amd_iommu.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643
  1. /*
  2. * Copyright (C) 2007-2008 Advanced Micro Devices, Inc.
  3. * Author: Joerg Roedel <joerg.roedel@amd.com>
  4. * Leo Duran <leo.duran@amd.com>
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms of the GNU General Public License version 2 as published
  8. * by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/pci.h>
  20. #include <linux/gfp.h>
  21. #include <linux/bitops.h>
  22. #include <linux/scatterlist.h>
  23. #include <linux/iommu-helper.h>
  24. #include <asm/proto.h>
  25. #include <asm/gart.h>
  26. #include <asm/amd_iommu_types.h>
  27. #define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  28. #define to_pages(addr, size) \
  29. (round_up(((addr) & ~PAGE_MASK) + (size), PAGE_SIZE) >> PAGE_SHIFT)
  30. static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  31. struct command {
  32. u32 data[4];
  33. };
  34. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  35. struct unity_map_entry *e);
  36. static int __iommu_queue_command(struct amd_iommu *iommu, struct command *cmd)
  37. {
  38. u32 tail, head;
  39. u8 *target;
  40. tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  41. target = (iommu->cmd_buf + tail);
  42. memcpy_toio(target, cmd, sizeof(*cmd));
  43. tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
  44. head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
  45. if (tail == head)
  46. return -ENOMEM;
  47. writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
  48. return 0;
  49. }
  50. static int iommu_queue_command(struct amd_iommu *iommu, struct command *cmd)
  51. {
  52. unsigned long flags;
  53. int ret;
  54. spin_lock_irqsave(&iommu->lock, flags);
  55. ret = __iommu_queue_command(iommu, cmd);
  56. spin_unlock_irqrestore(&iommu->lock, flags);
  57. return ret;
  58. }
  59. static int iommu_completion_wait(struct amd_iommu *iommu)
  60. {
  61. int ret;
  62. struct command cmd;
  63. volatile u64 ready = 0;
  64. unsigned long ready_phys = virt_to_phys(&ready);
  65. memset(&cmd, 0, sizeof(cmd));
  66. cmd.data[0] = LOW_U32(ready_phys) | CMD_COMPL_WAIT_STORE_MASK;
  67. cmd.data[1] = HIGH_U32(ready_phys);
  68. cmd.data[2] = 1; /* value written to 'ready' */
  69. CMD_SET_TYPE(&cmd, CMD_COMPL_WAIT);
  70. iommu->need_sync = 0;
  71. ret = iommu_queue_command(iommu, &cmd);
  72. if (ret)
  73. return ret;
  74. while (!ready)
  75. cpu_relax();
  76. return 0;
  77. }
  78. static int iommu_queue_inv_dev_entry(struct amd_iommu *iommu, u16 devid)
  79. {
  80. struct command cmd;
  81. BUG_ON(iommu == NULL);
  82. memset(&cmd, 0, sizeof(cmd));
  83. CMD_SET_TYPE(&cmd, CMD_INV_DEV_ENTRY);
  84. cmd.data[0] = devid;
  85. iommu->need_sync = 1;
  86. return iommu_queue_command(iommu, &cmd);
  87. }
  88. static int iommu_queue_inv_iommu_pages(struct amd_iommu *iommu,
  89. u64 address, u16 domid, int pde, int s)
  90. {
  91. struct command cmd;
  92. memset(&cmd, 0, sizeof(cmd));
  93. address &= PAGE_MASK;
  94. CMD_SET_TYPE(&cmd, CMD_INV_IOMMU_PAGES);
  95. cmd.data[1] |= domid;
  96. cmd.data[2] = LOW_U32(address);
  97. cmd.data[3] = HIGH_U32(address);
  98. if (s)
  99. cmd.data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
  100. if (pde)
  101. cmd.data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
  102. iommu->need_sync = 1;
  103. return iommu_queue_command(iommu, &cmd);
  104. }
  105. static int iommu_flush_pages(struct amd_iommu *iommu, u16 domid,
  106. u64 address, size_t size)
  107. {
  108. int i;
  109. unsigned pages = to_pages(address, size);
  110. address &= PAGE_MASK;
  111. for (i = 0; i < pages; ++i) {
  112. iommu_queue_inv_iommu_pages(iommu, address, domid, 0, 0);
  113. address += PAGE_SIZE;
  114. }
  115. return 0;
  116. }
  117. static int iommu_map(struct protection_domain *dom,
  118. unsigned long bus_addr,
  119. unsigned long phys_addr,
  120. int prot)
  121. {
  122. u64 __pte, *pte, *page;
  123. bus_addr = PAGE_ALIGN(bus_addr);
  124. phys_addr = PAGE_ALIGN(bus_addr);
  125. /* only support 512GB address spaces for now */
  126. if (bus_addr > IOMMU_MAP_SIZE_L3 || !(prot & IOMMU_PROT_MASK))
  127. return -EINVAL;
  128. pte = &dom->pt_root[IOMMU_PTE_L2_INDEX(bus_addr)];
  129. if (!IOMMU_PTE_PRESENT(*pte)) {
  130. page = (u64 *)get_zeroed_page(GFP_KERNEL);
  131. if (!page)
  132. return -ENOMEM;
  133. *pte = IOMMU_L2_PDE(virt_to_phys(page));
  134. }
  135. pte = IOMMU_PTE_PAGE(*pte);
  136. pte = &pte[IOMMU_PTE_L1_INDEX(bus_addr)];
  137. if (!IOMMU_PTE_PRESENT(*pte)) {
  138. page = (u64 *)get_zeroed_page(GFP_KERNEL);
  139. if (!page)
  140. return -ENOMEM;
  141. *pte = IOMMU_L1_PDE(virt_to_phys(page));
  142. }
  143. pte = IOMMU_PTE_PAGE(*pte);
  144. pte = &pte[IOMMU_PTE_L0_INDEX(bus_addr)];
  145. if (IOMMU_PTE_PRESENT(*pte))
  146. return -EBUSY;
  147. __pte = phys_addr | IOMMU_PTE_P;
  148. if (prot & IOMMU_PROT_IR)
  149. __pte |= IOMMU_PTE_IR;
  150. if (prot & IOMMU_PROT_IW)
  151. __pte |= IOMMU_PTE_IW;
  152. *pte = __pte;
  153. return 0;
  154. }
  155. static int iommu_for_unity_map(struct amd_iommu *iommu,
  156. struct unity_map_entry *entry)
  157. {
  158. u16 bdf, i;
  159. for (i = entry->devid_start; i <= entry->devid_end; ++i) {
  160. bdf = amd_iommu_alias_table[i];
  161. if (amd_iommu_rlookup_table[bdf] == iommu)
  162. return 1;
  163. }
  164. return 0;
  165. }
  166. static int iommu_init_unity_mappings(struct amd_iommu *iommu)
  167. {
  168. struct unity_map_entry *entry;
  169. int ret;
  170. list_for_each_entry(entry, &amd_iommu_unity_map, list) {
  171. if (!iommu_for_unity_map(iommu, entry))
  172. continue;
  173. ret = dma_ops_unity_map(iommu->default_dom, entry);
  174. if (ret)
  175. return ret;
  176. }
  177. return 0;
  178. }
  179. static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
  180. struct unity_map_entry *e)
  181. {
  182. u64 addr;
  183. int ret;
  184. for (addr = e->address_start; addr < e->address_end;
  185. addr += PAGE_SIZE) {
  186. ret = iommu_map(&dma_dom->domain, addr, addr, e->prot);
  187. if (ret)
  188. return ret;
  189. /*
  190. * if unity mapping is in aperture range mark the page
  191. * as allocated in the aperture
  192. */
  193. if (addr < dma_dom->aperture_size)
  194. __set_bit(addr >> PAGE_SHIFT, dma_dom->bitmap);
  195. }
  196. return 0;
  197. }
  198. static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
  199. u16 devid)
  200. {
  201. struct unity_map_entry *e;
  202. int ret;
  203. list_for_each_entry(e, &amd_iommu_unity_map, list) {
  204. if (!(devid >= e->devid_start && devid <= e->devid_end))
  205. continue;
  206. ret = dma_ops_unity_map(dma_dom, e);
  207. if (ret)
  208. return ret;
  209. }
  210. return 0;
  211. }
  212. static unsigned long dma_mask_to_pages(unsigned long mask)
  213. {
  214. return (mask >> PAGE_SHIFT) +
  215. (PAGE_ALIGN(mask & ~PAGE_MASK) >> PAGE_SHIFT);
  216. }
  217. static unsigned long dma_ops_alloc_addresses(struct device *dev,
  218. struct dma_ops_domain *dom,
  219. unsigned int pages)
  220. {
  221. unsigned long limit = dma_mask_to_pages(*dev->dma_mask);
  222. unsigned long address;
  223. unsigned long size = dom->aperture_size >> PAGE_SHIFT;
  224. unsigned long boundary_size;
  225. boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
  226. PAGE_SIZE) >> PAGE_SHIFT;
  227. limit = limit < size ? limit : size;
  228. if (dom->next_bit >= limit)
  229. dom->next_bit = 0;
  230. address = iommu_area_alloc(dom->bitmap, limit, dom->next_bit, pages,
  231. 0 , boundary_size, 0);
  232. if (address == -1)
  233. address = iommu_area_alloc(dom->bitmap, limit, 0, pages,
  234. 0, boundary_size, 0);
  235. if (likely(address != -1)) {
  236. set_bit_string(dom->bitmap, address, pages);
  237. dom->next_bit = address + pages;
  238. address <<= PAGE_SHIFT;
  239. } else
  240. address = bad_dma_address;
  241. WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
  242. return address;
  243. }
  244. static void dma_ops_free_addresses(struct dma_ops_domain *dom,
  245. unsigned long address,
  246. unsigned int pages)
  247. {
  248. address >>= PAGE_SHIFT;
  249. iommu_area_free(dom->bitmap, address, pages);
  250. }
  251. static u16 domain_id_alloc(void)
  252. {
  253. unsigned long flags;
  254. int id;
  255. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  256. id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
  257. BUG_ON(id == 0);
  258. if (id > 0 && id < MAX_DOMAIN_ID)
  259. __set_bit(id, amd_iommu_pd_alloc_bitmap);
  260. else
  261. id = 0;
  262. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  263. return id;
  264. }
  265. static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
  266. unsigned long start_page,
  267. unsigned int pages)
  268. {
  269. unsigned int last_page = dom->aperture_size >> PAGE_SHIFT;
  270. if (start_page + pages > last_page)
  271. pages = last_page - start_page;
  272. set_bit_string(dom->bitmap, start_page, pages);
  273. }
  274. static void dma_ops_free_pagetable(struct dma_ops_domain *dma_dom)
  275. {
  276. int i, j;
  277. u64 *p1, *p2, *p3;
  278. p1 = dma_dom->domain.pt_root;
  279. if (!p1)
  280. return;
  281. for (i = 0; i < 512; ++i) {
  282. if (!IOMMU_PTE_PRESENT(p1[i]))
  283. continue;
  284. p2 = IOMMU_PTE_PAGE(p1[i]);
  285. for (j = 0; j < 512; ++i) {
  286. if (!IOMMU_PTE_PRESENT(p2[j]))
  287. continue;
  288. p3 = IOMMU_PTE_PAGE(p2[j]);
  289. free_page((unsigned long)p3);
  290. }
  291. free_page((unsigned long)p2);
  292. }
  293. free_page((unsigned long)p1);
  294. }
  295. static void dma_ops_domain_free(struct dma_ops_domain *dom)
  296. {
  297. if (!dom)
  298. return;
  299. dma_ops_free_pagetable(dom);
  300. kfree(dom->pte_pages);
  301. kfree(dom->bitmap);
  302. kfree(dom);
  303. }
  304. static struct dma_ops_domain *dma_ops_domain_alloc(struct amd_iommu *iommu,
  305. unsigned order)
  306. {
  307. struct dma_ops_domain *dma_dom;
  308. unsigned i, num_pte_pages;
  309. u64 *l2_pde;
  310. u64 address;
  311. /*
  312. * Currently the DMA aperture must be between 32 MB and 1GB in size
  313. */
  314. if ((order < 25) || (order > 30))
  315. return NULL;
  316. dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
  317. if (!dma_dom)
  318. return NULL;
  319. spin_lock_init(&dma_dom->domain.lock);
  320. dma_dom->domain.id = domain_id_alloc();
  321. if (dma_dom->domain.id == 0)
  322. goto free_dma_dom;
  323. dma_dom->domain.mode = PAGE_MODE_3_LEVEL;
  324. dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
  325. dma_dom->domain.priv = dma_dom;
  326. if (!dma_dom->domain.pt_root)
  327. goto free_dma_dom;
  328. dma_dom->aperture_size = (1ULL << order);
  329. dma_dom->bitmap = kzalloc(dma_dom->aperture_size / (PAGE_SIZE * 8),
  330. GFP_KERNEL);
  331. if (!dma_dom->bitmap)
  332. goto free_dma_dom;
  333. /*
  334. * mark the first page as allocated so we never return 0 as
  335. * a valid dma-address. So we can use 0 as error value
  336. */
  337. dma_dom->bitmap[0] = 1;
  338. dma_dom->next_bit = 0;
  339. if (iommu->exclusion_start &&
  340. iommu->exclusion_start < dma_dom->aperture_size) {
  341. unsigned long startpage = iommu->exclusion_start >> PAGE_SHIFT;
  342. int pages = to_pages(iommu->exclusion_start,
  343. iommu->exclusion_length);
  344. dma_ops_reserve_addresses(dma_dom, startpage, pages);
  345. }
  346. num_pte_pages = dma_dom->aperture_size / (PAGE_SIZE * 512);
  347. dma_dom->pte_pages = kzalloc(num_pte_pages * sizeof(void *),
  348. GFP_KERNEL);
  349. if (!dma_dom->pte_pages)
  350. goto free_dma_dom;
  351. l2_pde = (u64 *)get_zeroed_page(GFP_KERNEL);
  352. if (l2_pde == NULL)
  353. goto free_dma_dom;
  354. dma_dom->domain.pt_root[0] = IOMMU_L2_PDE(virt_to_phys(l2_pde));
  355. for (i = 0; i < num_pte_pages; ++i) {
  356. dma_dom->pte_pages[i] = (u64 *)get_zeroed_page(GFP_KERNEL);
  357. if (!dma_dom->pte_pages[i])
  358. goto free_dma_dom;
  359. address = virt_to_phys(dma_dom->pte_pages[i]);
  360. l2_pde[i] = IOMMU_L1_PDE(address);
  361. }
  362. return dma_dom;
  363. free_dma_dom:
  364. dma_ops_domain_free(dma_dom);
  365. return NULL;
  366. }
  367. static struct protection_domain *domain_for_device(u16 devid)
  368. {
  369. struct protection_domain *dom;
  370. unsigned long flags;
  371. read_lock_irqsave(&amd_iommu_devtable_lock, flags);
  372. dom = amd_iommu_pd_table[devid];
  373. read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  374. return dom;
  375. }
  376. static void set_device_domain(struct amd_iommu *iommu,
  377. struct protection_domain *domain,
  378. u16 devid)
  379. {
  380. unsigned long flags;
  381. u64 pte_root = virt_to_phys(domain->pt_root);
  382. pte_root |= (domain->mode & 0x07) << 9;
  383. pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | 2;
  384. write_lock_irqsave(&amd_iommu_devtable_lock, flags);
  385. amd_iommu_dev_table[devid].data[0] = pte_root;
  386. amd_iommu_dev_table[devid].data[1] = pte_root >> 32;
  387. amd_iommu_dev_table[devid].data[2] = domain->id;
  388. amd_iommu_pd_table[devid] = domain;
  389. write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
  390. iommu_queue_inv_dev_entry(iommu, devid);
  391. iommu->need_sync = 1;
  392. }
  393. static int get_device_resources(struct device *dev,
  394. struct amd_iommu **iommu,
  395. struct protection_domain **domain,
  396. u16 *bdf)
  397. {
  398. struct dma_ops_domain *dma_dom;
  399. struct pci_dev *pcidev;
  400. u16 _bdf;
  401. BUG_ON(!dev || dev->bus != &pci_bus_type || !dev->dma_mask);
  402. pcidev = to_pci_dev(dev);
  403. _bdf = (pcidev->bus->number << 8) | pcidev->devfn;
  404. if (_bdf >= amd_iommu_last_bdf) {
  405. *iommu = NULL;
  406. *domain = NULL;
  407. *bdf = 0xffff;
  408. return 0;
  409. }
  410. *bdf = amd_iommu_alias_table[_bdf];
  411. *iommu = amd_iommu_rlookup_table[*bdf];
  412. if (*iommu == NULL)
  413. return 0;
  414. dma_dom = (*iommu)->default_dom;
  415. *domain = domain_for_device(*bdf);
  416. if (*domain == NULL) {
  417. *domain = &dma_dom->domain;
  418. set_device_domain(*iommu, *domain, *bdf);
  419. printk(KERN_INFO "AMD IOMMU: Using protection domain %d for "
  420. "device ", (*domain)->id);
  421. print_devid(_bdf, 1);
  422. }
  423. return 1;
  424. }
  425. static dma_addr_t dma_ops_domain_map(struct amd_iommu *iommu,
  426. struct dma_ops_domain *dom,
  427. unsigned long address,
  428. phys_addr_t paddr,
  429. int direction)
  430. {
  431. u64 *pte, __pte;
  432. WARN_ON(address > dom->aperture_size);
  433. paddr &= PAGE_MASK;
  434. pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
  435. pte += IOMMU_PTE_L0_INDEX(address);
  436. __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
  437. if (direction == DMA_TO_DEVICE)
  438. __pte |= IOMMU_PTE_IR;
  439. else if (direction == DMA_FROM_DEVICE)
  440. __pte |= IOMMU_PTE_IW;
  441. else if (direction == DMA_BIDIRECTIONAL)
  442. __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
  443. WARN_ON(*pte);
  444. *pte = __pte;
  445. return (dma_addr_t)address;
  446. }
  447. static void dma_ops_domain_unmap(struct amd_iommu *iommu,
  448. struct dma_ops_domain *dom,
  449. unsigned long address)
  450. {
  451. u64 *pte;
  452. if (address >= dom->aperture_size)
  453. return;
  454. WARN_ON(address & 0xfffULL || address > dom->aperture_size);
  455. pte = dom->pte_pages[IOMMU_PTE_L1_INDEX(address)];
  456. pte += IOMMU_PTE_L0_INDEX(address);
  457. WARN_ON(!*pte);
  458. *pte = 0ULL;
  459. }
  460. static dma_addr_t __map_single(struct device *dev,
  461. struct amd_iommu *iommu,
  462. struct dma_ops_domain *dma_dom,
  463. phys_addr_t paddr,
  464. size_t size,
  465. int dir)
  466. {
  467. dma_addr_t offset = paddr & ~PAGE_MASK;
  468. dma_addr_t address, start;
  469. unsigned int pages;
  470. int i;
  471. pages = to_pages(paddr, size);
  472. paddr &= PAGE_MASK;
  473. address = dma_ops_alloc_addresses(dev, dma_dom, pages);
  474. if (unlikely(address == bad_dma_address))
  475. goto out;
  476. start = address;
  477. for (i = 0; i < pages; ++i) {
  478. dma_ops_domain_map(iommu, dma_dom, start, paddr, dir);
  479. paddr += PAGE_SIZE;
  480. start += PAGE_SIZE;
  481. }
  482. address += offset;
  483. out:
  484. return address;
  485. }
  486. static void __unmap_single(struct amd_iommu *iommu,
  487. struct dma_ops_domain *dma_dom,
  488. dma_addr_t dma_addr,
  489. size_t size,
  490. int dir)
  491. {
  492. dma_addr_t i, start;
  493. unsigned int pages;
  494. if ((dma_addr == 0) || (dma_addr + size > dma_dom->aperture_size))
  495. return;
  496. pages = to_pages(dma_addr, size);
  497. dma_addr &= PAGE_MASK;
  498. start = dma_addr;
  499. for (i = 0; i < pages; ++i) {
  500. dma_ops_domain_unmap(iommu, dma_dom, start);
  501. start += PAGE_SIZE;
  502. }
  503. dma_ops_free_addresses(dma_dom, dma_addr, pages);
  504. }