svc_rdma_recvfrom.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685
  1. /*
  2. * Copyright (c) 2005-2006 Network Appliance, Inc. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the BSD-type
  8. * license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or without
  11. * modification, are permitted provided that the following conditions
  12. * are met:
  13. *
  14. * Redistributions of source code must retain the above copyright
  15. * notice, this list of conditions and the following disclaimer.
  16. *
  17. * Redistributions in binary form must reproduce the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer in the documentation and/or other materials provided
  20. * with the distribution.
  21. *
  22. * Neither the name of the Network Appliance, Inc. nor the names of
  23. * its contributors may be used to endorse or promote products
  24. * derived from this software without specific prior written
  25. * permission.
  26. *
  27. * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
  28. * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
  29. * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
  30. * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
  31. * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  32. * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
  33. * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
  34. * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
  35. * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
  36. * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  37. * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  38. *
  39. * Author: Tom Tucker <tom@opengridcomputing.com>
  40. */
  41. #include <linux/sunrpc/debug.h>
  42. #include <linux/sunrpc/rpc_rdma.h>
  43. #include <linux/spinlock.h>
  44. #include <asm/unaligned.h>
  45. #include <rdma/ib_verbs.h>
  46. #include <rdma/rdma_cm.h>
  47. #include <linux/sunrpc/svc_rdma.h>
  48. #define RPCDBG_FACILITY RPCDBG_SVCXPRT
  49. /*
  50. * Replace the pages in the rq_argpages array with the pages from the SGE in
  51. * the RDMA_RECV completion. The SGL should contain full pages up until the
  52. * last one.
  53. */
  54. static void rdma_build_arg_xdr(struct svc_rqst *rqstp,
  55. struct svc_rdma_op_ctxt *ctxt,
  56. u32 byte_count)
  57. {
  58. struct page *page;
  59. u32 bc;
  60. int sge_no;
  61. /* Swap the page in the SGE with the page in argpages */
  62. page = ctxt->pages[0];
  63. put_page(rqstp->rq_pages[0]);
  64. rqstp->rq_pages[0] = page;
  65. /* Set up the XDR head */
  66. rqstp->rq_arg.head[0].iov_base = page_address(page);
  67. rqstp->rq_arg.head[0].iov_len = min(byte_count, ctxt->sge[0].length);
  68. rqstp->rq_arg.len = byte_count;
  69. rqstp->rq_arg.buflen = byte_count;
  70. /* Compute bytes past head in the SGL */
  71. bc = byte_count - rqstp->rq_arg.head[0].iov_len;
  72. /* If data remains, store it in the pagelist */
  73. rqstp->rq_arg.page_len = bc;
  74. rqstp->rq_arg.page_base = 0;
  75. rqstp->rq_arg.pages = &rqstp->rq_pages[1];
  76. sge_no = 1;
  77. while (bc && sge_no < ctxt->count) {
  78. page = ctxt->pages[sge_no];
  79. put_page(rqstp->rq_pages[sge_no]);
  80. rqstp->rq_pages[sge_no] = page;
  81. bc -= min(bc, ctxt->sge[sge_no].length);
  82. rqstp->rq_arg.buflen += ctxt->sge[sge_no].length;
  83. sge_no++;
  84. }
  85. rqstp->rq_respages = &rqstp->rq_pages[sge_no];
  86. /* We should never run out of SGE because the limit is defined to
  87. * support the max allowed RPC data length
  88. */
  89. BUG_ON(bc && (sge_no == ctxt->count));
  90. BUG_ON((rqstp->rq_arg.head[0].iov_len + rqstp->rq_arg.page_len)
  91. != byte_count);
  92. BUG_ON(rqstp->rq_arg.len != byte_count);
  93. /* If not all pages were used from the SGL, free the remaining ones */
  94. bc = sge_no;
  95. while (sge_no < ctxt->count) {
  96. page = ctxt->pages[sge_no++];
  97. put_page(page);
  98. }
  99. ctxt->count = bc;
  100. /* Set up tail */
  101. rqstp->rq_arg.tail[0].iov_base = NULL;
  102. rqstp->rq_arg.tail[0].iov_len = 0;
  103. }
  104. /* Encode a read-chunk-list as an array of IB SGE
  105. *
  106. * Assumptions:
  107. * - chunk[0]->position points to pages[0] at an offset of 0
  108. * - pages[] is not physically or virtually contiguous and consists of
  109. * PAGE_SIZE elements.
  110. *
  111. * Output:
  112. * - sge array pointing into pages[] array.
  113. * - chunk_sge array specifying sge index and count for each
  114. * chunk in the read list
  115. *
  116. */
  117. static int map_read_chunks(struct svcxprt_rdma *xprt,
  118. struct svc_rqst *rqstp,
  119. struct svc_rdma_op_ctxt *head,
  120. struct rpcrdma_msg *rmsgp,
  121. struct svc_rdma_req_map *rpl_map,
  122. struct svc_rdma_req_map *chl_map,
  123. int ch_count,
  124. int byte_count)
  125. {
  126. int sge_no;
  127. int sge_bytes;
  128. int page_off;
  129. int page_no;
  130. int ch_bytes;
  131. int ch_no;
  132. struct rpcrdma_read_chunk *ch;
  133. sge_no = 0;
  134. page_no = 0;
  135. page_off = 0;
  136. ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0];
  137. ch_no = 0;
  138. ch_bytes = ch->rc_target.rs_length;
  139. head->arg.head[0] = rqstp->rq_arg.head[0];
  140. head->arg.tail[0] = rqstp->rq_arg.tail[0];
  141. head->arg.pages = &head->pages[head->count];
  142. head->hdr_count = head->count; /* save count of hdr pages */
  143. head->arg.page_base = 0;
  144. head->arg.page_len = ch_bytes;
  145. head->arg.len = rqstp->rq_arg.len + ch_bytes;
  146. head->arg.buflen = rqstp->rq_arg.buflen + ch_bytes;
  147. head->count++;
  148. chl_map->ch[0].start = 0;
  149. while (byte_count) {
  150. rpl_map->sge[sge_no].iov_base =
  151. page_address(rqstp->rq_arg.pages[page_no]) + page_off;
  152. sge_bytes = min_t(int, PAGE_SIZE-page_off, ch_bytes);
  153. rpl_map->sge[sge_no].iov_len = sge_bytes;
  154. /*
  155. * Don't bump head->count here because the same page
  156. * may be used by multiple SGE.
  157. */
  158. head->arg.pages[page_no] = rqstp->rq_arg.pages[page_no];
  159. rqstp->rq_respages = &rqstp->rq_arg.pages[page_no+1];
  160. byte_count -= sge_bytes;
  161. ch_bytes -= sge_bytes;
  162. sge_no++;
  163. /*
  164. * If all bytes for this chunk have been mapped to an
  165. * SGE, move to the next SGE
  166. */
  167. if (ch_bytes == 0) {
  168. chl_map->ch[ch_no].count =
  169. sge_no - chl_map->ch[ch_no].start;
  170. ch_no++;
  171. ch++;
  172. chl_map->ch[ch_no].start = sge_no;
  173. ch_bytes = ch->rc_target.rs_length;
  174. /* If bytes remaining account for next chunk */
  175. if (byte_count) {
  176. head->arg.page_len += ch_bytes;
  177. head->arg.len += ch_bytes;
  178. head->arg.buflen += ch_bytes;
  179. }
  180. }
  181. /*
  182. * If this SGE consumed all of the page, move to the
  183. * next page
  184. */
  185. if ((sge_bytes + page_off) == PAGE_SIZE) {
  186. page_no++;
  187. page_off = 0;
  188. /*
  189. * If there are still bytes left to map, bump
  190. * the page count
  191. */
  192. if (byte_count)
  193. head->count++;
  194. } else
  195. page_off += sge_bytes;
  196. }
  197. BUG_ON(byte_count != 0);
  198. return sge_no;
  199. }
  200. /* Map a read-chunk-list to an XDR and fast register the page-list.
  201. *
  202. * Assumptions:
  203. * - chunk[0] position points to pages[0] at an offset of 0
  204. * - pages[] will be made physically contiguous by creating a one-off memory
  205. * region using the fastreg verb.
  206. * - byte_count is # of bytes in read-chunk-list
  207. * - ch_count is # of chunks in read-chunk-list
  208. *
  209. * Output:
  210. * - sge array pointing into pages[] array.
  211. * - chunk_sge array specifying sge index and count for each
  212. * chunk in the read list
  213. */
  214. static int fast_reg_read_chunks(struct svcxprt_rdma *xprt,
  215. struct svc_rqst *rqstp,
  216. struct svc_rdma_op_ctxt *head,
  217. struct rpcrdma_msg *rmsgp,
  218. struct svc_rdma_req_map *rpl_map,
  219. struct svc_rdma_req_map *chl_map,
  220. int ch_count,
  221. int byte_count)
  222. {
  223. int page_no;
  224. int ch_no;
  225. u32 offset;
  226. struct rpcrdma_read_chunk *ch;
  227. struct svc_rdma_fastreg_mr *frmr;
  228. int ret = 0;
  229. frmr = svc_rdma_get_frmr(xprt);
  230. if (IS_ERR(frmr))
  231. return -ENOMEM;
  232. head->frmr = frmr;
  233. head->arg.head[0] = rqstp->rq_arg.head[0];
  234. head->arg.tail[0] = rqstp->rq_arg.tail[0];
  235. head->arg.pages = &head->pages[head->count];
  236. head->hdr_count = head->count; /* save count of hdr pages */
  237. head->arg.page_base = 0;
  238. head->arg.page_len = byte_count;
  239. head->arg.len = rqstp->rq_arg.len + byte_count;
  240. head->arg.buflen = rqstp->rq_arg.buflen + byte_count;
  241. /* Fast register the page list */
  242. frmr->kva = page_address(rqstp->rq_arg.pages[0]);
  243. frmr->direction = DMA_FROM_DEVICE;
  244. frmr->access_flags = (IB_ACCESS_LOCAL_WRITE|IB_ACCESS_REMOTE_WRITE);
  245. frmr->map_len = byte_count;
  246. frmr->page_list_len = PAGE_ALIGN(byte_count) >> PAGE_SHIFT;
  247. for (page_no = 0; page_no < frmr->page_list_len; page_no++) {
  248. frmr->page_list->page_list[page_no] =
  249. ib_dma_map_page(xprt->sc_cm_id->device,
  250. rqstp->rq_arg.pages[page_no], 0,
  251. PAGE_SIZE, DMA_FROM_DEVICE);
  252. if (ib_dma_mapping_error(xprt->sc_cm_id->device,
  253. frmr->page_list->page_list[page_no]))
  254. goto fatal_err;
  255. atomic_inc(&xprt->sc_dma_used);
  256. head->arg.pages[page_no] = rqstp->rq_arg.pages[page_no];
  257. }
  258. head->count += page_no;
  259. /* rq_respages points one past arg pages */
  260. rqstp->rq_respages = &rqstp->rq_arg.pages[page_no];
  261. /* Create the reply and chunk maps */
  262. offset = 0;
  263. ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0];
  264. for (ch_no = 0; ch_no < ch_count; ch_no++) {
  265. rpl_map->sge[ch_no].iov_base = frmr->kva + offset;
  266. rpl_map->sge[ch_no].iov_len = ch->rc_target.rs_length;
  267. chl_map->ch[ch_no].count = 1;
  268. chl_map->ch[ch_no].start = ch_no;
  269. offset += ch->rc_target.rs_length;
  270. ch++;
  271. }
  272. ret = svc_rdma_fastreg(xprt, frmr);
  273. if (ret)
  274. goto fatal_err;
  275. return ch_no;
  276. fatal_err:
  277. printk("svcrdma: error fast registering xdr for xprt %p", xprt);
  278. svc_rdma_put_frmr(xprt, frmr);
  279. return -EIO;
  280. }
  281. static int rdma_set_ctxt_sge(struct svcxprt_rdma *xprt,
  282. struct svc_rdma_op_ctxt *ctxt,
  283. struct svc_rdma_fastreg_mr *frmr,
  284. struct kvec *vec,
  285. u64 *sgl_offset,
  286. int count)
  287. {
  288. int i;
  289. unsigned long off;
  290. ctxt->count = count;
  291. ctxt->direction = DMA_FROM_DEVICE;
  292. for (i = 0; i < count; i++) {
  293. ctxt->sge[i].length = 0; /* in case map fails */
  294. if (!frmr) {
  295. BUG_ON(0 == virt_to_page(vec[i].iov_base));
  296. off = (unsigned long)vec[i].iov_base & ~PAGE_MASK;
  297. ctxt->sge[i].addr =
  298. ib_dma_map_page(xprt->sc_cm_id->device,
  299. virt_to_page(vec[i].iov_base),
  300. off,
  301. vec[i].iov_len,
  302. DMA_FROM_DEVICE);
  303. if (ib_dma_mapping_error(xprt->sc_cm_id->device,
  304. ctxt->sge[i].addr))
  305. return -EINVAL;
  306. ctxt->sge[i].lkey = xprt->sc_dma_lkey;
  307. atomic_inc(&xprt->sc_dma_used);
  308. } else {
  309. ctxt->sge[i].addr = (unsigned long)vec[i].iov_base;
  310. ctxt->sge[i].lkey = frmr->mr->lkey;
  311. }
  312. ctxt->sge[i].length = vec[i].iov_len;
  313. *sgl_offset = *sgl_offset + vec[i].iov_len;
  314. }
  315. return 0;
  316. }
  317. static int rdma_read_max_sge(struct svcxprt_rdma *xprt, int sge_count)
  318. {
  319. if ((rdma_node_get_transport(xprt->sc_cm_id->device->node_type) ==
  320. RDMA_TRANSPORT_IWARP) &&
  321. sge_count > 1)
  322. return 1;
  323. else
  324. return min_t(int, sge_count, xprt->sc_max_sge);
  325. }
  326. /*
  327. * Use RDMA_READ to read data from the advertised client buffer into the
  328. * XDR stream starting at rq_arg.head[0].iov_base.
  329. * Each chunk in the array
  330. * contains the following fields:
  331. * discrim - '1', This isn't used for data placement
  332. * position - The xdr stream offset (the same for every chunk)
  333. * handle - RMR for client memory region
  334. * length - data transfer length
  335. * offset - 64 bit tagged offset in remote memory region
  336. *
  337. * On our side, we need to read into a pagelist. The first page immediately
  338. * follows the RPC header.
  339. *
  340. * This function returns:
  341. * 0 - No error and no read-list found.
  342. *
  343. * 1 - Successful read-list processing. The data is not yet in
  344. * the pagelist and therefore the RPC request must be deferred. The
  345. * I/O completion will enqueue the transport again and
  346. * svc_rdma_recvfrom will complete the request.
  347. *
  348. * <0 - Error processing/posting read-list.
  349. *
  350. * NOTE: The ctxt must not be touched after the last WR has been posted
  351. * because the I/O completion processing may occur on another
  352. * processor and free / modify the context. Ne touche pas!
  353. */
  354. static int rdma_read_xdr(struct svcxprt_rdma *xprt,
  355. struct rpcrdma_msg *rmsgp,
  356. struct svc_rqst *rqstp,
  357. struct svc_rdma_op_ctxt *hdr_ctxt)
  358. {
  359. struct ib_send_wr read_wr;
  360. struct ib_send_wr inv_wr;
  361. int err = 0;
  362. int ch_no;
  363. int ch_count;
  364. int byte_count;
  365. int sge_count;
  366. u64 sgl_offset;
  367. struct rpcrdma_read_chunk *ch;
  368. struct svc_rdma_op_ctxt *ctxt = NULL;
  369. struct svc_rdma_req_map *rpl_map;
  370. struct svc_rdma_req_map *chl_map;
  371. /* If no read list is present, return 0 */
  372. ch = svc_rdma_get_read_chunk(rmsgp);
  373. if (!ch)
  374. return 0;
  375. svc_rdma_rcl_chunk_counts(ch, &ch_count, &byte_count);
  376. if (ch_count > RPCSVC_MAXPAGES)
  377. return -EINVAL;
  378. /* Allocate temporary reply and chunk maps */
  379. rpl_map = svc_rdma_get_req_map();
  380. chl_map = svc_rdma_get_req_map();
  381. if (!xprt->sc_frmr_pg_list_len)
  382. sge_count = map_read_chunks(xprt, rqstp, hdr_ctxt, rmsgp,
  383. rpl_map, chl_map, ch_count,
  384. byte_count);
  385. else
  386. sge_count = fast_reg_read_chunks(xprt, rqstp, hdr_ctxt, rmsgp,
  387. rpl_map, chl_map, ch_count,
  388. byte_count);
  389. if (sge_count < 0) {
  390. err = -EIO;
  391. goto out;
  392. }
  393. sgl_offset = 0;
  394. ch_no = 0;
  395. for (ch = (struct rpcrdma_read_chunk *)&rmsgp->rm_body.rm_chunks[0];
  396. ch->rc_discrim != 0; ch++, ch_no++) {
  397. next_sge:
  398. ctxt = svc_rdma_get_context(xprt);
  399. ctxt->direction = DMA_FROM_DEVICE;
  400. ctxt->frmr = hdr_ctxt->frmr;
  401. ctxt->read_hdr = NULL;
  402. clear_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags);
  403. clear_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags);
  404. /* Prepare READ WR */
  405. memset(&read_wr, 0, sizeof read_wr);
  406. read_wr.wr_id = (unsigned long)ctxt;
  407. read_wr.opcode = IB_WR_RDMA_READ;
  408. ctxt->wr_op = read_wr.opcode;
  409. read_wr.send_flags = IB_SEND_SIGNALED;
  410. read_wr.wr.rdma.rkey = ch->rc_target.rs_handle;
  411. read_wr.wr.rdma.remote_addr =
  412. get_unaligned(&(ch->rc_target.rs_offset)) +
  413. sgl_offset;
  414. read_wr.sg_list = ctxt->sge;
  415. read_wr.num_sge =
  416. rdma_read_max_sge(xprt, chl_map->ch[ch_no].count);
  417. err = rdma_set_ctxt_sge(xprt, ctxt, hdr_ctxt->frmr,
  418. &rpl_map->sge[chl_map->ch[ch_no].start],
  419. &sgl_offset,
  420. read_wr.num_sge);
  421. if (err) {
  422. svc_rdma_unmap_dma(ctxt);
  423. svc_rdma_put_context(ctxt, 0);
  424. goto out;
  425. }
  426. if (((ch+1)->rc_discrim == 0) &&
  427. (read_wr.num_sge == chl_map->ch[ch_no].count)) {
  428. /*
  429. * Mark the last RDMA_READ with a bit to
  430. * indicate all RPC data has been fetched from
  431. * the client and the RPC needs to be enqueued.
  432. */
  433. set_bit(RDMACTXT_F_LAST_CTXT, &ctxt->flags);
  434. if (hdr_ctxt->frmr) {
  435. set_bit(RDMACTXT_F_FAST_UNREG, &ctxt->flags);
  436. /*
  437. * Invalidate the local MR used to map the data
  438. * sink.
  439. */
  440. if (xprt->sc_dev_caps &
  441. SVCRDMA_DEVCAP_READ_W_INV) {
  442. read_wr.opcode =
  443. IB_WR_RDMA_READ_WITH_INV;
  444. ctxt->wr_op = read_wr.opcode;
  445. read_wr.ex.invalidate_rkey =
  446. ctxt->frmr->mr->lkey;
  447. } else {
  448. /* Prepare INVALIDATE WR */
  449. memset(&inv_wr, 0, sizeof inv_wr);
  450. inv_wr.opcode = IB_WR_LOCAL_INV;
  451. inv_wr.send_flags = IB_SEND_SIGNALED;
  452. inv_wr.ex.invalidate_rkey =
  453. hdr_ctxt->frmr->mr->lkey;
  454. read_wr.next = &inv_wr;
  455. }
  456. }
  457. ctxt->read_hdr = hdr_ctxt;
  458. }
  459. /* Post the read */
  460. err = svc_rdma_send(xprt, &read_wr);
  461. if (err) {
  462. printk(KERN_ERR "svcrdma: Error %d posting RDMA_READ\n",
  463. err);
  464. set_bit(XPT_CLOSE, &xprt->sc_xprt.xpt_flags);
  465. svc_rdma_unmap_dma(ctxt);
  466. svc_rdma_put_context(ctxt, 0);
  467. goto out;
  468. }
  469. atomic_inc(&rdma_stat_read);
  470. if (read_wr.num_sge < chl_map->ch[ch_no].count) {
  471. chl_map->ch[ch_no].count -= read_wr.num_sge;
  472. chl_map->ch[ch_no].start += read_wr.num_sge;
  473. goto next_sge;
  474. }
  475. sgl_offset = 0;
  476. err = 1;
  477. }
  478. out:
  479. svc_rdma_put_req_map(rpl_map);
  480. svc_rdma_put_req_map(chl_map);
  481. /* Detach arg pages. svc_recv will replenish them */
  482. for (ch_no = 0; &rqstp->rq_pages[ch_no] < rqstp->rq_respages; ch_no++)
  483. rqstp->rq_pages[ch_no] = NULL;
  484. /*
  485. * Detach res pages. svc_release must see a resused count of
  486. * zero or it will attempt to put them.
  487. */
  488. while (rqstp->rq_resused)
  489. rqstp->rq_respages[--rqstp->rq_resused] = NULL;
  490. return err;
  491. }
  492. static int rdma_read_complete(struct svc_rqst *rqstp,
  493. struct svc_rdma_op_ctxt *head)
  494. {
  495. int page_no;
  496. int ret;
  497. BUG_ON(!head);
  498. /* Copy RPC pages */
  499. for (page_no = 0; page_no < head->count; page_no++) {
  500. put_page(rqstp->rq_pages[page_no]);
  501. rqstp->rq_pages[page_no] = head->pages[page_no];
  502. }
  503. /* Point rq_arg.pages past header */
  504. rqstp->rq_arg.pages = &rqstp->rq_pages[head->hdr_count];
  505. rqstp->rq_arg.page_len = head->arg.page_len;
  506. rqstp->rq_arg.page_base = head->arg.page_base;
  507. /* rq_respages starts after the last arg page */
  508. rqstp->rq_respages = &rqstp->rq_arg.pages[page_no];
  509. rqstp->rq_resused = 0;
  510. /* Rebuild rq_arg head and tail. */
  511. rqstp->rq_arg.head[0] = head->arg.head[0];
  512. rqstp->rq_arg.tail[0] = head->arg.tail[0];
  513. rqstp->rq_arg.len = head->arg.len;
  514. rqstp->rq_arg.buflen = head->arg.buflen;
  515. /* Free the context */
  516. svc_rdma_put_context(head, 0);
  517. /* XXX: What should this be? */
  518. rqstp->rq_prot = IPPROTO_MAX;
  519. svc_xprt_copy_addrs(rqstp, rqstp->rq_xprt);
  520. ret = rqstp->rq_arg.head[0].iov_len
  521. + rqstp->rq_arg.page_len
  522. + rqstp->rq_arg.tail[0].iov_len;
  523. dprintk("svcrdma: deferred read ret=%d, rq_arg.len =%d, "
  524. "rq_arg.head[0].iov_base=%p, rq_arg.head[0].iov_len = %zd\n",
  525. ret, rqstp->rq_arg.len, rqstp->rq_arg.head[0].iov_base,
  526. rqstp->rq_arg.head[0].iov_len);
  527. return ret;
  528. }
  529. /*
  530. * Set up the rqstp thread context to point to the RQ buffer. If
  531. * necessary, pull additional data from the client with an RDMA_READ
  532. * request.
  533. */
  534. int svc_rdma_recvfrom(struct svc_rqst *rqstp)
  535. {
  536. struct svc_xprt *xprt = rqstp->rq_xprt;
  537. struct svcxprt_rdma *rdma_xprt =
  538. container_of(xprt, struct svcxprt_rdma, sc_xprt);
  539. struct svc_rdma_op_ctxt *ctxt = NULL;
  540. struct rpcrdma_msg *rmsgp;
  541. int ret = 0;
  542. int len;
  543. dprintk("svcrdma: rqstp=%p\n", rqstp);
  544. spin_lock_bh(&rdma_xprt->sc_rq_dto_lock);
  545. if (!list_empty(&rdma_xprt->sc_read_complete_q)) {
  546. ctxt = list_entry(rdma_xprt->sc_read_complete_q.next,
  547. struct svc_rdma_op_ctxt,
  548. dto_q);
  549. list_del_init(&ctxt->dto_q);
  550. }
  551. if (ctxt) {
  552. spin_unlock_bh(&rdma_xprt->sc_rq_dto_lock);
  553. return rdma_read_complete(rqstp, ctxt);
  554. }
  555. if (!list_empty(&rdma_xprt->sc_rq_dto_q)) {
  556. ctxt = list_entry(rdma_xprt->sc_rq_dto_q.next,
  557. struct svc_rdma_op_ctxt,
  558. dto_q);
  559. list_del_init(&ctxt->dto_q);
  560. } else {
  561. atomic_inc(&rdma_stat_rq_starve);
  562. clear_bit(XPT_DATA, &xprt->xpt_flags);
  563. ctxt = NULL;
  564. }
  565. spin_unlock_bh(&rdma_xprt->sc_rq_dto_lock);
  566. if (!ctxt) {
  567. /* This is the EAGAIN path. The svc_recv routine will
  568. * return -EAGAIN, the nfsd thread will go to call into
  569. * svc_recv again and we shouldn't be on the active
  570. * transport list
  571. */
  572. if (test_bit(XPT_CLOSE, &xprt->xpt_flags))
  573. goto close_out;
  574. BUG_ON(ret);
  575. goto out;
  576. }
  577. dprintk("svcrdma: processing ctxt=%p on xprt=%p, rqstp=%p, status=%d\n",
  578. ctxt, rdma_xprt, rqstp, ctxt->wc_status);
  579. BUG_ON(ctxt->wc_status != IB_WC_SUCCESS);
  580. atomic_inc(&rdma_stat_recv);
  581. /* Build up the XDR from the receive buffers. */
  582. rdma_build_arg_xdr(rqstp, ctxt, ctxt->byte_len);
  583. /* Decode the RDMA header. */
  584. len = svc_rdma_xdr_decode_req(&rmsgp, rqstp);
  585. rqstp->rq_xprt_hlen = len;
  586. /* If the request is invalid, reply with an error */
  587. if (len < 0) {
  588. if (len == -ENOSYS)
  589. svc_rdma_send_error(rdma_xprt, rmsgp, ERR_VERS);
  590. goto close_out;
  591. }
  592. /* Read read-list data. */
  593. ret = rdma_read_xdr(rdma_xprt, rmsgp, rqstp, ctxt);
  594. if (ret > 0) {
  595. /* read-list posted, defer until data received from client. */
  596. goto defer;
  597. }
  598. if (ret < 0) {
  599. /* Post of read-list failed, free context. */
  600. svc_rdma_put_context(ctxt, 1);
  601. return 0;
  602. }
  603. ret = rqstp->rq_arg.head[0].iov_len
  604. + rqstp->rq_arg.page_len
  605. + rqstp->rq_arg.tail[0].iov_len;
  606. svc_rdma_put_context(ctxt, 0);
  607. out:
  608. dprintk("svcrdma: ret = %d, rq_arg.len =%d, "
  609. "rq_arg.head[0].iov_base=%p, rq_arg.head[0].iov_len = %zd\n",
  610. ret, rqstp->rq_arg.len,
  611. rqstp->rq_arg.head[0].iov_base,
  612. rqstp->rq_arg.head[0].iov_len);
  613. rqstp->rq_prot = IPPROTO_MAX;
  614. svc_xprt_copy_addrs(rqstp, xprt);
  615. return ret;
  616. close_out:
  617. if (ctxt)
  618. svc_rdma_put_context(ctxt, 1);
  619. dprintk("svcrdma: transport %p is closing\n", xprt);
  620. /*
  621. * Set the close bit and enqueue it. svc_recv will see the
  622. * close bit and call svc_xprt_delete
  623. */
  624. set_bit(XPT_CLOSE, &xprt->xpt_flags);
  625. defer:
  626. return 0;
  627. }