ipmr.c 55 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469
  1. /*
  2. * IP multicast routing support for mrouted 3.6/3.8
  3. *
  4. * (c) 1995 Alan Cox, <alan@lxorguk.ukuu.org.uk>
  5. * Linux Consultancy and Custom Driver Development
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. *
  12. * Fixes:
  13. * Michael Chastain : Incorrect size of copying.
  14. * Alan Cox : Added the cache manager code
  15. * Alan Cox : Fixed the clone/copy bug and device race.
  16. * Mike McLagan : Routing by source
  17. * Malcolm Beattie : Buffer handling fixes.
  18. * Alexey Kuznetsov : Double buffer free and other fixes.
  19. * SVR Anand : Fixed several multicast bugs and problems.
  20. * Alexey Kuznetsov : Status, optimisations and more.
  21. * Brad Parker : Better behaviour on mrouted upcall
  22. * overflow.
  23. * Carlos Picoto : PIMv1 Support
  24. * Pavlin Ivanov Radoslavov: PIMv2 Registers must checksum only PIM header
  25. * Relax this requirement to work with older peers.
  26. *
  27. */
  28. #include <asm/system.h>
  29. #include <asm/uaccess.h>
  30. #include <linux/types.h>
  31. #include <linux/capability.h>
  32. #include <linux/errno.h>
  33. #include <linux/timer.h>
  34. #include <linux/mm.h>
  35. #include <linux/kernel.h>
  36. #include <linux/fcntl.h>
  37. #include <linux/stat.h>
  38. #include <linux/socket.h>
  39. #include <linux/in.h>
  40. #include <linux/inet.h>
  41. #include <linux/netdevice.h>
  42. #include <linux/inetdevice.h>
  43. #include <linux/igmp.h>
  44. #include <linux/proc_fs.h>
  45. #include <linux/seq_file.h>
  46. #include <linux/mroute.h>
  47. #include <linux/init.h>
  48. #include <linux/if_ether.h>
  49. #include <linux/slab.h>
  50. #include <net/net_namespace.h>
  51. #include <net/ip.h>
  52. #include <net/protocol.h>
  53. #include <linux/skbuff.h>
  54. #include <net/route.h>
  55. #include <net/sock.h>
  56. #include <net/icmp.h>
  57. #include <net/udp.h>
  58. #include <net/raw.h>
  59. #include <linux/notifier.h>
  60. #include <linux/if_arp.h>
  61. #include <linux/netfilter_ipv4.h>
  62. #include <net/ipip.h>
  63. #include <net/checksum.h>
  64. #include <net/netlink.h>
  65. #include <net/fib_rules.h>
  66. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  67. #define CONFIG_IP_PIMSM 1
  68. #endif
  69. struct mr_table {
  70. struct list_head list;
  71. #ifdef CONFIG_NET_NS
  72. struct net *net;
  73. #endif
  74. u32 id;
  75. struct sock __rcu *mroute_sk;
  76. struct timer_list ipmr_expire_timer;
  77. struct list_head mfc_unres_queue;
  78. struct list_head mfc_cache_array[MFC_LINES];
  79. struct vif_device vif_table[MAXVIFS];
  80. int maxvif;
  81. atomic_t cache_resolve_queue_len;
  82. int mroute_do_assert;
  83. int mroute_do_pim;
  84. #if defined(CONFIG_IP_PIMSM_V1) || defined(CONFIG_IP_PIMSM_V2)
  85. int mroute_reg_vif_num;
  86. #endif
  87. };
  88. struct ipmr_rule {
  89. struct fib_rule common;
  90. };
  91. struct ipmr_result {
  92. struct mr_table *mrt;
  93. };
  94. /* Big lock, protecting vif table, mrt cache and mroute socket state.
  95. * Note that the changes are semaphored via rtnl_lock.
  96. */
  97. static DEFINE_RWLOCK(mrt_lock);
  98. /*
  99. * Multicast router control variables
  100. */
  101. #define VIF_EXISTS(_mrt, _idx) ((_mrt)->vif_table[_idx].dev != NULL)
  102. /* Special spinlock for queue of unresolved entries */
  103. static DEFINE_SPINLOCK(mfc_unres_lock);
  104. /* We return to original Alan's scheme. Hash table of resolved
  105. * entries is changed only in process context and protected
  106. * with weak lock mrt_lock. Queue of unresolved entries is protected
  107. * with strong spinlock mfc_unres_lock.
  108. *
  109. * In this case data path is free of exclusive locks at all.
  110. */
  111. static struct kmem_cache *mrt_cachep __read_mostly;
  112. static struct mr_table *ipmr_new_table(struct net *net, u32 id);
  113. static int ip_mr_forward(struct net *net, struct mr_table *mrt,
  114. struct sk_buff *skb, struct mfc_cache *cache,
  115. int local);
  116. static int ipmr_cache_report(struct mr_table *mrt,
  117. struct sk_buff *pkt, vifi_t vifi, int assert);
  118. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  119. struct mfc_cache *c, struct rtmsg *rtm);
  120. static void ipmr_expire_process(unsigned long arg);
  121. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  122. #define ipmr_for_each_table(mrt, net) \
  123. list_for_each_entry_rcu(mrt, &net->ipv4.mr_tables, list)
  124. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  125. {
  126. struct mr_table *mrt;
  127. ipmr_for_each_table(mrt, net) {
  128. if (mrt->id == id)
  129. return mrt;
  130. }
  131. return NULL;
  132. }
  133. static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
  134. struct mr_table **mrt)
  135. {
  136. struct ipmr_result res;
  137. struct fib_lookup_arg arg = { .result = &res, };
  138. int err;
  139. err = fib_rules_lookup(net->ipv4.mr_rules_ops, flp, 0, &arg);
  140. if (err < 0)
  141. return err;
  142. *mrt = res.mrt;
  143. return 0;
  144. }
  145. static int ipmr_rule_action(struct fib_rule *rule, struct flowi *flp,
  146. int flags, struct fib_lookup_arg *arg)
  147. {
  148. struct ipmr_result *res = arg->result;
  149. struct mr_table *mrt;
  150. switch (rule->action) {
  151. case FR_ACT_TO_TBL:
  152. break;
  153. case FR_ACT_UNREACHABLE:
  154. return -ENETUNREACH;
  155. case FR_ACT_PROHIBIT:
  156. return -EACCES;
  157. case FR_ACT_BLACKHOLE:
  158. default:
  159. return -EINVAL;
  160. }
  161. mrt = ipmr_get_table(rule->fr_net, rule->table);
  162. if (mrt == NULL)
  163. return -EAGAIN;
  164. res->mrt = mrt;
  165. return 0;
  166. }
  167. static int ipmr_rule_match(struct fib_rule *rule, struct flowi *fl, int flags)
  168. {
  169. return 1;
  170. }
  171. static const struct nla_policy ipmr_rule_policy[FRA_MAX + 1] = {
  172. FRA_GENERIC_POLICY,
  173. };
  174. static int ipmr_rule_configure(struct fib_rule *rule, struct sk_buff *skb,
  175. struct fib_rule_hdr *frh, struct nlattr **tb)
  176. {
  177. return 0;
  178. }
  179. static int ipmr_rule_compare(struct fib_rule *rule, struct fib_rule_hdr *frh,
  180. struct nlattr **tb)
  181. {
  182. return 1;
  183. }
  184. static int ipmr_rule_fill(struct fib_rule *rule, struct sk_buff *skb,
  185. struct fib_rule_hdr *frh)
  186. {
  187. frh->dst_len = 0;
  188. frh->src_len = 0;
  189. frh->tos = 0;
  190. return 0;
  191. }
  192. static const struct fib_rules_ops __net_initdata ipmr_rules_ops_template = {
  193. .family = RTNL_FAMILY_IPMR,
  194. .rule_size = sizeof(struct ipmr_rule),
  195. .addr_size = sizeof(u32),
  196. .action = ipmr_rule_action,
  197. .match = ipmr_rule_match,
  198. .configure = ipmr_rule_configure,
  199. .compare = ipmr_rule_compare,
  200. .default_pref = fib_default_rule_pref,
  201. .fill = ipmr_rule_fill,
  202. .nlgroup = RTNLGRP_IPV4_RULE,
  203. .policy = ipmr_rule_policy,
  204. .owner = THIS_MODULE,
  205. };
  206. static int __net_init ipmr_rules_init(struct net *net)
  207. {
  208. struct fib_rules_ops *ops;
  209. struct mr_table *mrt;
  210. int err;
  211. ops = fib_rules_register(&ipmr_rules_ops_template, net);
  212. if (IS_ERR(ops))
  213. return PTR_ERR(ops);
  214. INIT_LIST_HEAD(&net->ipv4.mr_tables);
  215. mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  216. if (mrt == NULL) {
  217. err = -ENOMEM;
  218. goto err1;
  219. }
  220. err = fib_default_rule_add(ops, 0x7fff, RT_TABLE_DEFAULT, 0);
  221. if (err < 0)
  222. goto err2;
  223. net->ipv4.mr_rules_ops = ops;
  224. return 0;
  225. err2:
  226. kfree(mrt);
  227. err1:
  228. fib_rules_unregister(ops);
  229. return err;
  230. }
  231. static void __net_exit ipmr_rules_exit(struct net *net)
  232. {
  233. struct mr_table *mrt, *next;
  234. list_for_each_entry_safe(mrt, next, &net->ipv4.mr_tables, list) {
  235. list_del(&mrt->list);
  236. kfree(mrt);
  237. }
  238. fib_rules_unregister(net->ipv4.mr_rules_ops);
  239. }
  240. #else
  241. #define ipmr_for_each_table(mrt, net) \
  242. for (mrt = net->ipv4.mrt; mrt; mrt = NULL)
  243. static struct mr_table *ipmr_get_table(struct net *net, u32 id)
  244. {
  245. return net->ipv4.mrt;
  246. }
  247. static int ipmr_fib_lookup(struct net *net, struct flowi *flp,
  248. struct mr_table **mrt)
  249. {
  250. *mrt = net->ipv4.mrt;
  251. return 0;
  252. }
  253. static int __net_init ipmr_rules_init(struct net *net)
  254. {
  255. net->ipv4.mrt = ipmr_new_table(net, RT_TABLE_DEFAULT);
  256. return net->ipv4.mrt ? 0 : -ENOMEM;
  257. }
  258. static void __net_exit ipmr_rules_exit(struct net *net)
  259. {
  260. kfree(net->ipv4.mrt);
  261. }
  262. #endif
  263. static struct mr_table *ipmr_new_table(struct net *net, u32 id)
  264. {
  265. struct mr_table *mrt;
  266. unsigned int i;
  267. mrt = ipmr_get_table(net, id);
  268. if (mrt != NULL)
  269. return mrt;
  270. mrt = kzalloc(sizeof(*mrt), GFP_KERNEL);
  271. if (mrt == NULL)
  272. return NULL;
  273. write_pnet(&mrt->net, net);
  274. mrt->id = id;
  275. /* Forwarding cache */
  276. for (i = 0; i < MFC_LINES; i++)
  277. INIT_LIST_HEAD(&mrt->mfc_cache_array[i]);
  278. INIT_LIST_HEAD(&mrt->mfc_unres_queue);
  279. setup_timer(&mrt->ipmr_expire_timer, ipmr_expire_process,
  280. (unsigned long)mrt);
  281. #ifdef CONFIG_IP_PIMSM
  282. mrt->mroute_reg_vif_num = -1;
  283. #endif
  284. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  285. list_add_tail_rcu(&mrt->list, &net->ipv4.mr_tables);
  286. #endif
  287. return mrt;
  288. }
  289. /* Service routines creating virtual interfaces: DVMRP tunnels and PIMREG */
  290. static void ipmr_del_tunnel(struct net_device *dev, struct vifctl *v)
  291. {
  292. struct net *net = dev_net(dev);
  293. dev_close(dev);
  294. dev = __dev_get_by_name(net, "tunl0");
  295. if (dev) {
  296. const struct net_device_ops *ops = dev->netdev_ops;
  297. struct ifreq ifr;
  298. struct ip_tunnel_parm p;
  299. memset(&p, 0, sizeof(p));
  300. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  301. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  302. p.iph.version = 4;
  303. p.iph.ihl = 5;
  304. p.iph.protocol = IPPROTO_IPIP;
  305. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  306. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  307. if (ops->ndo_do_ioctl) {
  308. mm_segment_t oldfs = get_fs();
  309. set_fs(KERNEL_DS);
  310. ops->ndo_do_ioctl(dev, &ifr, SIOCDELTUNNEL);
  311. set_fs(oldfs);
  312. }
  313. }
  314. }
  315. static
  316. struct net_device *ipmr_new_tunnel(struct net *net, struct vifctl *v)
  317. {
  318. struct net_device *dev;
  319. dev = __dev_get_by_name(net, "tunl0");
  320. if (dev) {
  321. const struct net_device_ops *ops = dev->netdev_ops;
  322. int err;
  323. struct ifreq ifr;
  324. struct ip_tunnel_parm p;
  325. struct in_device *in_dev;
  326. memset(&p, 0, sizeof(p));
  327. p.iph.daddr = v->vifc_rmt_addr.s_addr;
  328. p.iph.saddr = v->vifc_lcl_addr.s_addr;
  329. p.iph.version = 4;
  330. p.iph.ihl = 5;
  331. p.iph.protocol = IPPROTO_IPIP;
  332. sprintf(p.name, "dvmrp%d", v->vifc_vifi);
  333. ifr.ifr_ifru.ifru_data = (__force void __user *)&p;
  334. if (ops->ndo_do_ioctl) {
  335. mm_segment_t oldfs = get_fs();
  336. set_fs(KERNEL_DS);
  337. err = ops->ndo_do_ioctl(dev, &ifr, SIOCADDTUNNEL);
  338. set_fs(oldfs);
  339. } else {
  340. err = -EOPNOTSUPP;
  341. }
  342. dev = NULL;
  343. if (err == 0 &&
  344. (dev = __dev_get_by_name(net, p.name)) != NULL) {
  345. dev->flags |= IFF_MULTICAST;
  346. in_dev = __in_dev_get_rtnl(dev);
  347. if (in_dev == NULL)
  348. goto failure;
  349. ipv4_devconf_setall(in_dev);
  350. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  351. if (dev_open(dev))
  352. goto failure;
  353. dev_hold(dev);
  354. }
  355. }
  356. return dev;
  357. failure:
  358. /* allow the register to be completed before unregistering. */
  359. rtnl_unlock();
  360. rtnl_lock();
  361. unregister_netdevice(dev);
  362. return NULL;
  363. }
  364. #ifdef CONFIG_IP_PIMSM
  365. static netdev_tx_t reg_vif_xmit(struct sk_buff *skb, struct net_device *dev)
  366. {
  367. struct net *net = dev_net(dev);
  368. struct mr_table *mrt;
  369. struct flowi fl = {
  370. .oif = dev->ifindex,
  371. .iif = skb->skb_iif,
  372. .mark = skb->mark,
  373. };
  374. int err;
  375. err = ipmr_fib_lookup(net, &fl, &mrt);
  376. if (err < 0) {
  377. kfree_skb(skb);
  378. return err;
  379. }
  380. read_lock(&mrt_lock);
  381. dev->stats.tx_bytes += skb->len;
  382. dev->stats.tx_packets++;
  383. ipmr_cache_report(mrt, skb, mrt->mroute_reg_vif_num, IGMPMSG_WHOLEPKT);
  384. read_unlock(&mrt_lock);
  385. kfree_skb(skb);
  386. return NETDEV_TX_OK;
  387. }
  388. static const struct net_device_ops reg_vif_netdev_ops = {
  389. .ndo_start_xmit = reg_vif_xmit,
  390. };
  391. static void reg_vif_setup(struct net_device *dev)
  392. {
  393. dev->type = ARPHRD_PIMREG;
  394. dev->mtu = ETH_DATA_LEN - sizeof(struct iphdr) - 8;
  395. dev->flags = IFF_NOARP;
  396. dev->netdev_ops = &reg_vif_netdev_ops,
  397. dev->destructor = free_netdev;
  398. dev->features |= NETIF_F_NETNS_LOCAL;
  399. }
  400. static struct net_device *ipmr_reg_vif(struct net *net, struct mr_table *mrt)
  401. {
  402. struct net_device *dev;
  403. struct in_device *in_dev;
  404. char name[IFNAMSIZ];
  405. if (mrt->id == RT_TABLE_DEFAULT)
  406. sprintf(name, "pimreg");
  407. else
  408. sprintf(name, "pimreg%u", mrt->id);
  409. dev = alloc_netdev(0, name, reg_vif_setup);
  410. if (dev == NULL)
  411. return NULL;
  412. dev_net_set(dev, net);
  413. if (register_netdevice(dev)) {
  414. free_netdev(dev);
  415. return NULL;
  416. }
  417. dev->iflink = 0;
  418. rcu_read_lock();
  419. in_dev = __in_dev_get_rcu(dev);
  420. if (!in_dev) {
  421. rcu_read_unlock();
  422. goto failure;
  423. }
  424. ipv4_devconf_setall(in_dev);
  425. IPV4_DEVCONF(in_dev->cnf, RP_FILTER) = 0;
  426. rcu_read_unlock();
  427. if (dev_open(dev))
  428. goto failure;
  429. dev_hold(dev);
  430. return dev;
  431. failure:
  432. /* allow the register to be completed before unregistering. */
  433. rtnl_unlock();
  434. rtnl_lock();
  435. unregister_netdevice(dev);
  436. return NULL;
  437. }
  438. #endif
  439. /*
  440. * Delete a VIF entry
  441. * @notify: Set to 1, if the caller is a notifier_call
  442. */
  443. static int vif_delete(struct mr_table *mrt, int vifi, int notify,
  444. struct list_head *head)
  445. {
  446. struct vif_device *v;
  447. struct net_device *dev;
  448. struct in_device *in_dev;
  449. if (vifi < 0 || vifi >= mrt->maxvif)
  450. return -EADDRNOTAVAIL;
  451. v = &mrt->vif_table[vifi];
  452. write_lock_bh(&mrt_lock);
  453. dev = v->dev;
  454. v->dev = NULL;
  455. if (!dev) {
  456. write_unlock_bh(&mrt_lock);
  457. return -EADDRNOTAVAIL;
  458. }
  459. #ifdef CONFIG_IP_PIMSM
  460. if (vifi == mrt->mroute_reg_vif_num)
  461. mrt->mroute_reg_vif_num = -1;
  462. #endif
  463. if (vifi + 1 == mrt->maxvif) {
  464. int tmp;
  465. for (tmp = vifi - 1; tmp >= 0; tmp--) {
  466. if (VIF_EXISTS(mrt, tmp))
  467. break;
  468. }
  469. mrt->maxvif = tmp+1;
  470. }
  471. write_unlock_bh(&mrt_lock);
  472. dev_set_allmulti(dev, -1);
  473. in_dev = __in_dev_get_rtnl(dev);
  474. if (in_dev) {
  475. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)--;
  476. ip_rt_multicast_event(in_dev);
  477. }
  478. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER) && !notify)
  479. unregister_netdevice_queue(dev, head);
  480. dev_put(dev);
  481. return 0;
  482. }
  483. static void ipmr_cache_free_rcu(struct rcu_head *head)
  484. {
  485. struct mfc_cache *c = container_of(head, struct mfc_cache, rcu);
  486. kmem_cache_free(mrt_cachep, c);
  487. }
  488. static inline void ipmr_cache_free(struct mfc_cache *c)
  489. {
  490. call_rcu(&c->rcu, ipmr_cache_free_rcu);
  491. }
  492. /* Destroy an unresolved cache entry, killing queued skbs
  493. * and reporting error to netlink readers.
  494. */
  495. static void ipmr_destroy_unres(struct mr_table *mrt, struct mfc_cache *c)
  496. {
  497. struct net *net = read_pnet(&mrt->net);
  498. struct sk_buff *skb;
  499. struct nlmsgerr *e;
  500. atomic_dec(&mrt->cache_resolve_queue_len);
  501. while ((skb = skb_dequeue(&c->mfc_un.unres.unresolved))) {
  502. if (ip_hdr(skb)->version == 0) {
  503. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  504. nlh->nlmsg_type = NLMSG_ERROR;
  505. nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
  506. skb_trim(skb, nlh->nlmsg_len);
  507. e = NLMSG_DATA(nlh);
  508. e->error = -ETIMEDOUT;
  509. memset(&e->msg, 0, sizeof(e->msg));
  510. rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
  511. } else {
  512. kfree_skb(skb);
  513. }
  514. }
  515. ipmr_cache_free(c);
  516. }
  517. /* Timer process for the unresolved queue. */
  518. static void ipmr_expire_process(unsigned long arg)
  519. {
  520. struct mr_table *mrt = (struct mr_table *)arg;
  521. unsigned long now;
  522. unsigned long expires;
  523. struct mfc_cache *c, *next;
  524. if (!spin_trylock(&mfc_unres_lock)) {
  525. mod_timer(&mrt->ipmr_expire_timer, jiffies+HZ/10);
  526. return;
  527. }
  528. if (list_empty(&mrt->mfc_unres_queue))
  529. goto out;
  530. now = jiffies;
  531. expires = 10*HZ;
  532. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  533. if (time_after(c->mfc_un.unres.expires, now)) {
  534. unsigned long interval = c->mfc_un.unres.expires - now;
  535. if (interval < expires)
  536. expires = interval;
  537. continue;
  538. }
  539. list_del(&c->list);
  540. ipmr_destroy_unres(mrt, c);
  541. }
  542. if (!list_empty(&mrt->mfc_unres_queue))
  543. mod_timer(&mrt->ipmr_expire_timer, jiffies + expires);
  544. out:
  545. spin_unlock(&mfc_unres_lock);
  546. }
  547. /* Fill oifs list. It is called under write locked mrt_lock. */
  548. static void ipmr_update_thresholds(struct mr_table *mrt, struct mfc_cache *cache,
  549. unsigned char *ttls)
  550. {
  551. int vifi;
  552. cache->mfc_un.res.minvif = MAXVIFS;
  553. cache->mfc_un.res.maxvif = 0;
  554. memset(cache->mfc_un.res.ttls, 255, MAXVIFS);
  555. for (vifi = 0; vifi < mrt->maxvif; vifi++) {
  556. if (VIF_EXISTS(mrt, vifi) &&
  557. ttls[vifi] && ttls[vifi] < 255) {
  558. cache->mfc_un.res.ttls[vifi] = ttls[vifi];
  559. if (cache->mfc_un.res.minvif > vifi)
  560. cache->mfc_un.res.minvif = vifi;
  561. if (cache->mfc_un.res.maxvif <= vifi)
  562. cache->mfc_un.res.maxvif = vifi + 1;
  563. }
  564. }
  565. }
  566. static int vif_add(struct net *net, struct mr_table *mrt,
  567. struct vifctl *vifc, int mrtsock)
  568. {
  569. int vifi = vifc->vifc_vifi;
  570. struct vif_device *v = &mrt->vif_table[vifi];
  571. struct net_device *dev;
  572. struct in_device *in_dev;
  573. int err;
  574. /* Is vif busy ? */
  575. if (VIF_EXISTS(mrt, vifi))
  576. return -EADDRINUSE;
  577. switch (vifc->vifc_flags) {
  578. #ifdef CONFIG_IP_PIMSM
  579. case VIFF_REGISTER:
  580. /*
  581. * Special Purpose VIF in PIM
  582. * All the packets will be sent to the daemon
  583. */
  584. if (mrt->mroute_reg_vif_num >= 0)
  585. return -EADDRINUSE;
  586. dev = ipmr_reg_vif(net, mrt);
  587. if (!dev)
  588. return -ENOBUFS;
  589. err = dev_set_allmulti(dev, 1);
  590. if (err) {
  591. unregister_netdevice(dev);
  592. dev_put(dev);
  593. return err;
  594. }
  595. break;
  596. #endif
  597. case VIFF_TUNNEL:
  598. dev = ipmr_new_tunnel(net, vifc);
  599. if (!dev)
  600. return -ENOBUFS;
  601. err = dev_set_allmulti(dev, 1);
  602. if (err) {
  603. ipmr_del_tunnel(dev, vifc);
  604. dev_put(dev);
  605. return err;
  606. }
  607. break;
  608. case VIFF_USE_IFINDEX:
  609. case 0:
  610. if (vifc->vifc_flags == VIFF_USE_IFINDEX) {
  611. dev = dev_get_by_index(net, vifc->vifc_lcl_ifindex);
  612. if (dev && __in_dev_get_rtnl(dev) == NULL) {
  613. dev_put(dev);
  614. return -EADDRNOTAVAIL;
  615. }
  616. } else {
  617. dev = ip_dev_find(net, vifc->vifc_lcl_addr.s_addr);
  618. }
  619. if (!dev)
  620. return -EADDRNOTAVAIL;
  621. err = dev_set_allmulti(dev, 1);
  622. if (err) {
  623. dev_put(dev);
  624. return err;
  625. }
  626. break;
  627. default:
  628. return -EINVAL;
  629. }
  630. in_dev = __in_dev_get_rtnl(dev);
  631. if (!in_dev) {
  632. dev_put(dev);
  633. return -EADDRNOTAVAIL;
  634. }
  635. IPV4_DEVCONF(in_dev->cnf, MC_FORWARDING)++;
  636. ip_rt_multicast_event(in_dev);
  637. /* Fill in the VIF structures */
  638. v->rate_limit = vifc->vifc_rate_limit;
  639. v->local = vifc->vifc_lcl_addr.s_addr;
  640. v->remote = vifc->vifc_rmt_addr.s_addr;
  641. v->flags = vifc->vifc_flags;
  642. if (!mrtsock)
  643. v->flags |= VIFF_STATIC;
  644. v->threshold = vifc->vifc_threshold;
  645. v->bytes_in = 0;
  646. v->bytes_out = 0;
  647. v->pkt_in = 0;
  648. v->pkt_out = 0;
  649. v->link = dev->ifindex;
  650. if (v->flags & (VIFF_TUNNEL | VIFF_REGISTER))
  651. v->link = dev->iflink;
  652. /* And finish update writing critical data */
  653. write_lock_bh(&mrt_lock);
  654. v->dev = dev;
  655. #ifdef CONFIG_IP_PIMSM
  656. if (v->flags & VIFF_REGISTER)
  657. mrt->mroute_reg_vif_num = vifi;
  658. #endif
  659. if (vifi+1 > mrt->maxvif)
  660. mrt->maxvif = vifi+1;
  661. write_unlock_bh(&mrt_lock);
  662. return 0;
  663. }
  664. /* called with rcu_read_lock() */
  665. static struct mfc_cache *ipmr_cache_find(struct mr_table *mrt,
  666. __be32 origin,
  667. __be32 mcastgrp)
  668. {
  669. int line = MFC_HASH(mcastgrp, origin);
  670. struct mfc_cache *c;
  671. list_for_each_entry_rcu(c, &mrt->mfc_cache_array[line], list) {
  672. if (c->mfc_origin == origin && c->mfc_mcastgrp == mcastgrp)
  673. return c;
  674. }
  675. return NULL;
  676. }
  677. /*
  678. * Allocate a multicast cache entry
  679. */
  680. static struct mfc_cache *ipmr_cache_alloc(void)
  681. {
  682. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_KERNEL);
  683. if (c)
  684. c->mfc_un.res.minvif = MAXVIFS;
  685. return c;
  686. }
  687. static struct mfc_cache *ipmr_cache_alloc_unres(void)
  688. {
  689. struct mfc_cache *c = kmem_cache_zalloc(mrt_cachep, GFP_ATOMIC);
  690. if (c) {
  691. skb_queue_head_init(&c->mfc_un.unres.unresolved);
  692. c->mfc_un.unres.expires = jiffies + 10*HZ;
  693. }
  694. return c;
  695. }
  696. /*
  697. * A cache entry has gone into a resolved state from queued
  698. */
  699. static void ipmr_cache_resolve(struct net *net, struct mr_table *mrt,
  700. struct mfc_cache *uc, struct mfc_cache *c)
  701. {
  702. struct sk_buff *skb;
  703. struct nlmsgerr *e;
  704. /* Play the pending entries through our router */
  705. while ((skb = __skb_dequeue(&uc->mfc_un.unres.unresolved))) {
  706. if (ip_hdr(skb)->version == 0) {
  707. struct nlmsghdr *nlh = (struct nlmsghdr *)skb_pull(skb, sizeof(struct iphdr));
  708. if (__ipmr_fill_mroute(mrt, skb, c, NLMSG_DATA(nlh)) > 0) {
  709. nlh->nlmsg_len = skb_tail_pointer(skb) -
  710. (u8 *)nlh;
  711. } else {
  712. nlh->nlmsg_type = NLMSG_ERROR;
  713. nlh->nlmsg_len = NLMSG_LENGTH(sizeof(struct nlmsgerr));
  714. skb_trim(skb, nlh->nlmsg_len);
  715. e = NLMSG_DATA(nlh);
  716. e->error = -EMSGSIZE;
  717. memset(&e->msg, 0, sizeof(e->msg));
  718. }
  719. rtnl_unicast(skb, net, NETLINK_CB(skb).pid);
  720. } else {
  721. ip_mr_forward(net, mrt, skb, c, 0);
  722. }
  723. }
  724. }
  725. /*
  726. * Bounce a cache query up to mrouted. We could use netlink for this but mrouted
  727. * expects the following bizarre scheme.
  728. *
  729. * Called under mrt_lock.
  730. */
  731. static int ipmr_cache_report(struct mr_table *mrt,
  732. struct sk_buff *pkt, vifi_t vifi, int assert)
  733. {
  734. struct sk_buff *skb;
  735. const int ihl = ip_hdrlen(pkt);
  736. struct igmphdr *igmp;
  737. struct igmpmsg *msg;
  738. struct sock *mroute_sk;
  739. int ret;
  740. #ifdef CONFIG_IP_PIMSM
  741. if (assert == IGMPMSG_WHOLEPKT)
  742. skb = skb_realloc_headroom(pkt, sizeof(struct iphdr));
  743. else
  744. #endif
  745. skb = alloc_skb(128, GFP_ATOMIC);
  746. if (!skb)
  747. return -ENOBUFS;
  748. #ifdef CONFIG_IP_PIMSM
  749. if (assert == IGMPMSG_WHOLEPKT) {
  750. /* Ugly, but we have no choice with this interface.
  751. * Duplicate old header, fix ihl, length etc.
  752. * And all this only to mangle msg->im_msgtype and
  753. * to set msg->im_mbz to "mbz" :-)
  754. */
  755. skb_push(skb, sizeof(struct iphdr));
  756. skb_reset_network_header(skb);
  757. skb_reset_transport_header(skb);
  758. msg = (struct igmpmsg *)skb_network_header(skb);
  759. memcpy(msg, skb_network_header(pkt), sizeof(struct iphdr));
  760. msg->im_msgtype = IGMPMSG_WHOLEPKT;
  761. msg->im_mbz = 0;
  762. msg->im_vif = mrt->mroute_reg_vif_num;
  763. ip_hdr(skb)->ihl = sizeof(struct iphdr) >> 2;
  764. ip_hdr(skb)->tot_len = htons(ntohs(ip_hdr(pkt)->tot_len) +
  765. sizeof(struct iphdr));
  766. } else
  767. #endif
  768. {
  769. /* Copy the IP header */
  770. skb->network_header = skb->tail;
  771. skb_put(skb, ihl);
  772. skb_copy_to_linear_data(skb, pkt->data, ihl);
  773. ip_hdr(skb)->protocol = 0; /* Flag to the kernel this is a route add */
  774. msg = (struct igmpmsg *)skb_network_header(skb);
  775. msg->im_vif = vifi;
  776. skb_dst_set(skb, dst_clone(skb_dst(pkt)));
  777. /* Add our header */
  778. igmp = (struct igmphdr *)skb_put(skb, sizeof(struct igmphdr));
  779. igmp->type =
  780. msg->im_msgtype = assert;
  781. igmp->code = 0;
  782. ip_hdr(skb)->tot_len = htons(skb->len); /* Fix the length */
  783. skb->transport_header = skb->network_header;
  784. }
  785. rcu_read_lock();
  786. mroute_sk = rcu_dereference(mrt->mroute_sk);
  787. if (mroute_sk == NULL) {
  788. rcu_read_unlock();
  789. kfree_skb(skb);
  790. return -EINVAL;
  791. }
  792. /* Deliver to mrouted */
  793. ret = sock_queue_rcv_skb(mroute_sk, skb);
  794. rcu_read_unlock();
  795. if (ret < 0) {
  796. if (net_ratelimit())
  797. printk(KERN_WARNING "mroute: pending queue full, dropping entries.\n");
  798. kfree_skb(skb);
  799. }
  800. return ret;
  801. }
  802. /*
  803. * Queue a packet for resolution. It gets locked cache entry!
  804. */
  805. static int
  806. ipmr_cache_unresolved(struct mr_table *mrt, vifi_t vifi, struct sk_buff *skb)
  807. {
  808. bool found = false;
  809. int err;
  810. struct mfc_cache *c;
  811. const struct iphdr *iph = ip_hdr(skb);
  812. spin_lock_bh(&mfc_unres_lock);
  813. list_for_each_entry(c, &mrt->mfc_unres_queue, list) {
  814. if (c->mfc_mcastgrp == iph->daddr &&
  815. c->mfc_origin == iph->saddr) {
  816. found = true;
  817. break;
  818. }
  819. }
  820. if (!found) {
  821. /* Create a new entry if allowable */
  822. if (atomic_read(&mrt->cache_resolve_queue_len) >= 10 ||
  823. (c = ipmr_cache_alloc_unres()) == NULL) {
  824. spin_unlock_bh(&mfc_unres_lock);
  825. kfree_skb(skb);
  826. return -ENOBUFS;
  827. }
  828. /* Fill in the new cache entry */
  829. c->mfc_parent = -1;
  830. c->mfc_origin = iph->saddr;
  831. c->mfc_mcastgrp = iph->daddr;
  832. /* Reflect first query at mrouted. */
  833. err = ipmr_cache_report(mrt, skb, vifi, IGMPMSG_NOCACHE);
  834. if (err < 0) {
  835. /* If the report failed throw the cache entry
  836. out - Brad Parker
  837. */
  838. spin_unlock_bh(&mfc_unres_lock);
  839. ipmr_cache_free(c);
  840. kfree_skb(skb);
  841. return err;
  842. }
  843. atomic_inc(&mrt->cache_resolve_queue_len);
  844. list_add(&c->list, &mrt->mfc_unres_queue);
  845. if (atomic_read(&mrt->cache_resolve_queue_len) == 1)
  846. mod_timer(&mrt->ipmr_expire_timer, c->mfc_un.unres.expires);
  847. }
  848. /* See if we can append the packet */
  849. if (c->mfc_un.unres.unresolved.qlen > 3) {
  850. kfree_skb(skb);
  851. err = -ENOBUFS;
  852. } else {
  853. skb_queue_tail(&c->mfc_un.unres.unresolved, skb);
  854. err = 0;
  855. }
  856. spin_unlock_bh(&mfc_unres_lock);
  857. return err;
  858. }
  859. /*
  860. * MFC cache manipulation by user space mroute daemon
  861. */
  862. static int ipmr_mfc_delete(struct mr_table *mrt, struct mfcctl *mfc)
  863. {
  864. int line;
  865. struct mfc_cache *c, *next;
  866. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  867. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[line], list) {
  868. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  869. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
  870. list_del_rcu(&c->list);
  871. ipmr_cache_free(c);
  872. return 0;
  873. }
  874. }
  875. return -ENOENT;
  876. }
  877. static int ipmr_mfc_add(struct net *net, struct mr_table *mrt,
  878. struct mfcctl *mfc, int mrtsock)
  879. {
  880. bool found = false;
  881. int line;
  882. struct mfc_cache *uc, *c;
  883. if (mfc->mfcc_parent >= MAXVIFS)
  884. return -ENFILE;
  885. line = MFC_HASH(mfc->mfcc_mcastgrp.s_addr, mfc->mfcc_origin.s_addr);
  886. list_for_each_entry(c, &mrt->mfc_cache_array[line], list) {
  887. if (c->mfc_origin == mfc->mfcc_origin.s_addr &&
  888. c->mfc_mcastgrp == mfc->mfcc_mcastgrp.s_addr) {
  889. found = true;
  890. break;
  891. }
  892. }
  893. if (found) {
  894. write_lock_bh(&mrt_lock);
  895. c->mfc_parent = mfc->mfcc_parent;
  896. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  897. if (!mrtsock)
  898. c->mfc_flags |= MFC_STATIC;
  899. write_unlock_bh(&mrt_lock);
  900. return 0;
  901. }
  902. if (!ipv4_is_multicast(mfc->mfcc_mcastgrp.s_addr))
  903. return -EINVAL;
  904. c = ipmr_cache_alloc();
  905. if (c == NULL)
  906. return -ENOMEM;
  907. c->mfc_origin = mfc->mfcc_origin.s_addr;
  908. c->mfc_mcastgrp = mfc->mfcc_mcastgrp.s_addr;
  909. c->mfc_parent = mfc->mfcc_parent;
  910. ipmr_update_thresholds(mrt, c, mfc->mfcc_ttls);
  911. if (!mrtsock)
  912. c->mfc_flags |= MFC_STATIC;
  913. list_add_rcu(&c->list, &mrt->mfc_cache_array[line]);
  914. /*
  915. * Check to see if we resolved a queued list. If so we
  916. * need to send on the frames and tidy up.
  917. */
  918. found = false;
  919. spin_lock_bh(&mfc_unres_lock);
  920. list_for_each_entry(uc, &mrt->mfc_unres_queue, list) {
  921. if (uc->mfc_origin == c->mfc_origin &&
  922. uc->mfc_mcastgrp == c->mfc_mcastgrp) {
  923. list_del(&uc->list);
  924. atomic_dec(&mrt->cache_resolve_queue_len);
  925. found = true;
  926. break;
  927. }
  928. }
  929. if (list_empty(&mrt->mfc_unres_queue))
  930. del_timer(&mrt->ipmr_expire_timer);
  931. spin_unlock_bh(&mfc_unres_lock);
  932. if (found) {
  933. ipmr_cache_resolve(net, mrt, uc, c);
  934. ipmr_cache_free(uc);
  935. }
  936. return 0;
  937. }
  938. /*
  939. * Close the multicast socket, and clear the vif tables etc
  940. */
  941. static void mroute_clean_tables(struct mr_table *mrt)
  942. {
  943. int i;
  944. LIST_HEAD(list);
  945. struct mfc_cache *c, *next;
  946. /* Shut down all active vif entries */
  947. for (i = 0; i < mrt->maxvif; i++) {
  948. if (!(mrt->vif_table[i].flags & VIFF_STATIC))
  949. vif_delete(mrt, i, 0, &list);
  950. }
  951. unregister_netdevice_many(&list);
  952. /* Wipe the cache */
  953. for (i = 0; i < MFC_LINES; i++) {
  954. list_for_each_entry_safe(c, next, &mrt->mfc_cache_array[i], list) {
  955. if (c->mfc_flags & MFC_STATIC)
  956. continue;
  957. list_del_rcu(&c->list);
  958. ipmr_cache_free(c);
  959. }
  960. }
  961. if (atomic_read(&mrt->cache_resolve_queue_len) != 0) {
  962. spin_lock_bh(&mfc_unres_lock);
  963. list_for_each_entry_safe(c, next, &mrt->mfc_unres_queue, list) {
  964. list_del(&c->list);
  965. ipmr_destroy_unres(mrt, c);
  966. }
  967. spin_unlock_bh(&mfc_unres_lock);
  968. }
  969. }
  970. /* called from ip_ra_control(), before an RCU grace period,
  971. * we dont need to call synchronize_rcu() here
  972. */
  973. static void mrtsock_destruct(struct sock *sk)
  974. {
  975. struct net *net = sock_net(sk);
  976. struct mr_table *mrt;
  977. rtnl_lock();
  978. ipmr_for_each_table(mrt, net) {
  979. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  980. IPV4_DEVCONF_ALL(net, MC_FORWARDING)--;
  981. rcu_assign_pointer(mrt->mroute_sk, NULL);
  982. mroute_clean_tables(mrt);
  983. }
  984. }
  985. rtnl_unlock();
  986. }
  987. /*
  988. * Socket options and virtual interface manipulation. The whole
  989. * virtual interface system is a complete heap, but unfortunately
  990. * that's how BSD mrouted happens to think. Maybe one day with a proper
  991. * MOSPF/PIM router set up we can clean this up.
  992. */
  993. int ip_mroute_setsockopt(struct sock *sk, int optname, char __user *optval, unsigned int optlen)
  994. {
  995. int ret;
  996. struct vifctl vif;
  997. struct mfcctl mfc;
  998. struct net *net = sock_net(sk);
  999. struct mr_table *mrt;
  1000. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1001. if (mrt == NULL)
  1002. return -ENOENT;
  1003. if (optname != MRT_INIT) {
  1004. if (sk != rcu_dereference_raw(mrt->mroute_sk) &&
  1005. !capable(CAP_NET_ADMIN))
  1006. return -EACCES;
  1007. }
  1008. switch (optname) {
  1009. case MRT_INIT:
  1010. if (sk->sk_type != SOCK_RAW ||
  1011. inet_sk(sk)->inet_num != IPPROTO_IGMP)
  1012. return -EOPNOTSUPP;
  1013. if (optlen != sizeof(int))
  1014. return -ENOPROTOOPT;
  1015. rtnl_lock();
  1016. if (rtnl_dereference(mrt->mroute_sk)) {
  1017. rtnl_unlock();
  1018. return -EADDRINUSE;
  1019. }
  1020. ret = ip_ra_control(sk, 1, mrtsock_destruct);
  1021. if (ret == 0) {
  1022. rcu_assign_pointer(mrt->mroute_sk, sk);
  1023. IPV4_DEVCONF_ALL(net, MC_FORWARDING)++;
  1024. }
  1025. rtnl_unlock();
  1026. return ret;
  1027. case MRT_DONE:
  1028. if (sk != rcu_dereference_raw(mrt->mroute_sk))
  1029. return -EACCES;
  1030. return ip_ra_control(sk, 0, NULL);
  1031. case MRT_ADD_VIF:
  1032. case MRT_DEL_VIF:
  1033. if (optlen != sizeof(vif))
  1034. return -EINVAL;
  1035. if (copy_from_user(&vif, optval, sizeof(vif)))
  1036. return -EFAULT;
  1037. if (vif.vifc_vifi >= MAXVIFS)
  1038. return -ENFILE;
  1039. rtnl_lock();
  1040. if (optname == MRT_ADD_VIF) {
  1041. ret = vif_add(net, mrt, &vif,
  1042. sk == rtnl_dereference(mrt->mroute_sk));
  1043. } else {
  1044. ret = vif_delete(mrt, vif.vifc_vifi, 0, NULL);
  1045. }
  1046. rtnl_unlock();
  1047. return ret;
  1048. /*
  1049. * Manipulate the forwarding caches. These live
  1050. * in a sort of kernel/user symbiosis.
  1051. */
  1052. case MRT_ADD_MFC:
  1053. case MRT_DEL_MFC:
  1054. if (optlen != sizeof(mfc))
  1055. return -EINVAL;
  1056. if (copy_from_user(&mfc, optval, sizeof(mfc)))
  1057. return -EFAULT;
  1058. rtnl_lock();
  1059. if (optname == MRT_DEL_MFC)
  1060. ret = ipmr_mfc_delete(mrt, &mfc);
  1061. else
  1062. ret = ipmr_mfc_add(net, mrt, &mfc,
  1063. sk == rtnl_dereference(mrt->mroute_sk));
  1064. rtnl_unlock();
  1065. return ret;
  1066. /*
  1067. * Control PIM assert.
  1068. */
  1069. case MRT_ASSERT:
  1070. {
  1071. int v;
  1072. if (get_user(v, (int __user *)optval))
  1073. return -EFAULT;
  1074. mrt->mroute_do_assert = (v) ? 1 : 0;
  1075. return 0;
  1076. }
  1077. #ifdef CONFIG_IP_PIMSM
  1078. case MRT_PIM:
  1079. {
  1080. int v;
  1081. if (get_user(v, (int __user *)optval))
  1082. return -EFAULT;
  1083. v = (v) ? 1 : 0;
  1084. rtnl_lock();
  1085. ret = 0;
  1086. if (v != mrt->mroute_do_pim) {
  1087. mrt->mroute_do_pim = v;
  1088. mrt->mroute_do_assert = v;
  1089. }
  1090. rtnl_unlock();
  1091. return ret;
  1092. }
  1093. #endif
  1094. #ifdef CONFIG_IP_MROUTE_MULTIPLE_TABLES
  1095. case MRT_TABLE:
  1096. {
  1097. u32 v;
  1098. if (optlen != sizeof(u32))
  1099. return -EINVAL;
  1100. if (get_user(v, (u32 __user *)optval))
  1101. return -EFAULT;
  1102. rtnl_lock();
  1103. ret = 0;
  1104. if (sk == rtnl_dereference(mrt->mroute_sk)) {
  1105. ret = -EBUSY;
  1106. } else {
  1107. if (!ipmr_new_table(net, v))
  1108. ret = -ENOMEM;
  1109. raw_sk(sk)->ipmr_table = v;
  1110. }
  1111. rtnl_unlock();
  1112. return ret;
  1113. }
  1114. #endif
  1115. /*
  1116. * Spurious command, or MRT_VERSION which you cannot
  1117. * set.
  1118. */
  1119. default:
  1120. return -ENOPROTOOPT;
  1121. }
  1122. }
  1123. /*
  1124. * Getsock opt support for the multicast routing system.
  1125. */
  1126. int ip_mroute_getsockopt(struct sock *sk, int optname, char __user *optval, int __user *optlen)
  1127. {
  1128. int olr;
  1129. int val;
  1130. struct net *net = sock_net(sk);
  1131. struct mr_table *mrt;
  1132. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1133. if (mrt == NULL)
  1134. return -ENOENT;
  1135. if (optname != MRT_VERSION &&
  1136. #ifdef CONFIG_IP_PIMSM
  1137. optname != MRT_PIM &&
  1138. #endif
  1139. optname != MRT_ASSERT)
  1140. return -ENOPROTOOPT;
  1141. if (get_user(olr, optlen))
  1142. return -EFAULT;
  1143. olr = min_t(unsigned int, olr, sizeof(int));
  1144. if (olr < 0)
  1145. return -EINVAL;
  1146. if (put_user(olr, optlen))
  1147. return -EFAULT;
  1148. if (optname == MRT_VERSION)
  1149. val = 0x0305;
  1150. #ifdef CONFIG_IP_PIMSM
  1151. else if (optname == MRT_PIM)
  1152. val = mrt->mroute_do_pim;
  1153. #endif
  1154. else
  1155. val = mrt->mroute_do_assert;
  1156. if (copy_to_user(optval, &val, olr))
  1157. return -EFAULT;
  1158. return 0;
  1159. }
  1160. /*
  1161. * The IP multicast ioctl support routines.
  1162. */
  1163. int ipmr_ioctl(struct sock *sk, int cmd, void __user *arg)
  1164. {
  1165. struct sioc_sg_req sr;
  1166. struct sioc_vif_req vr;
  1167. struct vif_device *vif;
  1168. struct mfc_cache *c;
  1169. struct net *net = sock_net(sk);
  1170. struct mr_table *mrt;
  1171. mrt = ipmr_get_table(net, raw_sk(sk)->ipmr_table ? : RT_TABLE_DEFAULT);
  1172. if (mrt == NULL)
  1173. return -ENOENT;
  1174. switch (cmd) {
  1175. case SIOCGETVIFCNT:
  1176. if (copy_from_user(&vr, arg, sizeof(vr)))
  1177. return -EFAULT;
  1178. if (vr.vifi >= mrt->maxvif)
  1179. return -EINVAL;
  1180. read_lock(&mrt_lock);
  1181. vif = &mrt->vif_table[vr.vifi];
  1182. if (VIF_EXISTS(mrt, vr.vifi)) {
  1183. vr.icount = vif->pkt_in;
  1184. vr.ocount = vif->pkt_out;
  1185. vr.ibytes = vif->bytes_in;
  1186. vr.obytes = vif->bytes_out;
  1187. read_unlock(&mrt_lock);
  1188. if (copy_to_user(arg, &vr, sizeof(vr)))
  1189. return -EFAULT;
  1190. return 0;
  1191. }
  1192. read_unlock(&mrt_lock);
  1193. return -EADDRNOTAVAIL;
  1194. case SIOCGETSGCNT:
  1195. if (copy_from_user(&sr, arg, sizeof(sr)))
  1196. return -EFAULT;
  1197. rcu_read_lock();
  1198. c = ipmr_cache_find(mrt, sr.src.s_addr, sr.grp.s_addr);
  1199. if (c) {
  1200. sr.pktcnt = c->mfc_un.res.pkt;
  1201. sr.bytecnt = c->mfc_un.res.bytes;
  1202. sr.wrong_if = c->mfc_un.res.wrong_if;
  1203. rcu_read_unlock();
  1204. if (copy_to_user(arg, &sr, sizeof(sr)))
  1205. return -EFAULT;
  1206. return 0;
  1207. }
  1208. rcu_read_unlock();
  1209. return -EADDRNOTAVAIL;
  1210. default:
  1211. return -ENOIOCTLCMD;
  1212. }
  1213. }
  1214. static int ipmr_device_event(struct notifier_block *this, unsigned long event, void *ptr)
  1215. {
  1216. struct net_device *dev = ptr;
  1217. struct net *net = dev_net(dev);
  1218. struct mr_table *mrt;
  1219. struct vif_device *v;
  1220. int ct;
  1221. LIST_HEAD(list);
  1222. if (event != NETDEV_UNREGISTER)
  1223. return NOTIFY_DONE;
  1224. ipmr_for_each_table(mrt, net) {
  1225. v = &mrt->vif_table[0];
  1226. for (ct = 0; ct < mrt->maxvif; ct++, v++) {
  1227. if (v->dev == dev)
  1228. vif_delete(mrt, ct, 1, &list);
  1229. }
  1230. }
  1231. unregister_netdevice_many(&list);
  1232. return NOTIFY_DONE;
  1233. }
  1234. static struct notifier_block ip_mr_notifier = {
  1235. .notifier_call = ipmr_device_event,
  1236. };
  1237. /*
  1238. * Encapsulate a packet by attaching a valid IPIP header to it.
  1239. * This avoids tunnel drivers and other mess and gives us the speed so
  1240. * important for multicast video.
  1241. */
  1242. static void ip_encap(struct sk_buff *skb, __be32 saddr, __be32 daddr)
  1243. {
  1244. struct iphdr *iph;
  1245. struct iphdr *old_iph = ip_hdr(skb);
  1246. skb_push(skb, sizeof(struct iphdr));
  1247. skb->transport_header = skb->network_header;
  1248. skb_reset_network_header(skb);
  1249. iph = ip_hdr(skb);
  1250. iph->version = 4;
  1251. iph->tos = old_iph->tos;
  1252. iph->ttl = old_iph->ttl;
  1253. iph->frag_off = 0;
  1254. iph->daddr = daddr;
  1255. iph->saddr = saddr;
  1256. iph->protocol = IPPROTO_IPIP;
  1257. iph->ihl = 5;
  1258. iph->tot_len = htons(skb->len);
  1259. ip_select_ident(iph, skb_dst(skb), NULL);
  1260. ip_send_check(iph);
  1261. memset(&(IPCB(skb)->opt), 0, sizeof(IPCB(skb)->opt));
  1262. nf_reset(skb);
  1263. }
  1264. static inline int ipmr_forward_finish(struct sk_buff *skb)
  1265. {
  1266. struct ip_options *opt = &(IPCB(skb)->opt);
  1267. IP_INC_STATS_BH(dev_net(skb_dst(skb)->dev), IPSTATS_MIB_OUTFORWDATAGRAMS);
  1268. if (unlikely(opt->optlen))
  1269. ip_forward_options(skb);
  1270. return dst_output(skb);
  1271. }
  1272. /*
  1273. * Processing handlers for ipmr_forward
  1274. */
  1275. static void ipmr_queue_xmit(struct net *net, struct mr_table *mrt,
  1276. struct sk_buff *skb, struct mfc_cache *c, int vifi)
  1277. {
  1278. const struct iphdr *iph = ip_hdr(skb);
  1279. struct vif_device *vif = &mrt->vif_table[vifi];
  1280. struct net_device *dev;
  1281. struct rtable *rt;
  1282. int encap = 0;
  1283. if (vif->dev == NULL)
  1284. goto out_free;
  1285. #ifdef CONFIG_IP_PIMSM
  1286. if (vif->flags & VIFF_REGISTER) {
  1287. vif->pkt_out++;
  1288. vif->bytes_out += skb->len;
  1289. vif->dev->stats.tx_bytes += skb->len;
  1290. vif->dev->stats.tx_packets++;
  1291. ipmr_cache_report(mrt, skb, vifi, IGMPMSG_WHOLEPKT);
  1292. goto out_free;
  1293. }
  1294. #endif
  1295. if (vif->flags & VIFF_TUNNEL) {
  1296. struct flowi fl = {
  1297. .oif = vif->link,
  1298. .fl4_dst = vif->remote,
  1299. .fl4_src = vif->local,
  1300. .fl4_tos = RT_TOS(iph->tos),
  1301. .proto = IPPROTO_IPIP
  1302. };
  1303. if (ip_route_output_key(net, &rt, &fl))
  1304. goto out_free;
  1305. encap = sizeof(struct iphdr);
  1306. } else {
  1307. struct flowi fl = {
  1308. .oif = vif->link,
  1309. .fl4_dst = iph->daddr,
  1310. .fl4_tos = RT_TOS(iph->tos),
  1311. .proto = IPPROTO_IPIP
  1312. };
  1313. if (ip_route_output_key(net, &rt, &fl))
  1314. goto out_free;
  1315. }
  1316. dev = rt->dst.dev;
  1317. if (skb->len+encap > dst_mtu(&rt->dst) && (ntohs(iph->frag_off) & IP_DF)) {
  1318. /* Do not fragment multicasts. Alas, IPv4 does not
  1319. * allow to send ICMP, so that packets will disappear
  1320. * to blackhole.
  1321. */
  1322. IP_INC_STATS_BH(dev_net(dev), IPSTATS_MIB_FRAGFAILS);
  1323. ip_rt_put(rt);
  1324. goto out_free;
  1325. }
  1326. encap += LL_RESERVED_SPACE(dev) + rt->dst.header_len;
  1327. if (skb_cow(skb, encap)) {
  1328. ip_rt_put(rt);
  1329. goto out_free;
  1330. }
  1331. vif->pkt_out++;
  1332. vif->bytes_out += skb->len;
  1333. skb_dst_drop(skb);
  1334. skb_dst_set(skb, &rt->dst);
  1335. ip_decrease_ttl(ip_hdr(skb));
  1336. /* FIXME: forward and output firewalls used to be called here.
  1337. * What do we do with netfilter? -- RR
  1338. */
  1339. if (vif->flags & VIFF_TUNNEL) {
  1340. ip_encap(skb, vif->local, vif->remote);
  1341. /* FIXME: extra output firewall step used to be here. --RR */
  1342. vif->dev->stats.tx_packets++;
  1343. vif->dev->stats.tx_bytes += skb->len;
  1344. }
  1345. IPCB(skb)->flags |= IPSKB_FORWARDED;
  1346. /*
  1347. * RFC1584 teaches, that DVMRP/PIM router must deliver packets locally
  1348. * not only before forwarding, but after forwarding on all output
  1349. * interfaces. It is clear, if mrouter runs a multicasting
  1350. * program, it should receive packets not depending to what interface
  1351. * program is joined.
  1352. * If we will not make it, the program will have to join on all
  1353. * interfaces. On the other hand, multihoming host (or router, but
  1354. * not mrouter) cannot join to more than one interface - it will
  1355. * result in receiving multiple packets.
  1356. */
  1357. NF_HOOK(NFPROTO_IPV4, NF_INET_FORWARD, skb, skb->dev, dev,
  1358. ipmr_forward_finish);
  1359. return;
  1360. out_free:
  1361. kfree_skb(skb);
  1362. }
  1363. static int ipmr_find_vif(struct mr_table *mrt, struct net_device *dev)
  1364. {
  1365. int ct;
  1366. for (ct = mrt->maxvif-1; ct >= 0; ct--) {
  1367. if (mrt->vif_table[ct].dev == dev)
  1368. break;
  1369. }
  1370. return ct;
  1371. }
  1372. /* "local" means that we should preserve one skb (for local delivery) */
  1373. static int ip_mr_forward(struct net *net, struct mr_table *mrt,
  1374. struct sk_buff *skb, struct mfc_cache *cache,
  1375. int local)
  1376. {
  1377. int psend = -1;
  1378. int vif, ct;
  1379. vif = cache->mfc_parent;
  1380. cache->mfc_un.res.pkt++;
  1381. cache->mfc_un.res.bytes += skb->len;
  1382. /*
  1383. * Wrong interface: drop packet and (maybe) send PIM assert.
  1384. */
  1385. if (mrt->vif_table[vif].dev != skb->dev) {
  1386. int true_vifi;
  1387. if (rt_is_output_route(skb_rtable(skb))) {
  1388. /* It is our own packet, looped back.
  1389. * Very complicated situation...
  1390. *
  1391. * The best workaround until routing daemons will be
  1392. * fixed is not to redistribute packet, if it was
  1393. * send through wrong interface. It means, that
  1394. * multicast applications WILL NOT work for
  1395. * (S,G), which have default multicast route pointing
  1396. * to wrong oif. In any case, it is not a good
  1397. * idea to use multicasting applications on router.
  1398. */
  1399. goto dont_forward;
  1400. }
  1401. cache->mfc_un.res.wrong_if++;
  1402. true_vifi = ipmr_find_vif(mrt, skb->dev);
  1403. if (true_vifi >= 0 && mrt->mroute_do_assert &&
  1404. /* pimsm uses asserts, when switching from RPT to SPT,
  1405. * so that we cannot check that packet arrived on an oif.
  1406. * It is bad, but otherwise we would need to move pretty
  1407. * large chunk of pimd to kernel. Ough... --ANK
  1408. */
  1409. (mrt->mroute_do_pim ||
  1410. cache->mfc_un.res.ttls[true_vifi] < 255) &&
  1411. time_after(jiffies,
  1412. cache->mfc_un.res.last_assert + MFC_ASSERT_THRESH)) {
  1413. cache->mfc_un.res.last_assert = jiffies;
  1414. ipmr_cache_report(mrt, skb, true_vifi, IGMPMSG_WRONGVIF);
  1415. }
  1416. goto dont_forward;
  1417. }
  1418. mrt->vif_table[vif].pkt_in++;
  1419. mrt->vif_table[vif].bytes_in += skb->len;
  1420. /*
  1421. * Forward the frame
  1422. */
  1423. for (ct = cache->mfc_un.res.maxvif - 1;
  1424. ct >= cache->mfc_un.res.minvif; ct--) {
  1425. if (ip_hdr(skb)->ttl > cache->mfc_un.res.ttls[ct]) {
  1426. if (psend != -1) {
  1427. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1428. if (skb2)
  1429. ipmr_queue_xmit(net, mrt, skb2, cache,
  1430. psend);
  1431. }
  1432. psend = ct;
  1433. }
  1434. }
  1435. if (psend != -1) {
  1436. if (local) {
  1437. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1438. if (skb2)
  1439. ipmr_queue_xmit(net, mrt, skb2, cache, psend);
  1440. } else {
  1441. ipmr_queue_xmit(net, mrt, skb, cache, psend);
  1442. return 0;
  1443. }
  1444. }
  1445. dont_forward:
  1446. if (!local)
  1447. kfree_skb(skb);
  1448. return 0;
  1449. }
  1450. /*
  1451. * Multicast packets for forwarding arrive here
  1452. * Called with rcu_read_lock();
  1453. */
  1454. int ip_mr_input(struct sk_buff *skb)
  1455. {
  1456. struct mfc_cache *cache;
  1457. struct net *net = dev_net(skb->dev);
  1458. int local = skb_rtable(skb)->rt_flags & RTCF_LOCAL;
  1459. struct mr_table *mrt;
  1460. int err;
  1461. /* Packet is looped back after forward, it should not be
  1462. * forwarded second time, but still can be delivered locally.
  1463. */
  1464. if (IPCB(skb)->flags & IPSKB_FORWARDED)
  1465. goto dont_forward;
  1466. err = ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt);
  1467. if (err < 0) {
  1468. kfree_skb(skb);
  1469. return err;
  1470. }
  1471. if (!local) {
  1472. if (IPCB(skb)->opt.router_alert) {
  1473. if (ip_call_ra_chain(skb))
  1474. return 0;
  1475. } else if (ip_hdr(skb)->protocol == IPPROTO_IGMP) {
  1476. /* IGMPv1 (and broken IGMPv2 implementations sort of
  1477. * Cisco IOS <= 11.2(8)) do not put router alert
  1478. * option to IGMP packets destined to routable
  1479. * groups. It is very bad, because it means
  1480. * that we can forward NO IGMP messages.
  1481. */
  1482. struct sock *mroute_sk;
  1483. mroute_sk = rcu_dereference(mrt->mroute_sk);
  1484. if (mroute_sk) {
  1485. nf_reset(skb);
  1486. raw_rcv(mroute_sk, skb);
  1487. return 0;
  1488. }
  1489. }
  1490. }
  1491. /* already under rcu_read_lock() */
  1492. cache = ipmr_cache_find(mrt, ip_hdr(skb)->saddr, ip_hdr(skb)->daddr);
  1493. /*
  1494. * No usable cache entry
  1495. */
  1496. if (cache == NULL) {
  1497. int vif;
  1498. if (local) {
  1499. struct sk_buff *skb2 = skb_clone(skb, GFP_ATOMIC);
  1500. ip_local_deliver(skb);
  1501. if (skb2 == NULL)
  1502. return -ENOBUFS;
  1503. skb = skb2;
  1504. }
  1505. read_lock(&mrt_lock);
  1506. vif = ipmr_find_vif(mrt, skb->dev);
  1507. if (vif >= 0) {
  1508. int err2 = ipmr_cache_unresolved(mrt, vif, skb);
  1509. read_unlock(&mrt_lock);
  1510. return err2;
  1511. }
  1512. read_unlock(&mrt_lock);
  1513. kfree_skb(skb);
  1514. return -ENODEV;
  1515. }
  1516. read_lock(&mrt_lock);
  1517. ip_mr_forward(net, mrt, skb, cache, local);
  1518. read_unlock(&mrt_lock);
  1519. if (local)
  1520. return ip_local_deliver(skb);
  1521. return 0;
  1522. dont_forward:
  1523. if (local)
  1524. return ip_local_deliver(skb);
  1525. kfree_skb(skb);
  1526. return 0;
  1527. }
  1528. #ifdef CONFIG_IP_PIMSM
  1529. /* called with rcu_read_lock() */
  1530. static int __pim_rcv(struct mr_table *mrt, struct sk_buff *skb,
  1531. unsigned int pimlen)
  1532. {
  1533. struct net_device *reg_dev = NULL;
  1534. struct iphdr *encap;
  1535. encap = (struct iphdr *)(skb_transport_header(skb) + pimlen);
  1536. /*
  1537. * Check that:
  1538. * a. packet is really sent to a multicast group
  1539. * b. packet is not a NULL-REGISTER
  1540. * c. packet is not truncated
  1541. */
  1542. if (!ipv4_is_multicast(encap->daddr) ||
  1543. encap->tot_len == 0 ||
  1544. ntohs(encap->tot_len) + pimlen > skb->len)
  1545. return 1;
  1546. read_lock(&mrt_lock);
  1547. if (mrt->mroute_reg_vif_num >= 0)
  1548. reg_dev = mrt->vif_table[mrt->mroute_reg_vif_num].dev;
  1549. read_unlock(&mrt_lock);
  1550. if (reg_dev == NULL)
  1551. return 1;
  1552. skb->mac_header = skb->network_header;
  1553. skb_pull(skb, (u8 *)encap - skb->data);
  1554. skb_reset_network_header(skb);
  1555. skb->protocol = htons(ETH_P_IP);
  1556. skb->ip_summed = CHECKSUM_NONE;
  1557. skb->pkt_type = PACKET_HOST;
  1558. skb_tunnel_rx(skb, reg_dev);
  1559. netif_rx(skb);
  1560. return NET_RX_SUCCESS;
  1561. }
  1562. #endif
  1563. #ifdef CONFIG_IP_PIMSM_V1
  1564. /*
  1565. * Handle IGMP messages of PIMv1
  1566. */
  1567. int pim_rcv_v1(struct sk_buff *skb)
  1568. {
  1569. struct igmphdr *pim;
  1570. struct net *net = dev_net(skb->dev);
  1571. struct mr_table *mrt;
  1572. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1573. goto drop;
  1574. pim = igmp_hdr(skb);
  1575. if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
  1576. goto drop;
  1577. if (!mrt->mroute_do_pim ||
  1578. pim->group != PIM_V1_VERSION || pim->code != PIM_V1_REGISTER)
  1579. goto drop;
  1580. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1581. drop:
  1582. kfree_skb(skb);
  1583. }
  1584. return 0;
  1585. }
  1586. #endif
  1587. #ifdef CONFIG_IP_PIMSM_V2
  1588. static int pim_rcv(struct sk_buff *skb)
  1589. {
  1590. struct pimreghdr *pim;
  1591. struct net *net = dev_net(skb->dev);
  1592. struct mr_table *mrt;
  1593. if (!pskb_may_pull(skb, sizeof(*pim) + sizeof(struct iphdr)))
  1594. goto drop;
  1595. pim = (struct pimreghdr *)skb_transport_header(skb);
  1596. if (pim->type != ((PIM_VERSION << 4) | (PIM_REGISTER)) ||
  1597. (pim->flags & PIM_NULL_REGISTER) ||
  1598. (ip_compute_csum((void *)pim, sizeof(*pim)) != 0 &&
  1599. csum_fold(skb_checksum(skb, 0, skb->len, 0))))
  1600. goto drop;
  1601. if (ipmr_fib_lookup(net, &skb_rtable(skb)->fl, &mrt) < 0)
  1602. goto drop;
  1603. if (__pim_rcv(mrt, skb, sizeof(*pim))) {
  1604. drop:
  1605. kfree_skb(skb);
  1606. }
  1607. return 0;
  1608. }
  1609. #endif
  1610. static int __ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1611. struct mfc_cache *c, struct rtmsg *rtm)
  1612. {
  1613. int ct;
  1614. struct rtnexthop *nhp;
  1615. u8 *b = skb_tail_pointer(skb);
  1616. struct rtattr *mp_head;
  1617. /* If cache is unresolved, don't try to parse IIF and OIF */
  1618. if (c->mfc_parent >= MAXVIFS)
  1619. return -ENOENT;
  1620. if (VIF_EXISTS(mrt, c->mfc_parent))
  1621. RTA_PUT(skb, RTA_IIF, 4, &mrt->vif_table[c->mfc_parent].dev->ifindex);
  1622. mp_head = (struct rtattr *)skb_put(skb, RTA_LENGTH(0));
  1623. for (ct = c->mfc_un.res.minvif; ct < c->mfc_un.res.maxvif; ct++) {
  1624. if (VIF_EXISTS(mrt, ct) && c->mfc_un.res.ttls[ct] < 255) {
  1625. if (skb_tailroom(skb) < RTA_ALIGN(RTA_ALIGN(sizeof(*nhp)) + 4))
  1626. goto rtattr_failure;
  1627. nhp = (struct rtnexthop *)skb_put(skb, RTA_ALIGN(sizeof(*nhp)));
  1628. nhp->rtnh_flags = 0;
  1629. nhp->rtnh_hops = c->mfc_un.res.ttls[ct];
  1630. nhp->rtnh_ifindex = mrt->vif_table[ct].dev->ifindex;
  1631. nhp->rtnh_len = sizeof(*nhp);
  1632. }
  1633. }
  1634. mp_head->rta_type = RTA_MULTIPATH;
  1635. mp_head->rta_len = skb_tail_pointer(skb) - (u8 *)mp_head;
  1636. rtm->rtm_type = RTN_MULTICAST;
  1637. return 1;
  1638. rtattr_failure:
  1639. nlmsg_trim(skb, b);
  1640. return -EMSGSIZE;
  1641. }
  1642. int ipmr_get_route(struct net *net,
  1643. struct sk_buff *skb, struct rtmsg *rtm, int nowait)
  1644. {
  1645. int err;
  1646. struct mr_table *mrt;
  1647. struct mfc_cache *cache;
  1648. struct rtable *rt = skb_rtable(skb);
  1649. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1650. if (mrt == NULL)
  1651. return -ENOENT;
  1652. rcu_read_lock();
  1653. cache = ipmr_cache_find(mrt, rt->rt_src, rt->rt_dst);
  1654. if (cache == NULL) {
  1655. struct sk_buff *skb2;
  1656. struct iphdr *iph;
  1657. struct net_device *dev;
  1658. int vif = -1;
  1659. if (nowait) {
  1660. rcu_read_unlock();
  1661. return -EAGAIN;
  1662. }
  1663. dev = skb->dev;
  1664. read_lock(&mrt_lock);
  1665. if (dev)
  1666. vif = ipmr_find_vif(mrt, dev);
  1667. if (vif < 0) {
  1668. read_unlock(&mrt_lock);
  1669. rcu_read_unlock();
  1670. return -ENODEV;
  1671. }
  1672. skb2 = skb_clone(skb, GFP_ATOMIC);
  1673. if (!skb2) {
  1674. read_unlock(&mrt_lock);
  1675. rcu_read_unlock();
  1676. return -ENOMEM;
  1677. }
  1678. skb_push(skb2, sizeof(struct iphdr));
  1679. skb_reset_network_header(skb2);
  1680. iph = ip_hdr(skb2);
  1681. iph->ihl = sizeof(struct iphdr) >> 2;
  1682. iph->saddr = rt->rt_src;
  1683. iph->daddr = rt->rt_dst;
  1684. iph->version = 0;
  1685. err = ipmr_cache_unresolved(mrt, vif, skb2);
  1686. read_unlock(&mrt_lock);
  1687. rcu_read_unlock();
  1688. return err;
  1689. }
  1690. read_lock(&mrt_lock);
  1691. if (!nowait && (rtm->rtm_flags & RTM_F_NOTIFY))
  1692. cache->mfc_flags |= MFC_NOTIFY;
  1693. err = __ipmr_fill_mroute(mrt, skb, cache, rtm);
  1694. read_unlock(&mrt_lock);
  1695. rcu_read_unlock();
  1696. return err;
  1697. }
  1698. static int ipmr_fill_mroute(struct mr_table *mrt, struct sk_buff *skb,
  1699. u32 pid, u32 seq, struct mfc_cache *c)
  1700. {
  1701. struct nlmsghdr *nlh;
  1702. struct rtmsg *rtm;
  1703. nlh = nlmsg_put(skb, pid, seq, RTM_NEWROUTE, sizeof(*rtm), NLM_F_MULTI);
  1704. if (nlh == NULL)
  1705. return -EMSGSIZE;
  1706. rtm = nlmsg_data(nlh);
  1707. rtm->rtm_family = RTNL_FAMILY_IPMR;
  1708. rtm->rtm_dst_len = 32;
  1709. rtm->rtm_src_len = 32;
  1710. rtm->rtm_tos = 0;
  1711. rtm->rtm_table = mrt->id;
  1712. NLA_PUT_U32(skb, RTA_TABLE, mrt->id);
  1713. rtm->rtm_type = RTN_MULTICAST;
  1714. rtm->rtm_scope = RT_SCOPE_UNIVERSE;
  1715. rtm->rtm_protocol = RTPROT_UNSPEC;
  1716. rtm->rtm_flags = 0;
  1717. NLA_PUT_BE32(skb, RTA_SRC, c->mfc_origin);
  1718. NLA_PUT_BE32(skb, RTA_DST, c->mfc_mcastgrp);
  1719. if (__ipmr_fill_mroute(mrt, skb, c, rtm) < 0)
  1720. goto nla_put_failure;
  1721. return nlmsg_end(skb, nlh);
  1722. nla_put_failure:
  1723. nlmsg_cancel(skb, nlh);
  1724. return -EMSGSIZE;
  1725. }
  1726. static int ipmr_rtm_dumproute(struct sk_buff *skb, struct netlink_callback *cb)
  1727. {
  1728. struct net *net = sock_net(skb->sk);
  1729. struct mr_table *mrt;
  1730. struct mfc_cache *mfc;
  1731. unsigned int t = 0, s_t;
  1732. unsigned int h = 0, s_h;
  1733. unsigned int e = 0, s_e;
  1734. s_t = cb->args[0];
  1735. s_h = cb->args[1];
  1736. s_e = cb->args[2];
  1737. rcu_read_lock();
  1738. ipmr_for_each_table(mrt, net) {
  1739. if (t < s_t)
  1740. goto next_table;
  1741. if (t > s_t)
  1742. s_h = 0;
  1743. for (h = s_h; h < MFC_LINES; h++) {
  1744. list_for_each_entry_rcu(mfc, &mrt->mfc_cache_array[h], list) {
  1745. if (e < s_e)
  1746. goto next_entry;
  1747. if (ipmr_fill_mroute(mrt, skb,
  1748. NETLINK_CB(cb->skb).pid,
  1749. cb->nlh->nlmsg_seq,
  1750. mfc) < 0)
  1751. goto done;
  1752. next_entry:
  1753. e++;
  1754. }
  1755. e = s_e = 0;
  1756. }
  1757. s_h = 0;
  1758. next_table:
  1759. t++;
  1760. }
  1761. done:
  1762. rcu_read_unlock();
  1763. cb->args[2] = e;
  1764. cb->args[1] = h;
  1765. cb->args[0] = t;
  1766. return skb->len;
  1767. }
  1768. #ifdef CONFIG_PROC_FS
  1769. /*
  1770. * The /proc interfaces to multicast routing :
  1771. * /proc/net/ip_mr_cache & /proc/net/ip_mr_vif
  1772. */
  1773. struct ipmr_vif_iter {
  1774. struct seq_net_private p;
  1775. struct mr_table *mrt;
  1776. int ct;
  1777. };
  1778. static struct vif_device *ipmr_vif_seq_idx(struct net *net,
  1779. struct ipmr_vif_iter *iter,
  1780. loff_t pos)
  1781. {
  1782. struct mr_table *mrt = iter->mrt;
  1783. for (iter->ct = 0; iter->ct < mrt->maxvif; ++iter->ct) {
  1784. if (!VIF_EXISTS(mrt, iter->ct))
  1785. continue;
  1786. if (pos-- == 0)
  1787. return &mrt->vif_table[iter->ct];
  1788. }
  1789. return NULL;
  1790. }
  1791. static void *ipmr_vif_seq_start(struct seq_file *seq, loff_t *pos)
  1792. __acquires(mrt_lock)
  1793. {
  1794. struct ipmr_vif_iter *iter = seq->private;
  1795. struct net *net = seq_file_net(seq);
  1796. struct mr_table *mrt;
  1797. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1798. if (mrt == NULL)
  1799. return ERR_PTR(-ENOENT);
  1800. iter->mrt = mrt;
  1801. read_lock(&mrt_lock);
  1802. return *pos ? ipmr_vif_seq_idx(net, seq->private, *pos - 1)
  1803. : SEQ_START_TOKEN;
  1804. }
  1805. static void *ipmr_vif_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1806. {
  1807. struct ipmr_vif_iter *iter = seq->private;
  1808. struct net *net = seq_file_net(seq);
  1809. struct mr_table *mrt = iter->mrt;
  1810. ++*pos;
  1811. if (v == SEQ_START_TOKEN)
  1812. return ipmr_vif_seq_idx(net, iter, 0);
  1813. while (++iter->ct < mrt->maxvif) {
  1814. if (!VIF_EXISTS(mrt, iter->ct))
  1815. continue;
  1816. return &mrt->vif_table[iter->ct];
  1817. }
  1818. return NULL;
  1819. }
  1820. static void ipmr_vif_seq_stop(struct seq_file *seq, void *v)
  1821. __releases(mrt_lock)
  1822. {
  1823. read_unlock(&mrt_lock);
  1824. }
  1825. static int ipmr_vif_seq_show(struct seq_file *seq, void *v)
  1826. {
  1827. struct ipmr_vif_iter *iter = seq->private;
  1828. struct mr_table *mrt = iter->mrt;
  1829. if (v == SEQ_START_TOKEN) {
  1830. seq_puts(seq,
  1831. "Interface BytesIn PktsIn BytesOut PktsOut Flags Local Remote\n");
  1832. } else {
  1833. const struct vif_device *vif = v;
  1834. const char *name = vif->dev ? vif->dev->name : "none";
  1835. seq_printf(seq,
  1836. "%2Zd %-10s %8ld %7ld %8ld %7ld %05X %08X %08X\n",
  1837. vif - mrt->vif_table,
  1838. name, vif->bytes_in, vif->pkt_in,
  1839. vif->bytes_out, vif->pkt_out,
  1840. vif->flags, vif->local, vif->remote);
  1841. }
  1842. return 0;
  1843. }
  1844. static const struct seq_operations ipmr_vif_seq_ops = {
  1845. .start = ipmr_vif_seq_start,
  1846. .next = ipmr_vif_seq_next,
  1847. .stop = ipmr_vif_seq_stop,
  1848. .show = ipmr_vif_seq_show,
  1849. };
  1850. static int ipmr_vif_open(struct inode *inode, struct file *file)
  1851. {
  1852. return seq_open_net(inode, file, &ipmr_vif_seq_ops,
  1853. sizeof(struct ipmr_vif_iter));
  1854. }
  1855. static const struct file_operations ipmr_vif_fops = {
  1856. .owner = THIS_MODULE,
  1857. .open = ipmr_vif_open,
  1858. .read = seq_read,
  1859. .llseek = seq_lseek,
  1860. .release = seq_release_net,
  1861. };
  1862. struct ipmr_mfc_iter {
  1863. struct seq_net_private p;
  1864. struct mr_table *mrt;
  1865. struct list_head *cache;
  1866. int ct;
  1867. };
  1868. static struct mfc_cache *ipmr_mfc_seq_idx(struct net *net,
  1869. struct ipmr_mfc_iter *it, loff_t pos)
  1870. {
  1871. struct mr_table *mrt = it->mrt;
  1872. struct mfc_cache *mfc;
  1873. rcu_read_lock();
  1874. for (it->ct = 0; it->ct < MFC_LINES; it->ct++) {
  1875. it->cache = &mrt->mfc_cache_array[it->ct];
  1876. list_for_each_entry_rcu(mfc, it->cache, list)
  1877. if (pos-- == 0)
  1878. return mfc;
  1879. }
  1880. rcu_read_unlock();
  1881. spin_lock_bh(&mfc_unres_lock);
  1882. it->cache = &mrt->mfc_unres_queue;
  1883. list_for_each_entry(mfc, it->cache, list)
  1884. if (pos-- == 0)
  1885. return mfc;
  1886. spin_unlock_bh(&mfc_unres_lock);
  1887. it->cache = NULL;
  1888. return NULL;
  1889. }
  1890. static void *ipmr_mfc_seq_start(struct seq_file *seq, loff_t *pos)
  1891. {
  1892. struct ipmr_mfc_iter *it = seq->private;
  1893. struct net *net = seq_file_net(seq);
  1894. struct mr_table *mrt;
  1895. mrt = ipmr_get_table(net, RT_TABLE_DEFAULT);
  1896. if (mrt == NULL)
  1897. return ERR_PTR(-ENOENT);
  1898. it->mrt = mrt;
  1899. it->cache = NULL;
  1900. it->ct = 0;
  1901. return *pos ? ipmr_mfc_seq_idx(net, seq->private, *pos - 1)
  1902. : SEQ_START_TOKEN;
  1903. }
  1904. static void *ipmr_mfc_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1905. {
  1906. struct mfc_cache *mfc = v;
  1907. struct ipmr_mfc_iter *it = seq->private;
  1908. struct net *net = seq_file_net(seq);
  1909. struct mr_table *mrt = it->mrt;
  1910. ++*pos;
  1911. if (v == SEQ_START_TOKEN)
  1912. return ipmr_mfc_seq_idx(net, seq->private, 0);
  1913. if (mfc->list.next != it->cache)
  1914. return list_entry(mfc->list.next, struct mfc_cache, list);
  1915. if (it->cache == &mrt->mfc_unres_queue)
  1916. goto end_of_list;
  1917. BUG_ON(it->cache != &mrt->mfc_cache_array[it->ct]);
  1918. while (++it->ct < MFC_LINES) {
  1919. it->cache = &mrt->mfc_cache_array[it->ct];
  1920. if (list_empty(it->cache))
  1921. continue;
  1922. return list_first_entry(it->cache, struct mfc_cache, list);
  1923. }
  1924. /* exhausted cache_array, show unresolved */
  1925. rcu_read_unlock();
  1926. it->cache = &mrt->mfc_unres_queue;
  1927. it->ct = 0;
  1928. spin_lock_bh(&mfc_unres_lock);
  1929. if (!list_empty(it->cache))
  1930. return list_first_entry(it->cache, struct mfc_cache, list);
  1931. end_of_list:
  1932. spin_unlock_bh(&mfc_unres_lock);
  1933. it->cache = NULL;
  1934. return NULL;
  1935. }
  1936. static void ipmr_mfc_seq_stop(struct seq_file *seq, void *v)
  1937. {
  1938. struct ipmr_mfc_iter *it = seq->private;
  1939. struct mr_table *mrt = it->mrt;
  1940. if (it->cache == &mrt->mfc_unres_queue)
  1941. spin_unlock_bh(&mfc_unres_lock);
  1942. else if (it->cache == &mrt->mfc_cache_array[it->ct])
  1943. rcu_read_unlock();
  1944. }
  1945. static int ipmr_mfc_seq_show(struct seq_file *seq, void *v)
  1946. {
  1947. int n;
  1948. if (v == SEQ_START_TOKEN) {
  1949. seq_puts(seq,
  1950. "Group Origin Iif Pkts Bytes Wrong Oifs\n");
  1951. } else {
  1952. const struct mfc_cache *mfc = v;
  1953. const struct ipmr_mfc_iter *it = seq->private;
  1954. const struct mr_table *mrt = it->mrt;
  1955. seq_printf(seq, "%08X %08X %-3hd",
  1956. (__force u32) mfc->mfc_mcastgrp,
  1957. (__force u32) mfc->mfc_origin,
  1958. mfc->mfc_parent);
  1959. if (it->cache != &mrt->mfc_unres_queue) {
  1960. seq_printf(seq, " %8lu %8lu %8lu",
  1961. mfc->mfc_un.res.pkt,
  1962. mfc->mfc_un.res.bytes,
  1963. mfc->mfc_un.res.wrong_if);
  1964. for (n = mfc->mfc_un.res.minvif;
  1965. n < mfc->mfc_un.res.maxvif; n++) {
  1966. if (VIF_EXISTS(mrt, n) &&
  1967. mfc->mfc_un.res.ttls[n] < 255)
  1968. seq_printf(seq,
  1969. " %2d:%-3d",
  1970. n, mfc->mfc_un.res.ttls[n]);
  1971. }
  1972. } else {
  1973. /* unresolved mfc_caches don't contain
  1974. * pkt, bytes and wrong_if values
  1975. */
  1976. seq_printf(seq, " %8lu %8lu %8lu", 0ul, 0ul, 0ul);
  1977. }
  1978. seq_putc(seq, '\n');
  1979. }
  1980. return 0;
  1981. }
  1982. static const struct seq_operations ipmr_mfc_seq_ops = {
  1983. .start = ipmr_mfc_seq_start,
  1984. .next = ipmr_mfc_seq_next,
  1985. .stop = ipmr_mfc_seq_stop,
  1986. .show = ipmr_mfc_seq_show,
  1987. };
  1988. static int ipmr_mfc_open(struct inode *inode, struct file *file)
  1989. {
  1990. return seq_open_net(inode, file, &ipmr_mfc_seq_ops,
  1991. sizeof(struct ipmr_mfc_iter));
  1992. }
  1993. static const struct file_operations ipmr_mfc_fops = {
  1994. .owner = THIS_MODULE,
  1995. .open = ipmr_mfc_open,
  1996. .read = seq_read,
  1997. .llseek = seq_lseek,
  1998. .release = seq_release_net,
  1999. };
  2000. #endif
  2001. #ifdef CONFIG_IP_PIMSM_V2
  2002. static const struct net_protocol pim_protocol = {
  2003. .handler = pim_rcv,
  2004. .netns_ok = 1,
  2005. };
  2006. #endif
  2007. /*
  2008. * Setup for IP multicast routing
  2009. */
  2010. static int __net_init ipmr_net_init(struct net *net)
  2011. {
  2012. int err;
  2013. err = ipmr_rules_init(net);
  2014. if (err < 0)
  2015. goto fail;
  2016. #ifdef CONFIG_PROC_FS
  2017. err = -ENOMEM;
  2018. if (!proc_net_fops_create(net, "ip_mr_vif", 0, &ipmr_vif_fops))
  2019. goto proc_vif_fail;
  2020. if (!proc_net_fops_create(net, "ip_mr_cache", 0, &ipmr_mfc_fops))
  2021. goto proc_cache_fail;
  2022. #endif
  2023. return 0;
  2024. #ifdef CONFIG_PROC_FS
  2025. proc_cache_fail:
  2026. proc_net_remove(net, "ip_mr_vif");
  2027. proc_vif_fail:
  2028. ipmr_rules_exit(net);
  2029. #endif
  2030. fail:
  2031. return err;
  2032. }
  2033. static void __net_exit ipmr_net_exit(struct net *net)
  2034. {
  2035. #ifdef CONFIG_PROC_FS
  2036. proc_net_remove(net, "ip_mr_cache");
  2037. proc_net_remove(net, "ip_mr_vif");
  2038. #endif
  2039. ipmr_rules_exit(net);
  2040. }
  2041. static struct pernet_operations ipmr_net_ops = {
  2042. .init = ipmr_net_init,
  2043. .exit = ipmr_net_exit,
  2044. };
  2045. int __init ip_mr_init(void)
  2046. {
  2047. int err;
  2048. mrt_cachep = kmem_cache_create("ip_mrt_cache",
  2049. sizeof(struct mfc_cache),
  2050. 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC,
  2051. NULL);
  2052. if (!mrt_cachep)
  2053. return -ENOMEM;
  2054. err = register_pernet_subsys(&ipmr_net_ops);
  2055. if (err)
  2056. goto reg_pernet_fail;
  2057. err = register_netdevice_notifier(&ip_mr_notifier);
  2058. if (err)
  2059. goto reg_notif_fail;
  2060. #ifdef CONFIG_IP_PIMSM_V2
  2061. if (inet_add_protocol(&pim_protocol, IPPROTO_PIM) < 0) {
  2062. printk(KERN_ERR "ip_mr_init: can't add PIM protocol\n");
  2063. err = -EAGAIN;
  2064. goto add_proto_fail;
  2065. }
  2066. #endif
  2067. rtnl_register(RTNL_FAMILY_IPMR, RTM_GETROUTE, NULL, ipmr_rtm_dumproute);
  2068. return 0;
  2069. #ifdef CONFIG_IP_PIMSM_V2
  2070. add_proto_fail:
  2071. unregister_netdevice_notifier(&ip_mr_notifier);
  2072. #endif
  2073. reg_notif_fail:
  2074. unregister_pernet_subsys(&ipmr_net_ops);
  2075. reg_pernet_fail:
  2076. kmem_cache_destroy(mrt_cachep);
  2077. return err;
  2078. }