fault.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412
  1. /*
  2. * PowerPC version
  3. * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4. *
  5. * Derived from "arch/i386/mm/fault.c"
  6. * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
  7. *
  8. * Modified by Cort Dougan and Paul Mackerras.
  9. *
  10. * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
  11. *
  12. * This program is free software; you can redistribute it and/or
  13. * modify it under the terms of the GNU General Public License
  14. * as published by the Free Software Foundation; either version
  15. * 2 of the License, or (at your option) any later version.
  16. */
  17. #include <linux/signal.h>
  18. #include <linux/sched.h>
  19. #include <linux/kernel.h>
  20. #include <linux/errno.h>
  21. #include <linux/string.h>
  22. #include <linux/types.h>
  23. #include <linux/ptrace.h>
  24. #include <linux/mman.h>
  25. #include <linux/mm.h>
  26. #include <linux/interrupt.h>
  27. #include <linux/highmem.h>
  28. #include <linux/module.h>
  29. #include <linux/kprobes.h>
  30. #include <linux/kdebug.h>
  31. #include <asm/page.h>
  32. #include <asm/pgtable.h>
  33. #include <asm/mmu.h>
  34. #include <asm/mmu_context.h>
  35. #include <asm/system.h>
  36. #include <asm/uaccess.h>
  37. #include <asm/tlbflush.h>
  38. #include <asm/siginfo.h>
  39. #ifdef CONFIG_KPROBES
  40. static inline int notify_page_fault(struct pt_regs *regs)
  41. {
  42. int ret = 0;
  43. /* kprobe_running() needs smp_processor_id() */
  44. if (!user_mode(regs)) {
  45. preempt_disable();
  46. if (kprobe_running() && kprobe_fault_handler(regs, 11))
  47. ret = 1;
  48. preempt_enable();
  49. }
  50. return ret;
  51. }
  52. #else
  53. static inline int notify_page_fault(struct pt_regs *regs)
  54. {
  55. return 0;
  56. }
  57. #endif
  58. /*
  59. * Check whether the instruction at regs->nip is a store using
  60. * an update addressing form which will update r1.
  61. */
  62. static int store_updates_sp(struct pt_regs *regs)
  63. {
  64. unsigned int inst;
  65. if (get_user(inst, (unsigned int __user *)regs->nip))
  66. return 0;
  67. /* check for 1 in the rA field */
  68. if (((inst >> 16) & 0x1f) != 1)
  69. return 0;
  70. /* check major opcode */
  71. switch (inst >> 26) {
  72. case 37: /* stwu */
  73. case 39: /* stbu */
  74. case 45: /* sthu */
  75. case 53: /* stfsu */
  76. case 55: /* stfdu */
  77. return 1;
  78. case 62: /* std or stdu */
  79. return (inst & 3) == 1;
  80. case 31:
  81. /* check minor opcode */
  82. switch ((inst >> 1) & 0x3ff) {
  83. case 181: /* stdux */
  84. case 183: /* stwux */
  85. case 247: /* stbux */
  86. case 439: /* sthux */
  87. case 695: /* stfsux */
  88. case 759: /* stfdux */
  89. return 1;
  90. }
  91. }
  92. return 0;
  93. }
  94. /*
  95. * For 600- and 800-family processors, the error_code parameter is DSISR
  96. * for a data fault, SRR1 for an instruction fault. For 400-family processors
  97. * the error_code parameter is ESR for a data fault, 0 for an instruction
  98. * fault.
  99. * For 64-bit processors, the error_code parameter is
  100. * - DSISR for a non-SLB data access fault,
  101. * - SRR1 & 0x08000000 for a non-SLB instruction access fault
  102. * - 0 any SLB fault.
  103. *
  104. * The return value is 0 if the fault was handled, or the signal
  105. * number if this is a kernel fault that can't be handled here.
  106. */
  107. int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address,
  108. unsigned long error_code)
  109. {
  110. struct vm_area_struct * vma;
  111. struct mm_struct *mm = current->mm;
  112. siginfo_t info;
  113. int code = SEGV_MAPERR;
  114. int is_write = 0, ret;
  115. int trap = TRAP(regs);
  116. int is_exec = trap == 0x400;
  117. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  118. /*
  119. * Fortunately the bit assignments in SRR1 for an instruction
  120. * fault and DSISR for a data fault are mostly the same for the
  121. * bits we are interested in. But there are some bits which
  122. * indicate errors in DSISR but can validly be set in SRR1.
  123. */
  124. if (trap == 0x400)
  125. error_code &= 0x48200000;
  126. else
  127. is_write = error_code & DSISR_ISSTORE;
  128. #else
  129. is_write = error_code & ESR_DST;
  130. #endif /* CONFIG_4xx || CONFIG_BOOKE */
  131. if (notify_page_fault(regs))
  132. return 0;
  133. if (unlikely(debugger_fault_handler(regs)))
  134. return 0;
  135. /* On a kernel SLB miss we can only check for a valid exception entry */
  136. if (!user_mode(regs) && (address >= TASK_SIZE))
  137. return SIGSEGV;
  138. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  139. if (error_code & DSISR_DABRMATCH) {
  140. /* DABR match */
  141. do_dabr(regs, address, error_code);
  142. return 0;
  143. }
  144. #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/
  145. if (in_atomic() || mm == NULL) {
  146. if (!user_mode(regs))
  147. return SIGSEGV;
  148. /* in_atomic() in user mode is really bad,
  149. as is current->mm == NULL. */
  150. printk(KERN_EMERG "Page fault in user mode with "
  151. "in_atomic() = %d mm = %p\n", in_atomic(), mm);
  152. printk(KERN_EMERG "NIP = %lx MSR = %lx\n",
  153. regs->nip, regs->msr);
  154. die("Weird page fault", regs, SIGSEGV);
  155. }
  156. /* When running in the kernel we expect faults to occur only to
  157. * addresses in user space. All other faults represent errors in the
  158. * kernel and should generate an OOPS. Unfortunately, in the case of an
  159. * erroneous fault occurring in a code path which already holds mmap_sem
  160. * we will deadlock attempting to validate the fault against the
  161. * address space. Luckily the kernel only validly references user
  162. * space from well defined areas of code, which are listed in the
  163. * exceptions table.
  164. *
  165. * As the vast majority of faults will be valid we will only perform
  166. * the source reference check when there is a possibility of a deadlock.
  167. * Attempt to lock the address space, if we cannot we then validate the
  168. * source. If this is invalid we can skip the address space check,
  169. * thus avoiding the deadlock.
  170. */
  171. if (!down_read_trylock(&mm->mmap_sem)) {
  172. if (!user_mode(regs) && !search_exception_tables(regs->nip))
  173. goto bad_area_nosemaphore;
  174. down_read(&mm->mmap_sem);
  175. }
  176. vma = find_vma(mm, address);
  177. if (!vma)
  178. goto bad_area;
  179. if (vma->vm_start <= address)
  180. goto good_area;
  181. if (!(vma->vm_flags & VM_GROWSDOWN))
  182. goto bad_area;
  183. /*
  184. * N.B. The POWER/Open ABI allows programs to access up to
  185. * 288 bytes below the stack pointer.
  186. * The kernel signal delivery code writes up to about 1.5kB
  187. * below the stack pointer (r1) before decrementing it.
  188. * The exec code can write slightly over 640kB to the stack
  189. * before setting the user r1. Thus we allow the stack to
  190. * expand to 1MB without further checks.
  191. */
  192. if (address + 0x100000 < vma->vm_end) {
  193. /* get user regs even if this fault is in kernel mode */
  194. struct pt_regs *uregs = current->thread.regs;
  195. if (uregs == NULL)
  196. goto bad_area;
  197. /*
  198. * A user-mode access to an address a long way below
  199. * the stack pointer is only valid if the instruction
  200. * is one which would update the stack pointer to the
  201. * address accessed if the instruction completed,
  202. * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
  203. * (or the byte, halfword, float or double forms).
  204. *
  205. * If we don't check this then any write to the area
  206. * between the last mapped region and the stack will
  207. * expand the stack rather than segfaulting.
  208. */
  209. if (address + 2048 < uregs->gpr[1]
  210. && (!user_mode(regs) || !store_updates_sp(regs)))
  211. goto bad_area;
  212. }
  213. if (expand_stack(vma, address))
  214. goto bad_area;
  215. good_area:
  216. code = SEGV_ACCERR;
  217. #if defined(CONFIG_6xx)
  218. if (error_code & 0x95700000)
  219. /* an error such as lwarx to I/O controller space,
  220. address matching DABR, eciwx, etc. */
  221. goto bad_area;
  222. #endif /* CONFIG_6xx */
  223. #if defined(CONFIG_8xx)
  224. /* The MPC8xx seems to always set 0x80000000, which is
  225. * "undefined". Of those that can be set, this is the only
  226. * one which seems bad.
  227. */
  228. if (error_code & 0x10000000)
  229. /* Guarded storage error. */
  230. goto bad_area;
  231. #endif /* CONFIG_8xx */
  232. if (is_exec) {
  233. #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
  234. /* protection fault */
  235. if (error_code & DSISR_PROTFAULT)
  236. goto bad_area;
  237. /*
  238. * Allow execution from readable areas if the MMU does not
  239. * provide separate controls over reading and executing.
  240. */
  241. if (!(vma->vm_flags & VM_EXEC) &&
  242. (cpu_has_feature(CPU_FTR_NOEXECUTE) ||
  243. !(vma->vm_flags & (VM_READ | VM_WRITE))))
  244. goto bad_area;
  245. #else
  246. pte_t *ptep;
  247. pmd_t *pmdp;
  248. /* Since 4xx/Book-E supports per-page execute permission,
  249. * we lazily flush dcache to icache. */
  250. ptep = NULL;
  251. if (get_pteptr(mm, address, &ptep, &pmdp)) {
  252. spinlock_t *ptl = pte_lockptr(mm, pmdp);
  253. spin_lock(ptl);
  254. if (pte_present(*ptep)) {
  255. struct page *page = pte_page(*ptep);
  256. if (!test_bit(PG_arch_1, &page->flags)) {
  257. flush_dcache_icache_page(page);
  258. set_bit(PG_arch_1, &page->flags);
  259. }
  260. pte_update(ptep, 0, _PAGE_HWEXEC |
  261. _PAGE_ACCESSED);
  262. _tlbie(address, mm->context.id);
  263. pte_unmap_unlock(ptep, ptl);
  264. up_read(&mm->mmap_sem);
  265. return 0;
  266. }
  267. pte_unmap_unlock(ptep, ptl);
  268. }
  269. #endif
  270. /* a write */
  271. } else if (is_write) {
  272. if (!(vma->vm_flags & VM_WRITE))
  273. goto bad_area;
  274. /* a read */
  275. } else {
  276. /* protection fault */
  277. if (error_code & 0x08000000)
  278. goto bad_area;
  279. if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
  280. goto bad_area;
  281. }
  282. /*
  283. * If for any reason at all we couldn't handle the fault,
  284. * make sure we exit gracefully rather than endlessly redo
  285. * the fault.
  286. */
  287. survive:
  288. ret = handle_mm_fault(mm, vma, address, is_write);
  289. if (unlikely(ret & VM_FAULT_ERROR)) {
  290. if (ret & VM_FAULT_OOM)
  291. goto out_of_memory;
  292. else if (ret & VM_FAULT_SIGBUS)
  293. goto do_sigbus;
  294. BUG();
  295. }
  296. if (ret & VM_FAULT_MAJOR)
  297. current->maj_flt++;
  298. else
  299. current->min_flt++;
  300. up_read(&mm->mmap_sem);
  301. return 0;
  302. bad_area:
  303. up_read(&mm->mmap_sem);
  304. bad_area_nosemaphore:
  305. /* User mode accesses cause a SIGSEGV */
  306. if (user_mode(regs)) {
  307. _exception(SIGSEGV, regs, code, address);
  308. return 0;
  309. }
  310. if (is_exec && (error_code & DSISR_PROTFAULT)
  311. && printk_ratelimit())
  312. printk(KERN_CRIT "kernel tried to execute NX-protected"
  313. " page (%lx) - exploit attempt? (uid: %d)\n",
  314. address, current_uid());
  315. return SIGSEGV;
  316. /*
  317. * We ran out of memory, or some other thing happened to us that made
  318. * us unable to handle the page fault gracefully.
  319. */
  320. out_of_memory:
  321. up_read(&mm->mmap_sem);
  322. if (is_global_init(current)) {
  323. yield();
  324. down_read(&mm->mmap_sem);
  325. goto survive;
  326. }
  327. printk("VM: killing process %s\n", current->comm);
  328. if (user_mode(regs))
  329. do_group_exit(SIGKILL);
  330. return SIGKILL;
  331. do_sigbus:
  332. up_read(&mm->mmap_sem);
  333. if (user_mode(regs)) {
  334. info.si_signo = SIGBUS;
  335. info.si_errno = 0;
  336. info.si_code = BUS_ADRERR;
  337. info.si_addr = (void __user *)address;
  338. force_sig_info(SIGBUS, &info, current);
  339. return 0;
  340. }
  341. return SIGBUS;
  342. }
  343. /*
  344. * bad_page_fault is called when we have a bad access from the kernel.
  345. * It is called from the DSI and ISI handlers in head.S and from some
  346. * of the procedures in traps.c.
  347. */
  348. void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig)
  349. {
  350. const struct exception_table_entry *entry;
  351. /* Are we prepared to handle this fault? */
  352. if ((entry = search_exception_tables(regs->nip)) != NULL) {
  353. regs->nip = entry->fixup;
  354. return;
  355. }
  356. /* kernel has accessed a bad area */
  357. switch (regs->trap) {
  358. case 0x300:
  359. case 0x380:
  360. printk(KERN_ALERT "Unable to handle kernel paging request for "
  361. "data at address 0x%08lx\n", regs->dar);
  362. break;
  363. case 0x400:
  364. case 0x480:
  365. printk(KERN_ALERT "Unable to handle kernel paging request for "
  366. "instruction fetch\n");
  367. break;
  368. default:
  369. printk(KERN_ALERT "Unable to handle kernel paging request for "
  370. "unknown fault\n");
  371. break;
  372. }
  373. printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n",
  374. regs->nip);
  375. die("Kernel access of bad area", regs, sig);
  376. }