ib_rdma.c 20 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815
  1. /*
  2. * Copyright (c) 2006 Oracle. All rights reserved.
  3. *
  4. * This software is available to you under a choice of one of two
  5. * licenses. You may choose to be licensed under the terms of the GNU
  6. * General Public License (GPL) Version 2, available from the file
  7. * COPYING in the main directory of this source tree, or the
  8. * OpenIB.org BSD license below:
  9. *
  10. * Redistribution and use in source and binary forms, with or
  11. * without modification, are permitted provided that the following
  12. * conditions are met:
  13. *
  14. * - Redistributions of source code must retain the above
  15. * copyright notice, this list of conditions and the following
  16. * disclaimer.
  17. *
  18. * - Redistributions in binary form must reproduce the above
  19. * copyright notice, this list of conditions and the following
  20. * disclaimer in the documentation and/or other materials
  21. * provided with the distribution.
  22. *
  23. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  24. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  25. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  26. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  27. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  28. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  29. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  30. * SOFTWARE.
  31. *
  32. */
  33. #include <linux/kernel.h>
  34. #include <linux/slab.h>
  35. #include <linux/rculist.h>
  36. #include "rds.h"
  37. #include "ib.h"
  38. #include "xlist.h"
  39. static struct workqueue_struct *rds_ib_fmr_wq;
  40. static DEFINE_PER_CPU(unsigned long, clean_list_grace);
  41. #define CLEAN_LIST_BUSY_BIT 0
  42. /*
  43. * This is stored as mr->r_trans_private.
  44. */
  45. struct rds_ib_mr {
  46. struct rds_ib_device *device;
  47. struct rds_ib_mr_pool *pool;
  48. struct ib_fmr *fmr;
  49. struct xlist_head xlist;
  50. /* unmap_list is for freeing */
  51. struct list_head unmap_list;
  52. unsigned int remap_count;
  53. struct scatterlist *sg;
  54. unsigned int sg_len;
  55. u64 *dma;
  56. int sg_dma_len;
  57. };
  58. /*
  59. * Our own little FMR pool
  60. */
  61. struct rds_ib_mr_pool {
  62. struct mutex flush_lock; /* serialize fmr invalidate */
  63. struct delayed_work flush_worker; /* flush worker */
  64. atomic_t item_count; /* total # of MRs */
  65. atomic_t dirty_count; /* # dirty of MRs */
  66. struct xlist_head drop_list; /* MRs that have reached their max_maps limit */
  67. struct xlist_head free_list; /* unused MRs */
  68. struct xlist_head clean_list; /* global unused & unamapped MRs */
  69. wait_queue_head_t flush_wait;
  70. atomic_t free_pinned; /* memory pinned by free MRs */
  71. unsigned long max_items;
  72. unsigned long max_items_soft;
  73. unsigned long max_free_pinned;
  74. struct ib_fmr_attr fmr_attr;
  75. };
  76. static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool, int free_all, struct rds_ib_mr **);
  77. static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr);
  78. static void rds_ib_mr_pool_flush_worker(struct work_struct *work);
  79. static struct rds_ib_device *rds_ib_get_device(__be32 ipaddr)
  80. {
  81. struct rds_ib_device *rds_ibdev;
  82. struct rds_ib_ipaddr *i_ipaddr;
  83. rcu_read_lock();
  84. list_for_each_entry_rcu(rds_ibdev, &rds_ib_devices, list) {
  85. list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
  86. if (i_ipaddr->ipaddr == ipaddr) {
  87. atomic_inc(&rds_ibdev->refcount);
  88. rcu_read_unlock();
  89. return rds_ibdev;
  90. }
  91. }
  92. }
  93. rcu_read_unlock();
  94. return NULL;
  95. }
  96. static int rds_ib_add_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  97. {
  98. struct rds_ib_ipaddr *i_ipaddr;
  99. i_ipaddr = kmalloc(sizeof *i_ipaddr, GFP_KERNEL);
  100. if (!i_ipaddr)
  101. return -ENOMEM;
  102. i_ipaddr->ipaddr = ipaddr;
  103. spin_lock_irq(&rds_ibdev->spinlock);
  104. list_add_tail_rcu(&i_ipaddr->list, &rds_ibdev->ipaddr_list);
  105. spin_unlock_irq(&rds_ibdev->spinlock);
  106. return 0;
  107. }
  108. static void rds_ib_remove_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  109. {
  110. struct rds_ib_ipaddr *i_ipaddr;
  111. struct rds_ib_ipaddr *to_free = NULL;
  112. spin_lock_irq(&rds_ibdev->spinlock);
  113. list_for_each_entry_rcu(i_ipaddr, &rds_ibdev->ipaddr_list, list) {
  114. if (i_ipaddr->ipaddr == ipaddr) {
  115. list_del_rcu(&i_ipaddr->list);
  116. to_free = i_ipaddr;
  117. break;
  118. }
  119. }
  120. spin_unlock_irq(&rds_ibdev->spinlock);
  121. if (to_free) {
  122. synchronize_rcu();
  123. kfree(to_free);
  124. }
  125. }
  126. int rds_ib_update_ipaddr(struct rds_ib_device *rds_ibdev, __be32 ipaddr)
  127. {
  128. struct rds_ib_device *rds_ibdev_old;
  129. rds_ibdev_old = rds_ib_get_device(ipaddr);
  130. if (rds_ibdev_old) {
  131. rds_ib_remove_ipaddr(rds_ibdev_old, ipaddr);
  132. rds_ib_dev_put(rds_ibdev_old);
  133. }
  134. return rds_ib_add_ipaddr(rds_ibdev, ipaddr);
  135. }
  136. void rds_ib_add_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
  137. {
  138. struct rds_ib_connection *ic = conn->c_transport_data;
  139. /* conn was previously on the nodev_conns_list */
  140. spin_lock_irq(&ib_nodev_conns_lock);
  141. BUG_ON(list_empty(&ib_nodev_conns));
  142. BUG_ON(list_empty(&ic->ib_node));
  143. list_del(&ic->ib_node);
  144. spin_lock(&rds_ibdev->spinlock);
  145. list_add_tail(&ic->ib_node, &rds_ibdev->conn_list);
  146. spin_unlock(&rds_ibdev->spinlock);
  147. spin_unlock_irq(&ib_nodev_conns_lock);
  148. ic->rds_ibdev = rds_ibdev;
  149. atomic_inc(&rds_ibdev->refcount);
  150. }
  151. void rds_ib_remove_conn(struct rds_ib_device *rds_ibdev, struct rds_connection *conn)
  152. {
  153. struct rds_ib_connection *ic = conn->c_transport_data;
  154. /* place conn on nodev_conns_list */
  155. spin_lock(&ib_nodev_conns_lock);
  156. spin_lock_irq(&rds_ibdev->spinlock);
  157. BUG_ON(list_empty(&ic->ib_node));
  158. list_del(&ic->ib_node);
  159. spin_unlock_irq(&rds_ibdev->spinlock);
  160. list_add_tail(&ic->ib_node, &ib_nodev_conns);
  161. spin_unlock(&ib_nodev_conns_lock);
  162. ic->rds_ibdev = NULL;
  163. rds_ib_dev_put(rds_ibdev);
  164. }
  165. void rds_ib_destroy_nodev_conns(void)
  166. {
  167. struct rds_ib_connection *ic, *_ic;
  168. LIST_HEAD(tmp_list);
  169. /* avoid calling conn_destroy with irqs off */
  170. spin_lock_irq(&ib_nodev_conns_lock);
  171. list_splice(&ib_nodev_conns, &tmp_list);
  172. spin_unlock_irq(&ib_nodev_conns_lock);
  173. list_for_each_entry_safe(ic, _ic, &tmp_list, ib_node)
  174. rds_conn_destroy(ic->conn);
  175. }
  176. struct rds_ib_mr_pool *rds_ib_create_mr_pool(struct rds_ib_device *rds_ibdev)
  177. {
  178. struct rds_ib_mr_pool *pool;
  179. pool = kzalloc(sizeof(*pool), GFP_KERNEL);
  180. if (!pool)
  181. return ERR_PTR(-ENOMEM);
  182. INIT_XLIST_HEAD(&pool->free_list);
  183. INIT_XLIST_HEAD(&pool->drop_list);
  184. INIT_XLIST_HEAD(&pool->clean_list);
  185. mutex_init(&pool->flush_lock);
  186. init_waitqueue_head(&pool->flush_wait);
  187. INIT_DELAYED_WORK(&pool->flush_worker, rds_ib_mr_pool_flush_worker);
  188. pool->fmr_attr.max_pages = fmr_message_size;
  189. pool->fmr_attr.max_maps = rds_ibdev->fmr_max_remaps;
  190. pool->fmr_attr.page_shift = PAGE_SHIFT;
  191. pool->max_free_pinned = rds_ibdev->max_fmrs * fmr_message_size / 4;
  192. /* We never allow more than max_items MRs to be allocated.
  193. * When we exceed more than max_items_soft, we start freeing
  194. * items more aggressively.
  195. * Make sure that max_items > max_items_soft > max_items / 2
  196. */
  197. pool->max_items_soft = rds_ibdev->max_fmrs * 3 / 4;
  198. pool->max_items = rds_ibdev->max_fmrs;
  199. return pool;
  200. }
  201. void rds_ib_get_mr_info(struct rds_ib_device *rds_ibdev, struct rds_info_rdma_connection *iinfo)
  202. {
  203. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  204. iinfo->rdma_mr_max = pool->max_items;
  205. iinfo->rdma_mr_size = pool->fmr_attr.max_pages;
  206. }
  207. void rds_ib_destroy_mr_pool(struct rds_ib_mr_pool *pool)
  208. {
  209. cancel_delayed_work_sync(&pool->flush_worker);
  210. rds_ib_flush_mr_pool(pool, 1, NULL);
  211. WARN_ON(atomic_read(&pool->item_count));
  212. WARN_ON(atomic_read(&pool->free_pinned));
  213. kfree(pool);
  214. }
  215. static void refill_local(struct rds_ib_mr_pool *pool, struct xlist_head *xl,
  216. struct rds_ib_mr **ibmr_ret)
  217. {
  218. struct xlist_head *ibmr_xl;
  219. ibmr_xl = xlist_del_head_fast(xl);
  220. *ibmr_ret = list_entry(ibmr_xl, struct rds_ib_mr, xlist);
  221. }
  222. static inline struct rds_ib_mr *rds_ib_reuse_fmr(struct rds_ib_mr_pool *pool)
  223. {
  224. struct rds_ib_mr *ibmr = NULL;
  225. struct xlist_head *ret;
  226. unsigned long *flag;
  227. preempt_disable();
  228. flag = &__get_cpu_var(clean_list_grace);
  229. set_bit(CLEAN_LIST_BUSY_BIT, flag);
  230. ret = xlist_del_head(&pool->clean_list);
  231. if (ret)
  232. ibmr = list_entry(ret, struct rds_ib_mr, xlist);
  233. clear_bit(CLEAN_LIST_BUSY_BIT, flag);
  234. preempt_enable();
  235. return ibmr;
  236. }
  237. static inline void wait_clean_list_grace(void)
  238. {
  239. int cpu;
  240. unsigned long *flag;
  241. for_each_online_cpu(cpu) {
  242. flag = &per_cpu(clean_list_grace, cpu);
  243. while (test_bit(CLEAN_LIST_BUSY_BIT, flag))
  244. cpu_relax();
  245. }
  246. }
  247. static struct rds_ib_mr *rds_ib_alloc_fmr(struct rds_ib_device *rds_ibdev)
  248. {
  249. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  250. struct rds_ib_mr *ibmr = NULL;
  251. int err = 0, iter = 0;
  252. if (atomic_read(&pool->dirty_count) >= pool->max_items / 10)
  253. queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
  254. while (1) {
  255. ibmr = rds_ib_reuse_fmr(pool);
  256. if (ibmr)
  257. return ibmr;
  258. /* No clean MRs - now we have the choice of either
  259. * allocating a fresh MR up to the limit imposed by the
  260. * driver, or flush any dirty unused MRs.
  261. * We try to avoid stalling in the send path if possible,
  262. * so we allocate as long as we're allowed to.
  263. *
  264. * We're fussy with enforcing the FMR limit, though. If the driver
  265. * tells us we can't use more than N fmrs, we shouldn't start
  266. * arguing with it */
  267. if (atomic_inc_return(&pool->item_count) <= pool->max_items)
  268. break;
  269. atomic_dec(&pool->item_count);
  270. if (++iter > 2) {
  271. rds_ib_stats_inc(s_ib_rdma_mr_pool_depleted);
  272. return ERR_PTR(-EAGAIN);
  273. }
  274. /* We do have some empty MRs. Flush them out. */
  275. rds_ib_stats_inc(s_ib_rdma_mr_pool_wait);
  276. rds_ib_flush_mr_pool(pool, 0, &ibmr);
  277. if (ibmr)
  278. return ibmr;
  279. }
  280. ibmr = kzalloc_node(sizeof(*ibmr), GFP_KERNEL, rdsibdev_to_node(rds_ibdev));
  281. if (!ibmr) {
  282. err = -ENOMEM;
  283. goto out_no_cigar;
  284. }
  285. memset(ibmr, 0, sizeof(*ibmr));
  286. ibmr->fmr = ib_alloc_fmr(rds_ibdev->pd,
  287. (IB_ACCESS_LOCAL_WRITE |
  288. IB_ACCESS_REMOTE_READ |
  289. IB_ACCESS_REMOTE_WRITE|
  290. IB_ACCESS_REMOTE_ATOMIC),
  291. &pool->fmr_attr);
  292. if (IS_ERR(ibmr->fmr)) {
  293. err = PTR_ERR(ibmr->fmr);
  294. ibmr->fmr = NULL;
  295. printk(KERN_WARNING "RDS/IB: ib_alloc_fmr failed (err=%d)\n", err);
  296. goto out_no_cigar;
  297. }
  298. rds_ib_stats_inc(s_ib_rdma_mr_alloc);
  299. return ibmr;
  300. out_no_cigar:
  301. if (ibmr) {
  302. if (ibmr->fmr)
  303. ib_dealloc_fmr(ibmr->fmr);
  304. kfree(ibmr);
  305. }
  306. atomic_dec(&pool->item_count);
  307. return ERR_PTR(err);
  308. }
  309. static int rds_ib_map_fmr(struct rds_ib_device *rds_ibdev, struct rds_ib_mr *ibmr,
  310. struct scatterlist *sg, unsigned int nents)
  311. {
  312. struct ib_device *dev = rds_ibdev->dev;
  313. struct scatterlist *scat = sg;
  314. u64 io_addr = 0;
  315. u64 *dma_pages;
  316. u32 len;
  317. int page_cnt, sg_dma_len;
  318. int i, j;
  319. int ret;
  320. sg_dma_len = ib_dma_map_sg(dev, sg, nents,
  321. DMA_BIDIRECTIONAL);
  322. if (unlikely(!sg_dma_len)) {
  323. printk(KERN_WARNING "RDS/IB: dma_map_sg failed!\n");
  324. return -EBUSY;
  325. }
  326. len = 0;
  327. page_cnt = 0;
  328. for (i = 0; i < sg_dma_len; ++i) {
  329. unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
  330. u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
  331. if (dma_addr & ~PAGE_MASK) {
  332. if (i > 0)
  333. return -EINVAL;
  334. else
  335. ++page_cnt;
  336. }
  337. if ((dma_addr + dma_len) & ~PAGE_MASK) {
  338. if (i < sg_dma_len - 1)
  339. return -EINVAL;
  340. else
  341. ++page_cnt;
  342. }
  343. len += dma_len;
  344. }
  345. page_cnt += len >> PAGE_SHIFT;
  346. if (page_cnt > fmr_message_size)
  347. return -EINVAL;
  348. dma_pages = kmalloc_node(sizeof(u64) * page_cnt, GFP_ATOMIC,
  349. rdsibdev_to_node(rds_ibdev));
  350. if (!dma_pages)
  351. return -ENOMEM;
  352. page_cnt = 0;
  353. for (i = 0; i < sg_dma_len; ++i) {
  354. unsigned int dma_len = ib_sg_dma_len(dev, &scat[i]);
  355. u64 dma_addr = ib_sg_dma_address(dev, &scat[i]);
  356. for (j = 0; j < dma_len; j += PAGE_SIZE)
  357. dma_pages[page_cnt++] =
  358. (dma_addr & PAGE_MASK) + j;
  359. }
  360. ret = ib_map_phys_fmr(ibmr->fmr,
  361. dma_pages, page_cnt, io_addr);
  362. if (ret)
  363. goto out;
  364. /* Success - we successfully remapped the MR, so we can
  365. * safely tear down the old mapping. */
  366. rds_ib_teardown_mr(ibmr);
  367. ibmr->sg = scat;
  368. ibmr->sg_len = nents;
  369. ibmr->sg_dma_len = sg_dma_len;
  370. ibmr->remap_count++;
  371. rds_ib_stats_inc(s_ib_rdma_mr_used);
  372. ret = 0;
  373. out:
  374. kfree(dma_pages);
  375. return ret;
  376. }
  377. void rds_ib_sync_mr(void *trans_private, int direction)
  378. {
  379. struct rds_ib_mr *ibmr = trans_private;
  380. struct rds_ib_device *rds_ibdev = ibmr->device;
  381. switch (direction) {
  382. case DMA_FROM_DEVICE:
  383. ib_dma_sync_sg_for_cpu(rds_ibdev->dev, ibmr->sg,
  384. ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
  385. break;
  386. case DMA_TO_DEVICE:
  387. ib_dma_sync_sg_for_device(rds_ibdev->dev, ibmr->sg,
  388. ibmr->sg_dma_len, DMA_BIDIRECTIONAL);
  389. break;
  390. }
  391. }
  392. static void __rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
  393. {
  394. struct rds_ib_device *rds_ibdev = ibmr->device;
  395. if (ibmr->sg_dma_len) {
  396. ib_dma_unmap_sg(rds_ibdev->dev,
  397. ibmr->sg, ibmr->sg_len,
  398. DMA_BIDIRECTIONAL);
  399. ibmr->sg_dma_len = 0;
  400. }
  401. /* Release the s/g list */
  402. if (ibmr->sg_len) {
  403. unsigned int i;
  404. for (i = 0; i < ibmr->sg_len; ++i) {
  405. struct page *page = sg_page(&ibmr->sg[i]);
  406. /* FIXME we need a way to tell a r/w MR
  407. * from a r/o MR */
  408. BUG_ON(irqs_disabled());
  409. set_page_dirty(page);
  410. put_page(page);
  411. }
  412. kfree(ibmr->sg);
  413. ibmr->sg = NULL;
  414. ibmr->sg_len = 0;
  415. }
  416. }
  417. static void rds_ib_teardown_mr(struct rds_ib_mr *ibmr)
  418. {
  419. unsigned int pinned = ibmr->sg_len;
  420. __rds_ib_teardown_mr(ibmr);
  421. if (pinned) {
  422. struct rds_ib_device *rds_ibdev = ibmr->device;
  423. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  424. atomic_sub(pinned, &pool->free_pinned);
  425. }
  426. }
  427. static inline unsigned int rds_ib_flush_goal(struct rds_ib_mr_pool *pool, int free_all)
  428. {
  429. unsigned int item_count;
  430. item_count = atomic_read(&pool->item_count);
  431. if (free_all)
  432. return item_count;
  433. return 0;
  434. }
  435. /*
  436. * given an xlist of mrs, put them all into the list_head for more processing
  437. */
  438. static void xlist_append_to_list(struct xlist_head *xlist, struct list_head *list)
  439. {
  440. struct rds_ib_mr *ibmr;
  441. struct xlist_head splice;
  442. struct xlist_head *cur;
  443. struct xlist_head *next;
  444. splice.next = NULL;
  445. xlist_splice(xlist, &splice);
  446. cur = splice.next;
  447. while (cur) {
  448. next = cur->next;
  449. ibmr = list_entry(cur, struct rds_ib_mr, xlist);
  450. list_add_tail(&ibmr->unmap_list, list);
  451. cur = next;
  452. }
  453. }
  454. /*
  455. * this takes a list head of mrs and turns it into an xlist of clusters.
  456. * each cluster has an xlist of MR_CLUSTER_SIZE mrs that are ready for
  457. * reuse.
  458. */
  459. static void list_append_to_xlist(struct rds_ib_mr_pool *pool,
  460. struct list_head *list, struct xlist_head *xlist,
  461. struct xlist_head **tail_ret)
  462. {
  463. struct rds_ib_mr *ibmr;
  464. struct xlist_head *cur_mr = xlist;
  465. struct xlist_head *tail_mr = NULL;
  466. list_for_each_entry(ibmr, list, unmap_list) {
  467. tail_mr = &ibmr->xlist;
  468. tail_mr->next = NULL;
  469. cur_mr->next = tail_mr;
  470. cur_mr = tail_mr;
  471. }
  472. *tail_ret = tail_mr;
  473. }
  474. /*
  475. * Flush our pool of MRs.
  476. * At a minimum, all currently unused MRs are unmapped.
  477. * If the number of MRs allocated exceeds the limit, we also try
  478. * to free as many MRs as needed to get back to this limit.
  479. */
  480. static int rds_ib_flush_mr_pool(struct rds_ib_mr_pool *pool,
  481. int free_all, struct rds_ib_mr **ibmr_ret)
  482. {
  483. struct rds_ib_mr *ibmr, *next;
  484. struct xlist_head clean_xlist;
  485. struct xlist_head *clean_tail;
  486. LIST_HEAD(unmap_list);
  487. LIST_HEAD(fmr_list);
  488. unsigned long unpinned = 0;
  489. unsigned int nfreed = 0, ncleaned = 0, free_goal;
  490. int ret = 0;
  491. rds_ib_stats_inc(s_ib_rdma_mr_pool_flush);
  492. if (ibmr_ret) {
  493. DEFINE_WAIT(wait);
  494. while(!mutex_trylock(&pool->flush_lock)) {
  495. ibmr = rds_ib_reuse_fmr(pool);
  496. if (ibmr) {
  497. *ibmr_ret = ibmr;
  498. finish_wait(&pool->flush_wait, &wait);
  499. goto out_nolock;
  500. }
  501. prepare_to_wait(&pool->flush_wait, &wait,
  502. TASK_UNINTERRUPTIBLE);
  503. if (xlist_empty(&pool->clean_list))
  504. schedule();
  505. ibmr = rds_ib_reuse_fmr(pool);
  506. if (ibmr) {
  507. *ibmr_ret = ibmr;
  508. finish_wait(&pool->flush_wait, &wait);
  509. goto out_nolock;
  510. }
  511. }
  512. finish_wait(&pool->flush_wait, &wait);
  513. } else
  514. mutex_lock(&pool->flush_lock);
  515. if (ibmr_ret) {
  516. ibmr = rds_ib_reuse_fmr(pool);
  517. if (ibmr) {
  518. *ibmr_ret = ibmr;
  519. goto out;
  520. }
  521. }
  522. /* Get the list of all MRs to be dropped. Ordering matters -
  523. * we want to put drop_list ahead of free_list.
  524. */
  525. xlist_append_to_list(&pool->drop_list, &unmap_list);
  526. xlist_append_to_list(&pool->free_list, &unmap_list);
  527. if (free_all)
  528. xlist_append_to_list(&pool->clean_list, &unmap_list);
  529. free_goal = rds_ib_flush_goal(pool, free_all);
  530. if (list_empty(&unmap_list))
  531. goto out;
  532. /* String all ib_mr's onto one list and hand them to ib_unmap_fmr */
  533. list_for_each_entry(ibmr, &unmap_list, unmap_list)
  534. list_add(&ibmr->fmr->list, &fmr_list);
  535. ret = ib_unmap_fmr(&fmr_list);
  536. if (ret)
  537. printk(KERN_WARNING "RDS/IB: ib_unmap_fmr failed (err=%d)\n", ret);
  538. /* Now we can destroy the DMA mapping and unpin any pages */
  539. list_for_each_entry_safe(ibmr, next, &unmap_list, unmap_list) {
  540. unpinned += ibmr->sg_len;
  541. __rds_ib_teardown_mr(ibmr);
  542. if (nfreed < free_goal || ibmr->remap_count >= pool->fmr_attr.max_maps) {
  543. rds_ib_stats_inc(s_ib_rdma_mr_free);
  544. list_del(&ibmr->unmap_list);
  545. ib_dealloc_fmr(ibmr->fmr);
  546. kfree(ibmr);
  547. nfreed++;
  548. }
  549. ncleaned++;
  550. }
  551. if (!list_empty(&unmap_list)) {
  552. /* we have to make sure that none of the things we're about
  553. * to put on the clean list would race with other cpus trying
  554. * to pull items off. The xlist would explode if we managed to
  555. * remove something from the clean list and then add it back again
  556. * while another CPU was spinning on that same item in xlist_del_head.
  557. *
  558. * This is pretty unlikely, but just in case wait for an xlist grace period
  559. * here before adding anything back into the clean list.
  560. */
  561. wait_clean_list_grace();
  562. list_append_to_xlist(pool, &unmap_list, &clean_xlist, &clean_tail);
  563. if (ibmr_ret)
  564. refill_local(pool, &clean_xlist, ibmr_ret);
  565. /* refill_local may have emptied our list */
  566. if (!xlist_empty(&clean_xlist))
  567. xlist_add(clean_xlist.next, clean_tail, &pool->clean_list);
  568. }
  569. atomic_sub(unpinned, &pool->free_pinned);
  570. atomic_sub(ncleaned, &pool->dirty_count);
  571. atomic_sub(nfreed, &pool->item_count);
  572. out:
  573. mutex_unlock(&pool->flush_lock);
  574. if (waitqueue_active(&pool->flush_wait))
  575. wake_up(&pool->flush_wait);
  576. out_nolock:
  577. return ret;
  578. }
  579. int rds_ib_fmr_init(void)
  580. {
  581. rds_ib_fmr_wq = create_workqueue("rds_fmr_flushd");
  582. if (!rds_ib_fmr_wq)
  583. return -ENOMEM;
  584. return 0;
  585. }
  586. /*
  587. * By the time this is called all the IB devices should have been torn down and
  588. * had their pools freed. As each pool is freed its work struct is waited on,
  589. * so the pool flushing work queue should be idle by the time we get here.
  590. */
  591. void rds_ib_fmr_exit(void)
  592. {
  593. destroy_workqueue(rds_ib_fmr_wq);
  594. }
  595. static void rds_ib_mr_pool_flush_worker(struct work_struct *work)
  596. {
  597. struct rds_ib_mr_pool *pool = container_of(work, struct rds_ib_mr_pool, flush_worker.work);
  598. rds_ib_flush_mr_pool(pool, 0, NULL);
  599. }
  600. void rds_ib_free_mr(void *trans_private, int invalidate)
  601. {
  602. struct rds_ib_mr *ibmr = trans_private;
  603. struct rds_ib_device *rds_ibdev = ibmr->device;
  604. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  605. rdsdebug("RDS/IB: free_mr nents %u\n", ibmr->sg_len);
  606. /* Return it to the pool's free list */
  607. if (ibmr->remap_count >= pool->fmr_attr.max_maps)
  608. xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->drop_list);
  609. else
  610. xlist_add(&ibmr->xlist, &ibmr->xlist, &pool->free_list);
  611. atomic_add(ibmr->sg_len, &pool->free_pinned);
  612. atomic_inc(&pool->dirty_count);
  613. /* If we've pinned too many pages, request a flush */
  614. if (atomic_read(&pool->free_pinned) >= pool->max_free_pinned ||
  615. atomic_read(&pool->dirty_count) >= pool->max_items / 10)
  616. queue_delayed_work(rds_ib_fmr_wq, &pool->flush_worker, 10);
  617. if (invalidate) {
  618. if (likely(!in_interrupt())) {
  619. rds_ib_flush_mr_pool(pool, 0, NULL);
  620. } else {
  621. /* We get here if the user created a MR marked
  622. * as use_once and invalidate at the same time. */
  623. queue_delayed_work(rds_ib_fmr_wq,
  624. &pool->flush_worker, 10);
  625. }
  626. }
  627. rds_ib_dev_put(rds_ibdev);
  628. }
  629. void rds_ib_flush_mrs(void)
  630. {
  631. struct rds_ib_device *rds_ibdev;
  632. down_read(&rds_ib_devices_lock);
  633. list_for_each_entry(rds_ibdev, &rds_ib_devices, list) {
  634. struct rds_ib_mr_pool *pool = rds_ibdev->mr_pool;
  635. if (pool)
  636. rds_ib_flush_mr_pool(pool, 0, NULL);
  637. }
  638. up_read(&rds_ib_devices_lock);
  639. }
  640. void *rds_ib_get_mr(struct scatterlist *sg, unsigned long nents,
  641. struct rds_sock *rs, u32 *key_ret)
  642. {
  643. struct rds_ib_device *rds_ibdev;
  644. struct rds_ib_mr *ibmr = NULL;
  645. int ret;
  646. rds_ibdev = rds_ib_get_device(rs->rs_bound_addr);
  647. if (!rds_ibdev) {
  648. ret = -ENODEV;
  649. goto out;
  650. }
  651. if (!rds_ibdev->mr_pool) {
  652. ret = -ENODEV;
  653. goto out;
  654. }
  655. ibmr = rds_ib_alloc_fmr(rds_ibdev);
  656. if (IS_ERR(ibmr))
  657. return ibmr;
  658. ret = rds_ib_map_fmr(rds_ibdev, ibmr, sg, nents);
  659. if (ret == 0)
  660. *key_ret = ibmr->fmr->rkey;
  661. else
  662. printk(KERN_WARNING "RDS/IB: map_fmr failed (errno=%d)\n", ret);
  663. ibmr->device = rds_ibdev;
  664. rds_ibdev = NULL;
  665. out:
  666. if (ret) {
  667. if (ibmr)
  668. rds_ib_free_mr(ibmr, 0);
  669. ibmr = ERR_PTR(ret);
  670. }
  671. if (rds_ibdev)
  672. rds_ib_dev_put(rds_ibdev);
  673. return ibmr;
  674. }