input.c 46 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912
  1. /*
  2. * The input core
  3. *
  4. * Copyright (c) 1999-2002 Vojtech Pavlik
  5. */
  6. /*
  7. * This program is free software; you can redistribute it and/or modify it
  8. * under the terms of the GNU General Public License version 2 as published by
  9. * the Free Software Foundation.
  10. */
  11. #include <linux/init.h>
  12. #include <linux/types.h>
  13. #include <linux/input.h>
  14. #include <linux/module.h>
  15. #include <linux/random.h>
  16. #include <linux/major.h>
  17. #include <linux/proc_fs.h>
  18. #include <linux/sched.h>
  19. #include <linux/seq_file.h>
  20. #include <linux/poll.h>
  21. #include <linux/device.h>
  22. #include <linux/mutex.h>
  23. #include <linux/rcupdate.h>
  24. #include <linux/smp_lock.h>
  25. #include "input-compat.h"
  26. MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
  27. MODULE_DESCRIPTION("Input core");
  28. MODULE_LICENSE("GPL");
  29. #define INPUT_DEVICES 256
  30. /*
  31. * EV_ABS events which should not be cached are listed here.
  32. */
  33. static unsigned int input_abs_bypass_init_data[] __initdata = {
  34. ABS_MT_TOUCH_MAJOR,
  35. ABS_MT_TOUCH_MINOR,
  36. ABS_MT_WIDTH_MAJOR,
  37. ABS_MT_WIDTH_MINOR,
  38. ABS_MT_ORIENTATION,
  39. ABS_MT_POSITION_X,
  40. ABS_MT_POSITION_Y,
  41. ABS_MT_TOOL_TYPE,
  42. ABS_MT_BLOB_ID,
  43. ABS_MT_TRACKING_ID,
  44. ABS_MT_PRESSURE,
  45. 0
  46. };
  47. static unsigned long input_abs_bypass[BITS_TO_LONGS(ABS_CNT)];
  48. static LIST_HEAD(input_dev_list);
  49. static LIST_HEAD(input_handler_list);
  50. /*
  51. * input_mutex protects access to both input_dev_list and input_handler_list.
  52. * This also causes input_[un]register_device and input_[un]register_handler
  53. * be mutually exclusive which simplifies locking in drivers implementing
  54. * input handlers.
  55. */
  56. static DEFINE_MUTEX(input_mutex);
  57. static struct input_handler *input_table[8];
  58. static inline int is_event_supported(unsigned int code,
  59. unsigned long *bm, unsigned int max)
  60. {
  61. return code <= max && test_bit(code, bm);
  62. }
  63. static int input_defuzz_abs_event(int value, int old_val, int fuzz)
  64. {
  65. if (fuzz) {
  66. if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
  67. return old_val;
  68. if (value > old_val - fuzz && value < old_val + fuzz)
  69. return (old_val * 3 + value) / 4;
  70. if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
  71. return (old_val + value) / 2;
  72. }
  73. return value;
  74. }
  75. /*
  76. * Pass event through all open handles. This function is called with
  77. * dev->event_lock held and interrupts disabled.
  78. */
  79. static void input_pass_event(struct input_dev *dev,
  80. unsigned int type, unsigned int code, int value)
  81. {
  82. struct input_handle *handle;
  83. rcu_read_lock();
  84. handle = rcu_dereference(dev->grab);
  85. if (handle)
  86. handle->handler->event(handle, type, code, value);
  87. else
  88. list_for_each_entry_rcu(handle, &dev->h_list, d_node)
  89. if (handle->open)
  90. handle->handler->event(handle,
  91. type, code, value);
  92. rcu_read_unlock();
  93. }
  94. /*
  95. * Generate software autorepeat event. Note that we take
  96. * dev->event_lock here to avoid racing with input_event
  97. * which may cause keys get "stuck".
  98. */
  99. static void input_repeat_key(unsigned long data)
  100. {
  101. struct input_dev *dev = (void *) data;
  102. unsigned long flags;
  103. spin_lock_irqsave(&dev->event_lock, flags);
  104. if (test_bit(dev->repeat_key, dev->key) &&
  105. is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
  106. input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
  107. if (dev->sync) {
  108. /*
  109. * Only send SYN_REPORT if we are not in a middle
  110. * of driver parsing a new hardware packet.
  111. * Otherwise assume that the driver will send
  112. * SYN_REPORT once it's done.
  113. */
  114. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  115. }
  116. if (dev->rep[REP_PERIOD])
  117. mod_timer(&dev->timer, jiffies +
  118. msecs_to_jiffies(dev->rep[REP_PERIOD]));
  119. }
  120. spin_unlock_irqrestore(&dev->event_lock, flags);
  121. }
  122. static void input_start_autorepeat(struct input_dev *dev, int code)
  123. {
  124. if (test_bit(EV_REP, dev->evbit) &&
  125. dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
  126. dev->timer.data) {
  127. dev->repeat_key = code;
  128. mod_timer(&dev->timer,
  129. jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
  130. }
  131. }
  132. static void input_stop_autorepeat(struct input_dev *dev)
  133. {
  134. del_timer(&dev->timer);
  135. }
  136. #define INPUT_IGNORE_EVENT 0
  137. #define INPUT_PASS_TO_HANDLERS 1
  138. #define INPUT_PASS_TO_DEVICE 2
  139. #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
  140. static void input_handle_event(struct input_dev *dev,
  141. unsigned int type, unsigned int code, int value)
  142. {
  143. int disposition = INPUT_IGNORE_EVENT;
  144. switch (type) {
  145. case EV_SYN:
  146. switch (code) {
  147. case SYN_CONFIG:
  148. disposition = INPUT_PASS_TO_ALL;
  149. break;
  150. case SYN_REPORT:
  151. if (!dev->sync) {
  152. dev->sync = 1;
  153. disposition = INPUT_PASS_TO_HANDLERS;
  154. }
  155. break;
  156. case SYN_MT_REPORT:
  157. dev->sync = 0;
  158. disposition = INPUT_PASS_TO_HANDLERS;
  159. break;
  160. }
  161. break;
  162. case EV_KEY:
  163. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  164. !!test_bit(code, dev->key) != value) {
  165. if (value != 2) {
  166. __change_bit(code, dev->key);
  167. if (value)
  168. input_start_autorepeat(dev, code);
  169. else
  170. input_stop_autorepeat(dev);
  171. }
  172. disposition = INPUT_PASS_TO_HANDLERS;
  173. }
  174. break;
  175. case EV_SW:
  176. if (is_event_supported(code, dev->swbit, SW_MAX) &&
  177. !!test_bit(code, dev->sw) != value) {
  178. __change_bit(code, dev->sw);
  179. disposition = INPUT_PASS_TO_HANDLERS;
  180. }
  181. break;
  182. case EV_ABS:
  183. if (is_event_supported(code, dev->absbit, ABS_MAX)) {
  184. if (test_bit(code, input_abs_bypass)) {
  185. disposition = INPUT_PASS_TO_HANDLERS;
  186. break;
  187. }
  188. value = input_defuzz_abs_event(value,
  189. dev->abs[code], dev->absfuzz[code]);
  190. if (dev->abs[code] != value) {
  191. dev->abs[code] = value;
  192. disposition = INPUT_PASS_TO_HANDLERS;
  193. }
  194. }
  195. break;
  196. case EV_REL:
  197. if (is_event_supported(code, dev->relbit, REL_MAX) && value)
  198. disposition = INPUT_PASS_TO_HANDLERS;
  199. break;
  200. case EV_MSC:
  201. if (is_event_supported(code, dev->mscbit, MSC_MAX))
  202. disposition = INPUT_PASS_TO_ALL;
  203. break;
  204. case EV_LED:
  205. if (is_event_supported(code, dev->ledbit, LED_MAX) &&
  206. !!test_bit(code, dev->led) != value) {
  207. __change_bit(code, dev->led);
  208. disposition = INPUT_PASS_TO_ALL;
  209. }
  210. break;
  211. case EV_SND:
  212. if (is_event_supported(code, dev->sndbit, SND_MAX)) {
  213. if (!!test_bit(code, dev->snd) != !!value)
  214. __change_bit(code, dev->snd);
  215. disposition = INPUT_PASS_TO_ALL;
  216. }
  217. break;
  218. case EV_REP:
  219. if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
  220. dev->rep[code] = value;
  221. disposition = INPUT_PASS_TO_ALL;
  222. }
  223. break;
  224. case EV_FF:
  225. if (value >= 0)
  226. disposition = INPUT_PASS_TO_ALL;
  227. break;
  228. case EV_PWR:
  229. disposition = INPUT_PASS_TO_ALL;
  230. break;
  231. }
  232. if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
  233. dev->sync = 0;
  234. if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
  235. dev->event(dev, type, code, value);
  236. if (disposition & INPUT_PASS_TO_HANDLERS)
  237. input_pass_event(dev, type, code, value);
  238. }
  239. /**
  240. * input_event() - report new input event
  241. * @dev: device that generated the event
  242. * @type: type of the event
  243. * @code: event code
  244. * @value: value of the event
  245. *
  246. * This function should be used by drivers implementing various input
  247. * devices to report input events. See also input_inject_event().
  248. *
  249. * NOTE: input_event() may be safely used right after input device was
  250. * allocated with input_allocate_device(), even before it is registered
  251. * with input_register_device(), but the event will not reach any of the
  252. * input handlers. Such early invocation of input_event() may be used
  253. * to 'seed' initial state of a switch or initial position of absolute
  254. * axis, etc.
  255. */
  256. void input_event(struct input_dev *dev,
  257. unsigned int type, unsigned int code, int value)
  258. {
  259. unsigned long flags;
  260. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  261. spin_lock_irqsave(&dev->event_lock, flags);
  262. add_input_randomness(type, code, value);
  263. input_handle_event(dev, type, code, value);
  264. spin_unlock_irqrestore(&dev->event_lock, flags);
  265. }
  266. }
  267. EXPORT_SYMBOL(input_event);
  268. /**
  269. * input_inject_event() - send input event from input handler
  270. * @handle: input handle to send event through
  271. * @type: type of the event
  272. * @code: event code
  273. * @value: value of the event
  274. *
  275. * Similar to input_event() but will ignore event if device is
  276. * "grabbed" and handle injecting event is not the one that owns
  277. * the device.
  278. */
  279. void input_inject_event(struct input_handle *handle,
  280. unsigned int type, unsigned int code, int value)
  281. {
  282. struct input_dev *dev = handle->dev;
  283. struct input_handle *grab;
  284. unsigned long flags;
  285. if (is_event_supported(type, dev->evbit, EV_MAX)) {
  286. spin_lock_irqsave(&dev->event_lock, flags);
  287. rcu_read_lock();
  288. grab = rcu_dereference(dev->grab);
  289. if (!grab || grab == handle)
  290. input_handle_event(dev, type, code, value);
  291. rcu_read_unlock();
  292. spin_unlock_irqrestore(&dev->event_lock, flags);
  293. }
  294. }
  295. EXPORT_SYMBOL(input_inject_event);
  296. /**
  297. * input_grab_device - grabs device for exclusive use
  298. * @handle: input handle that wants to own the device
  299. *
  300. * When a device is grabbed by an input handle all events generated by
  301. * the device are delivered only to this handle. Also events injected
  302. * by other input handles are ignored while device is grabbed.
  303. */
  304. int input_grab_device(struct input_handle *handle)
  305. {
  306. struct input_dev *dev = handle->dev;
  307. int retval;
  308. retval = mutex_lock_interruptible(&dev->mutex);
  309. if (retval)
  310. return retval;
  311. if (dev->grab) {
  312. retval = -EBUSY;
  313. goto out;
  314. }
  315. rcu_assign_pointer(dev->grab, handle);
  316. synchronize_rcu();
  317. out:
  318. mutex_unlock(&dev->mutex);
  319. return retval;
  320. }
  321. EXPORT_SYMBOL(input_grab_device);
  322. static void __input_release_device(struct input_handle *handle)
  323. {
  324. struct input_dev *dev = handle->dev;
  325. if (dev->grab == handle) {
  326. rcu_assign_pointer(dev->grab, NULL);
  327. /* Make sure input_pass_event() notices that grab is gone */
  328. synchronize_rcu();
  329. list_for_each_entry(handle, &dev->h_list, d_node)
  330. if (handle->open && handle->handler->start)
  331. handle->handler->start(handle);
  332. }
  333. }
  334. /**
  335. * input_release_device - release previously grabbed device
  336. * @handle: input handle that owns the device
  337. *
  338. * Releases previously grabbed device so that other input handles can
  339. * start receiving input events. Upon release all handlers attached
  340. * to the device have their start() method called so they have a change
  341. * to synchronize device state with the rest of the system.
  342. */
  343. void input_release_device(struct input_handle *handle)
  344. {
  345. struct input_dev *dev = handle->dev;
  346. mutex_lock(&dev->mutex);
  347. __input_release_device(handle);
  348. mutex_unlock(&dev->mutex);
  349. }
  350. EXPORT_SYMBOL(input_release_device);
  351. /**
  352. * input_open_device - open input device
  353. * @handle: handle through which device is being accessed
  354. *
  355. * This function should be called by input handlers when they
  356. * want to start receive events from given input device.
  357. */
  358. int input_open_device(struct input_handle *handle)
  359. {
  360. struct input_dev *dev = handle->dev;
  361. int retval;
  362. retval = mutex_lock_interruptible(&dev->mutex);
  363. if (retval)
  364. return retval;
  365. if (dev->going_away) {
  366. retval = -ENODEV;
  367. goto out;
  368. }
  369. handle->open++;
  370. if (!dev->users++ && dev->open)
  371. retval = dev->open(dev);
  372. if (retval) {
  373. dev->users--;
  374. if (!--handle->open) {
  375. /*
  376. * Make sure we are not delivering any more events
  377. * through this handle
  378. */
  379. synchronize_rcu();
  380. }
  381. }
  382. out:
  383. mutex_unlock(&dev->mutex);
  384. return retval;
  385. }
  386. EXPORT_SYMBOL(input_open_device);
  387. int input_flush_device(struct input_handle *handle, struct file *file)
  388. {
  389. struct input_dev *dev = handle->dev;
  390. int retval;
  391. retval = mutex_lock_interruptible(&dev->mutex);
  392. if (retval)
  393. return retval;
  394. if (dev->flush)
  395. retval = dev->flush(dev, file);
  396. mutex_unlock(&dev->mutex);
  397. return retval;
  398. }
  399. EXPORT_SYMBOL(input_flush_device);
  400. /**
  401. * input_close_device - close input device
  402. * @handle: handle through which device is being accessed
  403. *
  404. * This function should be called by input handlers when they
  405. * want to stop receive events from given input device.
  406. */
  407. void input_close_device(struct input_handle *handle)
  408. {
  409. struct input_dev *dev = handle->dev;
  410. mutex_lock(&dev->mutex);
  411. __input_release_device(handle);
  412. if (!--dev->users && dev->close)
  413. dev->close(dev);
  414. if (!--handle->open) {
  415. /*
  416. * synchronize_rcu() makes sure that input_pass_event()
  417. * completed and that no more input events are delivered
  418. * through this handle
  419. */
  420. synchronize_rcu();
  421. }
  422. mutex_unlock(&dev->mutex);
  423. }
  424. EXPORT_SYMBOL(input_close_device);
  425. /*
  426. * Prepare device for unregistering
  427. */
  428. static void input_disconnect_device(struct input_dev *dev)
  429. {
  430. struct input_handle *handle;
  431. int code;
  432. /*
  433. * Mark device as going away. Note that we take dev->mutex here
  434. * not to protect access to dev->going_away but rather to ensure
  435. * that there are no threads in the middle of input_open_device()
  436. */
  437. mutex_lock(&dev->mutex);
  438. dev->going_away = true;
  439. mutex_unlock(&dev->mutex);
  440. spin_lock_irq(&dev->event_lock);
  441. /*
  442. * Simulate keyup events for all pressed keys so that handlers
  443. * are not left with "stuck" keys. The driver may continue
  444. * generate events even after we done here but they will not
  445. * reach any handlers.
  446. */
  447. if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
  448. for (code = 0; code <= KEY_MAX; code++) {
  449. if (is_event_supported(code, dev->keybit, KEY_MAX) &&
  450. __test_and_clear_bit(code, dev->key)) {
  451. input_pass_event(dev, EV_KEY, code, 0);
  452. }
  453. }
  454. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  455. }
  456. list_for_each_entry(handle, &dev->h_list, d_node)
  457. handle->open = 0;
  458. spin_unlock_irq(&dev->event_lock);
  459. }
  460. static int input_fetch_keycode(struct input_dev *dev, int scancode)
  461. {
  462. switch (dev->keycodesize) {
  463. case 1:
  464. return ((u8 *)dev->keycode)[scancode];
  465. case 2:
  466. return ((u16 *)dev->keycode)[scancode];
  467. default:
  468. return ((u32 *)dev->keycode)[scancode];
  469. }
  470. }
  471. static int input_default_getkeycode(struct input_dev *dev,
  472. int scancode, int *keycode)
  473. {
  474. if (!dev->keycodesize)
  475. return -EINVAL;
  476. if (scancode >= dev->keycodemax)
  477. return -EINVAL;
  478. *keycode = input_fetch_keycode(dev, scancode);
  479. return 0;
  480. }
  481. static int input_default_setkeycode(struct input_dev *dev,
  482. int scancode, int keycode)
  483. {
  484. int old_keycode;
  485. int i;
  486. if (scancode >= dev->keycodemax)
  487. return -EINVAL;
  488. if (!dev->keycodesize)
  489. return -EINVAL;
  490. if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
  491. return -EINVAL;
  492. switch (dev->keycodesize) {
  493. case 1: {
  494. u8 *k = (u8 *)dev->keycode;
  495. old_keycode = k[scancode];
  496. k[scancode] = keycode;
  497. break;
  498. }
  499. case 2: {
  500. u16 *k = (u16 *)dev->keycode;
  501. old_keycode = k[scancode];
  502. k[scancode] = keycode;
  503. break;
  504. }
  505. default: {
  506. u32 *k = (u32 *)dev->keycode;
  507. old_keycode = k[scancode];
  508. k[scancode] = keycode;
  509. break;
  510. }
  511. }
  512. clear_bit(old_keycode, dev->keybit);
  513. set_bit(keycode, dev->keybit);
  514. for (i = 0; i < dev->keycodemax; i++) {
  515. if (input_fetch_keycode(dev, i) == old_keycode) {
  516. set_bit(old_keycode, dev->keybit);
  517. break; /* Setting the bit twice is useless, so break */
  518. }
  519. }
  520. return 0;
  521. }
  522. /**
  523. * input_get_keycode - retrieve keycode currently mapped to a given scancode
  524. * @dev: input device which keymap is being queried
  525. * @scancode: scancode (or its equivalent for device in question) for which
  526. * keycode is needed
  527. * @keycode: result
  528. *
  529. * This function should be called by anyone interested in retrieving current
  530. * keymap. Presently keyboard and evdev handlers use it.
  531. */
  532. int input_get_keycode(struct input_dev *dev, int scancode, int *keycode)
  533. {
  534. if (scancode < 0)
  535. return -EINVAL;
  536. return dev->getkeycode(dev, scancode, keycode);
  537. }
  538. EXPORT_SYMBOL(input_get_keycode);
  539. /**
  540. * input_get_keycode - assign new keycode to a given scancode
  541. * @dev: input device which keymap is being updated
  542. * @scancode: scancode (or its equivalent for device in question)
  543. * @keycode: new keycode to be assigned to the scancode
  544. *
  545. * This function should be called by anyone needing to update current
  546. * keymap. Presently keyboard and evdev handlers use it.
  547. */
  548. int input_set_keycode(struct input_dev *dev, int scancode, int keycode)
  549. {
  550. unsigned long flags;
  551. int old_keycode;
  552. int retval;
  553. if (scancode < 0)
  554. return -EINVAL;
  555. if (keycode < 0 || keycode > KEY_MAX)
  556. return -EINVAL;
  557. spin_lock_irqsave(&dev->event_lock, flags);
  558. retval = dev->getkeycode(dev, scancode, &old_keycode);
  559. if (retval)
  560. goto out;
  561. retval = dev->setkeycode(dev, scancode, keycode);
  562. if (retval)
  563. goto out;
  564. /*
  565. * Simulate keyup event if keycode is not present
  566. * in the keymap anymore
  567. */
  568. if (test_bit(EV_KEY, dev->evbit) &&
  569. !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
  570. __test_and_clear_bit(old_keycode, dev->key)) {
  571. input_pass_event(dev, EV_KEY, old_keycode, 0);
  572. if (dev->sync)
  573. input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
  574. }
  575. out:
  576. spin_unlock_irqrestore(&dev->event_lock, flags);
  577. return retval;
  578. }
  579. EXPORT_SYMBOL(input_set_keycode);
  580. #define MATCH_BIT(bit, max) \
  581. for (i = 0; i < BITS_TO_LONGS(max); i++) \
  582. if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
  583. break; \
  584. if (i != BITS_TO_LONGS(max)) \
  585. continue;
  586. static const struct input_device_id *input_match_device(const struct input_device_id *id,
  587. struct input_dev *dev)
  588. {
  589. int i;
  590. for (; id->flags || id->driver_info; id++) {
  591. if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
  592. if (id->bustype != dev->id.bustype)
  593. continue;
  594. if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
  595. if (id->vendor != dev->id.vendor)
  596. continue;
  597. if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
  598. if (id->product != dev->id.product)
  599. continue;
  600. if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
  601. if (id->version != dev->id.version)
  602. continue;
  603. MATCH_BIT(evbit, EV_MAX);
  604. MATCH_BIT(keybit, KEY_MAX);
  605. MATCH_BIT(relbit, REL_MAX);
  606. MATCH_BIT(absbit, ABS_MAX);
  607. MATCH_BIT(mscbit, MSC_MAX);
  608. MATCH_BIT(ledbit, LED_MAX);
  609. MATCH_BIT(sndbit, SND_MAX);
  610. MATCH_BIT(ffbit, FF_MAX);
  611. MATCH_BIT(swbit, SW_MAX);
  612. return id;
  613. }
  614. return NULL;
  615. }
  616. static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
  617. {
  618. const struct input_device_id *id;
  619. int error;
  620. if (handler->blacklist && input_match_device(handler->blacklist, dev))
  621. return -ENODEV;
  622. id = input_match_device(handler->id_table, dev);
  623. if (!id)
  624. return -ENODEV;
  625. error = handler->connect(handler, dev, id);
  626. if (error && error != -ENODEV)
  627. printk(KERN_ERR
  628. "input: failed to attach handler %s to device %s, "
  629. "error: %d\n",
  630. handler->name, kobject_name(&dev->dev.kobj), error);
  631. return error;
  632. }
  633. #ifdef CONFIG_COMPAT
  634. static int input_bits_to_string(char *buf, int buf_size,
  635. unsigned long bits, bool skip_empty)
  636. {
  637. int len = 0;
  638. if (INPUT_COMPAT_TEST) {
  639. u32 dword = bits >> 32;
  640. if (dword || !skip_empty)
  641. len += snprintf(buf, buf_size, "%x ", dword);
  642. dword = bits & 0xffffffffUL;
  643. if (dword || !skip_empty || len)
  644. len += snprintf(buf + len, max(buf_size - len, 0),
  645. "%x", dword);
  646. } else {
  647. if (bits || !skip_empty)
  648. len += snprintf(buf, buf_size, "%lx", bits);
  649. }
  650. return len;
  651. }
  652. #else /* !CONFIG_COMPAT */
  653. static int input_bits_to_string(char *buf, int buf_size,
  654. unsigned long bits, bool skip_empty)
  655. {
  656. return bits || !skip_empty ?
  657. snprintf(buf, buf_size, "%lx", bits) : 0;
  658. }
  659. #endif
  660. #ifdef CONFIG_PROC_FS
  661. static struct proc_dir_entry *proc_bus_input_dir;
  662. static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
  663. static int input_devices_state;
  664. static inline void input_wakeup_procfs_readers(void)
  665. {
  666. input_devices_state++;
  667. wake_up(&input_devices_poll_wait);
  668. }
  669. static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
  670. {
  671. poll_wait(file, &input_devices_poll_wait, wait);
  672. if (file->f_version != input_devices_state) {
  673. file->f_version = input_devices_state;
  674. return POLLIN | POLLRDNORM;
  675. }
  676. return 0;
  677. }
  678. union input_seq_state {
  679. struct {
  680. unsigned short pos;
  681. bool mutex_acquired;
  682. };
  683. void *p;
  684. };
  685. static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
  686. {
  687. union input_seq_state *state = (union input_seq_state *)&seq->private;
  688. int error;
  689. /* We need to fit into seq->private pointer */
  690. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  691. error = mutex_lock_interruptible(&input_mutex);
  692. if (error) {
  693. state->mutex_acquired = false;
  694. return ERR_PTR(error);
  695. }
  696. state->mutex_acquired = true;
  697. return seq_list_start(&input_dev_list, *pos);
  698. }
  699. static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  700. {
  701. return seq_list_next(v, &input_dev_list, pos);
  702. }
  703. static void input_seq_stop(struct seq_file *seq, void *v)
  704. {
  705. union input_seq_state *state = (union input_seq_state *)&seq->private;
  706. if (state->mutex_acquired)
  707. mutex_unlock(&input_mutex);
  708. }
  709. static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
  710. unsigned long *bitmap, int max)
  711. {
  712. int i;
  713. bool skip_empty = true;
  714. char buf[18];
  715. seq_printf(seq, "B: %s=", name);
  716. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  717. if (input_bits_to_string(buf, sizeof(buf),
  718. bitmap[i], skip_empty)) {
  719. skip_empty = false;
  720. seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
  721. }
  722. }
  723. /*
  724. * If no output was produced print a single 0.
  725. */
  726. if (skip_empty)
  727. seq_puts(seq, "0");
  728. seq_putc(seq, '\n');
  729. }
  730. static int input_devices_seq_show(struct seq_file *seq, void *v)
  731. {
  732. struct input_dev *dev = container_of(v, struct input_dev, node);
  733. const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  734. struct input_handle *handle;
  735. seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
  736. dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
  737. seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
  738. seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
  739. seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
  740. seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
  741. seq_printf(seq, "H: Handlers=");
  742. list_for_each_entry(handle, &dev->h_list, d_node)
  743. seq_printf(seq, "%s ", handle->name);
  744. seq_putc(seq, '\n');
  745. input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
  746. if (test_bit(EV_KEY, dev->evbit))
  747. input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
  748. if (test_bit(EV_REL, dev->evbit))
  749. input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
  750. if (test_bit(EV_ABS, dev->evbit))
  751. input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
  752. if (test_bit(EV_MSC, dev->evbit))
  753. input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
  754. if (test_bit(EV_LED, dev->evbit))
  755. input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
  756. if (test_bit(EV_SND, dev->evbit))
  757. input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
  758. if (test_bit(EV_FF, dev->evbit))
  759. input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
  760. if (test_bit(EV_SW, dev->evbit))
  761. input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
  762. seq_putc(seq, '\n');
  763. kfree(path);
  764. return 0;
  765. }
  766. static const struct seq_operations input_devices_seq_ops = {
  767. .start = input_devices_seq_start,
  768. .next = input_devices_seq_next,
  769. .stop = input_seq_stop,
  770. .show = input_devices_seq_show,
  771. };
  772. static int input_proc_devices_open(struct inode *inode, struct file *file)
  773. {
  774. return seq_open(file, &input_devices_seq_ops);
  775. }
  776. static const struct file_operations input_devices_fileops = {
  777. .owner = THIS_MODULE,
  778. .open = input_proc_devices_open,
  779. .poll = input_proc_devices_poll,
  780. .read = seq_read,
  781. .llseek = seq_lseek,
  782. .release = seq_release,
  783. };
  784. static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
  785. {
  786. union input_seq_state *state = (union input_seq_state *)&seq->private;
  787. int error;
  788. /* We need to fit into seq->private pointer */
  789. BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
  790. error = mutex_lock_interruptible(&input_mutex);
  791. if (error) {
  792. state->mutex_acquired = false;
  793. return ERR_PTR(error);
  794. }
  795. state->mutex_acquired = true;
  796. state->pos = *pos;
  797. return seq_list_start(&input_handler_list, *pos);
  798. }
  799. static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  800. {
  801. union input_seq_state *state = (union input_seq_state *)&seq->private;
  802. state->pos = *pos + 1;
  803. return seq_list_next(v, &input_handler_list, pos);
  804. }
  805. static int input_handlers_seq_show(struct seq_file *seq, void *v)
  806. {
  807. struct input_handler *handler = container_of(v, struct input_handler, node);
  808. union input_seq_state *state = (union input_seq_state *)&seq->private;
  809. seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
  810. if (handler->fops)
  811. seq_printf(seq, " Minor=%d", handler->minor);
  812. seq_putc(seq, '\n');
  813. return 0;
  814. }
  815. static const struct seq_operations input_handlers_seq_ops = {
  816. .start = input_handlers_seq_start,
  817. .next = input_handlers_seq_next,
  818. .stop = input_seq_stop,
  819. .show = input_handlers_seq_show,
  820. };
  821. static int input_proc_handlers_open(struct inode *inode, struct file *file)
  822. {
  823. return seq_open(file, &input_handlers_seq_ops);
  824. }
  825. static const struct file_operations input_handlers_fileops = {
  826. .owner = THIS_MODULE,
  827. .open = input_proc_handlers_open,
  828. .read = seq_read,
  829. .llseek = seq_lseek,
  830. .release = seq_release,
  831. };
  832. static int __init input_proc_init(void)
  833. {
  834. struct proc_dir_entry *entry;
  835. proc_bus_input_dir = proc_mkdir("bus/input", NULL);
  836. if (!proc_bus_input_dir)
  837. return -ENOMEM;
  838. entry = proc_create("devices", 0, proc_bus_input_dir,
  839. &input_devices_fileops);
  840. if (!entry)
  841. goto fail1;
  842. entry = proc_create("handlers", 0, proc_bus_input_dir,
  843. &input_handlers_fileops);
  844. if (!entry)
  845. goto fail2;
  846. return 0;
  847. fail2: remove_proc_entry("devices", proc_bus_input_dir);
  848. fail1: remove_proc_entry("bus/input", NULL);
  849. return -ENOMEM;
  850. }
  851. static void input_proc_exit(void)
  852. {
  853. remove_proc_entry("devices", proc_bus_input_dir);
  854. remove_proc_entry("handlers", proc_bus_input_dir);
  855. remove_proc_entry("bus/input", NULL);
  856. }
  857. #else /* !CONFIG_PROC_FS */
  858. static inline void input_wakeup_procfs_readers(void) { }
  859. static inline int input_proc_init(void) { return 0; }
  860. static inline void input_proc_exit(void) { }
  861. #endif
  862. #define INPUT_DEV_STRING_ATTR_SHOW(name) \
  863. static ssize_t input_dev_show_##name(struct device *dev, \
  864. struct device_attribute *attr, \
  865. char *buf) \
  866. { \
  867. struct input_dev *input_dev = to_input_dev(dev); \
  868. \
  869. return scnprintf(buf, PAGE_SIZE, "%s\n", \
  870. input_dev->name ? input_dev->name : ""); \
  871. } \
  872. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
  873. INPUT_DEV_STRING_ATTR_SHOW(name);
  874. INPUT_DEV_STRING_ATTR_SHOW(phys);
  875. INPUT_DEV_STRING_ATTR_SHOW(uniq);
  876. static int input_print_modalias_bits(char *buf, int size,
  877. char name, unsigned long *bm,
  878. unsigned int min_bit, unsigned int max_bit)
  879. {
  880. int len = 0, i;
  881. len += snprintf(buf, max(size, 0), "%c", name);
  882. for (i = min_bit; i < max_bit; i++)
  883. if (bm[BIT_WORD(i)] & BIT_MASK(i))
  884. len += snprintf(buf + len, max(size - len, 0), "%X,", i);
  885. return len;
  886. }
  887. static int input_print_modalias(char *buf, int size, struct input_dev *id,
  888. int add_cr)
  889. {
  890. int len;
  891. len = snprintf(buf, max(size, 0),
  892. "input:b%04Xv%04Xp%04Xe%04X-",
  893. id->id.bustype, id->id.vendor,
  894. id->id.product, id->id.version);
  895. len += input_print_modalias_bits(buf + len, size - len,
  896. 'e', id->evbit, 0, EV_MAX);
  897. len += input_print_modalias_bits(buf + len, size - len,
  898. 'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
  899. len += input_print_modalias_bits(buf + len, size - len,
  900. 'r', id->relbit, 0, REL_MAX);
  901. len += input_print_modalias_bits(buf + len, size - len,
  902. 'a', id->absbit, 0, ABS_MAX);
  903. len += input_print_modalias_bits(buf + len, size - len,
  904. 'm', id->mscbit, 0, MSC_MAX);
  905. len += input_print_modalias_bits(buf + len, size - len,
  906. 'l', id->ledbit, 0, LED_MAX);
  907. len += input_print_modalias_bits(buf + len, size - len,
  908. 's', id->sndbit, 0, SND_MAX);
  909. len += input_print_modalias_bits(buf + len, size - len,
  910. 'f', id->ffbit, 0, FF_MAX);
  911. len += input_print_modalias_bits(buf + len, size - len,
  912. 'w', id->swbit, 0, SW_MAX);
  913. if (add_cr)
  914. len += snprintf(buf + len, max(size - len, 0), "\n");
  915. return len;
  916. }
  917. static ssize_t input_dev_show_modalias(struct device *dev,
  918. struct device_attribute *attr,
  919. char *buf)
  920. {
  921. struct input_dev *id = to_input_dev(dev);
  922. ssize_t len;
  923. len = input_print_modalias(buf, PAGE_SIZE, id, 1);
  924. return min_t(int, len, PAGE_SIZE);
  925. }
  926. static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
  927. static struct attribute *input_dev_attrs[] = {
  928. &dev_attr_name.attr,
  929. &dev_attr_phys.attr,
  930. &dev_attr_uniq.attr,
  931. &dev_attr_modalias.attr,
  932. NULL
  933. };
  934. static struct attribute_group input_dev_attr_group = {
  935. .attrs = input_dev_attrs,
  936. };
  937. #define INPUT_DEV_ID_ATTR(name) \
  938. static ssize_t input_dev_show_id_##name(struct device *dev, \
  939. struct device_attribute *attr, \
  940. char *buf) \
  941. { \
  942. struct input_dev *input_dev = to_input_dev(dev); \
  943. return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
  944. } \
  945. static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
  946. INPUT_DEV_ID_ATTR(bustype);
  947. INPUT_DEV_ID_ATTR(vendor);
  948. INPUT_DEV_ID_ATTR(product);
  949. INPUT_DEV_ID_ATTR(version);
  950. static struct attribute *input_dev_id_attrs[] = {
  951. &dev_attr_bustype.attr,
  952. &dev_attr_vendor.attr,
  953. &dev_attr_product.attr,
  954. &dev_attr_version.attr,
  955. NULL
  956. };
  957. static struct attribute_group input_dev_id_attr_group = {
  958. .name = "id",
  959. .attrs = input_dev_id_attrs,
  960. };
  961. static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
  962. int max, int add_cr)
  963. {
  964. int i;
  965. int len = 0;
  966. bool skip_empty = true;
  967. for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
  968. len += input_bits_to_string(buf + len, max(buf_size - len, 0),
  969. bitmap[i], skip_empty);
  970. if (len) {
  971. skip_empty = false;
  972. if (i > 0)
  973. len += snprintf(buf + len, max(buf_size - len, 0), " ");
  974. }
  975. }
  976. /*
  977. * If no output was produced print a single 0.
  978. */
  979. if (len == 0)
  980. len = snprintf(buf, buf_size, "%d", 0);
  981. if (add_cr)
  982. len += snprintf(buf + len, max(buf_size - len, 0), "\n");
  983. return len;
  984. }
  985. #define INPUT_DEV_CAP_ATTR(ev, bm) \
  986. static ssize_t input_dev_show_cap_##bm(struct device *dev, \
  987. struct device_attribute *attr, \
  988. char *buf) \
  989. { \
  990. struct input_dev *input_dev = to_input_dev(dev); \
  991. int len = input_print_bitmap(buf, PAGE_SIZE, \
  992. input_dev->bm##bit, ev##_MAX, \
  993. true); \
  994. return min_t(int, len, PAGE_SIZE); \
  995. } \
  996. static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
  997. INPUT_DEV_CAP_ATTR(EV, ev);
  998. INPUT_DEV_CAP_ATTR(KEY, key);
  999. INPUT_DEV_CAP_ATTR(REL, rel);
  1000. INPUT_DEV_CAP_ATTR(ABS, abs);
  1001. INPUT_DEV_CAP_ATTR(MSC, msc);
  1002. INPUT_DEV_CAP_ATTR(LED, led);
  1003. INPUT_DEV_CAP_ATTR(SND, snd);
  1004. INPUT_DEV_CAP_ATTR(FF, ff);
  1005. INPUT_DEV_CAP_ATTR(SW, sw);
  1006. static struct attribute *input_dev_caps_attrs[] = {
  1007. &dev_attr_ev.attr,
  1008. &dev_attr_key.attr,
  1009. &dev_attr_rel.attr,
  1010. &dev_attr_abs.attr,
  1011. &dev_attr_msc.attr,
  1012. &dev_attr_led.attr,
  1013. &dev_attr_snd.attr,
  1014. &dev_attr_ff.attr,
  1015. &dev_attr_sw.attr,
  1016. NULL
  1017. };
  1018. static struct attribute_group input_dev_caps_attr_group = {
  1019. .name = "capabilities",
  1020. .attrs = input_dev_caps_attrs,
  1021. };
  1022. static const struct attribute_group *input_dev_attr_groups[] = {
  1023. &input_dev_attr_group,
  1024. &input_dev_id_attr_group,
  1025. &input_dev_caps_attr_group,
  1026. NULL
  1027. };
  1028. static void input_dev_release(struct device *device)
  1029. {
  1030. struct input_dev *dev = to_input_dev(device);
  1031. input_ff_destroy(dev);
  1032. kfree(dev);
  1033. module_put(THIS_MODULE);
  1034. }
  1035. /*
  1036. * Input uevent interface - loading event handlers based on
  1037. * device bitfields.
  1038. */
  1039. static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
  1040. const char *name, unsigned long *bitmap, int max)
  1041. {
  1042. int len;
  1043. if (add_uevent_var(env, "%s=", name))
  1044. return -ENOMEM;
  1045. len = input_print_bitmap(&env->buf[env->buflen - 1],
  1046. sizeof(env->buf) - env->buflen,
  1047. bitmap, max, false);
  1048. if (len >= (sizeof(env->buf) - env->buflen))
  1049. return -ENOMEM;
  1050. env->buflen += len;
  1051. return 0;
  1052. }
  1053. static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
  1054. struct input_dev *dev)
  1055. {
  1056. int len;
  1057. if (add_uevent_var(env, "MODALIAS="))
  1058. return -ENOMEM;
  1059. len = input_print_modalias(&env->buf[env->buflen - 1],
  1060. sizeof(env->buf) - env->buflen,
  1061. dev, 0);
  1062. if (len >= (sizeof(env->buf) - env->buflen))
  1063. return -ENOMEM;
  1064. env->buflen += len;
  1065. return 0;
  1066. }
  1067. #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
  1068. do { \
  1069. int err = add_uevent_var(env, fmt, val); \
  1070. if (err) \
  1071. return err; \
  1072. } while (0)
  1073. #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
  1074. do { \
  1075. int err = input_add_uevent_bm_var(env, name, bm, max); \
  1076. if (err) \
  1077. return err; \
  1078. } while (0)
  1079. #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
  1080. do { \
  1081. int err = input_add_uevent_modalias_var(env, dev); \
  1082. if (err) \
  1083. return err; \
  1084. } while (0)
  1085. static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
  1086. {
  1087. struct input_dev *dev = to_input_dev(device);
  1088. INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
  1089. dev->id.bustype, dev->id.vendor,
  1090. dev->id.product, dev->id.version);
  1091. if (dev->name)
  1092. INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
  1093. if (dev->phys)
  1094. INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
  1095. if (dev->uniq)
  1096. INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
  1097. INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
  1098. if (test_bit(EV_KEY, dev->evbit))
  1099. INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
  1100. if (test_bit(EV_REL, dev->evbit))
  1101. INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
  1102. if (test_bit(EV_ABS, dev->evbit))
  1103. INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
  1104. if (test_bit(EV_MSC, dev->evbit))
  1105. INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
  1106. if (test_bit(EV_LED, dev->evbit))
  1107. INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
  1108. if (test_bit(EV_SND, dev->evbit))
  1109. INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
  1110. if (test_bit(EV_FF, dev->evbit))
  1111. INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
  1112. if (test_bit(EV_SW, dev->evbit))
  1113. INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
  1114. INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
  1115. return 0;
  1116. }
  1117. #define INPUT_DO_TOGGLE(dev, type, bits, on) \
  1118. do { \
  1119. int i; \
  1120. bool active; \
  1121. \
  1122. if (!test_bit(EV_##type, dev->evbit)) \
  1123. break; \
  1124. \
  1125. for (i = 0; i < type##_MAX; i++) { \
  1126. if (!test_bit(i, dev->bits##bit)) \
  1127. continue; \
  1128. \
  1129. active = test_bit(i, dev->bits); \
  1130. if (!active && !on) \
  1131. continue; \
  1132. \
  1133. dev->event(dev, EV_##type, i, on ? active : 0); \
  1134. } \
  1135. } while (0)
  1136. #ifdef CONFIG_PM
  1137. static void input_dev_reset(struct input_dev *dev, bool activate)
  1138. {
  1139. if (!dev->event)
  1140. return;
  1141. INPUT_DO_TOGGLE(dev, LED, led, activate);
  1142. INPUT_DO_TOGGLE(dev, SND, snd, activate);
  1143. if (activate && test_bit(EV_REP, dev->evbit)) {
  1144. dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
  1145. dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
  1146. }
  1147. }
  1148. static int input_dev_suspend(struct device *dev)
  1149. {
  1150. struct input_dev *input_dev = to_input_dev(dev);
  1151. mutex_lock(&input_dev->mutex);
  1152. input_dev_reset(input_dev, false);
  1153. mutex_unlock(&input_dev->mutex);
  1154. return 0;
  1155. }
  1156. static int input_dev_resume(struct device *dev)
  1157. {
  1158. struct input_dev *input_dev = to_input_dev(dev);
  1159. mutex_lock(&input_dev->mutex);
  1160. input_dev_reset(input_dev, true);
  1161. mutex_unlock(&input_dev->mutex);
  1162. return 0;
  1163. }
  1164. static const struct dev_pm_ops input_dev_pm_ops = {
  1165. .suspend = input_dev_suspend,
  1166. .resume = input_dev_resume,
  1167. .poweroff = input_dev_suspend,
  1168. .restore = input_dev_resume,
  1169. };
  1170. #endif /* CONFIG_PM */
  1171. static struct device_type input_dev_type = {
  1172. .groups = input_dev_attr_groups,
  1173. .release = input_dev_release,
  1174. .uevent = input_dev_uevent,
  1175. #ifdef CONFIG_PM
  1176. .pm = &input_dev_pm_ops,
  1177. #endif
  1178. };
  1179. static char *input_devnode(struct device *dev, mode_t *mode)
  1180. {
  1181. return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
  1182. }
  1183. struct class input_class = {
  1184. .name = "input",
  1185. .devnode = input_devnode,
  1186. };
  1187. EXPORT_SYMBOL_GPL(input_class);
  1188. /**
  1189. * input_allocate_device - allocate memory for new input device
  1190. *
  1191. * Returns prepared struct input_dev or NULL.
  1192. *
  1193. * NOTE: Use input_free_device() to free devices that have not been
  1194. * registered; input_unregister_device() should be used for already
  1195. * registered devices.
  1196. */
  1197. struct input_dev *input_allocate_device(void)
  1198. {
  1199. struct input_dev *dev;
  1200. dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
  1201. if (dev) {
  1202. dev->dev.type = &input_dev_type;
  1203. dev->dev.class = &input_class;
  1204. device_initialize(&dev->dev);
  1205. mutex_init(&dev->mutex);
  1206. spin_lock_init(&dev->event_lock);
  1207. INIT_LIST_HEAD(&dev->h_list);
  1208. INIT_LIST_HEAD(&dev->node);
  1209. __module_get(THIS_MODULE);
  1210. }
  1211. return dev;
  1212. }
  1213. EXPORT_SYMBOL(input_allocate_device);
  1214. /**
  1215. * input_free_device - free memory occupied by input_dev structure
  1216. * @dev: input device to free
  1217. *
  1218. * This function should only be used if input_register_device()
  1219. * was not called yet or if it failed. Once device was registered
  1220. * use input_unregister_device() and memory will be freed once last
  1221. * reference to the device is dropped.
  1222. *
  1223. * Device should be allocated by input_allocate_device().
  1224. *
  1225. * NOTE: If there are references to the input device then memory
  1226. * will not be freed until last reference is dropped.
  1227. */
  1228. void input_free_device(struct input_dev *dev)
  1229. {
  1230. if (dev)
  1231. input_put_device(dev);
  1232. }
  1233. EXPORT_SYMBOL(input_free_device);
  1234. /**
  1235. * input_set_capability - mark device as capable of a certain event
  1236. * @dev: device that is capable of emitting or accepting event
  1237. * @type: type of the event (EV_KEY, EV_REL, etc...)
  1238. * @code: event code
  1239. *
  1240. * In addition to setting up corresponding bit in appropriate capability
  1241. * bitmap the function also adjusts dev->evbit.
  1242. */
  1243. void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
  1244. {
  1245. switch (type) {
  1246. case EV_KEY:
  1247. __set_bit(code, dev->keybit);
  1248. break;
  1249. case EV_REL:
  1250. __set_bit(code, dev->relbit);
  1251. break;
  1252. case EV_ABS:
  1253. __set_bit(code, dev->absbit);
  1254. break;
  1255. case EV_MSC:
  1256. __set_bit(code, dev->mscbit);
  1257. break;
  1258. case EV_SW:
  1259. __set_bit(code, dev->swbit);
  1260. break;
  1261. case EV_LED:
  1262. __set_bit(code, dev->ledbit);
  1263. break;
  1264. case EV_SND:
  1265. __set_bit(code, dev->sndbit);
  1266. break;
  1267. case EV_FF:
  1268. __set_bit(code, dev->ffbit);
  1269. break;
  1270. case EV_PWR:
  1271. /* do nothing */
  1272. break;
  1273. default:
  1274. printk(KERN_ERR
  1275. "input_set_capability: unknown type %u (code %u)\n",
  1276. type, code);
  1277. dump_stack();
  1278. return;
  1279. }
  1280. __set_bit(type, dev->evbit);
  1281. }
  1282. EXPORT_SYMBOL(input_set_capability);
  1283. /**
  1284. * input_register_device - register device with input core
  1285. * @dev: device to be registered
  1286. *
  1287. * This function registers device with input core. The device must be
  1288. * allocated with input_allocate_device() and all it's capabilities
  1289. * set up before registering.
  1290. * If function fails the device must be freed with input_free_device().
  1291. * Once device has been successfully registered it can be unregistered
  1292. * with input_unregister_device(); input_free_device() should not be
  1293. * called in this case.
  1294. */
  1295. int input_register_device(struct input_dev *dev)
  1296. {
  1297. static atomic_t input_no = ATOMIC_INIT(0);
  1298. struct input_handler *handler;
  1299. const char *path;
  1300. int error;
  1301. __set_bit(EV_SYN, dev->evbit);
  1302. /*
  1303. * If delay and period are pre-set by the driver, then autorepeating
  1304. * is handled by the driver itself and we don't do it in input.c.
  1305. */
  1306. init_timer(&dev->timer);
  1307. if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
  1308. dev->timer.data = (long) dev;
  1309. dev->timer.function = input_repeat_key;
  1310. dev->rep[REP_DELAY] = 250;
  1311. dev->rep[REP_PERIOD] = 33;
  1312. }
  1313. if (!dev->getkeycode)
  1314. dev->getkeycode = input_default_getkeycode;
  1315. if (!dev->setkeycode)
  1316. dev->setkeycode = input_default_setkeycode;
  1317. dev_set_name(&dev->dev, "input%ld",
  1318. (unsigned long) atomic_inc_return(&input_no) - 1);
  1319. error = device_add(&dev->dev);
  1320. if (error)
  1321. return error;
  1322. path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
  1323. printk(KERN_INFO "input: %s as %s\n",
  1324. dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
  1325. kfree(path);
  1326. error = mutex_lock_interruptible(&input_mutex);
  1327. if (error) {
  1328. device_del(&dev->dev);
  1329. return error;
  1330. }
  1331. list_add_tail(&dev->node, &input_dev_list);
  1332. list_for_each_entry(handler, &input_handler_list, node)
  1333. input_attach_handler(dev, handler);
  1334. input_wakeup_procfs_readers();
  1335. mutex_unlock(&input_mutex);
  1336. return 0;
  1337. }
  1338. EXPORT_SYMBOL(input_register_device);
  1339. /**
  1340. * input_unregister_device - unregister previously registered device
  1341. * @dev: device to be unregistered
  1342. *
  1343. * This function unregisters an input device. Once device is unregistered
  1344. * the caller should not try to access it as it may get freed at any moment.
  1345. */
  1346. void input_unregister_device(struct input_dev *dev)
  1347. {
  1348. struct input_handle *handle, *next;
  1349. input_disconnect_device(dev);
  1350. mutex_lock(&input_mutex);
  1351. list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
  1352. handle->handler->disconnect(handle);
  1353. WARN_ON(!list_empty(&dev->h_list));
  1354. del_timer_sync(&dev->timer);
  1355. list_del_init(&dev->node);
  1356. input_wakeup_procfs_readers();
  1357. mutex_unlock(&input_mutex);
  1358. device_unregister(&dev->dev);
  1359. }
  1360. EXPORT_SYMBOL(input_unregister_device);
  1361. /**
  1362. * input_register_handler - register a new input handler
  1363. * @handler: handler to be registered
  1364. *
  1365. * This function registers a new input handler (interface) for input
  1366. * devices in the system and attaches it to all input devices that
  1367. * are compatible with the handler.
  1368. */
  1369. int input_register_handler(struct input_handler *handler)
  1370. {
  1371. struct input_dev *dev;
  1372. int retval;
  1373. retval = mutex_lock_interruptible(&input_mutex);
  1374. if (retval)
  1375. return retval;
  1376. INIT_LIST_HEAD(&handler->h_list);
  1377. if (handler->fops != NULL) {
  1378. if (input_table[handler->minor >> 5]) {
  1379. retval = -EBUSY;
  1380. goto out;
  1381. }
  1382. input_table[handler->minor >> 5] = handler;
  1383. }
  1384. list_add_tail(&handler->node, &input_handler_list);
  1385. list_for_each_entry(dev, &input_dev_list, node)
  1386. input_attach_handler(dev, handler);
  1387. input_wakeup_procfs_readers();
  1388. out:
  1389. mutex_unlock(&input_mutex);
  1390. return retval;
  1391. }
  1392. EXPORT_SYMBOL(input_register_handler);
  1393. /**
  1394. * input_unregister_handler - unregisters an input handler
  1395. * @handler: handler to be unregistered
  1396. *
  1397. * This function disconnects a handler from its input devices and
  1398. * removes it from lists of known handlers.
  1399. */
  1400. void input_unregister_handler(struct input_handler *handler)
  1401. {
  1402. struct input_handle *handle, *next;
  1403. mutex_lock(&input_mutex);
  1404. list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
  1405. handler->disconnect(handle);
  1406. WARN_ON(!list_empty(&handler->h_list));
  1407. list_del_init(&handler->node);
  1408. if (handler->fops != NULL)
  1409. input_table[handler->minor >> 5] = NULL;
  1410. input_wakeup_procfs_readers();
  1411. mutex_unlock(&input_mutex);
  1412. }
  1413. EXPORT_SYMBOL(input_unregister_handler);
  1414. /**
  1415. * input_handler_for_each_handle - handle iterator
  1416. * @handler: input handler to iterate
  1417. * @data: data for the callback
  1418. * @fn: function to be called for each handle
  1419. *
  1420. * Iterate over @bus's list of devices, and call @fn for each, passing
  1421. * it @data and stop when @fn returns a non-zero value. The function is
  1422. * using RCU to traverse the list and therefore may be usind in atonic
  1423. * contexts. The @fn callback is invoked from RCU critical section and
  1424. * thus must not sleep.
  1425. */
  1426. int input_handler_for_each_handle(struct input_handler *handler, void *data,
  1427. int (*fn)(struct input_handle *, void *))
  1428. {
  1429. struct input_handle *handle;
  1430. int retval = 0;
  1431. rcu_read_lock();
  1432. list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
  1433. retval = fn(handle, data);
  1434. if (retval)
  1435. break;
  1436. }
  1437. rcu_read_unlock();
  1438. return retval;
  1439. }
  1440. EXPORT_SYMBOL(input_handler_for_each_handle);
  1441. /**
  1442. * input_register_handle - register a new input handle
  1443. * @handle: handle to register
  1444. *
  1445. * This function puts a new input handle onto device's
  1446. * and handler's lists so that events can flow through
  1447. * it once it is opened using input_open_device().
  1448. *
  1449. * This function is supposed to be called from handler's
  1450. * connect() method.
  1451. */
  1452. int input_register_handle(struct input_handle *handle)
  1453. {
  1454. struct input_handler *handler = handle->handler;
  1455. struct input_dev *dev = handle->dev;
  1456. int error;
  1457. /*
  1458. * We take dev->mutex here to prevent race with
  1459. * input_release_device().
  1460. */
  1461. error = mutex_lock_interruptible(&dev->mutex);
  1462. if (error)
  1463. return error;
  1464. list_add_tail_rcu(&handle->d_node, &dev->h_list);
  1465. mutex_unlock(&dev->mutex);
  1466. /*
  1467. * Since we are supposed to be called from ->connect()
  1468. * which is mutually exclusive with ->disconnect()
  1469. * we can't be racing with input_unregister_handle()
  1470. * and so separate lock is not needed here.
  1471. */
  1472. list_add_tail_rcu(&handle->h_node, &handler->h_list);
  1473. if (handler->start)
  1474. handler->start(handle);
  1475. return 0;
  1476. }
  1477. EXPORT_SYMBOL(input_register_handle);
  1478. /**
  1479. * input_unregister_handle - unregister an input handle
  1480. * @handle: handle to unregister
  1481. *
  1482. * This function removes input handle from device's
  1483. * and handler's lists.
  1484. *
  1485. * This function is supposed to be called from handler's
  1486. * disconnect() method.
  1487. */
  1488. void input_unregister_handle(struct input_handle *handle)
  1489. {
  1490. struct input_dev *dev = handle->dev;
  1491. list_del_rcu(&handle->h_node);
  1492. /*
  1493. * Take dev->mutex to prevent race with input_release_device().
  1494. */
  1495. mutex_lock(&dev->mutex);
  1496. list_del_rcu(&handle->d_node);
  1497. mutex_unlock(&dev->mutex);
  1498. synchronize_rcu();
  1499. }
  1500. EXPORT_SYMBOL(input_unregister_handle);
  1501. static int input_open_file(struct inode *inode, struct file *file)
  1502. {
  1503. struct input_handler *handler;
  1504. const struct file_operations *old_fops, *new_fops = NULL;
  1505. int err;
  1506. lock_kernel();
  1507. /* No load-on-demand here? */
  1508. handler = input_table[iminor(inode) >> 5];
  1509. if (!handler || !(new_fops = fops_get(handler->fops))) {
  1510. err = -ENODEV;
  1511. goto out;
  1512. }
  1513. /*
  1514. * That's _really_ odd. Usually NULL ->open means "nothing special",
  1515. * not "no device". Oh, well...
  1516. */
  1517. if (!new_fops->open) {
  1518. fops_put(new_fops);
  1519. err = -ENODEV;
  1520. goto out;
  1521. }
  1522. old_fops = file->f_op;
  1523. file->f_op = new_fops;
  1524. err = new_fops->open(inode, file);
  1525. if (err) {
  1526. fops_put(file->f_op);
  1527. file->f_op = fops_get(old_fops);
  1528. }
  1529. fops_put(old_fops);
  1530. out:
  1531. unlock_kernel();
  1532. return err;
  1533. }
  1534. static const struct file_operations input_fops = {
  1535. .owner = THIS_MODULE,
  1536. .open = input_open_file,
  1537. };
  1538. static void __init input_init_abs_bypass(void)
  1539. {
  1540. const unsigned int *p;
  1541. for (p = input_abs_bypass_init_data; *p; p++)
  1542. input_abs_bypass[BIT_WORD(*p)] |= BIT_MASK(*p);
  1543. }
  1544. static int __init input_init(void)
  1545. {
  1546. int err;
  1547. input_init_abs_bypass();
  1548. err = class_register(&input_class);
  1549. if (err) {
  1550. printk(KERN_ERR "input: unable to register input_dev class\n");
  1551. return err;
  1552. }
  1553. err = input_proc_init();
  1554. if (err)
  1555. goto fail1;
  1556. err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
  1557. if (err) {
  1558. printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
  1559. goto fail2;
  1560. }
  1561. return 0;
  1562. fail2: input_proc_exit();
  1563. fail1: class_unregister(&input_class);
  1564. return err;
  1565. }
  1566. static void __exit input_exit(void)
  1567. {
  1568. input_proc_exit();
  1569. unregister_chrdev(INPUT_MAJOR, "input");
  1570. class_unregister(&input_class);
  1571. }
  1572. subsys_initcall(input_init);
  1573. module_exit(input_exit);