elevator.c 24 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128
  1. /*
  2. * Block device elevator/IO-scheduler.
  3. *
  4. * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
  5. *
  6. * 30042000 Jens Axboe <axboe@suse.de> :
  7. *
  8. * Split the elevator a bit so that it is possible to choose a different
  9. * one or even write a new "plug in". There are three pieces:
  10. * - elevator_fn, inserts a new request in the queue list
  11. * - elevator_merge_fn, decides whether a new buffer can be merged with
  12. * an existing request
  13. * - elevator_dequeue_fn, called when a request is taken off the active list
  14. *
  15. * 20082000 Dave Jones <davej@suse.de> :
  16. * Removed tests for max-bomb-segments, which was breaking elvtune
  17. * when run without -bN
  18. *
  19. * Jens:
  20. * - Rework again to work with bio instead of buffer_heads
  21. * - loose bi_dev comparisons, partition handling is right now
  22. * - completely modularize elevator setup and teardown
  23. *
  24. */
  25. #include <linux/kernel.h>
  26. #include <linux/fs.h>
  27. #include <linux/blkdev.h>
  28. #include <linux/elevator.h>
  29. #include <linux/bio.h>
  30. #include <linux/module.h>
  31. #include <linux/slab.h>
  32. #include <linux/init.h>
  33. #include <linux/compiler.h>
  34. #include <linux/delay.h>
  35. #include <linux/blktrace_api.h>
  36. #include <linux/hash.h>
  37. #include <asm/uaccess.h>
  38. static DEFINE_SPINLOCK(elv_list_lock);
  39. static LIST_HEAD(elv_list);
  40. /*
  41. * Merge hash stuff.
  42. */
  43. static const int elv_hash_shift = 6;
  44. #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
  45. #define ELV_HASH_FN(sec) (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
  46. #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
  47. #define rq_hash_key(rq) ((rq)->sector + (rq)->nr_sectors)
  48. #define ELV_ON_HASH(rq) (!hlist_unhashed(&(rq)->hash))
  49. /*
  50. * can we safely merge with this request?
  51. */
  52. inline int elv_rq_merge_ok(struct request *rq, struct bio *bio)
  53. {
  54. if (!rq_mergeable(rq))
  55. return 0;
  56. /*
  57. * different data direction or already started, don't merge
  58. */
  59. if (bio_data_dir(bio) != rq_data_dir(rq))
  60. return 0;
  61. /*
  62. * same device and no special stuff set, merge is ok
  63. */
  64. if (rq->rq_disk == bio->bi_bdev->bd_disk && !rq->special)
  65. return 1;
  66. return 0;
  67. }
  68. EXPORT_SYMBOL(elv_rq_merge_ok);
  69. static inline int elv_try_merge(struct request *__rq, struct bio *bio)
  70. {
  71. int ret = ELEVATOR_NO_MERGE;
  72. /*
  73. * we can merge and sequence is ok, check if it's possible
  74. */
  75. if (elv_rq_merge_ok(__rq, bio)) {
  76. if (__rq->sector + __rq->nr_sectors == bio->bi_sector)
  77. ret = ELEVATOR_BACK_MERGE;
  78. else if (__rq->sector - bio_sectors(bio) == bio->bi_sector)
  79. ret = ELEVATOR_FRONT_MERGE;
  80. }
  81. return ret;
  82. }
  83. static struct elevator_type *elevator_find(const char *name)
  84. {
  85. struct elevator_type *e = NULL;
  86. struct list_head *entry;
  87. list_for_each(entry, &elv_list) {
  88. struct elevator_type *__e;
  89. __e = list_entry(entry, struct elevator_type, list);
  90. if (!strcmp(__e->elevator_name, name)) {
  91. e = __e;
  92. break;
  93. }
  94. }
  95. return e;
  96. }
  97. static void elevator_put(struct elevator_type *e)
  98. {
  99. module_put(e->elevator_owner);
  100. }
  101. static struct elevator_type *elevator_get(const char *name)
  102. {
  103. struct elevator_type *e;
  104. spin_lock_irq(&elv_list_lock);
  105. e = elevator_find(name);
  106. if (e && !try_module_get(e->elevator_owner))
  107. e = NULL;
  108. spin_unlock_irq(&elv_list_lock);
  109. return e;
  110. }
  111. static void *elevator_init_queue(request_queue_t *q, struct elevator_queue *eq)
  112. {
  113. return eq->ops->elevator_init_fn(q, eq);
  114. }
  115. static void elevator_attach(request_queue_t *q, struct elevator_queue *eq,
  116. void *data)
  117. {
  118. q->elevator = eq;
  119. eq->elevator_data = data;
  120. }
  121. static char chosen_elevator[16];
  122. static int __init elevator_setup(char *str)
  123. {
  124. /*
  125. * Be backwards-compatible with previous kernels, so users
  126. * won't get the wrong elevator.
  127. */
  128. if (!strcmp(str, "as"))
  129. strcpy(chosen_elevator, "anticipatory");
  130. else
  131. strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
  132. return 1;
  133. }
  134. __setup("elevator=", elevator_setup);
  135. static struct kobj_type elv_ktype;
  136. static elevator_t *elevator_alloc(struct elevator_type *e)
  137. {
  138. elevator_t *eq;
  139. int i;
  140. eq = kmalloc(sizeof(elevator_t), GFP_KERNEL);
  141. if (unlikely(!eq))
  142. goto err;
  143. memset(eq, 0, sizeof(*eq));
  144. eq->ops = &e->ops;
  145. eq->elevator_type = e;
  146. kobject_init(&eq->kobj);
  147. snprintf(eq->kobj.name, KOBJ_NAME_LEN, "%s", "iosched");
  148. eq->kobj.ktype = &elv_ktype;
  149. mutex_init(&eq->sysfs_lock);
  150. eq->hash = kmalloc(sizeof(struct hlist_head) * ELV_HASH_ENTRIES, GFP_KERNEL);
  151. if (!eq->hash)
  152. goto err;
  153. for (i = 0; i < ELV_HASH_ENTRIES; i++)
  154. INIT_HLIST_HEAD(&eq->hash[i]);
  155. return eq;
  156. err:
  157. kfree(eq);
  158. elevator_put(e);
  159. return NULL;
  160. }
  161. static void elevator_release(struct kobject *kobj)
  162. {
  163. elevator_t *e = container_of(kobj, elevator_t, kobj);
  164. elevator_put(e->elevator_type);
  165. kfree(e->hash);
  166. kfree(e);
  167. }
  168. int elevator_init(request_queue_t *q, char *name)
  169. {
  170. struct elevator_type *e = NULL;
  171. struct elevator_queue *eq;
  172. int ret = 0;
  173. void *data;
  174. INIT_LIST_HEAD(&q->queue_head);
  175. q->last_merge = NULL;
  176. q->end_sector = 0;
  177. q->boundary_rq = NULL;
  178. if (name && !(e = elevator_get(name)))
  179. return -EINVAL;
  180. if (!e && *chosen_elevator && !(e = elevator_get(chosen_elevator)))
  181. printk("I/O scheduler %s not found\n", chosen_elevator);
  182. if (!e && !(e = elevator_get(CONFIG_DEFAULT_IOSCHED))) {
  183. printk("Default I/O scheduler not found, using no-op\n");
  184. e = elevator_get("noop");
  185. }
  186. eq = elevator_alloc(e);
  187. if (!eq)
  188. return -ENOMEM;
  189. data = elevator_init_queue(q, eq);
  190. if (!data) {
  191. kobject_put(&eq->kobj);
  192. return -ENOMEM;
  193. }
  194. elevator_attach(q, eq, data);
  195. return ret;
  196. }
  197. EXPORT_SYMBOL(elevator_init);
  198. void elevator_exit(elevator_t *e)
  199. {
  200. mutex_lock(&e->sysfs_lock);
  201. if (e->ops->elevator_exit_fn)
  202. e->ops->elevator_exit_fn(e);
  203. e->ops = NULL;
  204. mutex_unlock(&e->sysfs_lock);
  205. kobject_put(&e->kobj);
  206. }
  207. EXPORT_SYMBOL(elevator_exit);
  208. static inline void __elv_rqhash_del(struct request *rq)
  209. {
  210. hlist_del_init(&rq->hash);
  211. }
  212. static void elv_rqhash_del(request_queue_t *q, struct request *rq)
  213. {
  214. if (ELV_ON_HASH(rq))
  215. __elv_rqhash_del(rq);
  216. }
  217. static void elv_rqhash_add(request_queue_t *q, struct request *rq)
  218. {
  219. elevator_t *e = q->elevator;
  220. BUG_ON(ELV_ON_HASH(rq));
  221. hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
  222. }
  223. static void elv_rqhash_reposition(request_queue_t *q, struct request *rq)
  224. {
  225. __elv_rqhash_del(rq);
  226. elv_rqhash_add(q, rq);
  227. }
  228. static struct request *elv_rqhash_find(request_queue_t *q, sector_t offset)
  229. {
  230. elevator_t *e = q->elevator;
  231. struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
  232. struct hlist_node *entry, *next;
  233. struct request *rq;
  234. hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
  235. BUG_ON(!ELV_ON_HASH(rq));
  236. if (unlikely(!rq_mergeable(rq))) {
  237. __elv_rqhash_del(rq);
  238. continue;
  239. }
  240. if (rq_hash_key(rq) == offset)
  241. return rq;
  242. }
  243. return NULL;
  244. }
  245. /*
  246. * RB-tree support functions for inserting/lookup/removal of requests
  247. * in a sorted RB tree.
  248. */
  249. struct request *elv_rb_add(struct rb_root *root, struct request *rq)
  250. {
  251. struct rb_node **p = &root->rb_node;
  252. struct rb_node *parent = NULL;
  253. struct request *__rq;
  254. while (*p) {
  255. parent = *p;
  256. __rq = rb_entry(parent, struct request, rb_node);
  257. if (rq->sector < __rq->sector)
  258. p = &(*p)->rb_left;
  259. else if (rq->sector > __rq->sector)
  260. p = &(*p)->rb_right;
  261. else
  262. return __rq;
  263. }
  264. rb_link_node(&rq->rb_node, parent, p);
  265. rb_insert_color(&rq->rb_node, root);
  266. return NULL;
  267. }
  268. EXPORT_SYMBOL(elv_rb_add);
  269. void elv_rb_del(struct rb_root *root, struct request *rq)
  270. {
  271. BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
  272. rb_erase(&rq->rb_node, root);
  273. RB_CLEAR_NODE(&rq->rb_node);
  274. }
  275. EXPORT_SYMBOL(elv_rb_del);
  276. struct request *elv_rb_find(struct rb_root *root, sector_t sector)
  277. {
  278. struct rb_node *n = root->rb_node;
  279. struct request *rq;
  280. while (n) {
  281. rq = rb_entry(n, struct request, rb_node);
  282. if (sector < rq->sector)
  283. n = n->rb_left;
  284. else if (sector > rq->sector)
  285. n = n->rb_right;
  286. else
  287. return rq;
  288. }
  289. return NULL;
  290. }
  291. EXPORT_SYMBOL(elv_rb_find);
  292. /*
  293. * Insert rq into dispatch queue of q. Queue lock must be held on
  294. * entry. rq is sort insted into the dispatch queue. To be used by
  295. * specific elevators.
  296. */
  297. void elv_dispatch_sort(request_queue_t *q, struct request *rq)
  298. {
  299. sector_t boundary;
  300. struct list_head *entry;
  301. if (q->last_merge == rq)
  302. q->last_merge = NULL;
  303. elv_rqhash_del(q, rq);
  304. q->nr_sorted--;
  305. boundary = q->end_sector;
  306. list_for_each_prev(entry, &q->queue_head) {
  307. struct request *pos = list_entry_rq(entry);
  308. if (pos->cmd_flags & (REQ_SOFTBARRIER|REQ_HARDBARRIER|REQ_STARTED))
  309. break;
  310. if (rq->sector >= boundary) {
  311. if (pos->sector < boundary)
  312. continue;
  313. } else {
  314. if (pos->sector >= boundary)
  315. break;
  316. }
  317. if (rq->sector >= pos->sector)
  318. break;
  319. }
  320. list_add(&rq->queuelist, entry);
  321. }
  322. EXPORT_SYMBOL(elv_dispatch_sort);
  323. /*
  324. * Insert rq into dispatch queue of q. Queue lock must be held on
  325. * entry. rq is added to the back of the dispatch queue. To be used by
  326. * specific elevators.
  327. */
  328. void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
  329. {
  330. if (q->last_merge == rq)
  331. q->last_merge = NULL;
  332. elv_rqhash_del(q, rq);
  333. q->nr_sorted--;
  334. q->end_sector = rq_end_sector(rq);
  335. q->boundary_rq = rq;
  336. list_add_tail(&rq->queuelist, &q->queue_head);
  337. }
  338. EXPORT_SYMBOL(elv_dispatch_add_tail);
  339. int elv_merge(request_queue_t *q, struct request **req, struct bio *bio)
  340. {
  341. elevator_t *e = q->elevator;
  342. struct request *__rq;
  343. int ret;
  344. /*
  345. * First try one-hit cache.
  346. */
  347. if (q->last_merge) {
  348. ret = elv_try_merge(q->last_merge, bio);
  349. if (ret != ELEVATOR_NO_MERGE) {
  350. *req = q->last_merge;
  351. return ret;
  352. }
  353. }
  354. /*
  355. * See if our hash lookup can find a potential backmerge.
  356. */
  357. __rq = elv_rqhash_find(q, bio->bi_sector);
  358. if (__rq && elv_rq_merge_ok(__rq, bio)) {
  359. *req = __rq;
  360. return ELEVATOR_BACK_MERGE;
  361. }
  362. if (e->ops->elevator_merge_fn)
  363. return e->ops->elevator_merge_fn(q, req, bio);
  364. return ELEVATOR_NO_MERGE;
  365. }
  366. void elv_merged_request(request_queue_t *q, struct request *rq, int type)
  367. {
  368. elevator_t *e = q->elevator;
  369. if (e->ops->elevator_merged_fn)
  370. e->ops->elevator_merged_fn(q, rq, type);
  371. if (type == ELEVATOR_BACK_MERGE)
  372. elv_rqhash_reposition(q, rq);
  373. q->last_merge = rq;
  374. }
  375. void elv_merge_requests(request_queue_t *q, struct request *rq,
  376. struct request *next)
  377. {
  378. elevator_t *e = q->elevator;
  379. if (e->ops->elevator_merge_req_fn)
  380. e->ops->elevator_merge_req_fn(q, rq, next);
  381. elv_rqhash_reposition(q, rq);
  382. elv_rqhash_del(q, next);
  383. q->nr_sorted--;
  384. q->last_merge = rq;
  385. }
  386. void elv_requeue_request(request_queue_t *q, struct request *rq)
  387. {
  388. elevator_t *e = q->elevator;
  389. /*
  390. * it already went through dequeue, we need to decrement the
  391. * in_flight count again
  392. */
  393. if (blk_account_rq(rq)) {
  394. q->in_flight--;
  395. if (blk_sorted_rq(rq) && e->ops->elevator_deactivate_req_fn)
  396. e->ops->elevator_deactivate_req_fn(q, rq);
  397. }
  398. rq->cmd_flags &= ~REQ_STARTED;
  399. elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
  400. }
  401. static void elv_drain_elevator(request_queue_t *q)
  402. {
  403. static int printed;
  404. while (q->elevator->ops->elevator_dispatch_fn(q, 1))
  405. ;
  406. if (q->nr_sorted == 0)
  407. return;
  408. if (printed++ < 10) {
  409. printk(KERN_ERR "%s: forced dispatching is broken "
  410. "(nr_sorted=%u), please report this\n",
  411. q->elevator->elevator_type->elevator_name, q->nr_sorted);
  412. }
  413. }
  414. void elv_insert(request_queue_t *q, struct request *rq, int where)
  415. {
  416. struct list_head *pos;
  417. unsigned ordseq;
  418. int unplug_it = 1;
  419. blk_add_trace_rq(q, rq, BLK_TA_INSERT);
  420. rq->q = q;
  421. switch (where) {
  422. case ELEVATOR_INSERT_FRONT:
  423. rq->cmd_flags |= REQ_SOFTBARRIER;
  424. list_add(&rq->queuelist, &q->queue_head);
  425. break;
  426. case ELEVATOR_INSERT_BACK:
  427. rq->cmd_flags |= REQ_SOFTBARRIER;
  428. elv_drain_elevator(q);
  429. list_add_tail(&rq->queuelist, &q->queue_head);
  430. /*
  431. * We kick the queue here for the following reasons.
  432. * - The elevator might have returned NULL previously
  433. * to delay requests and returned them now. As the
  434. * queue wasn't empty before this request, ll_rw_blk
  435. * won't run the queue on return, resulting in hang.
  436. * - Usually, back inserted requests won't be merged
  437. * with anything. There's no point in delaying queue
  438. * processing.
  439. */
  440. blk_remove_plug(q);
  441. q->request_fn(q);
  442. break;
  443. case ELEVATOR_INSERT_SORT:
  444. BUG_ON(!blk_fs_request(rq));
  445. rq->cmd_flags |= REQ_SORTED;
  446. q->nr_sorted++;
  447. if (rq_mergeable(rq)) {
  448. elv_rqhash_add(q, rq);
  449. if (!q->last_merge)
  450. q->last_merge = rq;
  451. }
  452. /*
  453. * Some ioscheds (cfq) run q->request_fn directly, so
  454. * rq cannot be accessed after calling
  455. * elevator_add_req_fn.
  456. */
  457. q->elevator->ops->elevator_add_req_fn(q, rq);
  458. break;
  459. case ELEVATOR_INSERT_REQUEUE:
  460. /*
  461. * If ordered flush isn't in progress, we do front
  462. * insertion; otherwise, requests should be requeued
  463. * in ordseq order.
  464. */
  465. rq->cmd_flags |= REQ_SOFTBARRIER;
  466. if (q->ordseq == 0) {
  467. list_add(&rq->queuelist, &q->queue_head);
  468. break;
  469. }
  470. ordseq = blk_ordered_req_seq(rq);
  471. list_for_each(pos, &q->queue_head) {
  472. struct request *pos_rq = list_entry_rq(pos);
  473. if (ordseq <= blk_ordered_req_seq(pos_rq))
  474. break;
  475. }
  476. list_add_tail(&rq->queuelist, pos);
  477. /*
  478. * most requeues happen because of a busy condition, don't
  479. * force unplug of the queue for that case.
  480. */
  481. unplug_it = 0;
  482. break;
  483. default:
  484. printk(KERN_ERR "%s: bad insertion point %d\n",
  485. __FUNCTION__, where);
  486. BUG();
  487. }
  488. if (unplug_it && blk_queue_plugged(q)) {
  489. int nrq = q->rq.count[READ] + q->rq.count[WRITE]
  490. - q->in_flight;
  491. if (nrq >= q->unplug_thresh)
  492. __generic_unplug_device(q);
  493. }
  494. }
  495. void __elv_add_request(request_queue_t *q, struct request *rq, int where,
  496. int plug)
  497. {
  498. if (q->ordcolor)
  499. rq->cmd_flags |= REQ_ORDERED_COLOR;
  500. if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
  501. /*
  502. * toggle ordered color
  503. */
  504. if (blk_barrier_rq(rq))
  505. q->ordcolor ^= 1;
  506. /*
  507. * barriers implicitly indicate back insertion
  508. */
  509. if (where == ELEVATOR_INSERT_SORT)
  510. where = ELEVATOR_INSERT_BACK;
  511. /*
  512. * this request is scheduling boundary, update
  513. * end_sector
  514. */
  515. if (blk_fs_request(rq)) {
  516. q->end_sector = rq_end_sector(rq);
  517. q->boundary_rq = rq;
  518. }
  519. } else if (!(rq->cmd_flags & REQ_ELVPRIV) && where == ELEVATOR_INSERT_SORT)
  520. where = ELEVATOR_INSERT_BACK;
  521. if (plug)
  522. blk_plug_device(q);
  523. elv_insert(q, rq, where);
  524. }
  525. EXPORT_SYMBOL(__elv_add_request);
  526. void elv_add_request(request_queue_t *q, struct request *rq, int where,
  527. int plug)
  528. {
  529. unsigned long flags;
  530. spin_lock_irqsave(q->queue_lock, flags);
  531. __elv_add_request(q, rq, where, plug);
  532. spin_unlock_irqrestore(q->queue_lock, flags);
  533. }
  534. EXPORT_SYMBOL(elv_add_request);
  535. static inline struct request *__elv_next_request(request_queue_t *q)
  536. {
  537. struct request *rq;
  538. while (1) {
  539. while (!list_empty(&q->queue_head)) {
  540. rq = list_entry_rq(q->queue_head.next);
  541. if (blk_do_ordered(q, &rq))
  542. return rq;
  543. }
  544. if (!q->elevator->ops->elevator_dispatch_fn(q, 0))
  545. return NULL;
  546. }
  547. }
  548. struct request *elv_next_request(request_queue_t *q)
  549. {
  550. struct request *rq;
  551. int ret;
  552. while ((rq = __elv_next_request(q)) != NULL) {
  553. if (!(rq->cmd_flags & REQ_STARTED)) {
  554. elevator_t *e = q->elevator;
  555. /*
  556. * This is the first time the device driver
  557. * sees this request (possibly after
  558. * requeueing). Notify IO scheduler.
  559. */
  560. if (blk_sorted_rq(rq) &&
  561. e->ops->elevator_activate_req_fn)
  562. e->ops->elevator_activate_req_fn(q, rq);
  563. /*
  564. * just mark as started even if we don't start
  565. * it, a request that has been delayed should
  566. * not be passed by new incoming requests
  567. */
  568. rq->cmd_flags |= REQ_STARTED;
  569. blk_add_trace_rq(q, rq, BLK_TA_ISSUE);
  570. }
  571. if (!q->boundary_rq || q->boundary_rq == rq) {
  572. q->end_sector = rq_end_sector(rq);
  573. q->boundary_rq = NULL;
  574. }
  575. if ((rq->cmd_flags & REQ_DONTPREP) || !q->prep_rq_fn)
  576. break;
  577. ret = q->prep_rq_fn(q, rq);
  578. if (ret == BLKPREP_OK) {
  579. break;
  580. } else if (ret == BLKPREP_DEFER) {
  581. /*
  582. * the request may have been (partially) prepped.
  583. * we need to keep this request in the front to
  584. * avoid resource deadlock. REQ_STARTED will
  585. * prevent other fs requests from passing this one.
  586. */
  587. rq = NULL;
  588. break;
  589. } else if (ret == BLKPREP_KILL) {
  590. int nr_bytes = rq->hard_nr_sectors << 9;
  591. if (!nr_bytes)
  592. nr_bytes = rq->data_len;
  593. blkdev_dequeue_request(rq);
  594. rq->cmd_flags |= REQ_QUIET;
  595. end_that_request_chunk(rq, 0, nr_bytes);
  596. end_that_request_last(rq, 0);
  597. } else {
  598. printk(KERN_ERR "%s: bad return=%d\n", __FUNCTION__,
  599. ret);
  600. break;
  601. }
  602. }
  603. return rq;
  604. }
  605. EXPORT_SYMBOL(elv_next_request);
  606. void elv_dequeue_request(request_queue_t *q, struct request *rq)
  607. {
  608. BUG_ON(list_empty(&rq->queuelist));
  609. BUG_ON(ELV_ON_HASH(rq));
  610. list_del_init(&rq->queuelist);
  611. /*
  612. * the time frame between a request being removed from the lists
  613. * and to it is freed is accounted as io that is in progress at
  614. * the driver side.
  615. */
  616. if (blk_account_rq(rq))
  617. q->in_flight++;
  618. }
  619. EXPORT_SYMBOL(elv_dequeue_request);
  620. int elv_queue_empty(request_queue_t *q)
  621. {
  622. elevator_t *e = q->elevator;
  623. if (!list_empty(&q->queue_head))
  624. return 0;
  625. if (e->ops->elevator_queue_empty_fn)
  626. return e->ops->elevator_queue_empty_fn(q);
  627. return 1;
  628. }
  629. EXPORT_SYMBOL(elv_queue_empty);
  630. struct request *elv_latter_request(request_queue_t *q, struct request *rq)
  631. {
  632. elevator_t *e = q->elevator;
  633. if (e->ops->elevator_latter_req_fn)
  634. return e->ops->elevator_latter_req_fn(q, rq);
  635. return NULL;
  636. }
  637. struct request *elv_former_request(request_queue_t *q, struct request *rq)
  638. {
  639. elevator_t *e = q->elevator;
  640. if (e->ops->elevator_former_req_fn)
  641. return e->ops->elevator_former_req_fn(q, rq);
  642. return NULL;
  643. }
  644. int elv_set_request(request_queue_t *q, struct request *rq, gfp_t gfp_mask)
  645. {
  646. elevator_t *e = q->elevator;
  647. if (e->ops->elevator_set_req_fn)
  648. return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
  649. rq->elevator_private = NULL;
  650. return 0;
  651. }
  652. void elv_put_request(request_queue_t *q, struct request *rq)
  653. {
  654. elevator_t *e = q->elevator;
  655. if (e->ops->elevator_put_req_fn)
  656. e->ops->elevator_put_req_fn(q, rq);
  657. }
  658. int elv_may_queue(request_queue_t *q, int rw)
  659. {
  660. elevator_t *e = q->elevator;
  661. if (e->ops->elevator_may_queue_fn)
  662. return e->ops->elevator_may_queue_fn(q, rw);
  663. return ELV_MQUEUE_MAY;
  664. }
  665. void elv_completed_request(request_queue_t *q, struct request *rq)
  666. {
  667. elevator_t *e = q->elevator;
  668. /*
  669. * request is released from the driver, io must be done
  670. */
  671. if (blk_account_rq(rq)) {
  672. q->in_flight--;
  673. if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
  674. e->ops->elevator_completed_req_fn(q, rq);
  675. }
  676. /*
  677. * Check if the queue is waiting for fs requests to be
  678. * drained for flush sequence.
  679. */
  680. if (unlikely(q->ordseq)) {
  681. struct request *first_rq = list_entry_rq(q->queue_head.next);
  682. if (q->in_flight == 0 &&
  683. blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
  684. blk_ordered_req_seq(first_rq) > QUEUE_ORDSEQ_DRAIN) {
  685. blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
  686. q->request_fn(q);
  687. }
  688. }
  689. }
  690. #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
  691. static ssize_t
  692. elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
  693. {
  694. elevator_t *e = container_of(kobj, elevator_t, kobj);
  695. struct elv_fs_entry *entry = to_elv(attr);
  696. ssize_t error;
  697. if (!entry->show)
  698. return -EIO;
  699. mutex_lock(&e->sysfs_lock);
  700. error = e->ops ? entry->show(e, page) : -ENOENT;
  701. mutex_unlock(&e->sysfs_lock);
  702. return error;
  703. }
  704. static ssize_t
  705. elv_attr_store(struct kobject *kobj, struct attribute *attr,
  706. const char *page, size_t length)
  707. {
  708. elevator_t *e = container_of(kobj, elevator_t, kobj);
  709. struct elv_fs_entry *entry = to_elv(attr);
  710. ssize_t error;
  711. if (!entry->store)
  712. return -EIO;
  713. mutex_lock(&e->sysfs_lock);
  714. error = e->ops ? entry->store(e, page, length) : -ENOENT;
  715. mutex_unlock(&e->sysfs_lock);
  716. return error;
  717. }
  718. static struct sysfs_ops elv_sysfs_ops = {
  719. .show = elv_attr_show,
  720. .store = elv_attr_store,
  721. };
  722. static struct kobj_type elv_ktype = {
  723. .sysfs_ops = &elv_sysfs_ops,
  724. .release = elevator_release,
  725. };
  726. int elv_register_queue(struct request_queue *q)
  727. {
  728. elevator_t *e = q->elevator;
  729. int error;
  730. e->kobj.parent = &q->kobj;
  731. error = kobject_add(&e->kobj);
  732. if (!error) {
  733. struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
  734. if (attr) {
  735. while (attr->attr.name) {
  736. if (sysfs_create_file(&e->kobj, &attr->attr))
  737. break;
  738. attr++;
  739. }
  740. }
  741. kobject_uevent(&e->kobj, KOBJ_ADD);
  742. }
  743. return error;
  744. }
  745. static void __elv_unregister_queue(elevator_t *e)
  746. {
  747. kobject_uevent(&e->kobj, KOBJ_REMOVE);
  748. kobject_del(&e->kobj);
  749. }
  750. void elv_unregister_queue(struct request_queue *q)
  751. {
  752. if (q)
  753. __elv_unregister_queue(q->elevator);
  754. }
  755. int elv_register(struct elevator_type *e)
  756. {
  757. spin_lock_irq(&elv_list_lock);
  758. BUG_ON(elevator_find(e->elevator_name));
  759. list_add_tail(&e->list, &elv_list);
  760. spin_unlock_irq(&elv_list_lock);
  761. printk(KERN_INFO "io scheduler %s registered", e->elevator_name);
  762. if (!strcmp(e->elevator_name, chosen_elevator) ||
  763. (!*chosen_elevator &&
  764. !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
  765. printk(" (default)");
  766. printk("\n");
  767. return 0;
  768. }
  769. EXPORT_SYMBOL_GPL(elv_register);
  770. void elv_unregister(struct elevator_type *e)
  771. {
  772. struct task_struct *g, *p;
  773. /*
  774. * Iterate every thread in the process to remove the io contexts.
  775. */
  776. if (e->ops.trim) {
  777. read_lock(&tasklist_lock);
  778. do_each_thread(g, p) {
  779. task_lock(p);
  780. if (p->io_context)
  781. e->ops.trim(p->io_context);
  782. task_unlock(p);
  783. } while_each_thread(g, p);
  784. read_unlock(&tasklist_lock);
  785. }
  786. spin_lock_irq(&elv_list_lock);
  787. list_del_init(&e->list);
  788. spin_unlock_irq(&elv_list_lock);
  789. }
  790. EXPORT_SYMBOL_GPL(elv_unregister);
  791. /*
  792. * switch to new_e io scheduler. be careful not to introduce deadlocks -
  793. * we don't free the old io scheduler, before we have allocated what we
  794. * need for the new one. this way we have a chance of going back to the old
  795. * one, if the new one fails init for some reason.
  796. */
  797. static int elevator_switch(request_queue_t *q, struct elevator_type *new_e)
  798. {
  799. elevator_t *old_elevator, *e;
  800. void *data;
  801. /*
  802. * Allocate new elevator
  803. */
  804. e = elevator_alloc(new_e);
  805. if (!e)
  806. return 0;
  807. data = elevator_init_queue(q, e);
  808. if (!data) {
  809. kobject_put(&e->kobj);
  810. return 0;
  811. }
  812. /*
  813. * Turn on BYPASS and drain all requests w/ elevator private data
  814. */
  815. spin_lock_irq(q->queue_lock);
  816. set_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  817. elv_drain_elevator(q);
  818. while (q->rq.elvpriv) {
  819. blk_remove_plug(q);
  820. q->request_fn(q);
  821. spin_unlock_irq(q->queue_lock);
  822. msleep(10);
  823. spin_lock_irq(q->queue_lock);
  824. elv_drain_elevator(q);
  825. }
  826. /*
  827. * Remember old elevator.
  828. */
  829. old_elevator = q->elevator;
  830. /*
  831. * attach and start new elevator
  832. */
  833. elevator_attach(q, e, data);
  834. spin_unlock_irq(q->queue_lock);
  835. __elv_unregister_queue(old_elevator);
  836. if (elv_register_queue(q))
  837. goto fail_register;
  838. /*
  839. * finally exit old elevator and turn off BYPASS.
  840. */
  841. elevator_exit(old_elevator);
  842. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  843. return 1;
  844. fail_register:
  845. /*
  846. * switch failed, exit the new io scheduler and reattach the old
  847. * one again (along with re-adding the sysfs dir)
  848. */
  849. elevator_exit(e);
  850. q->elevator = old_elevator;
  851. elv_register_queue(q);
  852. clear_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
  853. return 0;
  854. }
  855. ssize_t elv_iosched_store(request_queue_t *q, const char *name, size_t count)
  856. {
  857. char elevator_name[ELV_NAME_MAX];
  858. size_t len;
  859. struct elevator_type *e;
  860. elevator_name[sizeof(elevator_name) - 1] = '\0';
  861. strncpy(elevator_name, name, sizeof(elevator_name) - 1);
  862. len = strlen(elevator_name);
  863. if (len && elevator_name[len - 1] == '\n')
  864. elevator_name[len - 1] = '\0';
  865. e = elevator_get(elevator_name);
  866. if (!e) {
  867. printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
  868. return -EINVAL;
  869. }
  870. if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
  871. elevator_put(e);
  872. return count;
  873. }
  874. if (!elevator_switch(q, e))
  875. printk(KERN_ERR "elevator: switch to %s failed\n",elevator_name);
  876. return count;
  877. }
  878. ssize_t elv_iosched_show(request_queue_t *q, char *name)
  879. {
  880. elevator_t *e = q->elevator;
  881. struct elevator_type *elv = e->elevator_type;
  882. struct list_head *entry;
  883. int len = 0;
  884. spin_lock_irq(q->queue_lock);
  885. list_for_each(entry, &elv_list) {
  886. struct elevator_type *__e;
  887. __e = list_entry(entry, struct elevator_type, list);
  888. if (!strcmp(elv->elevator_name, __e->elevator_name))
  889. len += sprintf(name+len, "[%s] ", elv->elevator_name);
  890. else
  891. len += sprintf(name+len, "%s ", __e->elevator_name);
  892. }
  893. spin_unlock_irq(q->queue_lock);
  894. len += sprintf(len+name, "\n");
  895. return len;
  896. }
  897. struct request *elv_rb_former_request(request_queue_t *q, struct request *rq)
  898. {
  899. struct rb_node *rbprev = rb_prev(&rq->rb_node);
  900. if (rbprev)
  901. return rb_entry_rq(rbprev);
  902. return NULL;
  903. }
  904. EXPORT_SYMBOL(elv_rb_former_request);
  905. struct request *elv_rb_latter_request(request_queue_t *q, struct request *rq)
  906. {
  907. struct rb_node *rbnext = rb_next(&rq->rb_node);
  908. if (rbnext)
  909. return rb_entry_rq(rbnext);
  910. return NULL;
  911. }
  912. EXPORT_SYMBOL(elv_rb_latter_request);