pci_sun4v.c 25 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070
  1. /* pci_sun4v.c: SUN4V specific PCI controller support.
  2. *
  3. * Copyright (C) 2006, 2007 David S. Miller (davem@davemloft.net)
  4. */
  5. #include <linux/kernel.h>
  6. #include <linux/types.h>
  7. #include <linux/pci.h>
  8. #include <linux/init.h>
  9. #include <linux/slab.h>
  10. #include <linux/interrupt.h>
  11. #include <linux/percpu.h>
  12. #include <linux/irq.h>
  13. #include <linux/msi.h>
  14. #include <linux/log2.h>
  15. #include <linux/scatterlist.h>
  16. #include <asm/iommu.h>
  17. #include <asm/irq.h>
  18. #include <asm/upa.h>
  19. #include <asm/pstate.h>
  20. #include <asm/oplib.h>
  21. #include <asm/hypervisor.h>
  22. #include <asm/prom.h>
  23. #include "pci_impl.h"
  24. #include "iommu_common.h"
  25. #include "pci_sun4v.h"
  26. static unsigned long vpci_major = 1;
  27. static unsigned long vpci_minor = 1;
  28. #define PGLIST_NENTS (PAGE_SIZE / sizeof(u64))
  29. struct iommu_batch {
  30. struct device *dev; /* Device mapping is for. */
  31. unsigned long prot; /* IOMMU page protections */
  32. unsigned long entry; /* Index into IOTSB. */
  33. u64 *pglist; /* List of physical pages */
  34. unsigned long npages; /* Number of pages in list. */
  35. };
  36. static DEFINE_PER_CPU(struct iommu_batch, iommu_batch);
  37. /* Interrupts must be disabled. */
  38. static inline void iommu_batch_start(struct device *dev, unsigned long prot, unsigned long entry)
  39. {
  40. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  41. p->dev = dev;
  42. p->prot = prot;
  43. p->entry = entry;
  44. p->npages = 0;
  45. }
  46. /* Interrupts must be disabled. */
  47. static long iommu_batch_flush(struct iommu_batch *p)
  48. {
  49. struct pci_pbm_info *pbm = p->dev->archdata.host_controller;
  50. unsigned long devhandle = pbm->devhandle;
  51. unsigned long prot = p->prot;
  52. unsigned long entry = p->entry;
  53. u64 *pglist = p->pglist;
  54. unsigned long npages = p->npages;
  55. while (npages != 0) {
  56. long num;
  57. num = pci_sun4v_iommu_map(devhandle, HV_PCI_TSBID(0, entry),
  58. npages, prot, __pa(pglist));
  59. if (unlikely(num < 0)) {
  60. if (printk_ratelimit())
  61. printk("iommu_batch_flush: IOMMU map of "
  62. "[%08lx:%08lx:%lx:%lx:%lx] failed with "
  63. "status %ld\n",
  64. devhandle, HV_PCI_TSBID(0, entry),
  65. npages, prot, __pa(pglist), num);
  66. return -1;
  67. }
  68. entry += num;
  69. npages -= num;
  70. pglist += num;
  71. }
  72. p->entry = entry;
  73. p->npages = 0;
  74. return 0;
  75. }
  76. /* Interrupts must be disabled. */
  77. static inline long iommu_batch_add(u64 phys_page)
  78. {
  79. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  80. BUG_ON(p->npages >= PGLIST_NENTS);
  81. p->pglist[p->npages++] = phys_page;
  82. if (p->npages == PGLIST_NENTS)
  83. return iommu_batch_flush(p);
  84. return 0;
  85. }
  86. /* Interrupts must be disabled. */
  87. static inline long iommu_batch_end(void)
  88. {
  89. struct iommu_batch *p = &__get_cpu_var(iommu_batch);
  90. BUG_ON(p->npages >= PGLIST_NENTS);
  91. return iommu_batch_flush(p);
  92. }
  93. static long arena_alloc(struct iommu_arena *arena, unsigned long npages)
  94. {
  95. unsigned long n, i, start, end, limit;
  96. int pass;
  97. limit = arena->limit;
  98. start = arena->hint;
  99. pass = 0;
  100. again:
  101. n = find_next_zero_bit(arena->map, limit, start);
  102. end = n + npages;
  103. if (unlikely(end >= limit)) {
  104. if (likely(pass < 1)) {
  105. limit = start;
  106. start = 0;
  107. pass++;
  108. goto again;
  109. } else {
  110. /* Scanned the whole thing, give up. */
  111. return -1;
  112. }
  113. }
  114. for (i = n; i < end; i++) {
  115. if (test_bit(i, arena->map)) {
  116. start = i + 1;
  117. goto again;
  118. }
  119. }
  120. for (i = n; i < end; i++)
  121. __set_bit(i, arena->map);
  122. arena->hint = end;
  123. return n;
  124. }
  125. static void arena_free(struct iommu_arena *arena, unsigned long base,
  126. unsigned long npages)
  127. {
  128. unsigned long i;
  129. for (i = base; i < (base + npages); i++)
  130. __clear_bit(i, arena->map);
  131. }
  132. static void *dma_4v_alloc_coherent(struct device *dev, size_t size,
  133. dma_addr_t *dma_addrp, gfp_t gfp)
  134. {
  135. struct iommu *iommu;
  136. unsigned long flags, order, first_page, npages, n;
  137. void *ret;
  138. long entry;
  139. size = IO_PAGE_ALIGN(size);
  140. order = get_order(size);
  141. if (unlikely(order >= MAX_ORDER))
  142. return NULL;
  143. npages = size >> IO_PAGE_SHIFT;
  144. first_page = __get_free_pages(gfp, order);
  145. if (unlikely(first_page == 0UL))
  146. return NULL;
  147. memset((char *)first_page, 0, PAGE_SIZE << order);
  148. iommu = dev->archdata.iommu;
  149. spin_lock_irqsave(&iommu->lock, flags);
  150. entry = arena_alloc(&iommu->arena, npages);
  151. spin_unlock_irqrestore(&iommu->lock, flags);
  152. if (unlikely(entry < 0L))
  153. goto arena_alloc_fail;
  154. *dma_addrp = (iommu->page_table_map_base +
  155. (entry << IO_PAGE_SHIFT));
  156. ret = (void *) first_page;
  157. first_page = __pa(first_page);
  158. local_irq_save(flags);
  159. iommu_batch_start(dev,
  160. (HV_PCI_MAP_ATTR_READ |
  161. HV_PCI_MAP_ATTR_WRITE),
  162. entry);
  163. for (n = 0; n < npages; n++) {
  164. long err = iommu_batch_add(first_page + (n * PAGE_SIZE));
  165. if (unlikely(err < 0L))
  166. goto iommu_map_fail;
  167. }
  168. if (unlikely(iommu_batch_end() < 0L))
  169. goto iommu_map_fail;
  170. local_irq_restore(flags);
  171. return ret;
  172. iommu_map_fail:
  173. /* Interrupts are disabled. */
  174. spin_lock(&iommu->lock);
  175. arena_free(&iommu->arena, entry, npages);
  176. spin_unlock_irqrestore(&iommu->lock, flags);
  177. arena_alloc_fail:
  178. free_pages(first_page, order);
  179. return NULL;
  180. }
  181. static void dma_4v_free_coherent(struct device *dev, size_t size, void *cpu,
  182. dma_addr_t dvma)
  183. {
  184. struct pci_pbm_info *pbm;
  185. struct iommu *iommu;
  186. unsigned long flags, order, npages, entry;
  187. u32 devhandle;
  188. npages = IO_PAGE_ALIGN(size) >> IO_PAGE_SHIFT;
  189. iommu = dev->archdata.iommu;
  190. pbm = dev->archdata.host_controller;
  191. devhandle = pbm->devhandle;
  192. entry = ((dvma - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  193. spin_lock_irqsave(&iommu->lock, flags);
  194. arena_free(&iommu->arena, entry, npages);
  195. do {
  196. unsigned long num;
  197. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  198. npages);
  199. entry += num;
  200. npages -= num;
  201. } while (npages != 0);
  202. spin_unlock_irqrestore(&iommu->lock, flags);
  203. order = get_order(size);
  204. if (order < 10)
  205. free_pages((unsigned long)cpu, order);
  206. }
  207. static dma_addr_t dma_4v_map_single(struct device *dev, void *ptr, size_t sz,
  208. enum dma_data_direction direction)
  209. {
  210. struct iommu *iommu;
  211. unsigned long flags, npages, oaddr;
  212. unsigned long i, base_paddr;
  213. u32 bus_addr, ret;
  214. unsigned long prot;
  215. long entry;
  216. iommu = dev->archdata.iommu;
  217. if (unlikely(direction == DMA_NONE))
  218. goto bad;
  219. oaddr = (unsigned long)ptr;
  220. npages = IO_PAGE_ALIGN(oaddr + sz) - (oaddr & IO_PAGE_MASK);
  221. npages >>= IO_PAGE_SHIFT;
  222. spin_lock_irqsave(&iommu->lock, flags);
  223. entry = arena_alloc(&iommu->arena, npages);
  224. spin_unlock_irqrestore(&iommu->lock, flags);
  225. if (unlikely(entry < 0L))
  226. goto bad;
  227. bus_addr = (iommu->page_table_map_base +
  228. (entry << IO_PAGE_SHIFT));
  229. ret = bus_addr | (oaddr & ~IO_PAGE_MASK);
  230. base_paddr = __pa(oaddr & IO_PAGE_MASK);
  231. prot = HV_PCI_MAP_ATTR_READ;
  232. if (direction != DMA_TO_DEVICE)
  233. prot |= HV_PCI_MAP_ATTR_WRITE;
  234. local_irq_save(flags);
  235. iommu_batch_start(dev, prot, entry);
  236. for (i = 0; i < npages; i++, base_paddr += IO_PAGE_SIZE) {
  237. long err = iommu_batch_add(base_paddr);
  238. if (unlikely(err < 0L))
  239. goto iommu_map_fail;
  240. }
  241. if (unlikely(iommu_batch_end() < 0L))
  242. goto iommu_map_fail;
  243. local_irq_restore(flags);
  244. return ret;
  245. bad:
  246. if (printk_ratelimit())
  247. WARN_ON(1);
  248. return DMA_ERROR_CODE;
  249. iommu_map_fail:
  250. /* Interrupts are disabled. */
  251. spin_lock(&iommu->lock);
  252. arena_free(&iommu->arena, entry, npages);
  253. spin_unlock_irqrestore(&iommu->lock, flags);
  254. return DMA_ERROR_CODE;
  255. }
  256. static void dma_4v_unmap_single(struct device *dev, dma_addr_t bus_addr,
  257. size_t sz, enum dma_data_direction direction)
  258. {
  259. struct pci_pbm_info *pbm;
  260. struct iommu *iommu;
  261. unsigned long flags, npages;
  262. long entry;
  263. u32 devhandle;
  264. if (unlikely(direction == DMA_NONE)) {
  265. if (printk_ratelimit())
  266. WARN_ON(1);
  267. return;
  268. }
  269. iommu = dev->archdata.iommu;
  270. pbm = dev->archdata.host_controller;
  271. devhandle = pbm->devhandle;
  272. npages = IO_PAGE_ALIGN(bus_addr + sz) - (bus_addr & IO_PAGE_MASK);
  273. npages >>= IO_PAGE_SHIFT;
  274. bus_addr &= IO_PAGE_MASK;
  275. spin_lock_irqsave(&iommu->lock, flags);
  276. entry = (bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT;
  277. arena_free(&iommu->arena, entry, npages);
  278. do {
  279. unsigned long num;
  280. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  281. npages);
  282. entry += num;
  283. npages -= num;
  284. } while (npages != 0);
  285. spin_unlock_irqrestore(&iommu->lock, flags);
  286. }
  287. #define SG_ENT_PHYS_ADDRESS(SG) \
  288. (__pa(page_address((SG)->page)) + (SG)->offset)
  289. static inline long fill_sg(long entry, struct device *dev,
  290. struct scatterlist *sg,
  291. int nused, int nelems, unsigned long prot)
  292. {
  293. struct scatterlist *dma_sg = sg;
  294. struct scatterlist *sg_end = sg_last(sg, nelems);
  295. unsigned long flags;
  296. int i;
  297. local_irq_save(flags);
  298. iommu_batch_start(dev, prot, entry);
  299. for (i = 0; i < nused; i++) {
  300. unsigned long pteval = ~0UL;
  301. u32 dma_npages;
  302. dma_npages = ((dma_sg->dma_address & (IO_PAGE_SIZE - 1UL)) +
  303. dma_sg->dma_length +
  304. ((IO_PAGE_SIZE - 1UL))) >> IO_PAGE_SHIFT;
  305. do {
  306. unsigned long offset;
  307. signed int len;
  308. /* If we are here, we know we have at least one
  309. * more page to map. So walk forward until we
  310. * hit a page crossing, and begin creating new
  311. * mappings from that spot.
  312. */
  313. for (;;) {
  314. unsigned long tmp;
  315. tmp = SG_ENT_PHYS_ADDRESS(sg);
  316. len = sg->length;
  317. if (((tmp ^ pteval) >> IO_PAGE_SHIFT) != 0UL) {
  318. pteval = tmp & IO_PAGE_MASK;
  319. offset = tmp & (IO_PAGE_SIZE - 1UL);
  320. break;
  321. }
  322. if (((tmp ^ (tmp + len - 1UL)) >> IO_PAGE_SHIFT) != 0UL) {
  323. pteval = (tmp + IO_PAGE_SIZE) & IO_PAGE_MASK;
  324. offset = 0UL;
  325. len -= (IO_PAGE_SIZE - (tmp & (IO_PAGE_SIZE - 1UL)));
  326. break;
  327. }
  328. sg = sg_next(sg);
  329. }
  330. pteval = (pteval & IOPTE_PAGE);
  331. while (len > 0) {
  332. long err;
  333. err = iommu_batch_add(pteval);
  334. if (unlikely(err < 0L))
  335. goto iommu_map_failed;
  336. pteval += IO_PAGE_SIZE;
  337. len -= (IO_PAGE_SIZE - offset);
  338. offset = 0;
  339. dma_npages--;
  340. }
  341. pteval = (pteval & IOPTE_PAGE) + len;
  342. sg = sg_next(sg);
  343. /* Skip over any tail mappings we've fully mapped,
  344. * adjusting pteval along the way. Stop when we
  345. * detect a page crossing event.
  346. */
  347. while ((pteval << (64 - IO_PAGE_SHIFT)) != 0UL &&
  348. (pteval == SG_ENT_PHYS_ADDRESS(sg)) &&
  349. ((pteval ^
  350. (SG_ENT_PHYS_ADDRESS(sg) + sg->length - 1UL)) >> IO_PAGE_SHIFT) == 0UL) {
  351. pteval += sg->length;
  352. if (sg == sg_end)
  353. break;
  354. sg = sg_next(sg);
  355. }
  356. if ((pteval << (64 - IO_PAGE_SHIFT)) == 0UL)
  357. pteval = ~0UL;
  358. } while (dma_npages != 0);
  359. dma_sg = sg_next(dma_sg);
  360. }
  361. if (unlikely(iommu_batch_end() < 0L))
  362. goto iommu_map_failed;
  363. local_irq_restore(flags);
  364. return 0;
  365. iommu_map_failed:
  366. local_irq_restore(flags);
  367. return -1L;
  368. }
  369. static int dma_4v_map_sg(struct device *dev, struct scatterlist *sglist,
  370. int nelems, enum dma_data_direction direction)
  371. {
  372. struct iommu *iommu;
  373. unsigned long flags, npages, prot;
  374. u32 dma_base;
  375. struct scatterlist *sgtmp;
  376. long entry, err;
  377. int used;
  378. /* Fast path single entry scatterlists. */
  379. if (nelems == 1) {
  380. sglist->dma_address =
  381. dma_4v_map_single(dev,
  382. (page_address(sglist->page) +
  383. sglist->offset),
  384. sglist->length, direction);
  385. if (unlikely(sglist->dma_address == DMA_ERROR_CODE))
  386. return 0;
  387. sglist->dma_length = sglist->length;
  388. return 1;
  389. }
  390. iommu = dev->archdata.iommu;
  391. if (unlikely(direction == DMA_NONE))
  392. goto bad;
  393. /* Step 1: Prepare scatter list. */
  394. npages = prepare_sg(sglist, nelems);
  395. /* Step 2: Allocate a cluster and context, if necessary. */
  396. spin_lock_irqsave(&iommu->lock, flags);
  397. entry = arena_alloc(&iommu->arena, npages);
  398. spin_unlock_irqrestore(&iommu->lock, flags);
  399. if (unlikely(entry < 0L))
  400. goto bad;
  401. dma_base = iommu->page_table_map_base +
  402. (entry << IO_PAGE_SHIFT);
  403. /* Step 3: Normalize DMA addresses. */
  404. used = nelems;
  405. sgtmp = sglist;
  406. while (used && sgtmp->dma_length) {
  407. sgtmp->dma_address += dma_base;
  408. sgtmp = sg_next(sgtmp);
  409. used--;
  410. }
  411. used = nelems - used;
  412. /* Step 4: Create the mappings. */
  413. prot = HV_PCI_MAP_ATTR_READ;
  414. if (direction != DMA_TO_DEVICE)
  415. prot |= HV_PCI_MAP_ATTR_WRITE;
  416. err = fill_sg(entry, dev, sglist, used, nelems, prot);
  417. if (unlikely(err < 0L))
  418. goto iommu_map_failed;
  419. return used;
  420. bad:
  421. if (printk_ratelimit())
  422. WARN_ON(1);
  423. return 0;
  424. iommu_map_failed:
  425. spin_lock_irqsave(&iommu->lock, flags);
  426. arena_free(&iommu->arena, entry, npages);
  427. spin_unlock_irqrestore(&iommu->lock, flags);
  428. return 0;
  429. }
  430. static void dma_4v_unmap_sg(struct device *dev, struct scatterlist *sglist,
  431. int nelems, enum dma_data_direction direction)
  432. {
  433. struct pci_pbm_info *pbm;
  434. struct iommu *iommu;
  435. unsigned long flags, i, npages;
  436. struct scatterlist *sg, *sgprv;
  437. long entry;
  438. u32 devhandle, bus_addr;
  439. if (unlikely(direction == DMA_NONE)) {
  440. if (printk_ratelimit())
  441. WARN_ON(1);
  442. }
  443. iommu = dev->archdata.iommu;
  444. pbm = dev->archdata.host_controller;
  445. devhandle = pbm->devhandle;
  446. bus_addr = sglist->dma_address & IO_PAGE_MASK;
  447. sgprv = NULL;
  448. for_each_sg(sglist, sg, nelems, i) {
  449. if (sg->dma_length == 0)
  450. break;
  451. sgprv = sg;
  452. }
  453. npages = (IO_PAGE_ALIGN(sgprv->dma_address + sgprv->dma_length) -
  454. bus_addr) >> IO_PAGE_SHIFT;
  455. entry = ((bus_addr - iommu->page_table_map_base) >> IO_PAGE_SHIFT);
  456. spin_lock_irqsave(&iommu->lock, flags);
  457. arena_free(&iommu->arena, entry, npages);
  458. do {
  459. unsigned long num;
  460. num = pci_sun4v_iommu_demap(devhandle, HV_PCI_TSBID(0, entry),
  461. npages);
  462. entry += num;
  463. npages -= num;
  464. } while (npages != 0);
  465. spin_unlock_irqrestore(&iommu->lock, flags);
  466. }
  467. static void dma_4v_sync_single_for_cpu(struct device *dev,
  468. dma_addr_t bus_addr, size_t sz,
  469. enum dma_data_direction direction)
  470. {
  471. /* Nothing to do... */
  472. }
  473. static void dma_4v_sync_sg_for_cpu(struct device *dev,
  474. struct scatterlist *sglist, int nelems,
  475. enum dma_data_direction direction)
  476. {
  477. /* Nothing to do... */
  478. }
  479. const struct dma_ops sun4v_dma_ops = {
  480. .alloc_coherent = dma_4v_alloc_coherent,
  481. .free_coherent = dma_4v_free_coherent,
  482. .map_single = dma_4v_map_single,
  483. .unmap_single = dma_4v_unmap_single,
  484. .map_sg = dma_4v_map_sg,
  485. .unmap_sg = dma_4v_unmap_sg,
  486. .sync_single_for_cpu = dma_4v_sync_single_for_cpu,
  487. .sync_sg_for_cpu = dma_4v_sync_sg_for_cpu,
  488. };
  489. static void pci_sun4v_scan_bus(struct pci_pbm_info *pbm)
  490. {
  491. struct property *prop;
  492. struct device_node *dp;
  493. dp = pbm->prom_node;
  494. prop = of_find_property(dp, "66mhz-capable", NULL);
  495. pbm->is_66mhz_capable = (prop != NULL);
  496. pbm->pci_bus = pci_scan_one_pbm(pbm);
  497. /* XXX register error interrupt handlers XXX */
  498. }
  499. static unsigned long probe_existing_entries(struct pci_pbm_info *pbm,
  500. struct iommu *iommu)
  501. {
  502. struct iommu_arena *arena = &iommu->arena;
  503. unsigned long i, cnt = 0;
  504. u32 devhandle;
  505. devhandle = pbm->devhandle;
  506. for (i = 0; i < arena->limit; i++) {
  507. unsigned long ret, io_attrs, ra;
  508. ret = pci_sun4v_iommu_getmap(devhandle,
  509. HV_PCI_TSBID(0, i),
  510. &io_attrs, &ra);
  511. if (ret == HV_EOK) {
  512. if (page_in_phys_avail(ra)) {
  513. pci_sun4v_iommu_demap(devhandle,
  514. HV_PCI_TSBID(0, i), 1);
  515. } else {
  516. cnt++;
  517. __set_bit(i, arena->map);
  518. }
  519. }
  520. }
  521. return cnt;
  522. }
  523. static void pci_sun4v_iommu_init(struct pci_pbm_info *pbm)
  524. {
  525. struct iommu *iommu = pbm->iommu;
  526. struct property *prop;
  527. unsigned long num_tsb_entries, sz, tsbsize;
  528. u32 vdma[2], dma_mask, dma_offset;
  529. prop = of_find_property(pbm->prom_node, "virtual-dma", NULL);
  530. if (prop) {
  531. u32 *val = prop->value;
  532. vdma[0] = val[0];
  533. vdma[1] = val[1];
  534. } else {
  535. /* No property, use default values. */
  536. vdma[0] = 0x80000000;
  537. vdma[1] = 0x80000000;
  538. }
  539. if ((vdma[0] | vdma[1]) & ~IO_PAGE_MASK) {
  540. prom_printf("PCI-SUN4V: strange virtual-dma[%08x:%08x].\n",
  541. vdma[0], vdma[1]);
  542. prom_halt();
  543. };
  544. dma_mask = (roundup_pow_of_two(vdma[1]) - 1UL);
  545. num_tsb_entries = vdma[1] / IO_PAGE_SIZE;
  546. tsbsize = num_tsb_entries * sizeof(iopte_t);
  547. dma_offset = vdma[0];
  548. /* Setup initial software IOMMU state. */
  549. spin_lock_init(&iommu->lock);
  550. iommu->ctx_lowest_free = 1;
  551. iommu->page_table_map_base = dma_offset;
  552. iommu->dma_addr_mask = dma_mask;
  553. /* Allocate and initialize the free area map. */
  554. sz = (num_tsb_entries + 7) / 8;
  555. sz = (sz + 7UL) & ~7UL;
  556. iommu->arena.map = kzalloc(sz, GFP_KERNEL);
  557. if (!iommu->arena.map) {
  558. prom_printf("PCI_IOMMU: Error, kmalloc(arena.map) failed.\n");
  559. prom_halt();
  560. }
  561. iommu->arena.limit = num_tsb_entries;
  562. sz = probe_existing_entries(pbm, iommu);
  563. if (sz)
  564. printk("%s: Imported %lu TSB entries from OBP\n",
  565. pbm->name, sz);
  566. }
  567. #ifdef CONFIG_PCI_MSI
  568. struct pci_sun4v_msiq_entry {
  569. u64 version_type;
  570. #define MSIQ_VERSION_MASK 0xffffffff00000000UL
  571. #define MSIQ_VERSION_SHIFT 32
  572. #define MSIQ_TYPE_MASK 0x00000000000000ffUL
  573. #define MSIQ_TYPE_SHIFT 0
  574. #define MSIQ_TYPE_NONE 0x00
  575. #define MSIQ_TYPE_MSG 0x01
  576. #define MSIQ_TYPE_MSI32 0x02
  577. #define MSIQ_TYPE_MSI64 0x03
  578. #define MSIQ_TYPE_INTX 0x08
  579. #define MSIQ_TYPE_NONE2 0xff
  580. u64 intx_sysino;
  581. u64 reserved1;
  582. u64 stick;
  583. u64 req_id; /* bus/device/func */
  584. #define MSIQ_REQID_BUS_MASK 0xff00UL
  585. #define MSIQ_REQID_BUS_SHIFT 8
  586. #define MSIQ_REQID_DEVICE_MASK 0x00f8UL
  587. #define MSIQ_REQID_DEVICE_SHIFT 3
  588. #define MSIQ_REQID_FUNC_MASK 0x0007UL
  589. #define MSIQ_REQID_FUNC_SHIFT 0
  590. u64 msi_address;
  591. /* The format of this value is message type dependent.
  592. * For MSI bits 15:0 are the data from the MSI packet.
  593. * For MSI-X bits 31:0 are the data from the MSI packet.
  594. * For MSG, the message code and message routing code where:
  595. * bits 39:32 is the bus/device/fn of the msg target-id
  596. * bits 18:16 is the message routing code
  597. * bits 7:0 is the message code
  598. * For INTx the low order 2-bits are:
  599. * 00 - INTA
  600. * 01 - INTB
  601. * 10 - INTC
  602. * 11 - INTD
  603. */
  604. u64 msi_data;
  605. u64 reserved2;
  606. };
  607. static int pci_sun4v_get_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  608. unsigned long *head)
  609. {
  610. unsigned long err, limit;
  611. err = pci_sun4v_msiq_gethead(pbm->devhandle, msiqid, head);
  612. if (unlikely(err))
  613. return -ENXIO;
  614. limit = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  615. if (unlikely(*head >= limit))
  616. return -EFBIG;
  617. return 0;
  618. }
  619. static int pci_sun4v_dequeue_msi(struct pci_pbm_info *pbm,
  620. unsigned long msiqid, unsigned long *head,
  621. unsigned long *msi)
  622. {
  623. struct pci_sun4v_msiq_entry *ep;
  624. unsigned long err, type;
  625. /* Note: void pointer arithmetic, 'head' is a byte offset */
  626. ep = (pbm->msi_queues + ((msiqid - pbm->msiq_first) *
  627. (pbm->msiq_ent_count *
  628. sizeof(struct pci_sun4v_msiq_entry))) +
  629. *head);
  630. if ((ep->version_type & MSIQ_TYPE_MASK) == 0)
  631. return 0;
  632. type = (ep->version_type & MSIQ_TYPE_MASK) >> MSIQ_TYPE_SHIFT;
  633. if (unlikely(type != MSIQ_TYPE_MSI32 &&
  634. type != MSIQ_TYPE_MSI64))
  635. return -EINVAL;
  636. *msi = ep->msi_data;
  637. err = pci_sun4v_msi_setstate(pbm->devhandle,
  638. ep->msi_data /* msi_num */,
  639. HV_MSISTATE_IDLE);
  640. if (unlikely(err))
  641. return -ENXIO;
  642. /* Clear the entry. */
  643. ep->version_type &= ~MSIQ_TYPE_MASK;
  644. (*head) += sizeof(struct pci_sun4v_msiq_entry);
  645. if (*head >=
  646. (pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry)))
  647. *head = 0;
  648. return 1;
  649. }
  650. static int pci_sun4v_set_head(struct pci_pbm_info *pbm, unsigned long msiqid,
  651. unsigned long head)
  652. {
  653. unsigned long err;
  654. err = pci_sun4v_msiq_sethead(pbm->devhandle, msiqid, head);
  655. if (unlikely(err))
  656. return -EINVAL;
  657. return 0;
  658. }
  659. static int pci_sun4v_msi_setup(struct pci_pbm_info *pbm, unsigned long msiqid,
  660. unsigned long msi, int is_msi64)
  661. {
  662. if (pci_sun4v_msi_setmsiq(pbm->devhandle, msi, msiqid,
  663. (is_msi64 ?
  664. HV_MSITYPE_MSI64 : HV_MSITYPE_MSI32)))
  665. return -ENXIO;
  666. if (pci_sun4v_msi_setstate(pbm->devhandle, msi, HV_MSISTATE_IDLE))
  667. return -ENXIO;
  668. if (pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_VALID))
  669. return -ENXIO;
  670. return 0;
  671. }
  672. static int pci_sun4v_msi_teardown(struct pci_pbm_info *pbm, unsigned long msi)
  673. {
  674. unsigned long err, msiqid;
  675. err = pci_sun4v_msi_getmsiq(pbm->devhandle, msi, &msiqid);
  676. if (err)
  677. return -ENXIO;
  678. pci_sun4v_msi_setvalid(pbm->devhandle, msi, HV_MSIVALID_INVALID);
  679. return 0;
  680. }
  681. static int pci_sun4v_msiq_alloc(struct pci_pbm_info *pbm)
  682. {
  683. unsigned long q_size, alloc_size, pages, order;
  684. int i;
  685. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  686. alloc_size = (pbm->msiq_num * q_size);
  687. order = get_order(alloc_size);
  688. pages = __get_free_pages(GFP_KERNEL | __GFP_COMP, order);
  689. if (pages == 0UL) {
  690. printk(KERN_ERR "MSI: Cannot allocate MSI queues (o=%lu).\n",
  691. order);
  692. return -ENOMEM;
  693. }
  694. memset((char *)pages, 0, PAGE_SIZE << order);
  695. pbm->msi_queues = (void *) pages;
  696. for (i = 0; i < pbm->msiq_num; i++) {
  697. unsigned long err, base = __pa(pages + (i * q_size));
  698. unsigned long ret1, ret2;
  699. err = pci_sun4v_msiq_conf(pbm->devhandle,
  700. pbm->msiq_first + i,
  701. base, pbm->msiq_ent_count);
  702. if (err) {
  703. printk(KERN_ERR "MSI: msiq register fails (err=%lu)\n",
  704. err);
  705. goto h_error;
  706. }
  707. err = pci_sun4v_msiq_info(pbm->devhandle,
  708. pbm->msiq_first + i,
  709. &ret1, &ret2);
  710. if (err) {
  711. printk(KERN_ERR "MSI: Cannot read msiq (err=%lu)\n",
  712. err);
  713. goto h_error;
  714. }
  715. if (ret1 != base || ret2 != pbm->msiq_ent_count) {
  716. printk(KERN_ERR "MSI: Bogus qconf "
  717. "expected[%lx:%x] got[%lx:%lx]\n",
  718. base, pbm->msiq_ent_count,
  719. ret1, ret2);
  720. goto h_error;
  721. }
  722. }
  723. return 0;
  724. h_error:
  725. free_pages(pages, order);
  726. return -EINVAL;
  727. }
  728. static void pci_sun4v_msiq_free(struct pci_pbm_info *pbm)
  729. {
  730. unsigned long q_size, alloc_size, pages, order;
  731. int i;
  732. for (i = 0; i < pbm->msiq_num; i++) {
  733. unsigned long msiqid = pbm->msiq_first + i;
  734. (void) pci_sun4v_msiq_conf(pbm->devhandle, msiqid, 0UL, 0);
  735. }
  736. q_size = pbm->msiq_ent_count * sizeof(struct pci_sun4v_msiq_entry);
  737. alloc_size = (pbm->msiq_num * q_size);
  738. order = get_order(alloc_size);
  739. pages = (unsigned long) pbm->msi_queues;
  740. free_pages(pages, order);
  741. pbm->msi_queues = NULL;
  742. }
  743. static int pci_sun4v_msiq_build_irq(struct pci_pbm_info *pbm,
  744. unsigned long msiqid,
  745. unsigned long devino)
  746. {
  747. unsigned int virt_irq = sun4v_build_irq(pbm->devhandle, devino);
  748. if (!virt_irq)
  749. return -ENOMEM;
  750. if (pci_sun4v_msiq_setstate(pbm->devhandle, msiqid, HV_MSIQSTATE_IDLE))
  751. return -EINVAL;
  752. if (pci_sun4v_msiq_setvalid(pbm->devhandle, msiqid, HV_MSIQ_VALID))
  753. return -EINVAL;
  754. return virt_irq;
  755. }
  756. static const struct sparc64_msiq_ops pci_sun4v_msiq_ops = {
  757. .get_head = pci_sun4v_get_head,
  758. .dequeue_msi = pci_sun4v_dequeue_msi,
  759. .set_head = pci_sun4v_set_head,
  760. .msi_setup = pci_sun4v_msi_setup,
  761. .msi_teardown = pci_sun4v_msi_teardown,
  762. .msiq_alloc = pci_sun4v_msiq_alloc,
  763. .msiq_free = pci_sun4v_msiq_free,
  764. .msiq_build_irq = pci_sun4v_msiq_build_irq,
  765. };
  766. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  767. {
  768. sparc64_pbm_msi_init(pbm, &pci_sun4v_msiq_ops);
  769. }
  770. #else /* CONFIG_PCI_MSI */
  771. static void pci_sun4v_msi_init(struct pci_pbm_info *pbm)
  772. {
  773. }
  774. #endif /* !(CONFIG_PCI_MSI) */
  775. static void __init pci_sun4v_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 devhandle)
  776. {
  777. struct pci_pbm_info *pbm;
  778. if (devhandle & 0x40)
  779. pbm = &p->pbm_B;
  780. else
  781. pbm = &p->pbm_A;
  782. pbm->next = pci_pbm_root;
  783. pci_pbm_root = pbm;
  784. pbm->scan_bus = pci_sun4v_scan_bus;
  785. pbm->pci_ops = &sun4v_pci_ops;
  786. pbm->config_space_reg_bits = 12;
  787. pbm->index = pci_num_pbms++;
  788. pbm->parent = p;
  789. pbm->prom_node = dp;
  790. pbm->devhandle = devhandle;
  791. pbm->name = dp->full_name;
  792. printk("%s: SUN4V PCI Bus Module\n", pbm->name);
  793. pci_determine_mem_io_space(pbm);
  794. pci_get_pbm_props(pbm);
  795. pci_sun4v_iommu_init(pbm);
  796. pci_sun4v_msi_init(pbm);
  797. }
  798. void __init sun4v_pci_init(struct device_node *dp, char *model_name)
  799. {
  800. static int hvapi_negotiated = 0;
  801. struct pci_controller_info *p;
  802. struct pci_pbm_info *pbm;
  803. struct iommu *iommu;
  804. struct property *prop;
  805. struct linux_prom64_registers *regs;
  806. u32 devhandle;
  807. int i;
  808. if (!hvapi_negotiated++) {
  809. int err = sun4v_hvapi_register(HV_GRP_PCI,
  810. vpci_major,
  811. &vpci_minor);
  812. if (err) {
  813. prom_printf("SUN4V_PCI: Could not register hvapi, "
  814. "err=%d\n", err);
  815. prom_halt();
  816. }
  817. printk("SUN4V_PCI: Registered hvapi major[%lu] minor[%lu]\n",
  818. vpci_major, vpci_minor);
  819. dma_ops = &sun4v_dma_ops;
  820. }
  821. prop = of_find_property(dp, "reg", NULL);
  822. regs = prop->value;
  823. devhandle = (regs->phys_addr >> 32UL) & 0x0fffffff;
  824. for (pbm = pci_pbm_root; pbm; pbm = pbm->next) {
  825. if (pbm->devhandle == (devhandle ^ 0x40)) {
  826. pci_sun4v_pbm_init(pbm->parent, dp, devhandle);
  827. return;
  828. }
  829. }
  830. for_each_possible_cpu(i) {
  831. unsigned long page = get_zeroed_page(GFP_ATOMIC);
  832. if (!page)
  833. goto fatal_memory_error;
  834. per_cpu(iommu_batch, i).pglist = (u64 *) page;
  835. }
  836. p = kzalloc(sizeof(struct pci_controller_info), GFP_ATOMIC);
  837. if (!p)
  838. goto fatal_memory_error;
  839. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  840. if (!iommu)
  841. goto fatal_memory_error;
  842. p->pbm_A.iommu = iommu;
  843. iommu = kzalloc(sizeof(struct iommu), GFP_ATOMIC);
  844. if (!iommu)
  845. goto fatal_memory_error;
  846. p->pbm_B.iommu = iommu;
  847. pci_sun4v_pbm_init(p, dp, devhandle);
  848. return;
  849. fatal_memory_error:
  850. prom_printf("SUN4V_PCI: Fatal memory allocation error.\n");
  851. prom_halt();
  852. }