. struct skge_ring *ring = &skge->rx_ring;
  2177. struct skge_element *e;
  2178. unsigned int to_do = min(dev->quota, *budget);
  2179. unsigned int work_done = 0;
  2180. for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
  2181. struct skge_rx_desc *rd = e->desc;
  2182. struct sk_buff *skb;
  2183. u32 control;
  2184. rmb();
  2185. control = rd->control;
  2186. if (control & BMU_OWN)
  2187. break;
  2188. skb = skge_rx_get(skge, e, control, rd->status,
  2189. le16_to_cpu(rd->csum2));
  2190. if (likely(skb)) {
  2191. dev->last_rx = jiffies;
  2192. netif_receive_skb(skb);
  2193. ++work_done;
  2194. } else
  2195. skge_rx_reuse(e, skge->rx_buf_size);
  2196. }
  2197. ring->to_clean = e;
  2198. /* restart receiver */
  2199. wmb();
  2200. skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR),
  2201. CSR_START | CSR_IRQ_CL_F);
  2202. *budget -= work_done;
  2203. dev->quota -= work_done;
  2204. if (work_done >= to_do)
  2205. return 1; /* not done */
  2206. netif_rx_complete(dev);
  2207. hw->intr_mask |= portirqmask[skge->port];
  2208. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2209. skge_read32(hw, B0_IMSK);
  2210. return 0;
  2211. }
  2212. static inline void skge_tx_intr(struct net_device *dev)
  2213. {
  2214. struct skge_port *skge = netdev_priv(dev);
  2215. struct skge_hw *hw = skge->hw;
  2216. struct skge_ring *ring = &skge->tx_ring;
  2217. struct skge_element *e;
  2218. spin_lock(&skge->tx_lock);
  2219. for (e = ring->to_clean; prefetch(e->next), e != ring->to_use; e = e->next) {
  2220. struct skge_tx_desc *td = e->desc;
  2221. u32 control;
  2222. rmb();
  2223. control = td->control;
  2224. if (control & BMU_OWN)
  2225. break;
  2226. if (unlikely(netif_msg_tx_done(skge)))
  2227. printk(KERN_DEBUG PFX "%s: tx done slot %td status 0x%x\n",
  2228. dev->name, e - ring->start, td->status);
  2229. skge_tx_free(hw, e);
  2230. e->skb = NULL;
  2231. ++skge->tx_avail;
  2232. }
  2233. ring->to_clean = e;
  2234. skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
  2235. if (skge->tx_avail > MAX_SKB_FRAGS + 1)
  2236. netif_wake_queue(dev);
  2237. spin_unlock(&skge->tx_lock);
  2238. }
  2239. /* Parity errors seem to happen when Genesis is connected to a switch
  2240. * with no other ports present. Heartbeat error??
  2241. */
  2242. static void skge_mac_parity(struct skge_hw *hw, int port)
  2243. {
  2244. struct net_device *dev = hw->dev[port];
  2245. if (dev) {
  2246. struct skge_port *skge = netdev_priv(dev);
  2247. ++skge->net_stats.tx_heartbeat_errors;
  2248. }
  2249. if (hw->chip_id == CHIP_ID_GENESIS)
  2250. skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
  2251. MFF_CLR_PERR);
  2252. else
  2253. /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
  2254. skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
  2255. (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
  2256. ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
  2257. }
  2258. static void skge_pci_clear(struct skge_hw *hw)
  2259. {
  2260. u16 status;
  2261. pci_read_config_word(hw->pdev, PCI_STATUS, &status);
  2262. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2263. pci_write_config_word(hw->pdev, PCI_STATUS,
  2264. status | PCI_STATUS_ERROR_BITS);
  2265. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2266. }
  2267. static void skge_mac_intr(struct skge_hw *hw, int port)
  2268. {
  2269. if (hw->chip_id == CHIP_ID_GENESIS)
  2270. genesis_mac_intr(hw, port);
  2271. else
  2272. yukon_mac_intr(hw, port);
  2273. }
  2274. /* Handle device specific framing and timeout interrupts */
  2275. static void skge_error_irq(struct skge_hw *hw)
  2276. {
  2277. u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2278. if (hw->chip_id == CHIP_ID_GENESIS) {
  2279. /* clear xmac errors */
  2280. if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
  2281. skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
  2282. if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
  2283. skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
  2284. } else {
  2285. /* Timestamp (unused) overflow */
  2286. if (hwstatus & IS_IRQ_TIST_OV)
  2287. skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
  2288. }
  2289. if (hwstatus & IS_RAM_RD_PAR) {
  2290. printk(KERN_ERR PFX "Ram read data parity error\n");
  2291. skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
  2292. }
  2293. if (hwstatus & IS_RAM_WR_PAR) {
  2294. printk(KERN_ERR PFX "Ram write data parity error\n");
  2295. skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
  2296. }
  2297. if (hwstatus & IS_M1_PAR_ERR)
  2298. skge_mac_parity(hw, 0);
  2299. if (hwstatus & IS_M2_PAR_ERR)
  2300. skge_mac_parity(hw, 1);
  2301. if (hwstatus & IS_R1_PAR_ERR)
  2302. skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
  2303. if (hwstatus & IS_R2_PAR_ERR)
  2304. skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
  2305. if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
  2306. printk(KERN_ERR PFX "hardware error detected (status 0x%x)\n",
  2307. hwstatus);
  2308. skge_pci_clear(hw);
  2309. /* if error still set then just ignore it */
  2310. hwstatus = skge_read32(hw, B0_HWE_ISRC);
  2311. if (hwstatus & IS_IRQ_STAT) {
  2312. pr_debug("IRQ status %x: still set ignoring hardware errors\n",
  2313. hwstatus);
  2314. hw->intr_mask &= ~IS_HW_ERR;
  2315. }
  2316. }
  2317. }
  2318. /*
  2319. * Interrupt from PHY are handled in tasklet (soft irq)
  2320. * because accessing phy registers requires spin wait which might
  2321. * cause excess interrupt latency.
  2322. */
  2323. static void skge_extirq(unsigned long data)
  2324. {
  2325. struct skge_hw *hw = (struct skge_hw *) data;
  2326. int port;
  2327. spin_lock(&hw->phy_lock);
  2328. for (port = 0; port < 2; port++) {
  2329. struct net_device *dev = hw->dev[port];
  2330. if (dev && netif_running(dev)) {
  2331. struct skge_port *skge = netdev_priv(dev);
  2332. if (hw->chip_id != CHIP_ID_GENESIS)
  2333. yukon_phy_intr(skge);
  2334. else
  2335. bcom_phy_intr(skge);
  2336. }
  2337. }
  2338. spin_unlock(&hw->phy_lock);
  2339. local_irq_disable();
  2340. hw->intr_mask |= IS_EXT_REG;
  2341. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2342. local_irq_enable();
  2343. }
  2344. static inline void skge_wakeup(struct net_device *dev)
  2345. {
  2346. struct skge_port *skge = netdev_priv(dev);
  2347. prefetch(skge->rx_ring.to_clean);
  2348. netif_rx_schedule(dev);
  2349. }
  2350. static irqreturn_t skge_intr(int irq, void *dev_id, struct pt_regs *regs)
  2351. {
  2352. struct skge_hw *hw = dev_id;
  2353. u32 status = skge_read32(hw, B0_SP_ISRC);
  2354. if (status == 0 || status == ~0) /* hotplug or shared irq */
  2355. return IRQ_NONE;
  2356. status &= hw->intr_mask;
  2357. if (status & IS_R1_F) {
  2358. hw->intr_mask &= ~IS_R1_F;
  2359. skge_wakeup(hw->dev[0]);
  2360. }
  2361. if (status & IS_R2_F) {
  2362. hw->intr_mask &= ~IS_R2_F;
  2363. skge_wakeup(hw->dev[1]);
  2364. }
  2365. if (status & IS_XA1_F)
  2366. skge_tx_intr(hw->dev[0]);
  2367. if (status & IS_XA2_F)
  2368. skge_tx_intr(hw->dev[1]);
  2369. if (status & IS_PA_TO_RX1) {
  2370. struct skge_port *skge = netdev_priv(hw->dev[0]);
  2371. ++skge->net_stats.rx_over_errors;
  2372. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
  2373. }
  2374. if (status & IS_PA_TO_RX2) {
  2375. struct skge_port *skge = netdev_priv(hw->dev[1]);
  2376. ++skge->net_stats.rx_over_errors;
  2377. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
  2378. }
  2379. if (status & IS_PA_TO_TX1)
  2380. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
  2381. if (status & IS_PA_TO_TX2)
  2382. skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
  2383. if (status & IS_MAC1)
  2384. skge_mac_intr(hw, 0);
  2385. if (status & IS_MAC2)
  2386. skge_mac_intr(hw, 1);
  2387. if (status & IS_HW_ERR)
  2388. skge_error_irq(hw);
  2389. if (status & IS_EXT_REG) {
  2390. hw->intr_mask &= ~IS_EXT_REG;
  2391. tasklet_schedule(&hw->ext_tasklet);
  2392. }
  2393. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2394. return IRQ_HANDLED;
  2395. }
  2396. #ifdef CONFIG_NET_POLL_CONTROLLER
  2397. static void skge_netpoll(struct net_device *dev)
  2398. {
  2399. struct skge_port *skge = netdev_priv(dev);
  2400. disable_irq(dev->irq);
  2401. skge_intr(dev->irq, skge->hw, NULL);
  2402. enable_irq(dev->irq);
  2403. }
  2404. #endif
  2405. static int skge_set_mac_address(struct net_device *dev, void *p)
  2406. {
  2407. struct skge_port *skge = netdev_priv(dev);
  2408. struct skge_hw *hw = skge->hw;
  2409. unsigned port = skge->port;
  2410. const struct sockaddr *addr = p;
  2411. if (!is_valid_ether_addr(addr->sa_data))
  2412. return -EADDRNOTAVAIL;
  2413. spin_lock_bh(&hw->phy_lock);
  2414. memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
  2415. memcpy_toio(hw->regs + B2_MAC_1 + port*8,
  2416. dev->dev_addr, ETH_ALEN);
  2417. memcpy_toio(hw->regs + B2_MAC_2 + port*8,
  2418. dev->dev_addr, ETH_ALEN);
  2419. if (hw->chip_id == CHIP_ID_GENESIS)
  2420. xm_outaddr(hw, port, XM_SA, dev->dev_addr);
  2421. else {
  2422. gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
  2423. gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
  2424. }
  2425. spin_unlock_bh(&hw->phy_lock);
  2426. return 0;
  2427. }
  2428. static const struct {
  2429. u8 id;
  2430. const char *name;
  2431. } skge_chips[] = {
  2432. { CHIP_ID_GENESIS, "Genesis" },
  2433. { CHIP_ID_YUKON, "Yukon" },
  2434. { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
  2435. { CHIP_ID_YUKON_LP, "Yukon-LP"},
  2436. };
  2437. static const char *skge_board_name(const struct skge_hw *hw)
  2438. {
  2439. int i;
  2440. static char buf[16];
  2441. for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
  2442. if (skge_chips[i].id == hw->chip_id)
  2443. return skge_chips[i].name;
  2444. snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
  2445. return buf;
  2446. }
  2447. /*
  2448. * Setup the board data structure, but don't bring up
  2449. * the port(s)
  2450. */
  2451. static int skge_reset(struct skge_hw *hw)
  2452. {
  2453. u32 reg;
  2454. u16 ctst;
  2455. u8 t8, mac_cfg, pmd_type, phy_type;
  2456. int i;
  2457. ctst = skge_read16(hw, B0_CTST);
  2458. /* do a SW reset */
  2459. skge_write8(hw, B0_CTST, CS_RST_SET);
  2460. skge_write8(hw, B0_CTST, CS_RST_CLR);
  2461. /* clear PCI errors, if any */
  2462. skge_pci_clear(hw);
  2463. skge_write8(hw, B0_CTST, CS_MRST_CLR);
  2464. /* restore CLK_RUN bits (for Yukon-Lite) */
  2465. skge_write16(hw, B0_CTST,
  2466. ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
  2467. hw->chip_id = skge_read8(hw, B2_CHIP_ID);
  2468. phy_type = skge_read8(hw, B2_E_1) & 0xf;
  2469. pmd_type = skge_read8(hw, B2_PMD_TYP);
  2470. hw->copper = (pmd_type == 'T' || pmd_type == '1');
  2471. switch (hw->chip_id) {
  2472. case CHIP_ID_GENESIS:
  2473. switch (phy_type) {
  2474. case SK_PHY_BCOM:
  2475. hw->phy_addr = PHY_ADDR_BCOM;
  2476. break;
  2477. default:
  2478. printk(KERN_ERR PFX "%s: unsupported phy type 0x%x\n",
  2479. pci_name(hw->pdev), phy_type);
  2480. return -EOPNOTSUPP;
  2481. }
  2482. break;
  2483. case CHIP_ID_YUKON:
  2484. case CHIP_ID_YUKON_LITE:
  2485. case CHIP_ID_YUKON_LP:
  2486. if (phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
  2487. hw->copper = 1;
  2488. hw->phy_addr = PHY_ADDR_MARV;
  2489. break;
  2490. default:
  2491. printk(KERN_ERR PFX "%s: unsupported chip type 0x%x\n",
  2492. pci_name(hw->pdev), hw->chip_id);
  2493. return -EOPNOTSUPP;
  2494. }
  2495. mac_cfg = skge_read8(hw, B2_MAC_CFG);
  2496. hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
  2497. hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
  2498. /* read the adapters RAM size */
  2499. t8 = skge_read8(hw, B2_E_0);
  2500. if (hw->chip_id == CHIP_ID_GENESIS) {
  2501. if (t8 == 3) {
  2502. /* special case: 4 x 64k x 36, offset = 0x80000 */
  2503. hw->ram_size = 0x100000;
  2504. hw->ram_offset = 0x80000;
  2505. } else
  2506. hw->ram_size = t8 * 512;
  2507. }
  2508. else if (t8 == 0)
  2509. hw->ram_size = 0x20000;
  2510. else
  2511. hw->ram_size = t8 * 4096;
  2512. hw->intr_mask = IS_HW_ERR | IS_EXT_REG;
  2513. if (hw->chip_id == CHIP_ID_GENESIS)
  2514. genesis_init(hw);
  2515. else {
  2516. /* switch power to VCC (WA for VAUX problem) */
  2517. skge_write8(hw, B0_POWER_CTRL,
  2518. PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
  2519. /* avoid boards with stuck Hardware error bits */
  2520. if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
  2521. (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
  2522. printk(KERN_WARNING PFX "stuck hardware sensor bit\n");
  2523. hw->intr_mask &= ~IS_HW_ERR;
  2524. }
  2525. /* Clear PHY COMA */
  2526. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
  2527. pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
  2528. reg &= ~PCI_PHY_COMA;
  2529. pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
  2530. skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
  2531. for (i = 0; i < hw->ports; i++) {
  2532. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
  2533. skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
  2534. }
  2535. }
  2536. /* turn off hardware timer (unused) */
  2537. skge_write8(hw, B2_TI_CTRL, TIM_STOP);
  2538. skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
  2539. skge_write8(hw, B0_LED, LED_STAT_ON);
  2540. /* enable the Tx Arbiters */
  2541. for (i = 0; i < hw->ports; i++)
  2542. skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
  2543. /* Initialize ram interface */
  2544. skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
  2545. skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
  2546. skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
  2547. skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
  2548. skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
  2549. skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
  2550. skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
  2551. skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
  2552. skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
  2553. skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
  2554. skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
  2555. skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
  2556. skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
  2557. skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
  2558. /* Set interrupt moderation for Transmit only
  2559. * Receive interrupts avoided by NAPI
  2560. */
  2561. skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
  2562. skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
  2563. skge_write32(hw, B2_IRQM_CTRL, TIM_START);
  2564. skge_write32(hw, B0_IMSK, hw->intr_mask);
  2565. spin_lock_bh(&hw->phy_lock);
  2566. for (i = 0; i < hw->ports; i++) {
  2567. if (hw->chip_id == CHIP_ID_GENESIS)
  2568. genesis_reset(hw, i);
  2569. else
  2570. yukon_reset(hw, i);
  2571. }
  2572. spin_unlock_bh(&hw->phy_lock);
  2573. return 0;
  2574. }
  2575. /* Initialize network device */
  2576. static struct net_device *skge_devinit(struct skge_hw *hw, int port,
  2577. int highmem)
  2578. {
  2579. struct skge_port *skge;
  2580. struct net_device *dev = alloc_etherdev(sizeof(*skge));
  2581. if (!dev) {
  2582. printk(KERN_ERR "skge etherdev alloc failed");
  2583. return NULL;
  2584. }
  2585. SET_MODULE_OWNER(dev);
  2586. SET_NETDEV_DEV(dev, &hw->pdev->dev);
  2587. dev->open = skge_up;
  2588. dev->stop = skge_down;
  2589. dev->do_ioctl = skge_ioctl;
  2590. dev->hard_start_xmit = skge_xmit_frame;
  2591. dev->get_stats = skge_get_stats;
  2592. if (hw->chip_id == CHIP_ID_GENESIS)
  2593. dev->set_multicast_list = genesis_set_multicast;
  2594. else
  2595. dev->set_multicast_list = yukon_set_multicast;
  2596. dev->set_mac_address = skge_set_mac_address;
  2597. dev->change_mtu = skge_change_mtu;
  2598. SET_ETHTOOL_OPS(dev, &skge_ethtool_ops);
  2599. dev->tx_timeout = skge_tx_timeout;
  2600. dev->watchdog_timeo = TX_WATCHDOG;
  2601. dev->poll = skge_poll;
  2602. dev->weight = NAPI_WEIGHT;
  2603. #ifdef CONFIG_NET_POLL_CONTROLLER
  2604. dev->poll_controller = skge_netpoll;
  2605. #endif
  2606. dev->irq = hw->pdev->irq;
  2607. dev->features = NETIF_F_LLTX;
  2608. if (highmem)
  2609. dev->features |= NETIF_F_HIGHDMA;
  2610. skge = netdev_priv(dev);
  2611. skge->netdev = dev;
  2612. skge->hw = hw;
  2613. skge->msg_enable = netif_msg_init(debug, default_msg);
  2614. skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
  2615. skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
  2616. /* Auto speed and flow control */
  2617. skge->autoneg = AUTONEG_ENABLE;
  2618. skge->flow_control = FLOW_MODE_SYMMETRIC;
  2619. skge->duplex = -1;
  2620. skge->speed = -1;
  2621. skge->advertising = skge_supported_modes(hw);
  2622. hw->dev[port] = dev;
  2623. skge->port = port;
  2624. spin_lock_init(&skge->tx_lock);
  2625. if (hw->chip_id != CHIP_ID_GENESIS) {
  2626. dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
  2627. skge->rx_csum = 1;
  2628. }
  2629. /* read the mac address */
  2630. memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
  2631. memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
  2632. /* device is off until link detection */
  2633. netif_carrier_off(dev);
  2634. netif_stop_queue(dev);
  2635. return dev;
  2636. }
  2637. static void __devinit skge_show_addr(struct net_device *dev)
  2638. {
  2639. const struct skge_port *skge = netdev_priv(dev);
  2640. if (netif_msg_probe(skge))
  2641. printk(KERN_INFO PFX "%s: addr %02x:%02x:%02x:%02x:%02x:%02x\n",
  2642. dev->name,
  2643. dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
  2644. dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
  2645. }
  2646. static int __devinit skge_probe(struct pci_dev *pdev,
  2647. const struct pci_device_id *ent)
  2648. {
  2649. struct net_device *dev, *dev1;
  2650. struct skge_hw *hw;
  2651. int err, using_dac = 0;
  2652. if ((err = pci_enable_device(pdev))) {
  2653. printk(KERN_ERR PFX "%s cannot enable PCI device\n",
  2654. pci_name(pdev));
  2655. goto err_out;
  2656. }
  2657. if ((err = pci_request_regions(pdev, DRV_NAME))) {
  2658. printk(KERN_ERR PFX "%s cannot obtain PCI resources\n",
  2659. pci_name(pdev));
  2660. goto err_out_disable_pdev;
  2661. }
  2662. pci_set_master(pdev);
  2663. if (!(err = pci_set_dma_mask(pdev, DMA_64BIT_MASK)))
  2664. using_dac = 1;
  2665. else if (!(err = pci_set_dma_mask(pdev, DMA_32BIT_MASK))) {
  2666. printk(KERN_ERR PFX "%s no usable DMA configuration\n",
  2667. pci_name(pdev));
  2668. goto err_out_free_regions;
  2669. }
  2670. #ifdef __BIG_ENDIAN
  2671. /* byte swap descriptors in hardware */
  2672. {
  2673. u32 reg;
  2674. pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
  2675. reg |= PCI_REV_DESC;
  2676. pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
  2677. }
  2678. #endif
  2679. err = -ENOMEM;
  2680. hw = kzalloc(sizeof(*hw), GFP_KERNEL);
  2681. if (!hw) {
  2682. printk(KERN_ERR PFX "%s: cannot allocate hardware struct\n",
  2683. pci_name(pdev));
  2684. goto err_out_free_regions;
  2685. }
  2686. hw->pdev = pdev;
  2687. spin_lock_init(&hw->phy_lock);
  2688. tasklet_init(&hw->ext_tasklet, skge_extirq, (unsigned long) hw);
  2689. hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
  2690. if (!hw->regs) {
  2691. printk(KERN_ERR PFX "%s: cannot map device registers\n",
  2692. pci_name(pdev));
  2693. goto err_out_free_hw;
  2694. }
  2695. if ((err = request_irq(pdev->irq, skge_intr, SA_SHIRQ, DRV_NAME, hw))) {
  2696. printk(KERN_ERR PFX "%s: cannot assign irq %d\n",
  2697. pci_name(pdev), pdev->irq);
  2698. goto err_out_iounmap;
  2699. }
  2700. pci_set_drvdata(pdev, hw);
  2701. err = skge_reset(hw);
  2702. if (err)
  2703. goto err_out_free_irq;
  2704. printk(KERN_INFO PFX DRV_VERSION " addr 0x%lx irq %d chip %s rev %d\n",
  2705. pci_resource_start(pdev, 0), pdev->irq,
  2706. skge_board_name(hw), hw->chip_rev);
  2707. if ((dev = skge_devinit(hw, 0, using_dac)) == NULL)
  2708. goto err_out_led_off;
  2709. if ((err = register_netdev(dev))) {
  2710. printk(KERN_ERR PFX "%s: cannot register net device\n",
  2711. pci_name(pdev));
  2712. goto err_out_free_netdev;
  2713. }
  2714. skge_show_addr(dev);
  2715. if (hw->ports > 1 && (dev1 = skge_devinit(hw, 1, using_dac))) {
  2716. if (register_netdev(dev1) == 0)
  2717. skge_show_addr(dev1);
  2718. else {
  2719. /* Failure to register second port need not be fatal */
  2720. printk(KERN_WARNING PFX "register of second port failed\n");
  2721. hw->dev[1] = NULL;
  2722. free_netdev(dev1);
  2723. }
  2724. }
  2725. return 0;
  2726. err_out_free_netdev:
  2727. free_netdev(dev);
  2728. err_out_led_off:
  2729. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2730. err_out_free_irq:
  2731. free_irq(pdev->irq, hw);
  2732. err_out_iounmap:
  2733. iounmap(hw->regs);
  2734. err_out_free_hw:
  2735. kfree(hw);
  2736. err_out_free_regions:
  2737. pci_release_regions(pdev);
  2738. err_out_disable_pdev:
  2739. pci_disable_device(pdev);
  2740. pci_set_drvdata(pdev, NULL);
  2741. err_out:
  2742. return err;
  2743. }
  2744. static void __devexit skge_remove(struct pci_dev *pdev)
  2745. {
  2746. struct skge_hw *hw = pci_get_drvdata(pdev);
  2747. struct net_device *dev0, *dev1;
  2748. if (!hw)
  2749. return;
  2750. if ((dev1 = hw->dev[1]))
  2751. unregister_netdev(dev1);
  2752. dev0 = hw->dev[0];
  2753. unregister_netdev(dev0);
  2754. skge_write32(hw, B0_IMSK, 0);
  2755. skge_write16(hw, B0_LED, LED_STAT_OFF);
  2756. skge_pci_clear(hw);
  2757. skge_write8(hw, B0_CTST, CS_RST_SET);
  2758. tasklet_kill(&hw->ext_tasklet);
  2759. free_irq(pdev->irq, hw);
  2760. pci_release_regions(pdev);
  2761. pci_disable_device(pdev);
  2762. if (dev1)
  2763. free_netdev(dev1);
  2764. free_netdev(dev0);
  2765. iounmap(hw->regs);
  2766. kfree(hw);
  2767. pci_set_drvdata(pdev, NULL);
  2768. }
  2769. #ifdef CONFIG_PM
  2770. static int skge_suspend(struct pci_dev *pdev, pm_message_t state)
  2771. {
  2772. struct skge_hw *hw = pci_get_drvdata(pdev);
  2773. int i, wol = 0;
  2774. for (i = 0; i < 2; i++) {
  2775. struct net_device *dev = hw->dev[i];
  2776. if (dev) {
  2777. struct skge_port *skge = netdev_priv(dev);
  2778. if (netif_running(dev)) {
  2779. netif_carrier_off(dev);
  2780. if (skge->wol)
  2781. netif_stop_queue(dev);
  2782. else
  2783. skge_down(dev);
  2784. }
  2785. netif_device_detach(dev);
  2786. wol |= skge->wol;
  2787. }
  2788. }
  2789. pci_save_state(pdev);
  2790. pci_enable_wake(pdev, pci_choose_state(pdev, state), wol);
  2791. pci_disable_device(pdev);
  2792. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2793. return 0;
  2794. }
  2795. static int skge_resume(struct pci_dev *pdev)
  2796. {
  2797. struct skge_hw *hw = pci_get_drvdata(pdev);
  2798. int i;
  2799. pci_set_power_state(pdev, PCI_D0);
  2800. pci_restore_state(pdev);
  2801. pci_enable_wake(pdev, PCI_D0, 0);
  2802. skge_reset(hw);
  2803. for (i = 0; i < 2; i++) {
  2804. struct net_device *dev = hw->dev[i];
  2805. if (dev) {
  2806. netif_device_attach(dev);
  2807. if (netif_running(dev) && skge_up(dev))
  2808. dev_close(dev);
  2809. }
  2810. }
  2811. return 0;
  2812. }
  2813. #endif
  2814. static struct pci_driver skge_driver = {
  2815. .name = DRV_NAME,
  2816. .id_table = skge_id_table,
  2817. .probe = skge_probe,
  2818. .remove = __devexit_p(skge_remove),
  2819. #ifdef CONFIG_PM
  2820. .suspend = skge_suspend,
  2821. .resume = skge_resume,
  2822. #endif
  2823. };
  2824. static int __init skge_init_module(void)
  2825. {
  2826. return pci_module_init(&skge_driver);
  2827. }
  2828. static void __exit skge_cleanup_module(void)
  2829. {
  2830. pci_unregister_driver(&skge_driver);
  2831. }
  2832. module_init(skge_init_module);
  2833. module_exit(skge_cleanup_module);