kvm_main.c 52 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399
  1. /*
  2. * Kernel-based Virtual Machine driver for Linux
  3. *
  4. * This module enables machines with Intel VT-x extensions to run virtual
  5. * machines without emulation or binary translation.
  6. *
  7. * Copyright (C) 2006 Qumranet, Inc.
  8. * Copyright 2010 Red Hat, Inc. and/or its affiliates.
  9. *
  10. * Authors:
  11. * Avi Kivity <avi@qumranet.com>
  12. * Yaniv Kamay <yaniv@qumranet.com>
  13. *
  14. * This work is licensed under the terms of the GNU GPL, version 2. See
  15. * the COPYING file in the top-level directory.
  16. *
  17. */
  18. #include "iodev.h"
  19. #include <linux/kvm_host.h>
  20. #include <linux/kvm.h>
  21. #include <linux/module.h>
  22. #include <linux/errno.h>
  23. #include <linux/percpu.h>
  24. #include <linux/mm.h>
  25. #include <linux/miscdevice.h>
  26. #include <linux/vmalloc.h>
  27. #include <linux/reboot.h>
  28. #include <linux/debugfs.h>
  29. #include <linux/highmem.h>
  30. #include <linux/file.h>
  31. #include <linux/sysdev.h>
  32. #include <linux/cpu.h>
  33. #include <linux/sched.h>
  34. #include <linux/cpumask.h>
  35. #include <linux/smp.h>
  36. #include <linux/anon_inodes.h>
  37. #include <linux/profile.h>
  38. #include <linux/kvm_para.h>
  39. #include <linux/pagemap.h>
  40. #include <linux/mman.h>
  41. #include <linux/swap.h>
  42. #include <linux/bitops.h>
  43. #include <linux/spinlock.h>
  44. #include <linux/compat.h>
  45. #include <linux/srcu.h>
  46. #include <linux/hugetlb.h>
  47. #include <linux/slab.h>
  48. #include <asm/processor.h>
  49. #include <asm/io.h>
  50. #include <asm/uaccess.h>
  51. #include <asm/pgtable.h>
  52. #include <asm-generic/bitops/le.h>
  53. #include "coalesced_mmio.h"
  54. #define CREATE_TRACE_POINTS
  55. #include <trace/events/kvm.h>
  56. MODULE_AUTHOR("Qumranet");
  57. MODULE_LICENSE("GPL");
  58. /*
  59. * Ordering of locks:
  60. *
  61. * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  62. */
  63. DEFINE_SPINLOCK(kvm_lock);
  64. LIST_HEAD(vm_list);
  65. static cpumask_var_t cpus_hardware_enabled;
  66. static int kvm_usage_count = 0;
  67. static atomic_t hardware_enable_failed;
  68. struct kmem_cache *kvm_vcpu_cache;
  69. EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
  70. static __read_mostly struct preempt_ops kvm_preempt_ops;
  71. struct dentry *kvm_debugfs_dir;
  72. static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
  73. unsigned long arg);
  74. static int hardware_enable_all(void);
  75. static void hardware_disable_all(void);
  76. static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
  77. static bool kvm_rebooting;
  78. static bool largepages_enabled = true;
  79. static struct page *hwpoison_page;
  80. static pfn_t hwpoison_pfn;
  81. static struct page *fault_page;
  82. static pfn_t fault_pfn;
  83. inline int kvm_is_mmio_pfn(pfn_t pfn)
  84. {
  85. if (pfn_valid(pfn)) {
  86. struct page *page = compound_head(pfn_to_page(pfn));
  87. return PageReserved(page);
  88. }
  89. return true;
  90. }
  91. /*
  92. * Switches to specified vcpu, until a matching vcpu_put()
  93. */
  94. void vcpu_load(struct kvm_vcpu *vcpu)
  95. {
  96. int cpu;
  97. mutex_lock(&vcpu->mutex);
  98. cpu = get_cpu();
  99. preempt_notifier_register(&vcpu->preempt_notifier);
  100. kvm_arch_vcpu_load(vcpu, cpu);
  101. put_cpu();
  102. }
  103. void vcpu_put(struct kvm_vcpu *vcpu)
  104. {
  105. preempt_disable();
  106. kvm_arch_vcpu_put(vcpu);
  107. preempt_notifier_unregister(&vcpu->preempt_notifier);
  108. preempt_enable();
  109. mutex_unlock(&vcpu->mutex);
  110. }
  111. static void ack_flush(void *_completed)
  112. {
  113. }
  114. static bool make_all_cpus_request(struct kvm *kvm, unsigned int req)
  115. {
  116. int i, cpu, me;
  117. cpumask_var_t cpus;
  118. bool called = true;
  119. struct kvm_vcpu *vcpu;
  120. zalloc_cpumask_var(&cpus, GFP_ATOMIC);
  121. raw_spin_lock(&kvm->requests_lock);
  122. me = smp_processor_id();
  123. kvm_for_each_vcpu(i, vcpu, kvm) {
  124. if (kvm_make_check_request(req, vcpu))
  125. continue;
  126. cpu = vcpu->cpu;
  127. if (cpus != NULL && cpu != -1 && cpu != me)
  128. cpumask_set_cpu(cpu, cpus);
  129. }
  130. if (unlikely(cpus == NULL))
  131. smp_call_function_many(cpu_online_mask, ack_flush, NULL, 1);
  132. else if (!cpumask_empty(cpus))
  133. smp_call_function_many(cpus, ack_flush, NULL, 1);
  134. else
  135. called = false;
  136. raw_spin_unlock(&kvm->requests_lock);
  137. free_cpumask_var(cpus);
  138. return called;
  139. }
  140. void kvm_flush_remote_tlbs(struct kvm *kvm)
  141. {
  142. if (make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
  143. ++kvm->stat.remote_tlb_flush;
  144. }
  145. void kvm_reload_remote_mmus(struct kvm *kvm)
  146. {
  147. make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
  148. }
  149. int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
  150. {
  151. struct page *page;
  152. int r;
  153. mutex_init(&vcpu->mutex);
  154. vcpu->cpu = -1;
  155. vcpu->kvm = kvm;
  156. vcpu->vcpu_id = id;
  157. init_waitqueue_head(&vcpu->wq);
  158. page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  159. if (!page) {
  160. r = -ENOMEM;
  161. goto fail;
  162. }
  163. vcpu->run = page_address(page);
  164. r = kvm_arch_vcpu_init(vcpu);
  165. if (r < 0)
  166. goto fail_free_run;
  167. return 0;
  168. fail_free_run:
  169. free_page((unsigned long)vcpu->run);
  170. fail:
  171. return r;
  172. }
  173. EXPORT_SYMBOL_GPL(kvm_vcpu_init);
  174. void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
  175. {
  176. kvm_arch_vcpu_uninit(vcpu);
  177. free_page((unsigned long)vcpu->run);
  178. }
  179. EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
  180. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  181. static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
  182. {
  183. return container_of(mn, struct kvm, mmu_notifier);
  184. }
  185. static void kvm_mmu_notifier_invalidate_page(struct mmu_notifier *mn,
  186. struct mm_struct *mm,
  187. unsigned long address)
  188. {
  189. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  190. int need_tlb_flush, idx;
  191. /*
  192. * When ->invalidate_page runs, the linux pte has been zapped
  193. * already but the page is still allocated until
  194. * ->invalidate_page returns. So if we increase the sequence
  195. * here the kvm page fault will notice if the spte can't be
  196. * established because the page is going to be freed. If
  197. * instead the kvm page fault establishes the spte before
  198. * ->invalidate_page runs, kvm_unmap_hva will release it
  199. * before returning.
  200. *
  201. * The sequence increase only need to be seen at spin_unlock
  202. * time, and not at spin_lock time.
  203. *
  204. * Increasing the sequence after the spin_unlock would be
  205. * unsafe because the kvm page fault could then establish the
  206. * pte after kvm_unmap_hva returned, without noticing the page
  207. * is going to be freed.
  208. */
  209. idx = srcu_read_lock(&kvm->srcu);
  210. spin_lock(&kvm->mmu_lock);
  211. kvm->mmu_notifier_seq++;
  212. need_tlb_flush = kvm_unmap_hva(kvm, address);
  213. spin_unlock(&kvm->mmu_lock);
  214. srcu_read_unlock(&kvm->srcu, idx);
  215. /* we've to flush the tlb before the pages can be freed */
  216. if (need_tlb_flush)
  217. kvm_flush_remote_tlbs(kvm);
  218. }
  219. static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
  220. struct mm_struct *mm,
  221. unsigned long address,
  222. pte_t pte)
  223. {
  224. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  225. int idx;
  226. idx = srcu_read_lock(&kvm->srcu);
  227. spin_lock(&kvm->mmu_lock);
  228. kvm->mmu_notifier_seq++;
  229. kvm_set_spte_hva(kvm, address, pte);
  230. spin_unlock(&kvm->mmu_lock);
  231. srcu_read_unlock(&kvm->srcu, idx);
  232. }
  233. static void kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
  234. struct mm_struct *mm,
  235. unsigned long start,
  236. unsigned long end)
  237. {
  238. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  239. int need_tlb_flush = 0, idx;
  240. idx = srcu_read_lock(&kvm->srcu);
  241. spin_lock(&kvm->mmu_lock);
  242. /*
  243. * The count increase must become visible at unlock time as no
  244. * spte can be established without taking the mmu_lock and
  245. * count is also read inside the mmu_lock critical section.
  246. */
  247. kvm->mmu_notifier_count++;
  248. for (; start < end; start += PAGE_SIZE)
  249. need_tlb_flush |= kvm_unmap_hva(kvm, start);
  250. spin_unlock(&kvm->mmu_lock);
  251. srcu_read_unlock(&kvm->srcu, idx);
  252. /* we've to flush the tlb before the pages can be freed */
  253. if (need_tlb_flush)
  254. kvm_flush_remote_tlbs(kvm);
  255. }
  256. static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
  257. struct mm_struct *mm,
  258. unsigned long start,
  259. unsigned long end)
  260. {
  261. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  262. spin_lock(&kvm->mmu_lock);
  263. /*
  264. * This sequence increase will notify the kvm page fault that
  265. * the page that is going to be mapped in the spte could have
  266. * been freed.
  267. */
  268. kvm->mmu_notifier_seq++;
  269. /*
  270. * The above sequence increase must be visible before the
  271. * below count decrease but both values are read by the kvm
  272. * page fault under mmu_lock spinlock so we don't need to add
  273. * a smb_wmb() here in between the two.
  274. */
  275. kvm->mmu_notifier_count--;
  276. spin_unlock(&kvm->mmu_lock);
  277. BUG_ON(kvm->mmu_notifier_count < 0);
  278. }
  279. static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
  280. struct mm_struct *mm,
  281. unsigned long address)
  282. {
  283. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  284. int young, idx;
  285. idx = srcu_read_lock(&kvm->srcu);
  286. spin_lock(&kvm->mmu_lock);
  287. young = kvm_age_hva(kvm, address);
  288. spin_unlock(&kvm->mmu_lock);
  289. srcu_read_unlock(&kvm->srcu, idx);
  290. if (young)
  291. kvm_flush_remote_tlbs(kvm);
  292. return young;
  293. }
  294. static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
  295. struct mm_struct *mm)
  296. {
  297. struct kvm *kvm = mmu_notifier_to_kvm(mn);
  298. int idx;
  299. idx = srcu_read_lock(&kvm->srcu);
  300. kvm_arch_flush_shadow(kvm);
  301. srcu_read_unlock(&kvm->srcu, idx);
  302. }
  303. static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
  304. .invalidate_page = kvm_mmu_notifier_invalidate_page,
  305. .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
  306. .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
  307. .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
  308. .change_pte = kvm_mmu_notifier_change_pte,
  309. .release = kvm_mmu_notifier_release,
  310. };
  311. static int kvm_init_mmu_notifier(struct kvm *kvm)
  312. {
  313. kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
  314. return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
  315. }
  316. #else /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
  317. static int kvm_init_mmu_notifier(struct kvm *kvm)
  318. {
  319. return 0;
  320. }
  321. #endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
  322. static struct kvm *kvm_create_vm(void)
  323. {
  324. int r = 0, i;
  325. struct kvm *kvm = kvm_arch_create_vm();
  326. if (IS_ERR(kvm))
  327. goto out;
  328. r = hardware_enable_all();
  329. if (r)
  330. goto out_err_nodisable;
  331. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  332. INIT_HLIST_HEAD(&kvm->mask_notifier_list);
  333. INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
  334. #endif
  335. r = -ENOMEM;
  336. kvm->memslots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  337. if (!kvm->memslots)
  338. goto out_err;
  339. if (init_srcu_struct(&kvm->srcu))
  340. goto out_err;
  341. for (i = 0; i < KVM_NR_BUSES; i++) {
  342. kvm->buses[i] = kzalloc(sizeof(struct kvm_io_bus),
  343. GFP_KERNEL);
  344. if (!kvm->buses[i]) {
  345. cleanup_srcu_struct(&kvm->srcu);
  346. goto out_err;
  347. }
  348. }
  349. r = kvm_init_mmu_notifier(kvm);
  350. if (r) {
  351. cleanup_srcu_struct(&kvm->srcu);
  352. goto out_err;
  353. }
  354. kvm->mm = current->mm;
  355. atomic_inc(&kvm->mm->mm_count);
  356. spin_lock_init(&kvm->mmu_lock);
  357. raw_spin_lock_init(&kvm->requests_lock);
  358. kvm_eventfd_init(kvm);
  359. mutex_init(&kvm->lock);
  360. mutex_init(&kvm->irq_lock);
  361. mutex_init(&kvm->slots_lock);
  362. atomic_set(&kvm->users_count, 1);
  363. spin_lock(&kvm_lock);
  364. list_add(&kvm->vm_list, &vm_list);
  365. spin_unlock(&kvm_lock);
  366. out:
  367. return kvm;
  368. out_err:
  369. hardware_disable_all();
  370. out_err_nodisable:
  371. for (i = 0; i < KVM_NR_BUSES; i++)
  372. kfree(kvm->buses[i]);
  373. kfree(kvm->memslots);
  374. kfree(kvm);
  375. return ERR_PTR(r);
  376. }
  377. /*
  378. * Free any memory in @free but not in @dont.
  379. */
  380. static void kvm_free_physmem_slot(struct kvm_memory_slot *free,
  381. struct kvm_memory_slot *dont)
  382. {
  383. int i;
  384. if (!dont || free->rmap != dont->rmap)
  385. vfree(free->rmap);
  386. if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
  387. vfree(free->dirty_bitmap);
  388. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  389. if (!dont || free->lpage_info[i] != dont->lpage_info[i]) {
  390. vfree(free->lpage_info[i]);
  391. free->lpage_info[i] = NULL;
  392. }
  393. }
  394. free->npages = 0;
  395. free->dirty_bitmap = NULL;
  396. free->rmap = NULL;
  397. }
  398. void kvm_free_physmem(struct kvm *kvm)
  399. {
  400. int i;
  401. struct kvm_memslots *slots = kvm->memslots;
  402. for (i = 0; i < slots->nmemslots; ++i)
  403. kvm_free_physmem_slot(&slots->memslots[i], NULL);
  404. kfree(kvm->memslots);
  405. }
  406. static void kvm_destroy_vm(struct kvm *kvm)
  407. {
  408. int i;
  409. struct mm_struct *mm = kvm->mm;
  410. kvm_arch_sync_events(kvm);
  411. spin_lock(&kvm_lock);
  412. list_del(&kvm->vm_list);
  413. spin_unlock(&kvm_lock);
  414. kvm_free_irq_routing(kvm);
  415. for (i = 0; i < KVM_NR_BUSES; i++)
  416. kvm_io_bus_destroy(kvm->buses[i]);
  417. kvm_coalesced_mmio_free(kvm);
  418. #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
  419. mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
  420. #else
  421. kvm_arch_flush_shadow(kvm);
  422. #endif
  423. kvm_arch_destroy_vm(kvm);
  424. hardware_disable_all();
  425. mmdrop(mm);
  426. }
  427. void kvm_get_kvm(struct kvm *kvm)
  428. {
  429. atomic_inc(&kvm->users_count);
  430. }
  431. EXPORT_SYMBOL_GPL(kvm_get_kvm);
  432. void kvm_put_kvm(struct kvm *kvm)
  433. {
  434. if (atomic_dec_and_test(&kvm->users_count))
  435. kvm_destroy_vm(kvm);
  436. }
  437. EXPORT_SYMBOL_GPL(kvm_put_kvm);
  438. static int kvm_vm_release(struct inode *inode, struct file *filp)
  439. {
  440. struct kvm *kvm = filp->private_data;
  441. kvm_irqfd_release(kvm);
  442. kvm_put_kvm(kvm);
  443. return 0;
  444. }
  445. /*
  446. * Allocate some memory and give it an address in the guest physical address
  447. * space.
  448. *
  449. * Discontiguous memory is allowed, mostly for framebuffers.
  450. *
  451. * Must be called holding mmap_sem for write.
  452. */
  453. int __kvm_set_memory_region(struct kvm *kvm,
  454. struct kvm_userspace_memory_region *mem,
  455. int user_alloc)
  456. {
  457. int r, flush_shadow = 0;
  458. gfn_t base_gfn;
  459. unsigned long npages;
  460. unsigned long i;
  461. struct kvm_memory_slot *memslot;
  462. struct kvm_memory_slot old, new;
  463. struct kvm_memslots *slots, *old_memslots;
  464. r = -EINVAL;
  465. /* General sanity checks */
  466. if (mem->memory_size & (PAGE_SIZE - 1))
  467. goto out;
  468. if (mem->guest_phys_addr & (PAGE_SIZE - 1))
  469. goto out;
  470. if (user_alloc && (mem->userspace_addr & (PAGE_SIZE - 1)))
  471. goto out;
  472. if (mem->slot >= KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
  473. goto out;
  474. if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
  475. goto out;
  476. memslot = &kvm->memslots->memslots[mem->slot];
  477. base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
  478. npages = mem->memory_size >> PAGE_SHIFT;
  479. r = -EINVAL;
  480. if (npages > KVM_MEM_MAX_NR_PAGES)
  481. goto out;
  482. if (!npages)
  483. mem->flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
  484. new = old = *memslot;
  485. new.id = mem->slot;
  486. new.base_gfn = base_gfn;
  487. new.npages = npages;
  488. new.flags = mem->flags;
  489. /* Disallow changing a memory slot's size. */
  490. r = -EINVAL;
  491. if (npages && old.npages && npages != old.npages)
  492. goto out_free;
  493. /* Check for overlaps */
  494. r = -EEXIST;
  495. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  496. struct kvm_memory_slot *s = &kvm->memslots->memslots[i];
  497. if (s == memslot || !s->npages)
  498. continue;
  499. if (!((base_gfn + npages <= s->base_gfn) ||
  500. (base_gfn >= s->base_gfn + s->npages)))
  501. goto out_free;
  502. }
  503. /* Free page dirty bitmap if unneeded */
  504. if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
  505. new.dirty_bitmap = NULL;
  506. r = -ENOMEM;
  507. /* Allocate if a slot is being created */
  508. #ifndef CONFIG_S390
  509. if (npages && !new.rmap) {
  510. new.rmap = vmalloc(npages * sizeof(*new.rmap));
  511. if (!new.rmap)
  512. goto out_free;
  513. memset(new.rmap, 0, npages * sizeof(*new.rmap));
  514. new.user_alloc = user_alloc;
  515. new.userspace_addr = mem->userspace_addr;
  516. }
  517. if (!npages)
  518. goto skip_lpage;
  519. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i) {
  520. unsigned long ugfn;
  521. unsigned long j;
  522. int lpages;
  523. int level = i + 2;
  524. /* Avoid unused variable warning if no large pages */
  525. (void)level;
  526. if (new.lpage_info[i])
  527. continue;
  528. lpages = 1 + ((base_gfn + npages - 1)
  529. >> KVM_HPAGE_GFN_SHIFT(level));
  530. lpages -= base_gfn >> KVM_HPAGE_GFN_SHIFT(level);
  531. new.lpage_info[i] = vmalloc(lpages * sizeof(*new.lpage_info[i]));
  532. if (!new.lpage_info[i])
  533. goto out_free;
  534. memset(new.lpage_info[i], 0,
  535. lpages * sizeof(*new.lpage_info[i]));
  536. if (base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
  537. new.lpage_info[i][0].write_count = 1;
  538. if ((base_gfn+npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
  539. new.lpage_info[i][lpages - 1].write_count = 1;
  540. ugfn = new.userspace_addr >> PAGE_SHIFT;
  541. /*
  542. * If the gfn and userspace address are not aligned wrt each
  543. * other, or if explicitly asked to, disable large page
  544. * support for this slot
  545. */
  546. if ((base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) ||
  547. !largepages_enabled)
  548. for (j = 0; j < lpages; ++j)
  549. new.lpage_info[i][j].write_count = 1;
  550. }
  551. skip_lpage:
  552. /* Allocate page dirty bitmap if needed */
  553. if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
  554. unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(&new);
  555. new.dirty_bitmap = vmalloc(dirty_bytes);
  556. if (!new.dirty_bitmap)
  557. goto out_free;
  558. memset(new.dirty_bitmap, 0, dirty_bytes);
  559. /* destroy any largepage mappings for dirty tracking */
  560. if (old.npages)
  561. flush_shadow = 1;
  562. }
  563. #else /* not defined CONFIG_S390 */
  564. new.user_alloc = user_alloc;
  565. if (user_alloc)
  566. new.userspace_addr = mem->userspace_addr;
  567. #endif /* not defined CONFIG_S390 */
  568. if (!npages) {
  569. r = -ENOMEM;
  570. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  571. if (!slots)
  572. goto out_free;
  573. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  574. if (mem->slot >= slots->nmemslots)
  575. slots->nmemslots = mem->slot + 1;
  576. slots->memslots[mem->slot].flags |= KVM_MEMSLOT_INVALID;
  577. old_memslots = kvm->memslots;
  578. rcu_assign_pointer(kvm->memslots, slots);
  579. synchronize_srcu_expedited(&kvm->srcu);
  580. /* From this point no new shadow pages pointing to a deleted
  581. * memslot will be created.
  582. *
  583. * validation of sp->gfn happens in:
  584. * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
  585. * - kvm_is_visible_gfn (mmu_check_roots)
  586. */
  587. kvm_arch_flush_shadow(kvm);
  588. kfree(old_memslots);
  589. }
  590. r = kvm_arch_prepare_memory_region(kvm, &new, old, mem, user_alloc);
  591. if (r)
  592. goto out_free;
  593. /* map the pages in iommu page table */
  594. if (npages) {
  595. r = kvm_iommu_map_pages(kvm, &new);
  596. if (r)
  597. goto out_free;
  598. }
  599. r = -ENOMEM;
  600. slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
  601. if (!slots)
  602. goto out_free;
  603. memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
  604. if (mem->slot >= slots->nmemslots)
  605. slots->nmemslots = mem->slot + 1;
  606. /* actual memory is freed via old in kvm_free_physmem_slot below */
  607. if (!npages) {
  608. new.rmap = NULL;
  609. new.dirty_bitmap = NULL;
  610. for (i = 0; i < KVM_NR_PAGE_SIZES - 1; ++i)
  611. new.lpage_info[i] = NULL;
  612. }
  613. slots->memslots[mem->slot] = new;
  614. old_memslots = kvm->memslots;
  615. rcu_assign_pointer(kvm->memslots, slots);
  616. synchronize_srcu_expedited(&kvm->srcu);
  617. kvm_arch_commit_memory_region(kvm, mem, old, user_alloc);
  618. kvm_free_physmem_slot(&old, &new);
  619. kfree(old_memslots);
  620. if (flush_shadow)
  621. kvm_arch_flush_shadow(kvm);
  622. return 0;
  623. out_free:
  624. kvm_free_physmem_slot(&new, &old);
  625. out:
  626. return r;
  627. }
  628. EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
  629. int kvm_set_memory_region(struct kvm *kvm,
  630. struct kvm_userspace_memory_region *mem,
  631. int user_alloc)
  632. {
  633. int r;
  634. mutex_lock(&kvm->slots_lock);
  635. r = __kvm_set_memory_region(kvm, mem, user_alloc);
  636. mutex_unlock(&kvm->slots_lock);
  637. return r;
  638. }
  639. EXPORT_SYMBOL_GPL(kvm_set_memory_region);
  640. int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
  641. struct
  642. kvm_userspace_memory_region *mem,
  643. int user_alloc)
  644. {
  645. if (mem->slot >= KVM_MEMORY_SLOTS)
  646. return -EINVAL;
  647. return kvm_set_memory_region(kvm, mem, user_alloc);
  648. }
  649. int kvm_get_dirty_log(struct kvm *kvm,
  650. struct kvm_dirty_log *log, int *is_dirty)
  651. {
  652. struct kvm_memory_slot *memslot;
  653. int r, i;
  654. unsigned long n;
  655. unsigned long any = 0;
  656. r = -EINVAL;
  657. if (log->slot >= KVM_MEMORY_SLOTS)
  658. goto out;
  659. memslot = &kvm->memslots->memslots[log->slot];
  660. r = -ENOENT;
  661. if (!memslot->dirty_bitmap)
  662. goto out;
  663. n = kvm_dirty_bitmap_bytes(memslot);
  664. for (i = 0; !any && i < n/sizeof(long); ++i)
  665. any = memslot->dirty_bitmap[i];
  666. r = -EFAULT;
  667. if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
  668. goto out;
  669. if (any)
  670. *is_dirty = 1;
  671. r = 0;
  672. out:
  673. return r;
  674. }
  675. void kvm_disable_largepages(void)
  676. {
  677. largepages_enabled = false;
  678. }
  679. EXPORT_SYMBOL_GPL(kvm_disable_largepages);
  680. int is_error_page(struct page *page)
  681. {
  682. return page == bad_page || page == hwpoison_page || page == fault_page;
  683. }
  684. EXPORT_SYMBOL_GPL(is_error_page);
  685. int is_error_pfn(pfn_t pfn)
  686. {
  687. return pfn == bad_pfn || pfn == hwpoison_pfn || pfn == fault_pfn;
  688. }
  689. EXPORT_SYMBOL_GPL(is_error_pfn);
  690. int is_hwpoison_pfn(pfn_t pfn)
  691. {
  692. return pfn == hwpoison_pfn;
  693. }
  694. EXPORT_SYMBOL_GPL(is_hwpoison_pfn);
  695. int is_fault_pfn(pfn_t pfn)
  696. {
  697. return pfn == fault_pfn;
  698. }
  699. EXPORT_SYMBOL_GPL(is_fault_pfn);
  700. static inline unsigned long bad_hva(void)
  701. {
  702. return PAGE_OFFSET;
  703. }
  704. int kvm_is_error_hva(unsigned long addr)
  705. {
  706. return addr == bad_hva();
  707. }
  708. EXPORT_SYMBOL_GPL(kvm_is_error_hva);
  709. struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
  710. {
  711. int i;
  712. struct kvm_memslots *slots = kvm_memslots(kvm);
  713. for (i = 0; i < slots->nmemslots; ++i) {
  714. struct kvm_memory_slot *memslot = &slots->memslots[i];
  715. if (gfn >= memslot->base_gfn
  716. && gfn < memslot->base_gfn + memslot->npages)
  717. return memslot;
  718. }
  719. return NULL;
  720. }
  721. EXPORT_SYMBOL_GPL(gfn_to_memslot);
  722. int kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
  723. {
  724. int i;
  725. struct kvm_memslots *slots = kvm_memslots(kvm);
  726. for (i = 0; i < KVM_MEMORY_SLOTS; ++i) {
  727. struct kvm_memory_slot *memslot = &slots->memslots[i];
  728. if (memslot->flags & KVM_MEMSLOT_INVALID)
  729. continue;
  730. if (gfn >= memslot->base_gfn
  731. && gfn < memslot->base_gfn + memslot->npages)
  732. return 1;
  733. }
  734. return 0;
  735. }
  736. EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
  737. unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
  738. {
  739. struct vm_area_struct *vma;
  740. unsigned long addr, size;
  741. size = PAGE_SIZE;
  742. addr = gfn_to_hva(kvm, gfn);
  743. if (kvm_is_error_hva(addr))
  744. return PAGE_SIZE;
  745. down_read(&current->mm->mmap_sem);
  746. vma = find_vma(current->mm, addr);
  747. if (!vma)
  748. goto out;
  749. size = vma_kernel_pagesize(vma);
  750. out:
  751. up_read(&current->mm->mmap_sem);
  752. return size;
  753. }
  754. int memslot_id(struct kvm *kvm, gfn_t gfn)
  755. {
  756. int i;
  757. struct kvm_memslots *slots = kvm_memslots(kvm);
  758. struct kvm_memory_slot *memslot = NULL;
  759. for (i = 0; i < slots->nmemslots; ++i) {
  760. memslot = &slots->memslots[i];
  761. if (gfn >= memslot->base_gfn
  762. && gfn < memslot->base_gfn + memslot->npages)
  763. break;
  764. }
  765. return memslot - slots->memslots;
  766. }
  767. static unsigned long gfn_to_hva_many(struct kvm *kvm, gfn_t gfn,
  768. gfn_t *nr_pages)
  769. {
  770. struct kvm_memory_slot *slot;
  771. slot = gfn_to_memslot(kvm, gfn);
  772. if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
  773. return bad_hva();
  774. if (nr_pages)
  775. *nr_pages = slot->npages - (gfn - slot->base_gfn);
  776. return gfn_to_hva_memslot(slot, gfn);
  777. }
  778. unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
  779. {
  780. return gfn_to_hva_many(kvm, gfn, NULL);
  781. }
  782. EXPORT_SYMBOL_GPL(gfn_to_hva);
  783. static pfn_t hva_to_pfn(struct kvm *kvm, unsigned long addr, bool atomic)
  784. {
  785. struct page *page[1];
  786. int npages;
  787. pfn_t pfn;
  788. if (atomic)
  789. npages = __get_user_pages_fast(addr, 1, 1, page);
  790. else {
  791. might_sleep();
  792. npages = get_user_pages_fast(addr, 1, 1, page);
  793. }
  794. if (unlikely(npages != 1)) {
  795. struct vm_area_struct *vma;
  796. if (atomic)
  797. goto return_fault_page;
  798. down_read(&current->mm->mmap_sem);
  799. if (is_hwpoison_address(addr)) {
  800. up_read(&current->mm->mmap_sem);
  801. get_page(hwpoison_page);
  802. return page_to_pfn(hwpoison_page);
  803. }
  804. vma = find_vma(current->mm, addr);
  805. if (vma == NULL || addr < vma->vm_start ||
  806. !(vma->vm_flags & VM_PFNMAP)) {
  807. up_read(&current->mm->mmap_sem);
  808. return_fault_page:
  809. get_page(fault_page);
  810. return page_to_pfn(fault_page);
  811. }
  812. pfn = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
  813. up_read(&current->mm->mmap_sem);
  814. BUG_ON(!kvm_is_mmio_pfn(pfn));
  815. } else
  816. pfn = page_to_pfn(page[0]);
  817. return pfn;
  818. }
  819. pfn_t hva_to_pfn_atomic(struct kvm *kvm, unsigned long addr)
  820. {
  821. return hva_to_pfn(kvm, addr, true);
  822. }
  823. EXPORT_SYMBOL_GPL(hva_to_pfn_atomic);
  824. static pfn_t __gfn_to_pfn(struct kvm *kvm, gfn_t gfn, bool atomic)
  825. {
  826. unsigned long addr;
  827. addr = gfn_to_hva(kvm, gfn);
  828. if (kvm_is_error_hva(addr)) {
  829. get_page(bad_page);
  830. return page_to_pfn(bad_page);
  831. }
  832. return hva_to_pfn(kvm, addr, atomic);
  833. }
  834. pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
  835. {
  836. return __gfn_to_pfn(kvm, gfn, true);
  837. }
  838. EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
  839. pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
  840. {
  841. return __gfn_to_pfn(kvm, gfn, false);
  842. }
  843. EXPORT_SYMBOL_GPL(gfn_to_pfn);
  844. pfn_t gfn_to_pfn_memslot(struct kvm *kvm,
  845. struct kvm_memory_slot *slot, gfn_t gfn)
  846. {
  847. unsigned long addr = gfn_to_hva_memslot(slot, gfn);
  848. return hva_to_pfn(kvm, addr, false);
  849. }
  850. int gfn_to_page_many_atomic(struct kvm *kvm, gfn_t gfn, struct page **pages,
  851. int nr_pages)
  852. {
  853. unsigned long addr;
  854. gfn_t entry;
  855. addr = gfn_to_hva_many(kvm, gfn, &entry);
  856. if (kvm_is_error_hva(addr))
  857. return -1;
  858. if (entry < nr_pages)
  859. return 0;
  860. return __get_user_pages_fast(addr, nr_pages, 1, pages);
  861. }
  862. EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
  863. struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
  864. {
  865. pfn_t pfn;
  866. pfn = gfn_to_pfn(kvm, gfn);
  867. if (!kvm_is_mmio_pfn(pfn))
  868. return pfn_to_page(pfn);
  869. WARN_ON(kvm_is_mmio_pfn(pfn));
  870. get_page(bad_page);
  871. return bad_page;
  872. }
  873. EXPORT_SYMBOL_GPL(gfn_to_page);
  874. void kvm_release_page_clean(struct page *page)
  875. {
  876. kvm_release_pfn_clean(page_to_pfn(page));
  877. }
  878. EXPORT_SYMBOL_GPL(kvm_release_page_clean);
  879. void kvm_release_pfn_clean(pfn_t pfn)
  880. {
  881. if (!kvm_is_mmio_pfn(pfn))
  882. put_page(pfn_to_page(pfn));
  883. }
  884. EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
  885. void kvm_release_page_dirty(struct page *page)
  886. {
  887. kvm_release_pfn_dirty(page_to_pfn(page));
  888. }
  889. EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
  890. void kvm_release_pfn_dirty(pfn_t pfn)
  891. {
  892. kvm_set_pfn_dirty(pfn);
  893. kvm_release_pfn_clean(pfn);
  894. }
  895. EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
  896. void kvm_set_page_dirty(struct page *page)
  897. {
  898. kvm_set_pfn_dirty(page_to_pfn(page));
  899. }
  900. EXPORT_SYMBOL_GPL(kvm_set_page_dirty);
  901. void kvm_set_pfn_dirty(pfn_t pfn)
  902. {
  903. if (!kvm_is_mmio_pfn(pfn)) {
  904. struct page *page = pfn_to_page(pfn);
  905. if (!PageReserved(page))
  906. SetPageDirty(page);
  907. }
  908. }
  909. EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
  910. void kvm_set_pfn_accessed(pfn_t pfn)
  911. {
  912. if (!kvm_is_mmio_pfn(pfn))
  913. mark_page_accessed(pfn_to_page(pfn));
  914. }
  915. EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
  916. void kvm_get_pfn(pfn_t pfn)
  917. {
  918. if (!kvm_is_mmio_pfn(pfn))
  919. get_page(pfn_to_page(pfn));
  920. }
  921. EXPORT_SYMBOL_GPL(kvm_get_pfn);
  922. static int next_segment(unsigned long len, int offset)
  923. {
  924. if (len > PAGE_SIZE - offset)
  925. return PAGE_SIZE - offset;
  926. else
  927. return len;
  928. }
  929. int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
  930. int len)
  931. {
  932. int r;
  933. unsigned long addr;
  934. addr = gfn_to_hva(kvm, gfn);
  935. if (kvm_is_error_hva(addr))
  936. return -EFAULT;
  937. r = copy_from_user(data, (void __user *)addr + offset, len);
  938. if (r)
  939. return -EFAULT;
  940. return 0;
  941. }
  942. EXPORT_SYMBOL_GPL(kvm_read_guest_page);
  943. int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
  944. {
  945. gfn_t gfn = gpa >> PAGE_SHIFT;
  946. int seg;
  947. int offset = offset_in_page(gpa);
  948. int ret;
  949. while ((seg = next_segment(len, offset)) != 0) {
  950. ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
  951. if (ret < 0)
  952. return ret;
  953. offset = 0;
  954. len -= seg;
  955. data += seg;
  956. ++gfn;
  957. }
  958. return 0;
  959. }
  960. EXPORT_SYMBOL_GPL(kvm_read_guest);
  961. int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
  962. unsigned long len)
  963. {
  964. int r;
  965. unsigned long addr;
  966. gfn_t gfn = gpa >> PAGE_SHIFT;
  967. int offset = offset_in_page(gpa);
  968. addr = gfn_to_hva(kvm, gfn);
  969. if (kvm_is_error_hva(addr))
  970. return -EFAULT;
  971. pagefault_disable();
  972. r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
  973. pagefault_enable();
  974. if (r)
  975. return -EFAULT;
  976. return 0;
  977. }
  978. EXPORT_SYMBOL(kvm_read_guest_atomic);
  979. int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
  980. int offset, int len)
  981. {
  982. int r;
  983. unsigned long addr;
  984. addr = gfn_to_hva(kvm, gfn);
  985. if (kvm_is_error_hva(addr))
  986. return -EFAULT;
  987. r = copy_to_user((void __user *)addr + offset, data, len);
  988. if (r)
  989. return -EFAULT;
  990. mark_page_dirty(kvm, gfn);
  991. return 0;
  992. }
  993. EXPORT_SYMBOL_GPL(kvm_write_guest_page);
  994. int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
  995. unsigned long len)
  996. {
  997. gfn_t gfn = gpa >> PAGE_SHIFT;
  998. int seg;
  999. int offset = offset_in_page(gpa);
  1000. int ret;
  1001. while ((seg = next_segment(len, offset)) != 0) {
  1002. ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
  1003. if (ret < 0)
  1004. return ret;
  1005. offset = 0;
  1006. len -= seg;
  1007. data += seg;
  1008. ++gfn;
  1009. }
  1010. return 0;
  1011. }
  1012. int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
  1013. {
  1014. return kvm_write_guest_page(kvm, gfn, empty_zero_page, offset, len);
  1015. }
  1016. EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
  1017. int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
  1018. {
  1019. gfn_t gfn = gpa >> PAGE_SHIFT;
  1020. int seg;
  1021. int offset = offset_in_page(gpa);
  1022. int ret;
  1023. while ((seg = next_segment(len, offset)) != 0) {
  1024. ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
  1025. if (ret < 0)
  1026. return ret;
  1027. offset = 0;
  1028. len -= seg;
  1029. ++gfn;
  1030. }
  1031. return 0;
  1032. }
  1033. EXPORT_SYMBOL_GPL(kvm_clear_guest);
  1034. void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
  1035. {
  1036. struct kvm_memory_slot *memslot;
  1037. memslot = gfn_to_memslot(kvm, gfn);
  1038. if (memslot && memslot->dirty_bitmap) {
  1039. unsigned long rel_gfn = gfn - memslot->base_gfn;
  1040. generic___set_le_bit(rel_gfn, memslot->dirty_bitmap);
  1041. }
  1042. }
  1043. /*
  1044. * The vCPU has executed a HLT instruction with in-kernel mode enabled.
  1045. */
  1046. void kvm_vcpu_block(struct kvm_vcpu *vcpu)
  1047. {
  1048. DEFINE_WAIT(wait);
  1049. for (;;) {
  1050. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1051. if (kvm_arch_vcpu_runnable(vcpu)) {
  1052. kvm_make_request(KVM_REQ_UNHALT, vcpu);
  1053. break;
  1054. }
  1055. if (kvm_cpu_has_pending_timer(vcpu))
  1056. break;
  1057. if (signal_pending(current))
  1058. break;
  1059. schedule();
  1060. }
  1061. finish_wait(&vcpu->wq, &wait);
  1062. }
  1063. void kvm_resched(struct kvm_vcpu *vcpu)
  1064. {
  1065. if (!need_resched())
  1066. return;
  1067. cond_resched();
  1068. }
  1069. EXPORT_SYMBOL_GPL(kvm_resched);
  1070. void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu)
  1071. {
  1072. ktime_t expires;
  1073. DEFINE_WAIT(wait);
  1074. prepare_to_wait(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
  1075. /* Sleep for 100 us, and hope lock-holder got scheduled */
  1076. expires = ktime_add_ns(ktime_get(), 100000UL);
  1077. schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
  1078. finish_wait(&vcpu->wq, &wait);
  1079. }
  1080. EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
  1081. static int kvm_vcpu_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1082. {
  1083. struct kvm_vcpu *vcpu = vma->vm_file->private_data;
  1084. struct page *page;
  1085. if (vmf->pgoff == 0)
  1086. page = virt_to_page(vcpu->run);
  1087. #ifdef CONFIG_X86
  1088. else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
  1089. page = virt_to_page(vcpu->arch.pio_data);
  1090. #endif
  1091. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1092. else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
  1093. page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
  1094. #endif
  1095. else
  1096. return VM_FAULT_SIGBUS;
  1097. get_page(page);
  1098. vmf->page = page;
  1099. return 0;
  1100. }
  1101. static const struct vm_operations_struct kvm_vcpu_vm_ops = {
  1102. .fault = kvm_vcpu_fault,
  1103. };
  1104. static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
  1105. {
  1106. vma->vm_ops = &kvm_vcpu_vm_ops;
  1107. return 0;
  1108. }
  1109. static int kvm_vcpu_release(struct inode *inode, struct file *filp)
  1110. {
  1111. struct kvm_vcpu *vcpu = filp->private_data;
  1112. kvm_put_kvm(vcpu->kvm);
  1113. return 0;
  1114. }
  1115. static struct file_operations kvm_vcpu_fops = {
  1116. .release = kvm_vcpu_release,
  1117. .unlocked_ioctl = kvm_vcpu_ioctl,
  1118. .compat_ioctl = kvm_vcpu_ioctl,
  1119. .mmap = kvm_vcpu_mmap,
  1120. .llseek = noop_llseek,
  1121. };
  1122. /*
  1123. * Allocates an inode for the vcpu.
  1124. */
  1125. static int create_vcpu_fd(struct kvm_vcpu *vcpu)
  1126. {
  1127. return anon_inode_getfd("kvm-vcpu", &kvm_vcpu_fops, vcpu, O_RDWR);
  1128. }
  1129. /*
  1130. * Creates some virtual cpus. Good luck creating more than one.
  1131. */
  1132. static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
  1133. {
  1134. int r;
  1135. struct kvm_vcpu *vcpu, *v;
  1136. vcpu = kvm_arch_vcpu_create(kvm, id);
  1137. if (IS_ERR(vcpu))
  1138. return PTR_ERR(vcpu);
  1139. preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
  1140. r = kvm_arch_vcpu_setup(vcpu);
  1141. if (r)
  1142. return r;
  1143. mutex_lock(&kvm->lock);
  1144. if (atomic_read(&kvm->online_vcpus) == KVM_MAX_VCPUS) {
  1145. r = -EINVAL;
  1146. goto vcpu_destroy;
  1147. }
  1148. kvm_for_each_vcpu(r, v, kvm)
  1149. if (v->vcpu_id == id) {
  1150. r = -EEXIST;
  1151. goto vcpu_destroy;
  1152. }
  1153. BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
  1154. /* Now it's all set up, let userspace reach it */
  1155. kvm_get_kvm(kvm);
  1156. r = create_vcpu_fd(vcpu);
  1157. if (r < 0) {
  1158. kvm_put_kvm(kvm);
  1159. goto vcpu_destroy;
  1160. }
  1161. kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
  1162. smp_wmb();
  1163. atomic_inc(&kvm->online_vcpus);
  1164. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1165. if (kvm->bsp_vcpu_id == id)
  1166. kvm->bsp_vcpu = vcpu;
  1167. #endif
  1168. mutex_unlock(&kvm->lock);
  1169. return r;
  1170. vcpu_destroy:
  1171. mutex_unlock(&kvm->lock);
  1172. kvm_arch_vcpu_destroy(vcpu);
  1173. return r;
  1174. }
  1175. static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
  1176. {
  1177. if (sigset) {
  1178. sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
  1179. vcpu->sigset_active = 1;
  1180. vcpu->sigset = *sigset;
  1181. } else
  1182. vcpu->sigset_active = 0;
  1183. return 0;
  1184. }
  1185. static long kvm_vcpu_ioctl(struct file *filp,
  1186. unsigned int ioctl, unsigned long arg)
  1187. {
  1188. struct kvm_vcpu *vcpu = filp->private_data;
  1189. void __user *argp = (void __user *)arg;
  1190. int r;
  1191. struct kvm_fpu *fpu = NULL;
  1192. struct kvm_sregs *kvm_sregs = NULL;
  1193. if (vcpu->kvm->mm != current->mm)
  1194. return -EIO;
  1195. #if defined(CONFIG_S390) || defined(CONFIG_PPC)
  1196. /*
  1197. * Special cases: vcpu ioctls that are asynchronous to vcpu execution,
  1198. * so vcpu_load() would break it.
  1199. */
  1200. if (ioctl == KVM_S390_INTERRUPT || ioctl == KVM_INTERRUPT)
  1201. return kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1202. #endif
  1203. vcpu_load(vcpu);
  1204. switch (ioctl) {
  1205. case KVM_RUN:
  1206. r = -EINVAL;
  1207. if (arg)
  1208. goto out;
  1209. r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
  1210. break;
  1211. case KVM_GET_REGS: {
  1212. struct kvm_regs *kvm_regs;
  1213. r = -ENOMEM;
  1214. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1215. if (!kvm_regs)
  1216. goto out;
  1217. r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
  1218. if (r)
  1219. goto out_free1;
  1220. r = -EFAULT;
  1221. if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
  1222. goto out_free1;
  1223. r = 0;
  1224. out_free1:
  1225. kfree(kvm_regs);
  1226. break;
  1227. }
  1228. case KVM_SET_REGS: {
  1229. struct kvm_regs *kvm_regs;
  1230. r = -ENOMEM;
  1231. kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
  1232. if (!kvm_regs)
  1233. goto out;
  1234. r = -EFAULT;
  1235. if (copy_from_user(kvm_regs, argp, sizeof(struct kvm_regs)))
  1236. goto out_free2;
  1237. r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
  1238. if (r)
  1239. goto out_free2;
  1240. r = 0;
  1241. out_free2:
  1242. kfree(kvm_regs);
  1243. break;
  1244. }
  1245. case KVM_GET_SREGS: {
  1246. kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1247. r = -ENOMEM;
  1248. if (!kvm_sregs)
  1249. goto out;
  1250. r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
  1251. if (r)
  1252. goto out;
  1253. r = -EFAULT;
  1254. if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
  1255. goto out;
  1256. r = 0;
  1257. break;
  1258. }
  1259. case KVM_SET_SREGS: {
  1260. kvm_sregs = kmalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
  1261. r = -ENOMEM;
  1262. if (!kvm_sregs)
  1263. goto out;
  1264. r = -EFAULT;
  1265. if (copy_from_user(kvm_sregs, argp, sizeof(struct kvm_sregs)))
  1266. goto out;
  1267. r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
  1268. if (r)
  1269. goto out;
  1270. r = 0;
  1271. break;
  1272. }
  1273. case KVM_GET_MP_STATE: {
  1274. struct kvm_mp_state mp_state;
  1275. r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
  1276. if (r)
  1277. goto out;
  1278. r = -EFAULT;
  1279. if (copy_to_user(argp, &mp_state, sizeof mp_state))
  1280. goto out;
  1281. r = 0;
  1282. break;
  1283. }
  1284. case KVM_SET_MP_STATE: {
  1285. struct kvm_mp_state mp_state;
  1286. r = -EFAULT;
  1287. if (copy_from_user(&mp_state, argp, sizeof mp_state))
  1288. goto out;
  1289. r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
  1290. if (r)
  1291. goto out;
  1292. r = 0;
  1293. break;
  1294. }
  1295. case KVM_TRANSLATE: {
  1296. struct kvm_translation tr;
  1297. r = -EFAULT;
  1298. if (copy_from_user(&tr, argp, sizeof tr))
  1299. goto out;
  1300. r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
  1301. if (r)
  1302. goto out;
  1303. r = -EFAULT;
  1304. if (copy_to_user(argp, &tr, sizeof tr))
  1305. goto out;
  1306. r = 0;
  1307. break;
  1308. }
  1309. case KVM_SET_GUEST_DEBUG: {
  1310. struct kvm_guest_debug dbg;
  1311. r = -EFAULT;
  1312. if (copy_from_user(&dbg, argp, sizeof dbg))
  1313. goto out;
  1314. r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
  1315. if (r)
  1316. goto out;
  1317. r = 0;
  1318. break;
  1319. }
  1320. case KVM_SET_SIGNAL_MASK: {
  1321. struct kvm_signal_mask __user *sigmask_arg = argp;
  1322. struct kvm_signal_mask kvm_sigmask;
  1323. sigset_t sigset, *p;
  1324. p = NULL;
  1325. if (argp) {
  1326. r = -EFAULT;
  1327. if (copy_from_user(&kvm_sigmask, argp,
  1328. sizeof kvm_sigmask))
  1329. goto out;
  1330. r = -EINVAL;
  1331. if (kvm_sigmask.len != sizeof sigset)
  1332. goto out;
  1333. r = -EFAULT;
  1334. if (copy_from_user(&sigset, sigmask_arg->sigset,
  1335. sizeof sigset))
  1336. goto out;
  1337. p = &sigset;
  1338. }
  1339. r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
  1340. break;
  1341. }
  1342. case KVM_GET_FPU: {
  1343. fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1344. r = -ENOMEM;
  1345. if (!fpu)
  1346. goto out;
  1347. r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
  1348. if (r)
  1349. goto out;
  1350. r = -EFAULT;
  1351. if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
  1352. goto out;
  1353. r = 0;
  1354. break;
  1355. }
  1356. case KVM_SET_FPU: {
  1357. fpu = kmalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
  1358. r = -ENOMEM;
  1359. if (!fpu)
  1360. goto out;
  1361. r = -EFAULT;
  1362. if (copy_from_user(fpu, argp, sizeof(struct kvm_fpu)))
  1363. goto out;
  1364. r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
  1365. if (r)
  1366. goto out;
  1367. r = 0;
  1368. break;
  1369. }
  1370. default:
  1371. r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
  1372. }
  1373. out:
  1374. vcpu_put(vcpu);
  1375. kfree(fpu);
  1376. kfree(kvm_sregs);
  1377. return r;
  1378. }
  1379. static long kvm_vm_ioctl(struct file *filp,
  1380. unsigned int ioctl, unsigned long arg)
  1381. {
  1382. struct kvm *kvm = filp->private_data;
  1383. void __user *argp = (void __user *)arg;
  1384. int r;
  1385. if (kvm->mm != current->mm)
  1386. return -EIO;
  1387. switch (ioctl) {
  1388. case KVM_CREATE_VCPU:
  1389. r = kvm_vm_ioctl_create_vcpu(kvm, arg);
  1390. if (r < 0)
  1391. goto out;
  1392. break;
  1393. case KVM_SET_USER_MEMORY_REGION: {
  1394. struct kvm_userspace_memory_region kvm_userspace_mem;
  1395. r = -EFAULT;
  1396. if (copy_from_user(&kvm_userspace_mem, argp,
  1397. sizeof kvm_userspace_mem))
  1398. goto out;
  1399. r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem, 1);
  1400. if (r)
  1401. goto out;
  1402. break;
  1403. }
  1404. case KVM_GET_DIRTY_LOG: {
  1405. struct kvm_dirty_log log;
  1406. r = -EFAULT;
  1407. if (copy_from_user(&log, argp, sizeof log))
  1408. goto out;
  1409. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1410. if (r)
  1411. goto out;
  1412. break;
  1413. }
  1414. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1415. case KVM_REGISTER_COALESCED_MMIO: {
  1416. struct kvm_coalesced_mmio_zone zone;
  1417. r = -EFAULT;
  1418. if (copy_from_user(&zone, argp, sizeof zone))
  1419. goto out;
  1420. r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
  1421. if (r)
  1422. goto out;
  1423. r = 0;
  1424. break;
  1425. }
  1426. case KVM_UNREGISTER_COALESCED_MMIO: {
  1427. struct kvm_coalesced_mmio_zone zone;
  1428. r = -EFAULT;
  1429. if (copy_from_user(&zone, argp, sizeof zone))
  1430. goto out;
  1431. r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
  1432. if (r)
  1433. goto out;
  1434. r = 0;
  1435. break;
  1436. }
  1437. #endif
  1438. case KVM_IRQFD: {
  1439. struct kvm_irqfd data;
  1440. r = -EFAULT;
  1441. if (copy_from_user(&data, argp, sizeof data))
  1442. goto out;
  1443. r = kvm_irqfd(kvm, data.fd, data.gsi, data.flags);
  1444. break;
  1445. }
  1446. case KVM_IOEVENTFD: {
  1447. struct kvm_ioeventfd data;
  1448. r = -EFAULT;
  1449. if (copy_from_user(&data, argp, sizeof data))
  1450. goto out;
  1451. r = kvm_ioeventfd(kvm, &data);
  1452. break;
  1453. }
  1454. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1455. case KVM_SET_BOOT_CPU_ID:
  1456. r = 0;
  1457. mutex_lock(&kvm->lock);
  1458. if (atomic_read(&kvm->online_vcpus) != 0)
  1459. r = -EBUSY;
  1460. else
  1461. kvm->bsp_vcpu_id = arg;
  1462. mutex_unlock(&kvm->lock);
  1463. break;
  1464. #endif
  1465. default:
  1466. r = kvm_arch_vm_ioctl(filp, ioctl, arg);
  1467. if (r == -ENOTTY)
  1468. r = kvm_vm_ioctl_assigned_device(kvm, ioctl, arg);
  1469. }
  1470. out:
  1471. return r;
  1472. }
  1473. #ifdef CONFIG_COMPAT
  1474. struct compat_kvm_dirty_log {
  1475. __u32 slot;
  1476. __u32 padding1;
  1477. union {
  1478. compat_uptr_t dirty_bitmap; /* one bit per page */
  1479. __u64 padding2;
  1480. };
  1481. };
  1482. static long kvm_vm_compat_ioctl(struct file *filp,
  1483. unsigned int ioctl, unsigned long arg)
  1484. {
  1485. struct kvm *kvm = filp->private_data;
  1486. int r;
  1487. if (kvm->mm != current->mm)
  1488. return -EIO;
  1489. switch (ioctl) {
  1490. case KVM_GET_DIRTY_LOG: {
  1491. struct compat_kvm_dirty_log compat_log;
  1492. struct kvm_dirty_log log;
  1493. r = -EFAULT;
  1494. if (copy_from_user(&compat_log, (void __user *)arg,
  1495. sizeof(compat_log)))
  1496. goto out;
  1497. log.slot = compat_log.slot;
  1498. log.padding1 = compat_log.padding1;
  1499. log.padding2 = compat_log.padding2;
  1500. log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
  1501. r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
  1502. if (r)
  1503. goto out;
  1504. break;
  1505. }
  1506. default:
  1507. r = kvm_vm_ioctl(filp, ioctl, arg);
  1508. }
  1509. out:
  1510. return r;
  1511. }
  1512. #endif
  1513. static int kvm_vm_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
  1514. {
  1515. struct page *page[1];
  1516. unsigned long addr;
  1517. int npages;
  1518. gfn_t gfn = vmf->pgoff;
  1519. struct kvm *kvm = vma->vm_file->private_data;
  1520. addr = gfn_to_hva(kvm, gfn);
  1521. if (kvm_is_error_hva(addr))
  1522. return VM_FAULT_SIGBUS;
  1523. npages = get_user_pages(current, current->mm, addr, 1, 1, 0, page,
  1524. NULL);
  1525. if (unlikely(npages != 1))
  1526. return VM_FAULT_SIGBUS;
  1527. vmf->page = page[0];
  1528. return 0;
  1529. }
  1530. static const struct vm_operations_struct kvm_vm_vm_ops = {
  1531. .fault = kvm_vm_fault,
  1532. };
  1533. static int kvm_vm_mmap(struct file *file, struct vm_area_struct *vma)
  1534. {
  1535. vma->vm_ops = &kvm_vm_vm_ops;
  1536. return 0;
  1537. }
  1538. static struct file_operations kvm_vm_fops = {
  1539. .release = kvm_vm_release,
  1540. .unlocked_ioctl = kvm_vm_ioctl,
  1541. #ifdef CONFIG_COMPAT
  1542. .compat_ioctl = kvm_vm_compat_ioctl,
  1543. #endif
  1544. .mmap = kvm_vm_mmap,
  1545. .llseek = noop_llseek,
  1546. };
  1547. static int kvm_dev_ioctl_create_vm(void)
  1548. {
  1549. int fd, r;
  1550. struct kvm *kvm;
  1551. kvm = kvm_create_vm();
  1552. if (IS_ERR(kvm))
  1553. return PTR_ERR(kvm);
  1554. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1555. r = kvm_coalesced_mmio_init(kvm);
  1556. if (r < 0) {
  1557. kvm_put_kvm(kvm);
  1558. return r;
  1559. }
  1560. #endif
  1561. fd = anon_inode_getfd("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
  1562. if (fd < 0)
  1563. kvm_put_kvm(kvm);
  1564. return fd;
  1565. }
  1566. static long kvm_dev_ioctl_check_extension_generic(long arg)
  1567. {
  1568. switch (arg) {
  1569. case KVM_CAP_USER_MEMORY:
  1570. case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
  1571. case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
  1572. #ifdef CONFIG_KVM_APIC_ARCHITECTURE
  1573. case KVM_CAP_SET_BOOT_CPU_ID:
  1574. #endif
  1575. case KVM_CAP_INTERNAL_ERROR_DATA:
  1576. return 1;
  1577. #ifdef CONFIG_HAVE_KVM_IRQCHIP
  1578. case KVM_CAP_IRQ_ROUTING:
  1579. return KVM_MAX_IRQ_ROUTES;
  1580. #endif
  1581. default:
  1582. break;
  1583. }
  1584. return kvm_dev_ioctl_check_extension(arg);
  1585. }
  1586. static long kvm_dev_ioctl(struct file *filp,
  1587. unsigned int ioctl, unsigned long arg)
  1588. {
  1589. long r = -EINVAL;
  1590. switch (ioctl) {
  1591. case KVM_GET_API_VERSION:
  1592. r = -EINVAL;
  1593. if (arg)
  1594. goto out;
  1595. r = KVM_API_VERSION;
  1596. break;
  1597. case KVM_CREATE_VM:
  1598. r = -EINVAL;
  1599. if (arg)
  1600. goto out;
  1601. r = kvm_dev_ioctl_create_vm();
  1602. break;
  1603. case KVM_CHECK_EXTENSION:
  1604. r = kvm_dev_ioctl_check_extension_generic(arg);
  1605. break;
  1606. case KVM_GET_VCPU_MMAP_SIZE:
  1607. r = -EINVAL;
  1608. if (arg)
  1609. goto out;
  1610. r = PAGE_SIZE; /* struct kvm_run */
  1611. #ifdef CONFIG_X86
  1612. r += PAGE_SIZE; /* pio data page */
  1613. #endif
  1614. #ifdef KVM_COALESCED_MMIO_PAGE_OFFSET
  1615. r += PAGE_SIZE; /* coalesced mmio ring page */
  1616. #endif
  1617. break;
  1618. case KVM_TRACE_ENABLE:
  1619. case KVM_TRACE_PAUSE:
  1620. case KVM_TRACE_DISABLE:
  1621. r = -EOPNOTSUPP;
  1622. break;
  1623. default:
  1624. return kvm_arch_dev_ioctl(filp, ioctl, arg);
  1625. }
  1626. out:
  1627. return r;
  1628. }
  1629. static struct file_operations kvm_chardev_ops = {
  1630. .unlocked_ioctl = kvm_dev_ioctl,
  1631. .compat_ioctl = kvm_dev_ioctl,
  1632. .llseek = noop_llseek,
  1633. };
  1634. static struct miscdevice kvm_dev = {
  1635. KVM_MINOR,
  1636. "kvm",
  1637. &kvm_chardev_ops,
  1638. };
  1639. static void hardware_enable(void *junk)
  1640. {
  1641. int cpu = raw_smp_processor_id();
  1642. int r;
  1643. if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1644. return;
  1645. cpumask_set_cpu(cpu, cpus_hardware_enabled);
  1646. r = kvm_arch_hardware_enable(NULL);
  1647. if (r) {
  1648. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1649. atomic_inc(&hardware_enable_failed);
  1650. printk(KERN_INFO "kvm: enabling virtualization on "
  1651. "CPU%d failed\n", cpu);
  1652. }
  1653. }
  1654. static void hardware_disable(void *junk)
  1655. {
  1656. int cpu = raw_smp_processor_id();
  1657. if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
  1658. return;
  1659. cpumask_clear_cpu(cpu, cpus_hardware_enabled);
  1660. kvm_arch_hardware_disable(NULL);
  1661. }
  1662. static void hardware_disable_all_nolock(void)
  1663. {
  1664. BUG_ON(!kvm_usage_count);
  1665. kvm_usage_count--;
  1666. if (!kvm_usage_count)
  1667. on_each_cpu(hardware_disable, NULL, 1);
  1668. }
  1669. static void hardware_disable_all(void)
  1670. {
  1671. spin_lock(&kvm_lock);
  1672. hardware_disable_all_nolock();
  1673. spin_unlock(&kvm_lock);
  1674. }
  1675. static int hardware_enable_all(void)
  1676. {
  1677. int r = 0;
  1678. spin_lock(&kvm_lock);
  1679. kvm_usage_count++;
  1680. if (kvm_usage_count == 1) {
  1681. atomic_set(&hardware_enable_failed, 0);
  1682. on_each_cpu(hardware_enable, NULL, 1);
  1683. if (atomic_read(&hardware_enable_failed)) {
  1684. hardware_disable_all_nolock();
  1685. r = -EBUSY;
  1686. }
  1687. }
  1688. spin_unlock(&kvm_lock);
  1689. return r;
  1690. }
  1691. static int kvm_cpu_hotplug(struct notifier_block *notifier, unsigned long val,
  1692. void *v)
  1693. {
  1694. int cpu = (long)v;
  1695. if (!kvm_usage_count)
  1696. return NOTIFY_OK;
  1697. val &= ~CPU_TASKS_FROZEN;
  1698. switch (val) {
  1699. case CPU_DYING:
  1700. printk(KERN_INFO "kvm: disabling virtualization on CPU%d\n",
  1701. cpu);
  1702. hardware_disable(NULL);
  1703. break;
  1704. case CPU_STARTING:
  1705. printk(KERN_INFO "kvm: enabling virtualization on CPU%d\n",
  1706. cpu);
  1707. spin_lock(&kvm_lock);
  1708. hardware_enable(NULL);
  1709. spin_unlock(&kvm_lock);
  1710. break;
  1711. }
  1712. return NOTIFY_OK;
  1713. }
  1714. asmlinkage void kvm_handle_fault_on_reboot(void)
  1715. {
  1716. if (kvm_rebooting) {
  1717. /* spin while reset goes on */
  1718. local_irq_enable();
  1719. while (true)
  1720. cpu_relax();
  1721. }
  1722. /* Fault while not rebooting. We want the trace. */
  1723. BUG();
  1724. }
  1725. EXPORT_SYMBOL_GPL(kvm_handle_fault_on_reboot);
  1726. static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
  1727. void *v)
  1728. {
  1729. /*
  1730. * Some (well, at least mine) BIOSes hang on reboot if
  1731. * in vmx root mode.
  1732. *
  1733. * And Intel TXT required VMX off for all cpu when system shutdown.
  1734. */
  1735. printk(KERN_INFO "kvm: exiting hardware virtualization\n");
  1736. kvm_rebooting = true;
  1737. on_each_cpu(hardware_disable, NULL, 1);
  1738. return NOTIFY_OK;
  1739. }
  1740. static struct notifier_block kvm_reboot_notifier = {
  1741. .notifier_call = kvm_reboot,
  1742. .priority = 0,
  1743. };
  1744. static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
  1745. {
  1746. int i;
  1747. for (i = 0; i < bus->dev_count; i++) {
  1748. struct kvm_io_device *pos = bus->devs[i];
  1749. kvm_iodevice_destructor(pos);
  1750. }
  1751. kfree(bus);
  1752. }
  1753. /* kvm_io_bus_write - called under kvm->slots_lock */
  1754. int kvm_io_bus_write(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1755. int len, const void *val)
  1756. {
  1757. int i;
  1758. struct kvm_io_bus *bus;
  1759. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1760. for (i = 0; i < bus->dev_count; i++)
  1761. if (!kvm_iodevice_write(bus->devs[i], addr, len, val))
  1762. return 0;
  1763. return -EOPNOTSUPP;
  1764. }
  1765. /* kvm_io_bus_read - called under kvm->slots_lock */
  1766. int kvm_io_bus_read(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
  1767. int len, void *val)
  1768. {
  1769. int i;
  1770. struct kvm_io_bus *bus;
  1771. bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
  1772. for (i = 0; i < bus->dev_count; i++)
  1773. if (!kvm_iodevice_read(bus->devs[i], addr, len, val))
  1774. return 0;
  1775. return -EOPNOTSUPP;
  1776. }
  1777. /* Caller must hold slots_lock. */
  1778. int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1779. struct kvm_io_device *dev)
  1780. {
  1781. struct kvm_io_bus *new_bus, *bus;
  1782. bus = kvm->buses[bus_idx];
  1783. if (bus->dev_count > NR_IOBUS_DEVS-1)
  1784. return -ENOSPC;
  1785. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1786. if (!new_bus)
  1787. return -ENOMEM;
  1788. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1789. new_bus->devs[new_bus->dev_count++] = dev;
  1790. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1791. synchronize_srcu_expedited(&kvm->srcu);
  1792. kfree(bus);
  1793. return 0;
  1794. }
  1795. /* Caller must hold slots_lock. */
  1796. int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
  1797. struct kvm_io_device *dev)
  1798. {
  1799. int i, r;
  1800. struct kvm_io_bus *new_bus, *bus;
  1801. new_bus = kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL);
  1802. if (!new_bus)
  1803. return -ENOMEM;
  1804. bus = kvm->buses[bus_idx];
  1805. memcpy(new_bus, bus, sizeof(struct kvm_io_bus));
  1806. r = -ENOENT;
  1807. for (i = 0; i < new_bus->dev_count; i++)
  1808. if (new_bus->devs[i] == dev) {
  1809. r = 0;
  1810. new_bus->devs[i] = new_bus->devs[--new_bus->dev_count];
  1811. break;
  1812. }
  1813. if (r) {
  1814. kfree(new_bus);
  1815. return r;
  1816. }
  1817. rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
  1818. synchronize_srcu_expedited(&kvm->srcu);
  1819. kfree(bus);
  1820. return r;
  1821. }
  1822. static struct notifier_block kvm_cpu_notifier = {
  1823. .notifier_call = kvm_cpu_hotplug,
  1824. };
  1825. static int vm_stat_get(void *_offset, u64 *val)
  1826. {
  1827. unsigned offset = (long)_offset;
  1828. struct kvm *kvm;
  1829. *val = 0;
  1830. spin_lock(&kvm_lock);
  1831. list_for_each_entry(kvm, &vm_list, vm_list)
  1832. *val += *(u32 *)((void *)kvm + offset);
  1833. spin_unlock(&kvm_lock);
  1834. return 0;
  1835. }
  1836. DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, NULL, "%llu\n");
  1837. static int vcpu_stat_get(void *_offset, u64 *val)
  1838. {
  1839. unsigned offset = (long)_offset;
  1840. struct kvm *kvm;
  1841. struct kvm_vcpu *vcpu;
  1842. int i;
  1843. *val = 0;
  1844. spin_lock(&kvm_lock);
  1845. list_for_each_entry(kvm, &vm_list, vm_list)
  1846. kvm_for_each_vcpu(i, vcpu, kvm)
  1847. *val += *(u32 *)((void *)vcpu + offset);
  1848. spin_unlock(&kvm_lock);
  1849. return 0;
  1850. }
  1851. DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, NULL, "%llu\n");
  1852. static const struct file_operations *stat_fops[] = {
  1853. [KVM_STAT_VCPU] = &vcpu_stat_fops,
  1854. [KVM_STAT_VM] = &vm_stat_fops,
  1855. };
  1856. static void kvm_init_debug(void)
  1857. {
  1858. struct kvm_stats_debugfs_item *p;
  1859. kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
  1860. for (p = debugfs_entries; p->name; ++p)
  1861. p->dentry = debugfs_create_file(p->name, 0444, kvm_debugfs_dir,
  1862. (void *)(long)p->offset,
  1863. stat_fops[p->kind]);
  1864. }
  1865. static void kvm_exit_debug(void)
  1866. {
  1867. struct kvm_stats_debugfs_item *p;
  1868. for (p = debugfs_entries; p->name; ++p)
  1869. debugfs_remove(p->dentry);
  1870. debugfs_remove(kvm_debugfs_dir);
  1871. }
  1872. static int kvm_suspend(struct sys_device *dev, pm_message_t state)
  1873. {
  1874. if (kvm_usage_count)
  1875. hardware_disable(NULL);
  1876. return 0;
  1877. }
  1878. static int kvm_resume(struct sys_device *dev)
  1879. {
  1880. if (kvm_usage_count) {
  1881. WARN_ON(spin_is_locked(&kvm_lock));
  1882. hardware_enable(NULL);
  1883. }
  1884. return 0;
  1885. }
  1886. static struct sysdev_class kvm_sysdev_class = {
  1887. .name = "kvm",
  1888. .suspend = kvm_suspend,
  1889. .resume = kvm_resume,
  1890. };
  1891. static struct sys_device kvm_sysdev = {
  1892. .id = 0,
  1893. .cls = &kvm_sysdev_class,
  1894. };
  1895. struct page *bad_page;
  1896. pfn_t bad_pfn;
  1897. static inline
  1898. struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
  1899. {
  1900. return container_of(pn, struct kvm_vcpu, preempt_notifier);
  1901. }
  1902. static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
  1903. {
  1904. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1905. kvm_arch_vcpu_load(vcpu, cpu);
  1906. }
  1907. static void kvm_sched_out(struct preempt_notifier *pn,
  1908. struct task_struct *next)
  1909. {
  1910. struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
  1911. kvm_arch_vcpu_put(vcpu);
  1912. }
  1913. int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
  1914. struct module *module)
  1915. {
  1916. int r;
  1917. int cpu;
  1918. r = kvm_arch_init(opaque);
  1919. if (r)
  1920. goto out_fail;
  1921. bad_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1922. if (bad_page == NULL) {
  1923. r = -ENOMEM;
  1924. goto out;
  1925. }
  1926. bad_pfn = page_to_pfn(bad_page);
  1927. hwpoison_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1928. if (hwpoison_page == NULL) {
  1929. r = -ENOMEM;
  1930. goto out_free_0;
  1931. }
  1932. hwpoison_pfn = page_to_pfn(hwpoison_page);
  1933. fault_page = alloc_page(GFP_KERNEL | __GFP_ZERO);
  1934. if (fault_page == NULL) {
  1935. r = -ENOMEM;
  1936. goto out_free_0;
  1937. }
  1938. fault_pfn = page_to_pfn(fault_page);
  1939. if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
  1940. r = -ENOMEM;
  1941. goto out_free_0;
  1942. }
  1943. r = kvm_arch_hardware_setup();
  1944. if (r < 0)
  1945. goto out_free_0a;
  1946. for_each_online_cpu(cpu) {
  1947. smp_call_function_single(cpu,
  1948. kvm_arch_check_processor_compat,
  1949. &r, 1);
  1950. if (r < 0)
  1951. goto out_free_1;
  1952. }
  1953. r = register_cpu_notifier(&kvm_cpu_notifier);
  1954. if (r)
  1955. goto out_free_2;
  1956. register_reboot_notifier(&kvm_reboot_notifier);
  1957. r = sysdev_class_register(&kvm_sysdev_class);
  1958. if (r)
  1959. goto out_free_3;
  1960. r = sysdev_register(&kvm_sysdev);
  1961. if (r)
  1962. goto out_free_4;
  1963. /* A kmem cache lets us meet the alignment requirements of fx_save. */
  1964. if (!vcpu_align)
  1965. vcpu_align = __alignof__(struct kvm_vcpu);
  1966. kvm_vcpu_cache = kmem_cache_create("kvm_vcpu", vcpu_size, vcpu_align,
  1967. 0, NULL);
  1968. if (!kvm_vcpu_cache) {
  1969. r = -ENOMEM;
  1970. goto out_free_5;
  1971. }
  1972. kvm_chardev_ops.owner = module;
  1973. kvm_vm_fops.owner = module;
  1974. kvm_vcpu_fops.owner = module;
  1975. r = misc_register(&kvm_dev);
  1976. if (r) {
  1977. printk(KERN_ERR "kvm: misc device register failed\n");
  1978. goto out_free;
  1979. }
  1980. kvm_preempt_ops.sched_in = kvm_sched_in;
  1981. kvm_preempt_ops.sched_out = kvm_sched_out;
  1982. kvm_init_debug();
  1983. return 0;
  1984. out_free:
  1985. kmem_cache_destroy(kvm_vcpu_cache);
  1986. out_free_5:
  1987. sysdev_unregister(&kvm_sysdev);
  1988. out_free_4:
  1989. sysdev_class_unregister(&kvm_sysdev_class);
  1990. out_free_3:
  1991. unregister_reboot_notifier(&kvm_reboot_notifier);
  1992. unregister_cpu_notifier(&kvm_cpu_notifier);
  1993. out_free_2:
  1994. out_free_1:
  1995. kvm_arch_hardware_unsetup();
  1996. out_free_0a:
  1997. free_cpumask_var(cpus_hardware_enabled);
  1998. out_free_0:
  1999. if (fault_page)
  2000. __free_page(fault_page);
  2001. if (hwpoison_page)
  2002. __free_page(hwpoison_page);
  2003. __free_page(bad_page);
  2004. out:
  2005. kvm_arch_exit();
  2006. out_fail:
  2007. return r;
  2008. }
  2009. EXPORT_SYMBOL_GPL(kvm_init);
  2010. void kvm_exit(void)
  2011. {
  2012. kvm_exit_debug();
  2013. misc_deregister(&kvm_dev);
  2014. kmem_cache_destroy(kvm_vcpu_cache);
  2015. sysdev_unregister(&kvm_sysdev);
  2016. sysdev_class_unregister(&kvm_sysdev_class);
  2017. unregister_reboot_notifier(&kvm_reboot_notifier);
  2018. unregister_cpu_notifier(&kvm_cpu_notifier);
  2019. on_each_cpu(hardware_disable, NULL, 1);
  2020. kvm_arch_hardware_unsetup();
  2021. kvm_arch_exit();
  2022. free_cpumask_var(cpus_hardware_enabled);
  2023. __free_page(hwpoison_page);
  2024. __free_page(bad_page);
  2025. }
  2026. EXPORT_SYMBOL_GPL(kvm_exit);