eeh.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038
  1. /*
  2. * eeh.c
  3. * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13. * GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. */
  19. #include <linux/delay.h>
  20. #include <linux/init.h>
  21. #include <linux/list.h>
  22. #include <linux/pci.h>
  23. #include <linux/proc_fs.h>
  24. #include <linux/rbtree.h>
  25. #include <linux/seq_file.h>
  26. #include <linux/spinlock.h>
  27. #include <asm/atomic.h>
  28. #include <asm/eeh.h>
  29. #include <asm/eeh_event.h>
  30. #include <asm/io.h>
  31. #include <asm/machdep.h>
  32. #include <asm/ppc-pci.h>
  33. #include <asm/rtas.h>
  34. #undef DEBUG
  35. /** Overview:
  36. * EEH, or "Extended Error Handling" is a PCI bridge technology for
  37. * dealing with PCI bus errors that can't be dealt with within the
  38. * usual PCI framework, except by check-stopping the CPU. Systems
  39. * that are designed for high-availability/reliability cannot afford
  40. * to crash due to a "mere" PCI error, thus the need for EEH.
  41. * An EEH-capable bridge operates by converting a detected error
  42. * into a "slot freeze", taking the PCI adapter off-line, making
  43. * the slot behave, from the OS'es point of view, as if the slot
  44. * were "empty": all reads return 0xff's and all writes are silently
  45. * ignored. EEH slot isolation events can be triggered by parity
  46. * errors on the address or data busses (e.g. during posted writes),
  47. * which in turn might be caused by low voltage on the bus, dust,
  48. * vibration, humidity, radioactivity or plain-old failed hardware.
  49. *
  50. * Note, however, that one of the leading causes of EEH slot
  51. * freeze events are buggy device drivers, buggy device microcode,
  52. * or buggy device hardware. This is because any attempt by the
  53. * device to bus-master data to a memory address that is not
  54. * assigned to the device will trigger a slot freeze. (The idea
  55. * is to prevent devices-gone-wild from corrupting system memory).
  56. * Buggy hardware/drivers will have a miserable time co-existing
  57. * with EEH.
  58. *
  59. * Ideally, a PCI device driver, when suspecting that an isolation
  60. * event has occured (e.g. by reading 0xff's), will then ask EEH
  61. * whether this is the case, and then take appropriate steps to
  62. * reset the PCI slot, the PCI device, and then resume operations.
  63. * However, until that day, the checking is done here, with the
  64. * eeh_check_failure() routine embedded in the MMIO macros. If
  65. * the slot is found to be isolated, an "EEH Event" is synthesized
  66. * and sent out for processing.
  67. */
  68. /* If a device driver keeps reading an MMIO register in an interrupt
  69. * handler after a slot isolation event has occurred, we assume it
  70. * is broken and panic. This sets the threshold for how many read
  71. * attempts we allow before panicking.
  72. */
  73. #define EEH_MAX_FAILS 100000
  74. /* RTAS tokens */
  75. static int ibm_set_eeh_option;
  76. static int ibm_set_slot_reset;
  77. static int ibm_read_slot_reset_state;
  78. static int ibm_read_slot_reset_state2;
  79. static int ibm_slot_error_detail;
  80. static int ibm_get_config_addr_info;
  81. static int ibm_configure_bridge;
  82. int eeh_subsystem_enabled;
  83. EXPORT_SYMBOL(eeh_subsystem_enabled);
  84. /* Lock to avoid races due to multiple reports of an error */
  85. static DEFINE_SPINLOCK(confirm_error_lock);
  86. /* Buffer for reporting slot-error-detail rtas calls */
  87. static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
  88. static DEFINE_SPINLOCK(slot_errbuf_lock);
  89. static int eeh_error_buf_size;
  90. /* System monitoring statistics */
  91. static unsigned long no_device;
  92. static unsigned long no_dn;
  93. static unsigned long no_cfg_addr;
  94. static unsigned long ignored_check;
  95. static unsigned long total_mmio_ffs;
  96. static unsigned long false_positives;
  97. static unsigned long ignored_failures;
  98. static unsigned long slot_resets;
  99. #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
  100. /* --------------------------------------------------------------- */
  101. /* Below lies the EEH event infrastructure */
  102. void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
  103. {
  104. int config_addr;
  105. unsigned long flags;
  106. int rc;
  107. /* Log the error with the rtas logger */
  108. spin_lock_irqsave(&slot_errbuf_lock, flags);
  109. memset(slot_errbuf, 0, eeh_error_buf_size);
  110. /* Use PE configuration address, if present */
  111. config_addr = pdn->eeh_config_addr;
  112. if (pdn->eeh_pe_config_addr)
  113. config_addr = pdn->eeh_pe_config_addr;
  114. rc = rtas_call(ibm_slot_error_detail,
  115. 8, 1, NULL, config_addr,
  116. BUID_HI(pdn->phb->buid),
  117. BUID_LO(pdn->phb->buid), NULL, 0,
  118. virt_to_phys(slot_errbuf),
  119. eeh_error_buf_size,
  120. severity);
  121. if (rc == 0)
  122. log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
  123. spin_unlock_irqrestore(&slot_errbuf_lock, flags);
  124. }
  125. /**
  126. * read_slot_reset_state - Read the reset state of a device node's slot
  127. * @dn: device node to read
  128. * @rets: array to return results in
  129. */
  130. static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
  131. {
  132. int token, outputs;
  133. int config_addr;
  134. if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
  135. token = ibm_read_slot_reset_state2;
  136. outputs = 4;
  137. } else {
  138. token = ibm_read_slot_reset_state;
  139. rets[2] = 0; /* fake PE Unavailable info */
  140. outputs = 3;
  141. }
  142. /* Use PE configuration address, if present */
  143. config_addr = pdn->eeh_config_addr;
  144. if (pdn->eeh_pe_config_addr)
  145. config_addr = pdn->eeh_pe_config_addr;
  146. return rtas_call(token, 3, outputs, rets, config_addr,
  147. BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
  148. }
  149. /**
  150. * eeh_token_to_phys - convert EEH address token to phys address
  151. * @token i/o token, should be address in the form 0xA....
  152. */
  153. static inline unsigned long eeh_token_to_phys(unsigned long token)
  154. {
  155. pte_t *ptep;
  156. unsigned long pa;
  157. ptep = find_linux_pte(init_mm.pgd, token);
  158. if (!ptep)
  159. return token;
  160. pa = pte_pfn(*ptep) << PAGE_SHIFT;
  161. return pa | (token & (PAGE_SIZE-1));
  162. }
  163. /**
  164. * Return the "partitionable endpoint" (pe) under which this device lies
  165. */
  166. struct device_node * find_device_pe(struct device_node *dn)
  167. {
  168. while ((dn->parent) && PCI_DN(dn->parent) &&
  169. (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
  170. dn = dn->parent;
  171. }
  172. return dn;
  173. }
  174. /** Mark all devices that are peers of this device as failed.
  175. * Mark the device driver too, so that it can see the failure
  176. * immediately; this is critical, since some drivers poll
  177. * status registers in interrupts ... If a driver is polling,
  178. * and the slot is frozen, then the driver can deadlock in
  179. * an interrupt context, which is bad.
  180. */
  181. static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
  182. {
  183. while (dn) {
  184. if (PCI_DN(dn)) {
  185. /* Mark the pci device driver too */
  186. struct pci_dev *dev = PCI_DN(dn)->pcidev;
  187. PCI_DN(dn)->eeh_mode |= mode_flag;
  188. if (dev && dev->driver)
  189. dev->error_state = pci_channel_io_frozen;
  190. if (dn->child)
  191. __eeh_mark_slot (dn->child, mode_flag);
  192. }
  193. dn = dn->sibling;
  194. }
  195. }
  196. void eeh_mark_slot (struct device_node *dn, int mode_flag)
  197. {
  198. dn = find_device_pe (dn);
  199. /* Back up one, since config addrs might be shared */
  200. if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
  201. dn = dn->parent;
  202. PCI_DN(dn)->eeh_mode |= mode_flag;
  203. __eeh_mark_slot (dn->child, mode_flag);
  204. }
  205. static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
  206. {
  207. while (dn) {
  208. if (PCI_DN(dn)) {
  209. PCI_DN(dn)->eeh_mode &= ~mode_flag;
  210. PCI_DN(dn)->eeh_check_count = 0;
  211. if (dn->child)
  212. __eeh_clear_slot (dn->child, mode_flag);
  213. }
  214. dn = dn->sibling;
  215. }
  216. }
  217. void eeh_clear_slot (struct device_node *dn, int mode_flag)
  218. {
  219. unsigned long flags;
  220. spin_lock_irqsave(&confirm_error_lock, flags);
  221. dn = find_device_pe (dn);
  222. /* Back up one, since config addrs might be shared */
  223. if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
  224. dn = dn->parent;
  225. PCI_DN(dn)->eeh_mode &= ~mode_flag;
  226. PCI_DN(dn)->eeh_check_count = 0;
  227. __eeh_clear_slot (dn->child, mode_flag);
  228. spin_unlock_irqrestore(&confirm_error_lock, flags);
  229. }
  230. /**
  231. * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
  232. * @dn device node
  233. * @dev pci device, if known
  234. *
  235. * Check for an EEH failure for the given device node. Call this
  236. * routine if the result of a read was all 0xff's and you want to
  237. * find out if this is due to an EEH slot freeze. This routine
  238. * will query firmware for the EEH status.
  239. *
  240. * Returns 0 if there has not been an EEH error; otherwise returns
  241. * a non-zero value and queues up a slot isolation event notification.
  242. *
  243. * It is safe to call this routine in an interrupt context.
  244. */
  245. int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
  246. {
  247. int ret;
  248. int rets[3];
  249. unsigned long flags;
  250. struct pci_dn *pdn;
  251. enum pci_channel_state state;
  252. int rc = 0;
  253. total_mmio_ffs++;
  254. if (!eeh_subsystem_enabled)
  255. return 0;
  256. if (!dn) {
  257. no_dn++;
  258. return 0;
  259. }
  260. pdn = PCI_DN(dn);
  261. /* Access to IO BARs might get this far and still not want checking. */
  262. if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
  263. pdn->eeh_mode & EEH_MODE_NOCHECK) {
  264. ignored_check++;
  265. #ifdef DEBUG
  266. printk ("EEH:ignored check (%x) for %s %s\n",
  267. pdn->eeh_mode, pci_name (dev), dn->full_name);
  268. #endif
  269. return 0;
  270. }
  271. if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
  272. no_cfg_addr++;
  273. return 0;
  274. }
  275. /* If we already have a pending isolation event for this
  276. * slot, we know it's bad already, we don't need to check.
  277. * Do this checking under a lock; as multiple PCI devices
  278. * in one slot might report errors simultaneously, and we
  279. * only want one error recovery routine running.
  280. */
  281. spin_lock_irqsave(&confirm_error_lock, flags);
  282. rc = 1;
  283. if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
  284. pdn->eeh_check_count ++;
  285. if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
  286. printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
  287. pdn->eeh_check_count);
  288. dump_stack();
  289. /* re-read the slot reset state */
  290. if (read_slot_reset_state(pdn, rets) != 0)
  291. rets[0] = -1; /* reset state unknown */
  292. /* If we are here, then we hit an infinite loop. Stop. */
  293. panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
  294. }
  295. goto dn_unlock;
  296. }
  297. /*
  298. * Now test for an EEH failure. This is VERY expensive.
  299. * Note that the eeh_config_addr may be a parent device
  300. * in the case of a device behind a bridge, or it may be
  301. * function zero of a multi-function device.
  302. * In any case they must share a common PHB.
  303. */
  304. ret = read_slot_reset_state(pdn, rets);
  305. /* If the call to firmware failed, punt */
  306. if (ret != 0) {
  307. printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
  308. ret, dn->full_name);
  309. false_positives++;
  310. rc = 0;
  311. goto dn_unlock;
  312. }
  313. /* If EEH is not supported on this device, punt. */
  314. if (rets[1] != 1) {
  315. printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
  316. ret, dn->full_name);
  317. false_positives++;
  318. rc = 0;
  319. goto dn_unlock;
  320. }
  321. /* If not the kind of error we know about, punt. */
  322. if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
  323. false_positives++;
  324. rc = 0;
  325. goto dn_unlock;
  326. }
  327. /* Note that config-io to empty slots may fail;
  328. * we recognize empty because they don't have children. */
  329. if ((rets[0] == 5) && (dn->child == NULL)) {
  330. false_positives++;
  331. rc = 0;
  332. goto dn_unlock;
  333. }
  334. slot_resets++;
  335. /* Avoid repeated reports of this failure, including problems
  336. * with other functions on this device, and functions under
  337. * bridges. */
  338. eeh_mark_slot (dn, EEH_MODE_ISOLATED);
  339. spin_unlock_irqrestore(&confirm_error_lock, flags);
  340. state = pci_channel_io_normal;
  341. if ((rets[0] == 2) || (rets[0] == 4))
  342. state = pci_channel_io_frozen;
  343. if (rets[0] == 5)
  344. state = pci_channel_io_perm_failure;
  345. eeh_send_failure_event (dn, dev, state, rets[2]);
  346. /* Most EEH events are due to device driver bugs. Having
  347. * a stack trace will help the device-driver authors figure
  348. * out what happened. So print that out. */
  349. if (rets[0] != 5) dump_stack();
  350. return 1;
  351. dn_unlock:
  352. spin_unlock_irqrestore(&confirm_error_lock, flags);
  353. return rc;
  354. }
  355. EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
  356. /**
  357. * eeh_check_failure - check if all 1's data is due to EEH slot freeze
  358. * @token i/o token, should be address in the form 0xA....
  359. * @val value, should be all 1's (XXX why do we need this arg??)
  360. *
  361. * Check for an EEH failure at the given token address. Call this
  362. * routine if the result of a read was all 0xff's and you want to
  363. * find out if this is due to an EEH slot freeze event. This routine
  364. * will query firmware for the EEH status.
  365. *
  366. * Note this routine is safe to call in an interrupt context.
  367. */
  368. unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
  369. {
  370. unsigned long addr;
  371. struct pci_dev *dev;
  372. struct device_node *dn;
  373. /* Finding the phys addr + pci device; this is pretty quick. */
  374. addr = eeh_token_to_phys((unsigned long __force) token);
  375. dev = pci_get_device_by_addr(addr);
  376. if (!dev) {
  377. no_device++;
  378. return val;
  379. }
  380. dn = pci_device_to_OF_node(dev);
  381. eeh_dn_check_failure (dn, dev);
  382. pci_dev_put(dev);
  383. return val;
  384. }
  385. EXPORT_SYMBOL(eeh_check_failure);
  386. /* ------------------------------------------------------------- */
  387. /* The code below deals with error recovery */
  388. /**
  389. * eeh_slot_availability - returns error status of slot
  390. * @pdn pci device node
  391. *
  392. * Return negative value if a permanent error, else return
  393. * a number of milliseconds to wait until the PCI slot is
  394. * ready to be used.
  395. */
  396. static int
  397. eeh_slot_availability(struct pci_dn *pdn)
  398. {
  399. int rc;
  400. int rets[3];
  401. rc = read_slot_reset_state(pdn, rets);
  402. if (rc) return rc;
  403. if (rets[1] == 0) return -1; /* EEH is not supported */
  404. if (rets[0] == 0) return 0; /* Oll Korrect */
  405. if (rets[0] == 5) {
  406. if (rets[2] == 0) return -1; /* permanently unavailable */
  407. return rets[2]; /* number of millisecs to wait */
  408. }
  409. if (rets[0] == 1)
  410. return 250;
  411. printk (KERN_ERR "EEH: Slot unavailable: rc=%d, rets=%d %d %d\n",
  412. rc, rets[0], rets[1], rets[2]);
  413. return -1;
  414. }
  415. /**
  416. * rtas_pci_slot_reset - raises/lowers the pci #RST line
  417. * @pdn pci device node
  418. * @state: 1/0 to raise/lower the #RST
  419. *
  420. * Clear the EEH-frozen condition on a slot. This routine
  421. * asserts the PCI #RST line if the 'state' argument is '1',
  422. * and drops the #RST line if 'state is '0'. This routine is
  423. * safe to call in an interrupt context.
  424. *
  425. */
  426. static void
  427. rtas_pci_slot_reset(struct pci_dn *pdn, int state)
  428. {
  429. int config_addr;
  430. int rc;
  431. BUG_ON (pdn==NULL);
  432. if (!pdn->phb) {
  433. printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
  434. pdn->node->full_name);
  435. return;
  436. }
  437. /* Use PE configuration address, if present */
  438. config_addr = pdn->eeh_config_addr;
  439. if (pdn->eeh_pe_config_addr)
  440. config_addr = pdn->eeh_pe_config_addr;
  441. rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
  442. config_addr,
  443. BUID_HI(pdn->phb->buid),
  444. BUID_LO(pdn->phb->buid),
  445. state);
  446. if (rc) {
  447. printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
  448. rc, state, pdn->node->full_name);
  449. return;
  450. }
  451. }
  452. /**
  453. * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
  454. * @pdn: pci device node to be reset.
  455. *
  456. * Return 0 if success, else a non-zero value.
  457. */
  458. int
  459. rtas_set_slot_reset(struct pci_dn *pdn)
  460. {
  461. int i, rc;
  462. rtas_pci_slot_reset (pdn, 1);
  463. /* The PCI bus requires that the reset be held high for at least
  464. * a 100 milliseconds. We wait a bit longer 'just in case'. */
  465. #define PCI_BUS_RST_HOLD_TIME_MSEC 250
  466. msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
  467. /* We might get hit with another EEH freeze as soon as the
  468. * pci slot reset line is dropped. Make sure we don't miss
  469. * these, and clear the flag now. */
  470. eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
  471. rtas_pci_slot_reset (pdn, 0);
  472. /* After a PCI slot has been reset, the PCI Express spec requires
  473. * a 1.5 second idle time for the bus to stabilize, before starting
  474. * up traffic. */
  475. #define PCI_BUS_SETTLE_TIME_MSEC 1800
  476. msleep (PCI_BUS_SETTLE_TIME_MSEC);
  477. /* Now double check with the firmware to make sure the device is
  478. * ready to be used; if not, wait for recovery. */
  479. for (i=0; i<10; i++) {
  480. rc = eeh_slot_availability (pdn);
  481. if (rc < 0)
  482. printk (KERN_ERR "EEH: failed (%d) to reset slot %s\n", rc, pdn->node->full_name);
  483. if (rc == 0)
  484. return 0;
  485. if (rc < 0)
  486. return -1;
  487. msleep (rc+100);
  488. }
  489. rc = eeh_slot_availability (pdn);
  490. if (rc)
  491. printk (KERN_ERR "EEH: timeout resetting slot %s\n", pdn->node->full_name);
  492. return rc;
  493. }
  494. /* ------------------------------------------------------- */
  495. /** Save and restore of PCI BARs
  496. *
  497. * Although firmware will set up BARs during boot, it doesn't
  498. * set up device BAR's after a device reset, although it will,
  499. * if requested, set up bridge configuration. Thus, we need to
  500. * configure the PCI devices ourselves.
  501. */
  502. /**
  503. * __restore_bars - Restore the Base Address Registers
  504. * @pdn: pci device node
  505. *
  506. * Loads the PCI configuration space base address registers,
  507. * the expansion ROM base address, the latency timer, and etc.
  508. * from the saved values in the device node.
  509. */
  510. static inline void __restore_bars (struct pci_dn *pdn)
  511. {
  512. int i;
  513. if (NULL==pdn->phb) return;
  514. for (i=4; i<10; i++) {
  515. rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
  516. }
  517. /* 12 == Expansion ROM Address */
  518. rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
  519. #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
  520. #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
  521. rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
  522. SAVED_BYTE(PCI_CACHE_LINE_SIZE));
  523. rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
  524. SAVED_BYTE(PCI_LATENCY_TIMER));
  525. /* max latency, min grant, interrupt pin and line */
  526. rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
  527. }
  528. /**
  529. * eeh_restore_bars - restore the PCI config space info
  530. *
  531. * This routine performs a recursive walk to the children
  532. * of this device as well.
  533. */
  534. void eeh_restore_bars(struct pci_dn *pdn)
  535. {
  536. struct device_node *dn;
  537. if (!pdn)
  538. return;
  539. if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
  540. __restore_bars (pdn);
  541. dn = pdn->node->child;
  542. while (dn) {
  543. eeh_restore_bars (PCI_DN(dn));
  544. dn = dn->sibling;
  545. }
  546. }
  547. /**
  548. * eeh_save_bars - save device bars
  549. *
  550. * Save the values of the device bars. Unlike the restore
  551. * routine, this routine is *not* recursive. This is because
  552. * PCI devices are added individuallly; but, for the restore,
  553. * an entire slot is reset at a time.
  554. */
  555. static void eeh_save_bars(struct pci_dn *pdn)
  556. {
  557. int i;
  558. if (!pdn )
  559. return;
  560. for (i = 0; i < 16; i++)
  561. rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
  562. }
  563. void
  564. rtas_configure_bridge(struct pci_dn *pdn)
  565. {
  566. int config_addr;
  567. int rc;
  568. /* Use PE configuration address, if present */
  569. config_addr = pdn->eeh_config_addr;
  570. if (pdn->eeh_pe_config_addr)
  571. config_addr = pdn->eeh_pe_config_addr;
  572. rc = rtas_call(ibm_configure_bridge,3,1, NULL,
  573. config_addr,
  574. BUID_HI(pdn->phb->buid),
  575. BUID_LO(pdn->phb->buid));
  576. if (rc) {
  577. printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
  578. rc, pdn->node->full_name);
  579. }
  580. }
  581. /* ------------------------------------------------------------- */
  582. /* The code below deals with enabling EEH for devices during the
  583. * early boot sequence. EEH must be enabled before any PCI probing
  584. * can be done.
  585. */
  586. #define EEH_ENABLE 1
  587. struct eeh_early_enable_info {
  588. unsigned int buid_hi;
  589. unsigned int buid_lo;
  590. };
  591. /* Enable eeh for the given device node. */
  592. static void *early_enable_eeh(struct device_node *dn, void *data)
  593. {
  594. struct eeh_early_enable_info *info = data;
  595. int ret;
  596. const char *status = get_property(dn, "status", NULL);
  597. const u32 *class_code = get_property(dn, "class-code", NULL);
  598. const u32 *vendor_id = get_property(dn, "vendor-id", NULL);
  599. const u32 *device_id = get_property(dn, "device-id", NULL);
  600. const u32 *regs;
  601. int enable;
  602. struct pci_dn *pdn = PCI_DN(dn);
  603. pdn->class_code = 0;
  604. pdn->eeh_mode = 0;
  605. pdn->eeh_check_count = 0;
  606. pdn->eeh_freeze_count = 0;
  607. if (status && strcmp(status, "ok") != 0)
  608. return NULL; /* ignore devices with bad status */
  609. /* Ignore bad nodes. */
  610. if (!class_code || !vendor_id || !device_id)
  611. return NULL;
  612. /* There is nothing to check on PCI to ISA bridges */
  613. if (dn->type && !strcmp(dn->type, "isa")) {
  614. pdn->eeh_mode |= EEH_MODE_NOCHECK;
  615. return NULL;
  616. }
  617. pdn->class_code = *class_code;
  618. /*
  619. * Now decide if we are going to "Disable" EEH checking
  620. * for this device. We still run with the EEH hardware active,
  621. * but we won't be checking for ff's. This means a driver
  622. * could return bad data (very bad!), an interrupt handler could
  623. * hang waiting on status bits that won't change, etc.
  624. * But there are a few cases like display devices that make sense.
  625. */
  626. enable = 1; /* i.e. we will do checking */
  627. #if 0
  628. if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
  629. enable = 0;
  630. #endif
  631. if (!enable)
  632. pdn->eeh_mode |= EEH_MODE_NOCHECK;
  633. /* Ok... see if this device supports EEH. Some do, some don't,
  634. * and the only way to find out is to check each and every one. */
  635. regs = get_property(dn, "reg", NULL);
  636. if (regs) {
  637. /* First register entry is addr (00BBSS00) */
  638. /* Try to enable eeh */
  639. ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
  640. regs[0], info->buid_hi, info->buid_lo,
  641. EEH_ENABLE);
  642. if (ret == 0) {
  643. eeh_subsystem_enabled = 1;
  644. pdn->eeh_mode |= EEH_MODE_SUPPORTED;
  645. pdn->eeh_config_addr = regs[0];
  646. /* If the newer, better, ibm,get-config-addr-info is supported,
  647. * then use that instead. */
  648. pdn->eeh_pe_config_addr = 0;
  649. if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
  650. unsigned int rets[2];
  651. ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
  652. pdn->eeh_config_addr,
  653. info->buid_hi, info->buid_lo,
  654. 0);
  655. if (ret == 0)
  656. pdn->eeh_pe_config_addr = rets[0];
  657. }
  658. #ifdef DEBUG
  659. printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
  660. dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
  661. #endif
  662. } else {
  663. /* This device doesn't support EEH, but it may have an
  664. * EEH parent, in which case we mark it as supported. */
  665. if (dn->parent && PCI_DN(dn->parent)
  666. && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
  667. /* Parent supports EEH. */
  668. pdn->eeh_mode |= EEH_MODE_SUPPORTED;
  669. pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
  670. return NULL;
  671. }
  672. }
  673. } else {
  674. printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
  675. dn->full_name);
  676. }
  677. eeh_save_bars(pdn);
  678. return NULL;
  679. }
  680. /*
  681. * Initialize EEH by trying to enable it for all of the adapters in the system.
  682. * As a side effect we can determine here if eeh is supported at all.
  683. * Note that we leave EEH on so failed config cycles won't cause a machine
  684. * check. If a user turns off EEH for a particular adapter they are really
  685. * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
  686. * grant access to a slot if EEH isn't enabled, and so we always enable
  687. * EEH for all slots/all devices.
  688. *
  689. * The eeh-force-off option disables EEH checking globally, for all slots.
  690. * Even if force-off is set, the EEH hardware is still enabled, so that
  691. * newer systems can boot.
  692. */
  693. void __init eeh_init(void)
  694. {
  695. struct device_node *phb, *np;
  696. struct eeh_early_enable_info info;
  697. spin_lock_init(&confirm_error_lock);
  698. spin_lock_init(&slot_errbuf_lock);
  699. np = of_find_node_by_path("/rtas");
  700. if (np == NULL)
  701. return;
  702. ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
  703. ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
  704. ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
  705. ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
  706. ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
  707. ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
  708. ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
  709. if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
  710. return;
  711. eeh_error_buf_size = rtas_token("rtas-error-log-max");
  712. if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
  713. eeh_error_buf_size = 1024;
  714. }
  715. if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
  716. printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
  717. "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
  718. eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
  719. }
  720. /* Enable EEH for all adapters. Note that eeh requires buid's */
  721. for (phb = of_find_node_by_name(NULL, "pci"); phb;
  722. phb = of_find_node_by_name(phb, "pci")) {
  723. unsigned long buid;
  724. buid = get_phb_buid(phb);
  725. if (buid == 0 || PCI_DN(phb) == NULL)
  726. continue;
  727. info.buid_lo = BUID_LO(buid);
  728. info.buid_hi = BUID_HI(buid);
  729. traverse_pci_devices(phb, early_enable_eeh, &info);
  730. }
  731. if (eeh_subsystem_enabled)
  732. printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
  733. else
  734. printk(KERN_WARNING "EEH: No capable adapters found\n");
  735. }
  736. /**
  737. * eeh_add_device_early - enable EEH for the indicated device_node
  738. * @dn: device node for which to set up EEH
  739. *
  740. * This routine must be used to perform EEH initialization for PCI
  741. * devices that were added after system boot (e.g. hotplug, dlpar).
  742. * This routine must be called before any i/o is performed to the
  743. * adapter (inluding any config-space i/o).
  744. * Whether this actually enables EEH or not for this device depends
  745. * on the CEC architecture, type of the device, on earlier boot
  746. * command-line arguments & etc.
  747. */
  748. static void eeh_add_device_early(struct device_node *dn)
  749. {
  750. struct pci_controller *phb;
  751. struct eeh_early_enable_info info;
  752. if (!dn || !PCI_DN(dn))
  753. return;
  754. phb = PCI_DN(dn)->phb;
  755. /* USB Bus children of PCI devices will not have BUID's */
  756. if (NULL == phb || 0 == phb->buid)
  757. return;
  758. info.buid_hi = BUID_HI(phb->buid);
  759. info.buid_lo = BUID_LO(phb->buid);
  760. early_enable_eeh(dn, &info);
  761. }
  762. void eeh_add_device_tree_early(struct device_node *dn)
  763. {
  764. struct device_node *sib;
  765. for (sib = dn->child; sib; sib = sib->sibling)
  766. eeh_add_device_tree_early(sib);
  767. eeh_add_device_early(dn);
  768. }
  769. EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
  770. /**
  771. * eeh_add_device_late - perform EEH initialization for the indicated pci device
  772. * @dev: pci device for which to set up EEH
  773. *
  774. * This routine must be used to complete EEH initialization for PCI
  775. * devices that were added after system boot (e.g. hotplug, dlpar).
  776. */
  777. static void eeh_add_device_late(struct pci_dev *dev)
  778. {
  779. struct device_node *dn;
  780. struct pci_dn *pdn;
  781. if (!dev || !eeh_subsystem_enabled)
  782. return;
  783. #ifdef DEBUG
  784. printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
  785. #endif
  786. pci_dev_get (dev);
  787. dn = pci_device_to_OF_node(dev);
  788. pdn = PCI_DN(dn);
  789. pdn->pcidev = dev;
  790. pci_addr_cache_insert_device (dev);
  791. }
  792. void eeh_add_device_tree_late(struct pci_bus *bus)
  793. {
  794. struct pci_dev *dev;
  795. list_for_each_entry(dev, &bus->devices, bus_list) {
  796. eeh_add_device_late(dev);
  797. if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
  798. struct pci_bus *subbus = dev->subordinate;
  799. if (subbus)
  800. eeh_add_device_tree_late(subbus);
  801. }
  802. }
  803. }
  804. EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
  805. /**
  806. * eeh_remove_device - undo EEH setup for the indicated pci device
  807. * @dev: pci device to be removed
  808. *
  809. * This routine should be called when a device is removed from
  810. * a running system (e.g. by hotplug or dlpar). It unregisters
  811. * the PCI device from the EEH subsystem. I/O errors affecting
  812. * this device will no longer be detected after this call; thus,
  813. * i/o errors affecting this slot may leave this device unusable.
  814. */
  815. static void eeh_remove_device(struct pci_dev *dev)
  816. {
  817. struct device_node *dn;
  818. if (!dev || !eeh_subsystem_enabled)
  819. return;
  820. /* Unregister the device with the EEH/PCI address search system */
  821. #ifdef DEBUG
  822. printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
  823. #endif
  824. pci_addr_cache_remove_device(dev);
  825. dn = pci_device_to_OF_node(dev);
  826. if (PCI_DN(dn)->pcidev) {
  827. PCI_DN(dn)->pcidev = NULL;
  828. pci_dev_put (dev);
  829. }
  830. }
  831. void eeh_remove_bus_device(struct pci_dev *dev)
  832. {
  833. struct pci_bus *bus = dev->subordinate;
  834. struct pci_dev *child, *tmp;
  835. eeh_remove_device(dev);
  836. if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
  837. list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
  838. eeh_remove_bus_device(child);
  839. }
  840. }
  841. EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
  842. static int proc_eeh_show(struct seq_file *m, void *v)
  843. {
  844. if (0 == eeh_subsystem_enabled) {
  845. seq_printf(m, "EEH Subsystem is globally disabled\n");
  846. seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
  847. } else {
  848. seq_printf(m, "EEH Subsystem is enabled\n");
  849. seq_printf(m,
  850. "no device=%ld\n"
  851. "no device node=%ld\n"
  852. "no config address=%ld\n"
  853. "check not wanted=%ld\n"
  854. "eeh_total_mmio_ffs=%ld\n"
  855. "eeh_false_positives=%ld\n"
  856. "eeh_ignored_failures=%ld\n"
  857. "eeh_slot_resets=%ld\n",
  858. no_device, no_dn, no_cfg_addr,
  859. ignored_check, total_mmio_ffs,
  860. false_positives, ignored_failures,
  861. slot_resets);
  862. }
  863. return 0;
  864. }
  865. static int proc_eeh_open(struct inode *inode, struct file *file)
  866. {
  867. return single_open(file, proc_eeh_show, NULL);
  868. }
  869. static struct file_operations proc_eeh_operations = {
  870. .open = proc_eeh_open,
  871. .read = seq_read,
  872. .llseek = seq_lseek,
  873. .release = single_release,
  874. };
  875. static int __init eeh_init_proc(void)
  876. {
  877. struct proc_dir_entry *e;
  878. if (machine_is(pseries)) {
  879. e = create_proc_entry("ppc64/eeh", 0, NULL);
  880. if (e)
  881. e->proc_fops = &proc_eeh_operations;
  882. }
  883. return 0;
  884. }
  885. __initcall(eeh_init_proc);