soc-cache.c 15 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726
  1. /*
  2. * soc-cache.c -- ASoC register cache helpers
  3. *
  4. * Copyright 2009 Wolfson Microelectronics PLC.
  5. *
  6. * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify it
  9. * under the terms of the GNU General Public License as published by the
  10. * Free Software Foundation; either version 2 of the License, or (at your
  11. * option) any later version.
  12. */
  13. #include <linux/i2c.h>
  14. #include <linux/spi/spi.h>
  15. #include <sound/soc.h>
  16. static unsigned int snd_soc_4_12_read(struct snd_soc_codec *codec,
  17. unsigned int reg)
  18. {
  19. u16 *cache = codec->reg_cache;
  20. if (reg >= codec->driver->reg_cache_size ||
  21. snd_soc_codec_volatile_register(codec, reg)) {
  22. if (codec->cache_only)
  23. return -1;
  24. return codec->hw_read(codec, reg);
  25. }
  26. return cache[reg];
  27. }
  28. static int snd_soc_4_12_write(struct snd_soc_codec *codec, unsigned int reg,
  29. unsigned int value)
  30. {
  31. u16 *cache = codec->reg_cache;
  32. u8 data[2];
  33. int ret;
  34. data[0] = (reg << 4) | ((value >> 8) & 0x000f);
  35. data[1] = value & 0x00ff;
  36. if (!snd_soc_codec_volatile_register(codec, reg) &&
  37. reg < codec->driver->reg_cache_size)
  38. cache[reg] = value;
  39. if (codec->cache_only) {
  40. codec->cache_sync = 1;
  41. return 0;
  42. }
  43. dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
  44. ret = codec->hw_write(codec->control_data, data, 2);
  45. if (ret == 2)
  46. return 0;
  47. if (ret < 0)
  48. return ret;
  49. else
  50. return -EIO;
  51. }
  52. #if defined(CONFIG_SPI_MASTER)
  53. static int snd_soc_4_12_spi_write(void *control_data, const char *data,
  54. int len)
  55. {
  56. struct spi_device *spi = control_data;
  57. struct spi_transfer t;
  58. struct spi_message m;
  59. u8 msg[2];
  60. if (len <= 0)
  61. return 0;
  62. msg[0] = data[1];
  63. msg[1] = data[0];
  64. spi_message_init(&m);
  65. memset(&t, 0, (sizeof t));
  66. t.tx_buf = &msg[0];
  67. t.len = len;
  68. spi_message_add_tail(&t, &m);
  69. spi_sync(spi, &m);
  70. return len;
  71. }
  72. #else
  73. #define snd_soc_4_12_spi_write NULL
  74. #endif
  75. static unsigned int snd_soc_7_9_read(struct snd_soc_codec *codec,
  76. unsigned int reg)
  77. {
  78. u16 *cache = codec->reg_cache;
  79. if (reg >= codec->driver->reg_cache_size ||
  80. snd_soc_codec_volatile_register(codec, reg)) {
  81. if (codec->cache_only)
  82. return -1;
  83. return codec->hw_read(codec, reg);
  84. }
  85. return cache[reg];
  86. }
  87. static int snd_soc_7_9_write(struct snd_soc_codec *codec, unsigned int reg,
  88. unsigned int value)
  89. {
  90. u16 *cache = codec->reg_cache;
  91. u8 data[2];
  92. int ret;
  93. data[0] = (reg << 1) | ((value >> 8) & 0x0001);
  94. data[1] = value & 0x00ff;
  95. if (!snd_soc_codec_volatile_register(codec, reg) &&
  96. reg < codec->driver->reg_cache_size)
  97. cache[reg] = value;
  98. if (codec->cache_only) {
  99. codec->cache_sync = 1;
  100. return 0;
  101. }
  102. dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
  103. ret = codec->hw_write(codec->control_data, data, 2);
  104. if (ret == 2)
  105. return 0;
  106. if (ret < 0)
  107. return ret;
  108. else
  109. return -EIO;
  110. }
  111. #if defined(CONFIG_SPI_MASTER)
  112. static int snd_soc_7_9_spi_write(void *control_data, const char *data,
  113. int len)
  114. {
  115. struct spi_device *spi = control_data;
  116. struct spi_transfer t;
  117. struct spi_message m;
  118. u8 msg[2];
  119. if (len <= 0)
  120. return 0;
  121. msg[0] = data[0];
  122. msg[1] = data[1];
  123. spi_message_init(&m);
  124. memset(&t, 0, (sizeof t));
  125. t.tx_buf = &msg[0];
  126. t.len = len;
  127. spi_message_add_tail(&t, &m);
  128. spi_sync(spi, &m);
  129. return len;
  130. }
  131. #else
  132. #define snd_soc_7_9_spi_write NULL
  133. #endif
  134. static int snd_soc_8_8_write(struct snd_soc_codec *codec, unsigned int reg,
  135. unsigned int value)
  136. {
  137. u8 *cache = codec->reg_cache;
  138. u8 data[2];
  139. reg &= 0xff;
  140. data[0] = reg;
  141. data[1] = value & 0xff;
  142. if (!snd_soc_codec_volatile_register(codec, reg) &&
  143. reg < codec->driver->reg_cache_size)
  144. cache[reg] = value;
  145. if (codec->cache_only) {
  146. codec->cache_sync = 1;
  147. return 0;
  148. }
  149. dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
  150. if (codec->hw_write(codec->control_data, data, 2) == 2)
  151. return 0;
  152. else
  153. return -EIO;
  154. }
  155. static unsigned int snd_soc_8_8_read(struct snd_soc_codec *codec,
  156. unsigned int reg)
  157. {
  158. u8 *cache = codec->reg_cache;
  159. reg &= 0xff;
  160. if (reg >= codec->driver->reg_cache_size ||
  161. snd_soc_codec_volatile_register(codec, reg)) {
  162. if (codec->cache_only)
  163. return -1;
  164. return codec->hw_read(codec, reg);
  165. }
  166. return cache[reg];
  167. }
  168. #if defined(CONFIG_SPI_MASTER)
  169. static int snd_soc_8_8_spi_write(void *control_data, const char *data,
  170. int len)
  171. {
  172. struct spi_device *spi = control_data;
  173. struct spi_transfer t;
  174. struct spi_message m;
  175. u8 msg[2];
  176. if (len <= 0)
  177. return 0;
  178. msg[0] = data[0];
  179. msg[1] = data[1];
  180. spi_message_init(&m);
  181. memset(&t, 0, (sizeof t));
  182. t.tx_buf = &msg[0];
  183. t.len = len;
  184. spi_message_add_tail(&t, &m);
  185. spi_sync(spi, &m);
  186. return len;
  187. }
  188. #else
  189. #define snd_soc_8_8_spi_write NULL
  190. #endif
  191. static int snd_soc_8_16_write(struct snd_soc_codec *codec, unsigned int reg,
  192. unsigned int value)
  193. {
  194. u16 *reg_cache = codec->reg_cache;
  195. u8 data[3];
  196. data[0] = reg;
  197. data[1] = (value >> 8) & 0xff;
  198. data[2] = value & 0xff;
  199. if (!snd_soc_codec_volatile_register(codec, reg) &&
  200. reg < codec->driver->reg_cache_size)
  201. reg_cache[reg] = value;
  202. if (codec->cache_only) {
  203. codec->cache_sync = 1;
  204. return 0;
  205. }
  206. dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
  207. if (codec->hw_write(codec->control_data, data, 3) == 3)
  208. return 0;
  209. else
  210. return -EIO;
  211. }
  212. static unsigned int snd_soc_8_16_read(struct snd_soc_codec *codec,
  213. unsigned int reg)
  214. {
  215. u16 *cache = codec->reg_cache;
  216. if (reg >= codec->driver->reg_cache_size ||
  217. snd_soc_codec_volatile_register(codec, reg)) {
  218. if (codec->cache_only)
  219. return -1;
  220. return codec->hw_read(codec, reg);
  221. } else {
  222. return cache[reg];
  223. }
  224. }
  225. #if defined(CONFIG_SPI_MASTER)
  226. static int snd_soc_8_16_spi_write(void *control_data, const char *data,
  227. int len)
  228. {
  229. struct spi_device *spi = control_data;
  230. struct spi_transfer t;
  231. struct spi_message m;
  232. u8 msg[3];
  233. if (len <= 0)
  234. return 0;
  235. msg[0] = data[0];
  236. msg[1] = data[1];
  237. msg[2] = data[2];
  238. spi_message_init(&m);
  239. memset(&t, 0, (sizeof t));
  240. t.tx_buf = &msg[0];
  241. t.len = len;
  242. spi_message_add_tail(&t, &m);
  243. spi_sync(spi, &m);
  244. return len;
  245. }
  246. #else
  247. #define snd_soc_8_16_spi_write NULL
  248. #endif
  249. #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
  250. static unsigned int snd_soc_8_8_read_i2c(struct snd_soc_codec *codec,
  251. unsigned int r)
  252. {
  253. struct i2c_msg xfer[2];
  254. u8 reg = r;
  255. u8 data;
  256. int ret;
  257. struct i2c_client *client = codec->control_data;
  258. /* Write register */
  259. xfer[0].addr = client->addr;
  260. xfer[0].flags = 0;
  261. xfer[0].len = 1;
  262. xfer[0].buf = &reg;
  263. /* Read data */
  264. xfer[1].addr = client->addr;
  265. xfer[1].flags = I2C_M_RD;
  266. xfer[1].len = 1;
  267. xfer[1].buf = &data;
  268. ret = i2c_transfer(client->adapter, xfer, 2);
  269. if (ret != 2) {
  270. dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
  271. return 0;
  272. }
  273. return data;
  274. }
  275. #else
  276. #define snd_soc_8_8_read_i2c NULL
  277. #endif
  278. #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
  279. static unsigned int snd_soc_8_16_read_i2c(struct snd_soc_codec *codec,
  280. unsigned int r)
  281. {
  282. struct i2c_msg xfer[2];
  283. u8 reg = r;
  284. u16 data;
  285. int ret;
  286. struct i2c_client *client = codec->control_data;
  287. /* Write register */
  288. xfer[0].addr = client->addr;
  289. xfer[0].flags = 0;
  290. xfer[0].len = 1;
  291. xfer[0].buf = &reg;
  292. /* Read data */
  293. xfer[1].addr = client->addr;
  294. xfer[1].flags = I2C_M_RD;
  295. xfer[1].len = 2;
  296. xfer[1].buf = (u8 *)&data;
  297. ret = i2c_transfer(client->adapter, xfer, 2);
  298. if (ret != 2) {
  299. dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
  300. return 0;
  301. }
  302. return (data >> 8) | ((data & 0xff) << 8);
  303. }
  304. #else
  305. #define snd_soc_8_16_read_i2c NULL
  306. #endif
  307. #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
  308. static unsigned int snd_soc_16_8_read_i2c(struct snd_soc_codec *codec,
  309. unsigned int r)
  310. {
  311. struct i2c_msg xfer[2];
  312. u16 reg = r;
  313. u8 data;
  314. int ret;
  315. struct i2c_client *client = codec->control_data;
  316. /* Write register */
  317. xfer[0].addr = client->addr;
  318. xfer[0].flags = 0;
  319. xfer[0].len = 2;
  320. xfer[0].buf = (u8 *)&reg;
  321. /* Read data */
  322. xfer[1].addr = client->addr;
  323. xfer[1].flags = I2C_M_RD;
  324. xfer[1].len = 1;
  325. xfer[1].buf = &data;
  326. ret = i2c_transfer(client->adapter, xfer, 2);
  327. if (ret != 2) {
  328. dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
  329. return 0;
  330. }
  331. return data;
  332. }
  333. #else
  334. #define snd_soc_16_8_read_i2c NULL
  335. #endif
  336. static unsigned int snd_soc_16_8_read(struct snd_soc_codec *codec,
  337. unsigned int reg)
  338. {
  339. u8 *cache = codec->reg_cache;
  340. reg &= 0xff;
  341. if (reg >= codec->driver->reg_cache_size ||
  342. snd_soc_codec_volatile_register(codec, reg)) {
  343. if (codec->cache_only)
  344. return -1;
  345. return codec->hw_read(codec, reg);
  346. }
  347. return cache[reg];
  348. }
  349. static int snd_soc_16_8_write(struct snd_soc_codec *codec, unsigned int reg,
  350. unsigned int value)
  351. {
  352. u8 *cache = codec->reg_cache;
  353. u8 data[3];
  354. int ret;
  355. data[0] = (reg >> 8) & 0xff;
  356. data[1] = reg & 0xff;
  357. data[2] = value;
  358. reg &= 0xff;
  359. if (!snd_soc_codec_volatile_register(codec, reg) &&
  360. reg < codec->driver->reg_cache_size)
  361. cache[reg] = value;
  362. if (codec->cache_only) {
  363. codec->cache_sync = 1;
  364. return 0;
  365. }
  366. dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
  367. ret = codec->hw_write(codec->control_data, data, 3);
  368. if (ret == 3)
  369. return 0;
  370. if (ret < 0)
  371. return ret;
  372. else
  373. return -EIO;
  374. }
  375. #if defined(CONFIG_SPI_MASTER)
  376. static int snd_soc_16_8_spi_write(void *control_data, const char *data,
  377. int len)
  378. {
  379. struct spi_device *spi = control_data;
  380. struct spi_transfer t;
  381. struct spi_message m;
  382. u8 msg[3];
  383. if (len <= 0)
  384. return 0;
  385. msg[0] = data[0];
  386. msg[1] = data[1];
  387. msg[2] = data[2];
  388. spi_message_init(&m);
  389. memset(&t, 0, (sizeof t));
  390. t.tx_buf = &msg[0];
  391. t.len = len;
  392. spi_message_add_tail(&t, &m);
  393. spi_sync(spi, &m);
  394. return len;
  395. }
  396. #else
  397. #define snd_soc_16_8_spi_write NULL
  398. #endif
  399. #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
  400. static unsigned int snd_soc_16_16_read_i2c(struct snd_soc_codec *codec,
  401. unsigned int r)
  402. {
  403. struct i2c_msg xfer[2];
  404. u16 reg = cpu_to_be16(r);
  405. u16 data;
  406. int ret;
  407. struct i2c_client *client = codec->control_data;
  408. /* Write register */
  409. xfer[0].addr = client->addr;
  410. xfer[0].flags = 0;
  411. xfer[0].len = 2;
  412. xfer[0].buf = (u8 *)&reg;
  413. /* Read data */
  414. xfer[1].addr = client->addr;
  415. xfer[1].flags = I2C_M_RD;
  416. xfer[1].len = 2;
  417. xfer[1].buf = (u8 *)&data;
  418. ret = i2c_transfer(client->adapter, xfer, 2);
  419. if (ret != 2) {
  420. dev_err(&client->dev, "i2c_transfer() returned %d\n", ret);
  421. return 0;
  422. }
  423. return be16_to_cpu(data);
  424. }
  425. #else
  426. #define snd_soc_16_16_read_i2c NULL
  427. #endif
  428. static unsigned int snd_soc_16_16_read(struct snd_soc_codec *codec,
  429. unsigned int reg)
  430. {
  431. u16 *cache = codec->reg_cache;
  432. if (reg >= codec->driver->reg_cache_size ||
  433. snd_soc_codec_volatile_register(codec, reg)) {
  434. if (codec->cache_only)
  435. return -1;
  436. return codec->hw_read(codec, reg);
  437. }
  438. return cache[reg];
  439. }
  440. static int snd_soc_16_16_write(struct snd_soc_codec *codec, unsigned int reg,
  441. unsigned int value)
  442. {
  443. u16 *cache = codec->reg_cache;
  444. u8 data[4];
  445. int ret;
  446. data[0] = (reg >> 8) & 0xff;
  447. data[1] = reg & 0xff;
  448. data[2] = (value >> 8) & 0xff;
  449. data[3] = value & 0xff;
  450. if (!snd_soc_codec_volatile_register(codec, reg) &&
  451. reg < codec->driver->reg_cache_size)
  452. cache[reg] = value;
  453. if (codec->cache_only) {
  454. codec->cache_sync = 1;
  455. return 0;
  456. }
  457. dev_dbg(codec->dev, "0x%x = 0x%x\n", reg, value);
  458. ret = codec->hw_write(codec->control_data, data, 4);
  459. if (ret == 4)
  460. return 0;
  461. if (ret < 0)
  462. return ret;
  463. else
  464. return -EIO;
  465. }
  466. #if defined(CONFIG_SPI_MASTER)
  467. static int snd_soc_16_16_spi_write(void *control_data, const char *data,
  468. int len)
  469. {
  470. struct spi_device *spi = control_data;
  471. struct spi_transfer t;
  472. struct spi_message m;
  473. u8 msg[4];
  474. if (len <= 0)
  475. return 0;
  476. msg[0] = data[0];
  477. msg[1] = data[1];
  478. msg[2] = data[2];
  479. msg[3] = data[3];
  480. spi_message_init(&m);
  481. memset(&t, 0, (sizeof t));
  482. t.tx_buf = &msg[0];
  483. t.len = len;
  484. spi_message_add_tail(&t, &m);
  485. spi_sync(spi, &m);
  486. return len;
  487. }
  488. #else
  489. #define snd_soc_16_16_spi_write NULL
  490. #endif
  491. static struct {
  492. int addr_bits;
  493. int data_bits;
  494. int (*write)(struct snd_soc_codec *codec, unsigned int, unsigned int);
  495. int (*spi_write)(void *, const char *, int);
  496. unsigned int (*read)(struct snd_soc_codec *, unsigned int);
  497. unsigned int (*i2c_read)(struct snd_soc_codec *, unsigned int);
  498. } io_types[] = {
  499. {
  500. .addr_bits = 4, .data_bits = 12,
  501. .write = snd_soc_4_12_write, .read = snd_soc_4_12_read,
  502. .spi_write = snd_soc_4_12_spi_write,
  503. },
  504. {
  505. .addr_bits = 7, .data_bits = 9,
  506. .write = snd_soc_7_9_write, .read = snd_soc_7_9_read,
  507. .spi_write = snd_soc_7_9_spi_write,
  508. },
  509. {
  510. .addr_bits = 8, .data_bits = 8,
  511. .write = snd_soc_8_8_write, .read = snd_soc_8_8_read,
  512. .i2c_read = snd_soc_8_8_read_i2c,
  513. .spi_write = snd_soc_8_8_spi_write,
  514. },
  515. {
  516. .addr_bits = 8, .data_bits = 16,
  517. .write = snd_soc_8_16_write, .read = snd_soc_8_16_read,
  518. .i2c_read = snd_soc_8_16_read_i2c,
  519. .spi_write = snd_soc_8_16_spi_write,
  520. },
  521. {
  522. .addr_bits = 16, .data_bits = 8,
  523. .write = snd_soc_16_8_write, .read = snd_soc_16_8_read,
  524. .i2c_read = snd_soc_16_8_read_i2c,
  525. .spi_write = snd_soc_16_8_spi_write,
  526. },
  527. {
  528. .addr_bits = 16, .data_bits = 16,
  529. .write = snd_soc_16_16_write, .read = snd_soc_16_16_read,
  530. .i2c_read = snd_soc_16_16_read_i2c,
  531. .spi_write = snd_soc_16_16_spi_write,
  532. },
  533. };
  534. /**
  535. * snd_soc_codec_set_cache_io: Set up standard I/O functions.
  536. *
  537. * @codec: CODEC to configure.
  538. * @type: Type of cache.
  539. * @addr_bits: Number of bits of register address data.
  540. * @data_bits: Number of bits of data per register.
  541. * @control: Control bus used.
  542. *
  543. * Register formats are frequently shared between many I2C and SPI
  544. * devices. In order to promote code reuse the ASoC core provides
  545. * some standard implementations of CODEC read and write operations
  546. * which can be set up using this function.
  547. *
  548. * The caller is responsible for allocating and initialising the
  549. * actual cache.
  550. *
  551. * Note that at present this code cannot be used by CODECs with
  552. * volatile registers.
  553. */
  554. int snd_soc_codec_set_cache_io(struct snd_soc_codec *codec,
  555. int addr_bits, int data_bits,
  556. enum snd_soc_control_type control)
  557. {
  558. int i;
  559. for (i = 0; i < ARRAY_SIZE(io_types); i++)
  560. if (io_types[i].addr_bits == addr_bits &&
  561. io_types[i].data_bits == data_bits)
  562. break;
  563. if (i == ARRAY_SIZE(io_types)) {
  564. printk(KERN_ERR
  565. "No I/O functions for %d bit address %d bit data\n",
  566. addr_bits, data_bits);
  567. return -EINVAL;
  568. }
  569. codec->driver->write = io_types[i].write;
  570. codec->driver->read = io_types[i].read;
  571. switch (control) {
  572. case SND_SOC_CUSTOM:
  573. break;
  574. case SND_SOC_I2C:
  575. #if defined(CONFIG_I2C) || (defined(CONFIG_I2C_MODULE) && defined(MODULE))
  576. codec->hw_write = (hw_write_t)i2c_master_send;
  577. #endif
  578. if (io_types[i].i2c_read)
  579. codec->hw_read = io_types[i].i2c_read;
  580. codec->control_data = container_of(codec->dev,
  581. struct i2c_client,
  582. dev);
  583. break;
  584. case SND_SOC_SPI:
  585. if (io_types[i].spi_write)
  586. codec->hw_write = io_types[i].spi_write;
  587. codec->control_data = container_of(codec->dev,
  588. struct spi_device,
  589. dev);
  590. break;
  591. }
  592. return 0;
  593. }
  594. EXPORT_SYMBOL_GPL(snd_soc_codec_set_cache_io);