mmu.c 30 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130
  1. /*
  2. * linux/arch/arm/mm/mmu.c
  3. *
  4. * Copyright (C) 1995-2005 Russell King
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. */
  10. #include <linux/module.h>
  11. #include <linux/kernel.h>
  12. #include <linux/errno.h>
  13. #include <linux/init.h>
  14. #include <linux/bootmem.h>
  15. #include <linux/mman.h>
  16. #include <linux/nodemask.h>
  17. #include <linux/sort.h>
  18. #include <asm/cputype.h>
  19. #include <asm/mach-types.h>
  20. #include <asm/sections.h>
  21. #include <asm/cachetype.h>
  22. #include <asm/setup.h>
  23. #include <asm/sizes.h>
  24. #include <asm/smp_plat.h>
  25. #include <asm/tlb.h>
  26. #include <asm/highmem.h>
  27. #include <asm/mach/arch.h>
  28. #include <asm/mach/map.h>
  29. #include "mm.h"
  30. DEFINE_PER_CPU(struct mmu_gather, mmu_gathers);
  31. /*
  32. * empty_zero_page is a special page that is used for
  33. * zero-initialized data and COW.
  34. */
  35. struct page *empty_zero_page;
  36. EXPORT_SYMBOL(empty_zero_page);
  37. /*
  38. * The pmd table for the upper-most set of pages.
  39. */
  40. pmd_t *top_pmd;
  41. #define CPOLICY_UNCACHED 0
  42. #define CPOLICY_BUFFERED 1
  43. #define CPOLICY_WRITETHROUGH 2
  44. #define CPOLICY_WRITEBACK 3
  45. #define CPOLICY_WRITEALLOC 4
  46. static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
  47. static unsigned int ecc_mask __initdata = 0;
  48. pgprot_t pgprot_user;
  49. pgprot_t pgprot_kernel;
  50. EXPORT_SYMBOL(pgprot_user);
  51. EXPORT_SYMBOL(pgprot_kernel);
  52. struct cachepolicy {
  53. const char policy[16];
  54. unsigned int cr_mask;
  55. unsigned int pmd;
  56. unsigned int pte;
  57. };
  58. static struct cachepolicy cache_policies[] __initdata = {
  59. {
  60. .policy = "uncached",
  61. .cr_mask = CR_W|CR_C,
  62. .pmd = PMD_SECT_UNCACHED,
  63. .pte = L_PTE_MT_UNCACHED,
  64. }, {
  65. .policy = "buffered",
  66. .cr_mask = CR_C,
  67. .pmd = PMD_SECT_BUFFERED,
  68. .pte = L_PTE_MT_BUFFERABLE,
  69. }, {
  70. .policy = "writethrough",
  71. .cr_mask = 0,
  72. .pmd = PMD_SECT_WT,
  73. .pte = L_PTE_MT_WRITETHROUGH,
  74. }, {
  75. .policy = "writeback",
  76. .cr_mask = 0,
  77. .pmd = PMD_SECT_WB,
  78. .pte = L_PTE_MT_WRITEBACK,
  79. }, {
  80. .policy = "writealloc",
  81. .cr_mask = 0,
  82. .pmd = PMD_SECT_WBWA,
  83. .pte = L_PTE_MT_WRITEALLOC,
  84. }
  85. };
  86. /*
  87. * These are useful for identifying cache coherency
  88. * problems by allowing the cache or the cache and
  89. * writebuffer to be turned off. (Note: the write
  90. * buffer should not be on and the cache off).
  91. */
  92. static int __init early_cachepolicy(char *p)
  93. {
  94. int i;
  95. for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
  96. int len = strlen(cache_policies[i].policy);
  97. if (memcmp(p, cache_policies[i].policy, len) == 0) {
  98. cachepolicy = i;
  99. cr_alignment &= ~cache_policies[i].cr_mask;
  100. cr_no_alignment &= ~cache_policies[i].cr_mask;
  101. break;
  102. }
  103. }
  104. if (i == ARRAY_SIZE(cache_policies))
  105. printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
  106. /*
  107. * This restriction is partly to do with the way we boot; it is
  108. * unpredictable to have memory mapped using two different sets of
  109. * memory attributes (shared, type, and cache attribs). We can not
  110. * change these attributes once the initial assembly has setup the
  111. * page tables.
  112. */
  113. if (cpu_architecture() >= CPU_ARCH_ARMv6) {
  114. printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
  115. cachepolicy = CPOLICY_WRITEBACK;
  116. }
  117. flush_cache_all();
  118. set_cr(cr_alignment);
  119. return 0;
  120. }
  121. early_param("cachepolicy", early_cachepolicy);
  122. static int __init early_nocache(char *__unused)
  123. {
  124. char *p = "buffered";
  125. printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
  126. early_cachepolicy(p);
  127. return 0;
  128. }
  129. early_param("nocache", early_nocache);
  130. static int __init early_nowrite(char *__unused)
  131. {
  132. char *p = "uncached";
  133. printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
  134. early_cachepolicy(p);
  135. return 0;
  136. }
  137. early_param("nowb", early_nowrite);
  138. static int __init early_ecc(char *p)
  139. {
  140. if (memcmp(p, "on", 2) == 0)
  141. ecc_mask = PMD_PROTECTION;
  142. else if (memcmp(p, "off", 3) == 0)
  143. ecc_mask = 0;
  144. return 0;
  145. }
  146. early_param("ecc", early_ecc);
  147. static int __init noalign_setup(char *__unused)
  148. {
  149. cr_alignment &= ~CR_A;
  150. cr_no_alignment &= ~CR_A;
  151. set_cr(cr_alignment);
  152. return 1;
  153. }
  154. __setup("noalign", noalign_setup);
  155. #ifndef CONFIG_SMP
  156. void adjust_cr(unsigned long mask, unsigned long set)
  157. {
  158. unsigned long flags;
  159. mask &= ~CR_A;
  160. set &= mask;
  161. local_irq_save(flags);
  162. cr_no_alignment = (cr_no_alignment & ~mask) | set;
  163. cr_alignment = (cr_alignment & ~mask) | set;
  164. set_cr((get_cr() & ~mask) | set);
  165. local_irq_restore(flags);
  166. }
  167. #endif
  168. #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_WRITE
  169. #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
  170. static struct mem_type mem_types[] = {
  171. [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
  172. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
  173. L_PTE_SHARED,
  174. .prot_l1 = PMD_TYPE_TABLE,
  175. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
  176. .domain = DOMAIN_IO,
  177. },
  178. [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
  179. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
  180. .prot_l1 = PMD_TYPE_TABLE,
  181. .prot_sect = PROT_SECT_DEVICE,
  182. .domain = DOMAIN_IO,
  183. },
  184. [MT_DEVICE_CACHED] = { /* ioremap_cached */
  185. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
  186. .prot_l1 = PMD_TYPE_TABLE,
  187. .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
  188. .domain = DOMAIN_IO,
  189. },
  190. [MT_DEVICE_WC] = { /* ioremap_wc */
  191. .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
  192. .prot_l1 = PMD_TYPE_TABLE,
  193. .prot_sect = PROT_SECT_DEVICE,
  194. .domain = DOMAIN_IO,
  195. },
  196. [MT_UNCACHED] = {
  197. .prot_pte = PROT_PTE_DEVICE,
  198. .prot_l1 = PMD_TYPE_TABLE,
  199. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  200. .domain = DOMAIN_IO,
  201. },
  202. [MT_CACHECLEAN] = {
  203. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  204. .domain = DOMAIN_KERNEL,
  205. },
  206. [MT_MINICLEAN] = {
  207. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
  208. .domain = DOMAIN_KERNEL,
  209. },
  210. [MT_LOW_VECTORS] = {
  211. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  212. L_PTE_EXEC,
  213. .prot_l1 = PMD_TYPE_TABLE,
  214. .domain = DOMAIN_USER,
  215. },
  216. [MT_HIGH_VECTORS] = {
  217. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  218. L_PTE_USER | L_PTE_EXEC,
  219. .prot_l1 = PMD_TYPE_TABLE,
  220. .domain = DOMAIN_USER,
  221. },
  222. [MT_MEMORY] = {
  223. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  224. .domain = DOMAIN_KERNEL,
  225. },
  226. [MT_ROM] = {
  227. .prot_sect = PMD_TYPE_SECT,
  228. .domain = DOMAIN_KERNEL,
  229. },
  230. [MT_MEMORY_NONCACHED] = {
  231. .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
  232. .domain = DOMAIN_KERNEL,
  233. },
  234. [MT_MEMORY_DTCM] = {
  235. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG |
  236. L_PTE_DIRTY | L_PTE_WRITE,
  237. .prot_l1 = PMD_TYPE_TABLE,
  238. .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
  239. .domain = DOMAIN_KERNEL,
  240. },
  241. [MT_MEMORY_ITCM] = {
  242. .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
  243. L_PTE_USER | L_PTE_EXEC,
  244. .prot_l1 = PMD_TYPE_TABLE,
  245. .domain = DOMAIN_IO,
  246. },
  247. };
  248. const struct mem_type *get_mem_type(unsigned int type)
  249. {
  250. return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
  251. }
  252. EXPORT_SYMBOL(get_mem_type);
  253. /*
  254. * Adjust the PMD section entries according to the CPU in use.
  255. */
  256. static void __init build_mem_type_table(void)
  257. {
  258. struct cachepolicy *cp;
  259. unsigned int cr = get_cr();
  260. unsigned int user_pgprot, kern_pgprot, vecs_pgprot;
  261. int cpu_arch = cpu_architecture();
  262. int i;
  263. if (cpu_arch < CPU_ARCH_ARMv6) {
  264. #if defined(CONFIG_CPU_DCACHE_DISABLE)
  265. if (cachepolicy > CPOLICY_BUFFERED)
  266. cachepolicy = CPOLICY_BUFFERED;
  267. #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
  268. if (cachepolicy > CPOLICY_WRITETHROUGH)
  269. cachepolicy = CPOLICY_WRITETHROUGH;
  270. #endif
  271. }
  272. if (cpu_arch < CPU_ARCH_ARMv5) {
  273. if (cachepolicy >= CPOLICY_WRITEALLOC)
  274. cachepolicy = CPOLICY_WRITEBACK;
  275. ecc_mask = 0;
  276. }
  277. #ifdef CONFIG_SMP
  278. cachepolicy = CPOLICY_WRITEALLOC;
  279. #endif
  280. /*
  281. * Strip out features not present on earlier architectures.
  282. * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
  283. * without extended page tables don't have the 'Shared' bit.
  284. */
  285. if (cpu_arch < CPU_ARCH_ARMv5)
  286. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  287. mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
  288. if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
  289. for (i = 0; i < ARRAY_SIZE(mem_types); i++)
  290. mem_types[i].prot_sect &= ~PMD_SECT_S;
  291. /*
  292. * ARMv5 and lower, bit 4 must be set for page tables (was: cache
  293. * "update-able on write" bit on ARM610). However, Xscale and
  294. * Xscale3 require this bit to be cleared.
  295. */
  296. if (cpu_is_xscale() || cpu_is_xsc3()) {
  297. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  298. mem_types[i].prot_sect &= ~PMD_BIT4;
  299. mem_types[i].prot_l1 &= ~PMD_BIT4;
  300. }
  301. } else if (cpu_arch < CPU_ARCH_ARMv6) {
  302. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  303. if (mem_types[i].prot_l1)
  304. mem_types[i].prot_l1 |= PMD_BIT4;
  305. if (mem_types[i].prot_sect)
  306. mem_types[i].prot_sect |= PMD_BIT4;
  307. }
  308. }
  309. /*
  310. * Mark the device areas according to the CPU/architecture.
  311. */
  312. if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
  313. if (!cpu_is_xsc3()) {
  314. /*
  315. * Mark device regions on ARMv6+ as execute-never
  316. * to prevent speculative instruction fetches.
  317. */
  318. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
  319. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
  320. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
  321. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
  322. }
  323. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  324. /*
  325. * For ARMv7 with TEX remapping,
  326. * - shared device is SXCB=1100
  327. * - nonshared device is SXCB=0100
  328. * - write combine device mem is SXCB=0001
  329. * (Uncached Normal memory)
  330. */
  331. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
  332. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
  333. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  334. } else if (cpu_is_xsc3()) {
  335. /*
  336. * For Xscale3,
  337. * - shared device is TEXCB=00101
  338. * - nonshared device is TEXCB=01000
  339. * - write combine device mem is TEXCB=00100
  340. * (Inner/Outer Uncacheable in xsc3 parlance)
  341. */
  342. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
  343. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  344. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  345. } else {
  346. /*
  347. * For ARMv6 and ARMv7 without TEX remapping,
  348. * - shared device is TEXCB=00001
  349. * - nonshared device is TEXCB=01000
  350. * - write combine device mem is TEXCB=00100
  351. * (Uncached Normal in ARMv6 parlance).
  352. */
  353. mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
  354. mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
  355. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
  356. }
  357. } else {
  358. /*
  359. * On others, write combining is "Uncached/Buffered"
  360. */
  361. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
  362. }
  363. /*
  364. * Now deal with the memory-type mappings
  365. */
  366. cp = &cache_policies[cachepolicy];
  367. vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
  368. #ifndef CONFIG_SMP
  369. /*
  370. * Only use write-through for non-SMP systems
  371. */
  372. if (cpu_arch >= CPU_ARCH_ARMv5 && cachepolicy > CPOLICY_WRITETHROUGH)
  373. vecs_pgprot = cache_policies[CPOLICY_WRITETHROUGH].pte;
  374. #endif
  375. /*
  376. * Enable CPU-specific coherency if supported.
  377. * (Only available on XSC3 at the moment.)
  378. */
  379. if (arch_is_coherent() && cpu_is_xsc3())
  380. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  381. /*
  382. * ARMv6 and above have extended page tables.
  383. */
  384. if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
  385. /*
  386. * Mark cache clean areas and XIP ROM read only
  387. * from SVC mode and no access from userspace.
  388. */
  389. mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  390. mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  391. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
  392. #ifdef CONFIG_SMP
  393. /*
  394. * Mark memory with the "shared" attribute for SMP systems
  395. */
  396. user_pgprot |= L_PTE_SHARED;
  397. kern_pgprot |= L_PTE_SHARED;
  398. vecs_pgprot |= L_PTE_SHARED;
  399. mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
  400. mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
  401. mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
  402. mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
  403. mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
  404. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
  405. #endif
  406. }
  407. /*
  408. * Non-cacheable Normal - intended for memory areas that must
  409. * not cause dirty cache line writebacks when used
  410. */
  411. if (cpu_arch >= CPU_ARCH_ARMv6) {
  412. if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
  413. /* Non-cacheable Normal is XCB = 001 */
  414. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  415. PMD_SECT_BUFFERED;
  416. } else {
  417. /* For both ARMv6 and non-TEX-remapping ARMv7 */
  418. mem_types[MT_MEMORY_NONCACHED].prot_sect |=
  419. PMD_SECT_TEX(1);
  420. }
  421. } else {
  422. mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
  423. }
  424. for (i = 0; i < 16; i++) {
  425. unsigned long v = pgprot_val(protection_map[i]);
  426. protection_map[i] = __pgprot(v | user_pgprot);
  427. }
  428. mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
  429. mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
  430. pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
  431. pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
  432. L_PTE_DIRTY | L_PTE_WRITE | kern_pgprot);
  433. mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
  434. mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
  435. mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
  436. mem_types[MT_ROM].prot_sect |= cp->pmd;
  437. switch (cp->pmd) {
  438. case PMD_SECT_WT:
  439. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
  440. break;
  441. case PMD_SECT_WB:
  442. case PMD_SECT_WBWA:
  443. mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
  444. break;
  445. }
  446. printk("Memory policy: ECC %sabled, Data cache %s\n",
  447. ecc_mask ? "en" : "dis", cp->policy);
  448. for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
  449. struct mem_type *t = &mem_types[i];
  450. if (t->prot_l1)
  451. t->prot_l1 |= PMD_DOMAIN(t->domain);
  452. if (t->prot_sect)
  453. t->prot_sect |= PMD_DOMAIN(t->domain);
  454. }
  455. }
  456. #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
  457. static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
  458. unsigned long end, unsigned long pfn,
  459. const struct mem_type *type)
  460. {
  461. pte_t *pte;
  462. if (pmd_none(*pmd)) {
  463. pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  464. __pmd_populate(pmd, __pa(pte) | type->prot_l1);
  465. }
  466. pte = pte_offset_kernel(pmd, addr);
  467. do {
  468. set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
  469. pfn++;
  470. } while (pte++, addr += PAGE_SIZE, addr != end);
  471. }
  472. static void __init alloc_init_section(pgd_t *pgd, unsigned long addr,
  473. unsigned long end, unsigned long phys,
  474. const struct mem_type *type)
  475. {
  476. pmd_t *pmd = pmd_offset(pgd, addr);
  477. /*
  478. * Try a section mapping - end, addr and phys must all be aligned
  479. * to a section boundary. Note that PMDs refer to the individual
  480. * L1 entries, whereas PGDs refer to a group of L1 entries making
  481. * up one logical pointer to an L2 table.
  482. */
  483. if (((addr | end | phys) & ~SECTION_MASK) == 0) {
  484. pmd_t *p = pmd;
  485. if (addr & SECTION_SIZE)
  486. pmd++;
  487. do {
  488. *pmd = __pmd(phys | type->prot_sect);
  489. phys += SECTION_SIZE;
  490. } while (pmd++, addr += SECTION_SIZE, addr != end);
  491. flush_pmd_entry(p);
  492. } else {
  493. /*
  494. * No need to loop; pte's aren't interested in the
  495. * individual L1 entries.
  496. */
  497. alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
  498. }
  499. }
  500. static void __init create_36bit_mapping(struct map_desc *md,
  501. const struct mem_type *type)
  502. {
  503. unsigned long phys, addr, length, end;
  504. pgd_t *pgd;
  505. addr = md->virtual;
  506. phys = (unsigned long)__pfn_to_phys(md->pfn);
  507. length = PAGE_ALIGN(md->length);
  508. if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
  509. printk(KERN_ERR "MM: CPU does not support supersection "
  510. "mapping for 0x%08llx at 0x%08lx\n",
  511. __pfn_to_phys((u64)md->pfn), addr);
  512. return;
  513. }
  514. /* N.B. ARMv6 supersections are only defined to work with domain 0.
  515. * Since domain assignments can in fact be arbitrary, the
  516. * 'domain == 0' check below is required to insure that ARMv6
  517. * supersections are only allocated for domain 0 regardless
  518. * of the actual domain assignments in use.
  519. */
  520. if (type->domain) {
  521. printk(KERN_ERR "MM: invalid domain in supersection "
  522. "mapping for 0x%08llx at 0x%08lx\n",
  523. __pfn_to_phys((u64)md->pfn), addr);
  524. return;
  525. }
  526. if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
  527. printk(KERN_ERR "MM: cannot create mapping for "
  528. "0x%08llx at 0x%08lx invalid alignment\n",
  529. __pfn_to_phys((u64)md->pfn), addr);
  530. return;
  531. }
  532. /*
  533. * Shift bits [35:32] of address into bits [23:20] of PMD
  534. * (See ARMv6 spec).
  535. */
  536. phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
  537. pgd = pgd_offset_k(addr);
  538. end = addr + length;
  539. do {
  540. pmd_t *pmd = pmd_offset(pgd, addr);
  541. int i;
  542. for (i = 0; i < 16; i++)
  543. *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
  544. addr += SUPERSECTION_SIZE;
  545. phys += SUPERSECTION_SIZE;
  546. pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
  547. } while (addr != end);
  548. }
  549. /*
  550. * Create the page directory entries and any necessary
  551. * page tables for the mapping specified by `md'. We
  552. * are able to cope here with varying sizes and address
  553. * offsets, and we take full advantage of sections and
  554. * supersections.
  555. */
  556. static void __init create_mapping(struct map_desc *md)
  557. {
  558. unsigned long phys, addr, length, end;
  559. const struct mem_type *type;
  560. pgd_t *pgd;
  561. if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
  562. printk(KERN_WARNING "BUG: not creating mapping for "
  563. "0x%08llx at 0x%08lx in user region\n",
  564. __pfn_to_phys((u64)md->pfn), md->virtual);
  565. return;
  566. }
  567. if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
  568. md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) {
  569. printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx "
  570. "overlaps vmalloc space\n",
  571. __pfn_to_phys((u64)md->pfn), md->virtual);
  572. }
  573. type = &mem_types[md->type];
  574. /*
  575. * Catch 36-bit addresses
  576. */
  577. if (md->pfn >= 0x100000) {
  578. create_36bit_mapping(md, type);
  579. return;
  580. }
  581. addr = md->virtual & PAGE_MASK;
  582. phys = (unsigned long)__pfn_to_phys(md->pfn);
  583. length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
  584. if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
  585. printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not "
  586. "be mapped using pages, ignoring.\n",
  587. __pfn_to_phys(md->pfn), addr);
  588. return;
  589. }
  590. pgd = pgd_offset_k(addr);
  591. end = addr + length;
  592. do {
  593. unsigned long next = pgd_addr_end(addr, end);
  594. alloc_init_section(pgd, addr, next, phys, type);
  595. phys += next - addr;
  596. addr = next;
  597. } while (pgd++, addr != end);
  598. }
  599. /*
  600. * Create the architecture specific mappings
  601. */
  602. void __init iotable_init(struct map_desc *io_desc, int nr)
  603. {
  604. int i;
  605. for (i = 0; i < nr; i++)
  606. create_mapping(io_desc + i);
  607. }
  608. static unsigned long __initdata vmalloc_reserve = SZ_128M;
  609. /*
  610. * vmalloc=size forces the vmalloc area to be exactly 'size'
  611. * bytes. This can be used to increase (or decrease) the vmalloc
  612. * area - the default is 128m.
  613. */
  614. static int __init early_vmalloc(char *arg)
  615. {
  616. vmalloc_reserve = memparse(arg, NULL);
  617. if (vmalloc_reserve < SZ_16M) {
  618. vmalloc_reserve = SZ_16M;
  619. printk(KERN_WARNING
  620. "vmalloc area too small, limiting to %luMB\n",
  621. vmalloc_reserve >> 20);
  622. }
  623. if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
  624. vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
  625. printk(KERN_WARNING
  626. "vmalloc area is too big, limiting to %luMB\n",
  627. vmalloc_reserve >> 20);
  628. }
  629. return 0;
  630. }
  631. early_param("vmalloc", early_vmalloc);
  632. #define VMALLOC_MIN (void *)(VMALLOC_END - vmalloc_reserve)
  633. static void __init sanity_check_meminfo(void)
  634. {
  635. int i, j, highmem = 0;
  636. for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
  637. struct membank *bank = &meminfo.bank[j];
  638. *bank = meminfo.bank[i];
  639. #ifdef CONFIG_HIGHMEM
  640. if (__va(bank->start) > VMALLOC_MIN ||
  641. __va(bank->start) < (void *)PAGE_OFFSET)
  642. highmem = 1;
  643. bank->highmem = highmem;
  644. /*
  645. * Split those memory banks which are partially overlapping
  646. * the vmalloc area greatly simplifying things later.
  647. */
  648. if (__va(bank->start) < VMALLOC_MIN &&
  649. bank->size > VMALLOC_MIN - __va(bank->start)) {
  650. if (meminfo.nr_banks >= NR_BANKS) {
  651. printk(KERN_CRIT "NR_BANKS too low, "
  652. "ignoring high memory\n");
  653. } else {
  654. memmove(bank + 1, bank,
  655. (meminfo.nr_banks - i) * sizeof(*bank));
  656. meminfo.nr_banks++;
  657. i++;
  658. bank[1].size -= VMALLOC_MIN - __va(bank->start);
  659. bank[1].start = __pa(VMALLOC_MIN - 1) + 1;
  660. bank[1].highmem = highmem = 1;
  661. j++;
  662. }
  663. bank->size = VMALLOC_MIN - __va(bank->start);
  664. }
  665. #else
  666. bank->highmem = highmem;
  667. /*
  668. * Check whether this memory bank would entirely overlap
  669. * the vmalloc area.
  670. */
  671. if (__va(bank->start) >= VMALLOC_MIN ||
  672. __va(bank->start) < (void *)PAGE_OFFSET) {
  673. printk(KERN_NOTICE "Ignoring RAM at %.8lx-%.8lx "
  674. "(vmalloc region overlap).\n",
  675. bank->start, bank->start + bank->size - 1);
  676. continue;
  677. }
  678. /*
  679. * Check whether this memory bank would partially overlap
  680. * the vmalloc area.
  681. */
  682. if (__va(bank->start + bank->size) > VMALLOC_MIN ||
  683. __va(bank->start + bank->size) < __va(bank->start)) {
  684. unsigned long newsize = VMALLOC_MIN - __va(bank->start);
  685. printk(KERN_NOTICE "Truncating RAM at %.8lx-%.8lx "
  686. "to -%.8lx (vmalloc region overlap).\n",
  687. bank->start, bank->start + bank->size - 1,
  688. bank->start + newsize - 1);
  689. bank->size = newsize;
  690. }
  691. #endif
  692. j++;
  693. }
  694. #ifdef CONFIG_HIGHMEM
  695. if (highmem) {
  696. const char *reason = NULL;
  697. if (cache_is_vipt_aliasing()) {
  698. /*
  699. * Interactions between kmap and other mappings
  700. * make highmem support with aliasing VIPT caches
  701. * rather difficult.
  702. */
  703. reason = "with VIPT aliasing cache";
  704. #ifdef CONFIG_SMP
  705. } else if (tlb_ops_need_broadcast()) {
  706. /*
  707. * kmap_high needs to occasionally flush TLB entries,
  708. * however, if the TLB entries need to be broadcast
  709. * we may deadlock:
  710. * kmap_high(irqs off)->flush_all_zero_pkmaps->
  711. * flush_tlb_kernel_range->smp_call_function_many
  712. * (must not be called with irqs off)
  713. */
  714. reason = "without hardware TLB ops broadcasting";
  715. #endif
  716. }
  717. if (reason) {
  718. printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
  719. reason);
  720. while (j > 0 && meminfo.bank[j - 1].highmem)
  721. j--;
  722. }
  723. }
  724. #endif
  725. meminfo.nr_banks = j;
  726. }
  727. static inline void prepare_page_table(void)
  728. {
  729. unsigned long addr;
  730. /*
  731. * Clear out all the mappings below the kernel image.
  732. */
  733. for (addr = 0; addr < MODULES_VADDR; addr += PGDIR_SIZE)
  734. pmd_clear(pmd_off_k(addr));
  735. #ifdef CONFIG_XIP_KERNEL
  736. /* The XIP kernel is mapped in the module area -- skip over it */
  737. addr = ((unsigned long)_etext + PGDIR_SIZE - 1) & PGDIR_MASK;
  738. #endif
  739. for ( ; addr < PAGE_OFFSET; addr += PGDIR_SIZE)
  740. pmd_clear(pmd_off_k(addr));
  741. /*
  742. * Clear out all the kernel space mappings, except for the first
  743. * memory bank, up to the end of the vmalloc region.
  744. */
  745. for (addr = __phys_to_virt(bank_phys_end(&meminfo.bank[0]));
  746. addr < VMALLOC_END; addr += PGDIR_SIZE)
  747. pmd_clear(pmd_off_k(addr));
  748. }
  749. /*
  750. * Reserve the various regions of node 0
  751. */
  752. void __init reserve_node_zero(pg_data_t *pgdat)
  753. {
  754. unsigned long res_size = 0;
  755. /*
  756. * Register the kernel text and data with bootmem.
  757. * Note that this can only be in node 0.
  758. */
  759. #ifdef CONFIG_XIP_KERNEL
  760. reserve_bootmem_node(pgdat, __pa(_data), _end - _data,
  761. BOOTMEM_DEFAULT);
  762. #else
  763. reserve_bootmem_node(pgdat, __pa(_stext), _end - _stext,
  764. BOOTMEM_DEFAULT);
  765. #endif
  766. /*
  767. * Reserve the page tables. These are already in use,
  768. * and can only be in node 0.
  769. */
  770. reserve_bootmem_node(pgdat, __pa(swapper_pg_dir),
  771. PTRS_PER_PGD * sizeof(pgd_t), BOOTMEM_DEFAULT);
  772. /*
  773. * Hmm... This should go elsewhere, but we really really need to
  774. * stop things allocating the low memory; ideally we need a better
  775. * implementation of GFP_DMA which does not assume that DMA-able
  776. * memory starts at zero.
  777. */
  778. if (machine_is_integrator() || machine_is_cintegrator())
  779. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  780. /*
  781. * These should likewise go elsewhere. They pre-reserve the
  782. * screen memory region at the start of main system memory.
  783. */
  784. if (machine_is_edb7211())
  785. res_size = 0x00020000;
  786. if (machine_is_p720t())
  787. res_size = 0x00014000;
  788. /* H1940, RX3715 and RX1950 need to reserve this for suspend */
  789. if (machine_is_h1940() || machine_is_rx3715()
  790. || machine_is_rx1950()) {
  791. reserve_bootmem_node(pgdat, 0x30003000, 0x1000,
  792. BOOTMEM_DEFAULT);
  793. reserve_bootmem_node(pgdat, 0x30081000, 0x1000,
  794. BOOTMEM_DEFAULT);
  795. }
  796. if (machine_is_palmld() || machine_is_palmtx()) {
  797. reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
  798. BOOTMEM_EXCLUSIVE);
  799. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  800. BOOTMEM_EXCLUSIVE);
  801. }
  802. if (machine_is_treo680() || machine_is_centro()) {
  803. reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
  804. BOOTMEM_EXCLUSIVE);
  805. reserve_bootmem_node(pgdat, 0xa2000000, 0x1000,
  806. BOOTMEM_EXCLUSIVE);
  807. }
  808. if (machine_is_palmt5())
  809. reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
  810. BOOTMEM_EXCLUSIVE);
  811. /*
  812. * U300 - This platform family can share physical memory
  813. * between two ARM cpus, one running Linux and the other
  814. * running another OS.
  815. */
  816. if (machine_is_u300()) {
  817. #ifdef CONFIG_MACH_U300_SINGLE_RAM
  818. #if ((CONFIG_MACH_U300_ACCESS_MEM_SIZE & 1) == 1) && \
  819. CONFIG_MACH_U300_2MB_ALIGNMENT_FIX
  820. res_size = 0x00100000;
  821. #endif
  822. #endif
  823. }
  824. #ifdef CONFIG_SA1111
  825. /*
  826. * Because of the SA1111 DMA bug, we want to preserve our
  827. * precious DMA-able memory...
  828. */
  829. res_size = __pa(swapper_pg_dir) - PHYS_OFFSET;
  830. #endif
  831. if (res_size)
  832. reserve_bootmem_node(pgdat, PHYS_OFFSET, res_size,
  833. BOOTMEM_DEFAULT);
  834. }
  835. /*
  836. * Set up device the mappings. Since we clear out the page tables for all
  837. * mappings above VMALLOC_END, we will remove any debug device mappings.
  838. * This means you have to be careful how you debug this function, or any
  839. * called function. This means you can't use any function or debugging
  840. * method which may touch any device, otherwise the kernel _will_ crash.
  841. */
  842. static void __init devicemaps_init(struct machine_desc *mdesc)
  843. {
  844. struct map_desc map;
  845. unsigned long addr;
  846. void *vectors;
  847. /*
  848. * Allocate the vector page early.
  849. */
  850. vectors = alloc_bootmem_low_pages(PAGE_SIZE);
  851. for (addr = VMALLOC_END; addr; addr += PGDIR_SIZE)
  852. pmd_clear(pmd_off_k(addr));
  853. /*
  854. * Map the kernel if it is XIP.
  855. * It is always first in the modulearea.
  856. */
  857. #ifdef CONFIG_XIP_KERNEL
  858. map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
  859. map.virtual = MODULES_VADDR;
  860. map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
  861. map.type = MT_ROM;
  862. create_mapping(&map);
  863. #endif
  864. /*
  865. * Map the cache flushing regions.
  866. */
  867. #ifdef FLUSH_BASE
  868. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
  869. map.virtual = FLUSH_BASE;
  870. map.length = SZ_1M;
  871. map.type = MT_CACHECLEAN;
  872. create_mapping(&map);
  873. #endif
  874. #ifdef FLUSH_BASE_MINICACHE
  875. map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
  876. map.virtual = FLUSH_BASE_MINICACHE;
  877. map.length = SZ_1M;
  878. map.type = MT_MINICLEAN;
  879. create_mapping(&map);
  880. #endif
  881. /*
  882. * Create a mapping for the machine vectors at the high-vectors
  883. * location (0xffff0000). If we aren't using high-vectors, also
  884. * create a mapping at the low-vectors virtual address.
  885. */
  886. map.pfn = __phys_to_pfn(virt_to_phys(vectors));
  887. map.virtual = 0xffff0000;
  888. map.length = PAGE_SIZE;
  889. map.type = MT_HIGH_VECTORS;
  890. create_mapping(&map);
  891. if (!vectors_high()) {
  892. map.virtual = 0;
  893. map.type = MT_LOW_VECTORS;
  894. create_mapping(&map);
  895. }
  896. /*
  897. * Ask the machine support to map in the statically mapped devices.
  898. */
  899. if (mdesc->map_io)
  900. mdesc->map_io();
  901. /*
  902. * Finally flush the caches and tlb to ensure that we're in a
  903. * consistent state wrt the writebuffer. This also ensures that
  904. * any write-allocated cache lines in the vector page are written
  905. * back. After this point, we can start to touch devices again.
  906. */
  907. local_flush_tlb_all();
  908. flush_cache_all();
  909. }
  910. static void __init kmap_init(void)
  911. {
  912. #ifdef CONFIG_HIGHMEM
  913. pmd_t *pmd = pmd_off_k(PKMAP_BASE);
  914. pte_t *pte = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * sizeof(pte_t));
  915. BUG_ON(!pmd_none(*pmd) || !pte);
  916. __pmd_populate(pmd, __pa(pte) | _PAGE_KERNEL_TABLE);
  917. pkmap_page_table = pte + PTRS_PER_PTE;
  918. #endif
  919. }
  920. static inline void map_memory_bank(struct membank *bank)
  921. {
  922. struct map_desc map;
  923. map.pfn = bank_pfn_start(bank);
  924. map.virtual = __phys_to_virt(bank_phys_start(bank));
  925. map.length = bank_phys_size(bank);
  926. map.type = MT_MEMORY;
  927. create_mapping(&map);
  928. }
  929. static void __init map_lowmem(void)
  930. {
  931. struct meminfo *mi = &meminfo;
  932. int i;
  933. /* Map all the lowmem memory banks. */
  934. for (i = 0; i < mi->nr_banks; i++) {
  935. struct membank *bank = &mi->bank[i];
  936. if (!bank->highmem)
  937. map_memory_bank(bank);
  938. }
  939. }
  940. static int __init meminfo_cmp(const void *_a, const void *_b)
  941. {
  942. const struct membank *a = _a, *b = _b;
  943. long cmp = bank_pfn_start(a) - bank_pfn_start(b);
  944. return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
  945. }
  946. /*
  947. * paging_init() sets up the page tables, initialises the zone memory
  948. * maps, and sets up the zero page, bad page and bad page tables.
  949. */
  950. void __init paging_init(struct machine_desc *mdesc)
  951. {
  952. void *zero_page;
  953. sort(&meminfo.bank, meminfo.nr_banks, sizeof(meminfo.bank[0]), meminfo_cmp, NULL);
  954. build_mem_type_table();
  955. sanity_check_meminfo();
  956. prepare_page_table();
  957. map_lowmem();
  958. bootmem_init();
  959. devicemaps_init(mdesc);
  960. kmap_init();
  961. top_pmd = pmd_off_k(0xffff0000);
  962. /*
  963. * allocate the zero page. Note that this always succeeds and
  964. * returns a zeroed result.
  965. */
  966. zero_page = alloc_bootmem_low_pages(PAGE_SIZE);
  967. empty_zero_page = virt_to_page(zero_page);
  968. __flush_dcache_page(NULL, empty_zero_page);
  969. }
  970. /*
  971. * In order to soft-boot, we need to insert a 1:1 mapping in place of
  972. * the user-mode pages. This will then ensure that we have predictable
  973. * results when turning the mmu off
  974. */
  975. void setup_mm_for_reboot(char mode)
  976. {
  977. unsigned long base_pmdval;
  978. pgd_t *pgd;
  979. int i;
  980. /*
  981. * We need to access to user-mode page tables here. For kernel threads
  982. * we don't have any user-mode mappings so we use the context that we
  983. * "borrowed".
  984. */
  985. pgd = current->active_mm->pgd;
  986. base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT;
  987. if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale())
  988. base_pmdval |= PMD_BIT4;
  989. for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) {
  990. unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval;
  991. pmd_t *pmd;
  992. pmd = pmd_off(pgd, i << PGDIR_SHIFT);
  993. pmd[0] = __pmd(pmdval);
  994. pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1)));
  995. flush_pmd_entry(pmd);
  996. }
  997. local_flush_tlb_all();
  998. }