init.c 7.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307
  1. /*
  2. * linux/arch/sh/mm/init.c
  3. *
  4. * Copyright (C) 1999 Niibe Yutaka
  5. * Copyright (C) 2002 - 2007 Paul Mundt
  6. *
  7. * Based on linux/arch/i386/mm/init.c:
  8. * Copyright (C) 1995 Linus Torvalds
  9. */
  10. #include <linux/mm.h>
  11. #include <linux/swap.h>
  12. #include <linux/init.h>
  13. #include <linux/bootmem.h>
  14. #include <linux/proc_fs.h>
  15. #include <linux/pagemap.h>
  16. #include <linux/percpu.h>
  17. #include <linux/io.h>
  18. #include <asm/mmu_context.h>
  19. #include <asm/tlb.h>
  20. #include <asm/cacheflush.h>
  21. #include <asm/sections.h>
  22. #include <asm/cache.h>
  23. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  24. pgd_t swapper_pg_dir[PTRS_PER_PGD];
  25. unsigned long cached_to_uncached = 0;
  26. void show_mem(void)
  27. {
  28. int total = 0, reserved = 0, free = 0;
  29. int shared = 0, cached = 0, slab = 0;
  30. pg_data_t *pgdat;
  31. printk("Mem-info:\n");
  32. show_free_areas();
  33. for_each_online_pgdat(pgdat) {
  34. unsigned long flags, i;
  35. pgdat_resize_lock(pgdat, &flags);
  36. for (i = 0; i < pgdat->node_spanned_pages; i++) {
  37. struct page *page = pgdat_page_nr(pgdat, i);
  38. total++;
  39. if (PageReserved(page))
  40. reserved++;
  41. else if (PageSwapCache(page))
  42. cached++;
  43. else if (PageSlab(page))
  44. slab++;
  45. else if (!page_count(page))
  46. free++;
  47. else
  48. shared += page_count(page) - 1;
  49. }
  50. pgdat_resize_unlock(pgdat, &flags);
  51. }
  52. printk("Free swap: %6ldkB\n", nr_swap_pages<<(PAGE_SHIFT-10));
  53. printk("%d pages of RAM\n", total);
  54. printk("%d free pages\n", free);
  55. printk("%d reserved pages\n", reserved);
  56. printk("%d slab pages\n", slab);
  57. printk("%d pages shared\n", shared);
  58. printk("%d pages swap cached\n", cached);
  59. printk(KERN_INFO "Total of %ld pages in page table cache\n",
  60. quicklist_total_size());
  61. }
  62. #ifdef CONFIG_MMU
  63. static void set_pte_phys(unsigned long addr, unsigned long phys, pgprot_t prot)
  64. {
  65. pgd_t *pgd;
  66. pud_t *pud;
  67. pmd_t *pmd;
  68. pte_t *pte;
  69. pgd = pgd_offset_k(addr);
  70. if (pgd_none(*pgd)) {
  71. pgd_ERROR(*pgd);
  72. return;
  73. }
  74. pud = pud_alloc(NULL, pgd, addr);
  75. if (unlikely(!pud)) {
  76. pud_ERROR(*pud);
  77. return;
  78. }
  79. pmd = pmd_alloc(NULL, pud, addr);
  80. if (unlikely(!pmd)) {
  81. pmd_ERROR(*pmd);
  82. return;
  83. }
  84. pte = pte_offset_kernel(pmd, addr);
  85. if (!pte_none(*pte)) {
  86. pte_ERROR(*pte);
  87. return;
  88. }
  89. set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, prot));
  90. if (cached_to_uncached)
  91. flush_tlb_one(get_asid(), addr);
  92. }
  93. /*
  94. * As a performance optimization, other platforms preserve the fixmap mapping
  95. * across a context switch, we don't presently do this, but this could be done
  96. * in a similar fashion as to the wired TLB interface that sh64 uses (by way
  97. * of the memory mapped UTLB configuration) -- this unfortunately forces us to
  98. * give up a TLB entry for each mapping we want to preserve. While this may be
  99. * viable for a small number of fixmaps, it's not particularly useful for
  100. * everything and needs to be carefully evaluated. (ie, we may want this for
  101. * the vsyscall page).
  102. *
  103. * XXX: Perhaps add a _PAGE_WIRED flag or something similar that we can pass
  104. * in at __set_fixmap() time to determine the appropriate behavior to follow.
  105. *
  106. * -- PFM.
  107. */
  108. void __set_fixmap(enum fixed_addresses idx, unsigned long phys, pgprot_t prot)
  109. {
  110. unsigned long address = __fix_to_virt(idx);
  111. if (idx >= __end_of_fixed_addresses) {
  112. BUG();
  113. return;
  114. }
  115. set_pte_phys(address, phys, prot);
  116. }
  117. #endif /* CONFIG_MMU */
  118. /*
  119. * paging_init() sets up the page tables
  120. */
  121. void __init paging_init(void)
  122. {
  123. unsigned long max_zone_pfns[MAX_NR_ZONES];
  124. int nid;
  125. /* We don't need to map the kernel through the TLB, as
  126. * it is permanatly mapped using P1. So clear the
  127. * entire pgd. */
  128. memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
  129. /* Set an initial value for the MMU.TTB so we don't have to
  130. * check for a null value. */
  131. set_TTB(swapper_pg_dir);
  132. memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
  133. for_each_online_node(nid) {
  134. pg_data_t *pgdat = NODE_DATA(nid);
  135. unsigned long low, start_pfn;
  136. start_pfn = pgdat->bdata->node_boot_start >> PAGE_SHIFT;
  137. low = pgdat->bdata->node_low_pfn;
  138. if (max_zone_pfns[ZONE_NORMAL] < low)
  139. max_zone_pfns[ZONE_NORMAL] = low;
  140. printk("Node %u: start_pfn = 0x%lx, low = 0x%lx\n",
  141. nid, start_pfn, low);
  142. }
  143. free_area_init_nodes(max_zone_pfns);
  144. /* Set up the uncached fixmap */
  145. set_fixmap_nocache(FIX_UNCACHED, __pa(&__uncached_start));
  146. #ifdef CONFIG_29BIT
  147. /*
  148. * Handle trivial transitions between cached and uncached
  149. * segments, making use of the 1:1 mapping relationship in
  150. * 512MB lowmem.
  151. */
  152. cached_to_uncached = P2SEG - P1SEG;
  153. #endif
  154. }
  155. static struct kcore_list kcore_mem, kcore_vmalloc;
  156. int after_bootmem = 0;
  157. void __init mem_init(void)
  158. {
  159. int codesize, datasize, initsize;
  160. int nid;
  161. num_physpages = 0;
  162. high_memory = NULL;
  163. for_each_online_node(nid) {
  164. pg_data_t *pgdat = NODE_DATA(nid);
  165. unsigned long node_pages = 0;
  166. void *node_high_memory;
  167. num_physpages += pgdat->node_present_pages;
  168. if (pgdat->node_spanned_pages)
  169. node_pages = free_all_bootmem_node(pgdat);
  170. totalram_pages += node_pages;
  171. node_high_memory = (void *)__va((pgdat->node_start_pfn +
  172. pgdat->node_spanned_pages) <<
  173. PAGE_SHIFT);
  174. if (node_high_memory > high_memory)
  175. high_memory = node_high_memory;
  176. }
  177. /* clear the zero-page */
  178. memset(empty_zero_page, 0, PAGE_SIZE);
  179. __flush_wback_region(empty_zero_page, PAGE_SIZE);
  180. after_bootmem = 1;
  181. codesize = (unsigned long) &_etext - (unsigned long) &_text;
  182. datasize = (unsigned long) &_edata - (unsigned long) &_etext;
  183. initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
  184. kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT);
  185. kclist_add(&kcore_vmalloc, (void *)VMALLOC_START,
  186. VMALLOC_END - VMALLOC_START);
  187. printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, "
  188. "%dk data, %dk init)\n",
  189. (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
  190. num_physpages << (PAGE_SHIFT-10),
  191. codesize >> 10,
  192. datasize >> 10,
  193. initsize >> 10);
  194. p3_cache_init();
  195. /* Initialize the vDSO */
  196. vsyscall_init();
  197. }
  198. void free_initmem(void)
  199. {
  200. unsigned long addr;
  201. addr = (unsigned long)(&__init_begin);
  202. for (; addr < (unsigned long)(&__init_end); addr += PAGE_SIZE) {
  203. ClearPageReserved(virt_to_page(addr));
  204. init_page_count(virt_to_page(addr));
  205. free_page(addr);
  206. totalram_pages++;
  207. }
  208. printk("Freeing unused kernel memory: %ldk freed\n",
  209. ((unsigned long)&__init_end -
  210. (unsigned long)&__init_begin) >> 10);
  211. }
  212. #ifdef CONFIG_BLK_DEV_INITRD
  213. void free_initrd_mem(unsigned long start, unsigned long end)
  214. {
  215. unsigned long p;
  216. for (p = start; p < end; p += PAGE_SIZE) {
  217. ClearPageReserved(virt_to_page(p));
  218. init_page_count(virt_to_page(p));
  219. free_page(p);
  220. totalram_pages++;
  221. }
  222. printk("Freeing initrd memory: %ldk freed\n", (end - start) >> 10);
  223. }
  224. #endif
  225. #ifdef CONFIG_MEMORY_HOTPLUG
  226. void online_page(struct page *page)
  227. {
  228. ClearPageReserved(page);
  229. init_page_count(page);
  230. __free_page(page);
  231. totalram_pages++;
  232. num_physpages++;
  233. }
  234. int arch_add_memory(int nid, u64 start, u64 size)
  235. {
  236. pg_data_t *pgdat;
  237. unsigned long start_pfn = start >> PAGE_SHIFT;
  238. unsigned long nr_pages = size >> PAGE_SHIFT;
  239. int ret;
  240. pgdat = NODE_DATA(nid);
  241. /* We only have ZONE_NORMAL, so this is easy.. */
  242. ret = __add_pages(pgdat->node_zones + ZONE_NORMAL, start_pfn, nr_pages);
  243. if (unlikely(ret))
  244. printk("%s: Failed, __add_pages() == %d\n", __FUNCTION__, ret);
  245. return ret;
  246. }
  247. EXPORT_SYMBOL_GPL(arch_add_memory);
  248. #ifdef CONFIG_NUMA
  249. int memory_add_physaddr_to_nid(u64 addr)
  250. {
  251. /* Node 0 for now.. */
  252. return 0;
  253. }
  254. EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid);
  255. #endif
  256. #endif