dn_dev.c 32 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448
  1. /*
  2. * DECnet An implementation of the DECnet protocol suite for the LINUX
  3. * operating system. DECnet is implemented using the BSD Socket
  4. * interface as the means of communication with the user level.
  5. *
  6. * DECnet Device Layer
  7. *
  8. * Authors: Steve Whitehouse <SteveW@ACM.org>
  9. * Eduardo Marcelo Serrat <emserrat@geocities.com>
  10. *
  11. * Changes:
  12. * Steve Whitehouse : Devices now see incoming frames so they
  13. * can mark on who it came from.
  14. * Steve Whitehouse : Fixed bug in creating neighbours. Each neighbour
  15. * can now have a device specific setup func.
  16. * Steve Whitehouse : Added /proc/sys/net/decnet/conf/<dev>/
  17. * Steve Whitehouse : Fixed bug which sometimes killed timer
  18. * Steve Whitehouse : Multiple ifaddr support
  19. * Steve Whitehouse : SIOCGIFCONF is now a compile time option
  20. * Steve Whitehouse : /proc/sys/net/decnet/conf/<sys>/forwarding
  21. * Steve Whitehouse : Removed timer1 - it's a user space issue now
  22. * Patrick Caulfield : Fixed router hello message format
  23. * Steve Whitehouse : Got rid of constant sizes for blksize for
  24. * devices. All mtu based now.
  25. */
  26. #include <linux/capability.h>
  27. #include <linux/module.h>
  28. #include <linux/moduleparam.h>
  29. #include <linux/init.h>
  30. #include <linux/net.h>
  31. #include <linux/netdevice.h>
  32. #include <linux/proc_fs.h>
  33. #include <linux/seq_file.h>
  34. #include <linux/timer.h>
  35. #include <linux/string.h>
  36. #include <linux/if_addr.h>
  37. #include <linux/if_arp.h>
  38. #include <linux/if_ether.h>
  39. #include <linux/skbuff.h>
  40. #include <linux/sysctl.h>
  41. #include <linux/notifier.h>
  42. #include <linux/slab.h>
  43. #include <asm/uaccess.h>
  44. #include <asm/system.h>
  45. #include <net/net_namespace.h>
  46. #include <net/neighbour.h>
  47. #include <net/dst.h>
  48. #include <net/flow.h>
  49. #include <net/fib_rules.h>
  50. #include <net/netlink.h>
  51. #include <net/dn.h>
  52. #include <net/dn_dev.h>
  53. #include <net/dn_route.h>
  54. #include <net/dn_neigh.h>
  55. #include <net/dn_fib.h>
  56. #define DN_IFREQ_SIZE (sizeof(struct ifreq) - sizeof(struct sockaddr) + sizeof(struct sockaddr_dn))
  57. static char dn_rt_all_end_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x04,0x00,0x00};
  58. static char dn_rt_all_rt_mcast[ETH_ALEN] = {0xAB,0x00,0x00,0x03,0x00,0x00};
  59. static char dn_hiord[ETH_ALEN] = {0xAA,0x00,0x04,0x00,0x00,0x00};
  60. static unsigned char dn_eco_version[3] = {0x02,0x00,0x00};
  61. extern struct neigh_table dn_neigh_table;
  62. /*
  63. * decnet_address is kept in network order.
  64. */
  65. __le16 decnet_address = 0;
  66. static DEFINE_SPINLOCK(dndev_lock);
  67. static struct net_device *decnet_default_device;
  68. static BLOCKING_NOTIFIER_HEAD(dnaddr_chain);
  69. static struct dn_dev *dn_dev_create(struct net_device *dev, int *err);
  70. static void dn_dev_delete(struct net_device *dev);
  71. static void dn_ifaddr_notify(int event, struct dn_ifaddr *ifa);
  72. static int dn_eth_up(struct net_device *);
  73. static void dn_eth_down(struct net_device *);
  74. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  75. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa);
  76. static struct dn_dev_parms dn_dev_list[] = {
  77. {
  78. .type = ARPHRD_ETHER, /* Ethernet */
  79. .mode = DN_DEV_BCAST,
  80. .state = DN_DEV_S_RU,
  81. .t2 = 1,
  82. .t3 = 10,
  83. .name = "ethernet",
  84. .up = dn_eth_up,
  85. .down = dn_eth_down,
  86. .timer3 = dn_send_brd_hello,
  87. },
  88. {
  89. .type = ARPHRD_IPGRE, /* DECnet tunneled over GRE in IP */
  90. .mode = DN_DEV_BCAST,
  91. .state = DN_DEV_S_RU,
  92. .t2 = 1,
  93. .t3 = 10,
  94. .name = "ipgre",
  95. .timer3 = dn_send_brd_hello,
  96. },
  97. #if 0
  98. {
  99. .type = ARPHRD_X25, /* Bog standard X.25 */
  100. .mode = DN_DEV_UCAST,
  101. .state = DN_DEV_S_DS,
  102. .t2 = 1,
  103. .t3 = 120,
  104. .name = "x25",
  105. .timer3 = dn_send_ptp_hello,
  106. },
  107. #endif
  108. #if 0
  109. {
  110. .type = ARPHRD_PPP, /* DECnet over PPP */
  111. .mode = DN_DEV_BCAST,
  112. .state = DN_DEV_S_RU,
  113. .t2 = 1,
  114. .t3 = 10,
  115. .name = "ppp",
  116. .timer3 = dn_send_brd_hello,
  117. },
  118. #endif
  119. {
  120. .type = ARPHRD_DDCMP, /* DECnet over DDCMP */
  121. .mode = DN_DEV_UCAST,
  122. .state = DN_DEV_S_DS,
  123. .t2 = 1,
  124. .t3 = 120,
  125. .name = "ddcmp",
  126. .timer3 = dn_send_ptp_hello,
  127. },
  128. {
  129. .type = ARPHRD_LOOPBACK, /* Loopback interface - always last */
  130. .mode = DN_DEV_BCAST,
  131. .state = DN_DEV_S_RU,
  132. .t2 = 1,
  133. .t3 = 10,
  134. .name = "loopback",
  135. .timer3 = dn_send_brd_hello,
  136. }
  137. };
  138. #define DN_DEV_LIST_SIZE ARRAY_SIZE(dn_dev_list)
  139. #define DN_DEV_PARMS_OFFSET(x) offsetof(struct dn_dev_parms, x)
  140. #ifdef CONFIG_SYSCTL
  141. static int min_t2[] = { 1 };
  142. static int max_t2[] = { 60 }; /* No max specified, but this seems sensible */
  143. static int min_t3[] = { 1 };
  144. static int max_t3[] = { 8191 }; /* Must fit in 16 bits when multiplied by BCT3MULT or T3MULT */
  145. static int min_priority[1];
  146. static int max_priority[] = { 127 }; /* From DECnet spec */
  147. static int dn_forwarding_proc(ctl_table *, int,
  148. void __user *, size_t *, loff_t *);
  149. static struct dn_dev_sysctl_table {
  150. struct ctl_table_header *sysctl_header;
  151. ctl_table dn_dev_vars[5];
  152. } dn_dev_sysctl = {
  153. NULL,
  154. {
  155. {
  156. .procname = "forwarding",
  157. .data = (void *)DN_DEV_PARMS_OFFSET(forwarding),
  158. .maxlen = sizeof(int),
  159. .mode = 0644,
  160. .proc_handler = dn_forwarding_proc,
  161. },
  162. {
  163. .procname = "priority",
  164. .data = (void *)DN_DEV_PARMS_OFFSET(priority),
  165. .maxlen = sizeof(int),
  166. .mode = 0644,
  167. .proc_handler = proc_dointvec_minmax,
  168. .extra1 = &min_priority,
  169. .extra2 = &max_priority
  170. },
  171. {
  172. .procname = "t2",
  173. .data = (void *)DN_DEV_PARMS_OFFSET(t2),
  174. .maxlen = sizeof(int),
  175. .mode = 0644,
  176. .proc_handler = proc_dointvec_minmax,
  177. .extra1 = &min_t2,
  178. .extra2 = &max_t2
  179. },
  180. {
  181. .procname = "t3",
  182. .data = (void *)DN_DEV_PARMS_OFFSET(t3),
  183. .maxlen = sizeof(int),
  184. .mode = 0644,
  185. .proc_handler = proc_dointvec_minmax,
  186. .extra1 = &min_t3,
  187. .extra2 = &max_t3
  188. },
  189. {0}
  190. },
  191. };
  192. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  193. {
  194. struct dn_dev_sysctl_table *t;
  195. int i;
  196. #define DN_CTL_PATH_DEV 3
  197. struct ctl_path dn_ctl_path[] = {
  198. { .procname = "net", },
  199. { .procname = "decnet", },
  200. { .procname = "conf", },
  201. { /* to be set */ },
  202. { },
  203. };
  204. t = kmemdup(&dn_dev_sysctl, sizeof(*t), GFP_KERNEL);
  205. if (t == NULL)
  206. return;
  207. for(i = 0; i < ARRAY_SIZE(t->dn_dev_vars) - 1; i++) {
  208. long offset = (long)t->dn_dev_vars[i].data;
  209. t->dn_dev_vars[i].data = ((char *)parms) + offset;
  210. }
  211. if (dev) {
  212. dn_ctl_path[DN_CTL_PATH_DEV].procname = dev->name;
  213. } else {
  214. dn_ctl_path[DN_CTL_PATH_DEV].procname = parms->name;
  215. }
  216. t->dn_dev_vars[0].extra1 = (void *)dev;
  217. t->sysctl_header = register_sysctl_paths(dn_ctl_path, t->dn_dev_vars);
  218. if (t->sysctl_header == NULL)
  219. kfree(t);
  220. else
  221. parms->sysctl = t;
  222. }
  223. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  224. {
  225. if (parms->sysctl) {
  226. struct dn_dev_sysctl_table *t = parms->sysctl;
  227. parms->sysctl = NULL;
  228. unregister_sysctl_table(t->sysctl_header);
  229. kfree(t);
  230. }
  231. }
  232. static int dn_forwarding_proc(ctl_table *table, int write,
  233. void __user *buffer,
  234. size_t *lenp, loff_t *ppos)
  235. {
  236. #ifdef CONFIG_DECNET_ROUTER
  237. struct net_device *dev = table->extra1;
  238. struct dn_dev *dn_db;
  239. int err;
  240. int tmp, old;
  241. if (table->extra1 == NULL)
  242. return -EINVAL;
  243. dn_db = rcu_dereference_raw(dev->dn_ptr);
  244. old = dn_db->parms.forwarding;
  245. err = proc_dointvec(table, write, buffer, lenp, ppos);
  246. if ((err >= 0) && write) {
  247. if (dn_db->parms.forwarding < 0)
  248. dn_db->parms.forwarding = 0;
  249. if (dn_db->parms.forwarding > 2)
  250. dn_db->parms.forwarding = 2;
  251. /*
  252. * What an ugly hack this is... its works, just. It
  253. * would be nice if sysctl/proc were just that little
  254. * bit more flexible so I don't have to write a special
  255. * routine, or suffer hacks like this - SJW
  256. */
  257. tmp = dn_db->parms.forwarding;
  258. dn_db->parms.forwarding = old;
  259. if (dn_db->parms.down)
  260. dn_db->parms.down(dev);
  261. dn_db->parms.forwarding = tmp;
  262. if (dn_db->parms.up)
  263. dn_db->parms.up(dev);
  264. }
  265. return err;
  266. #else
  267. return -EINVAL;
  268. #endif
  269. }
  270. #else /* CONFIG_SYSCTL */
  271. static void dn_dev_sysctl_unregister(struct dn_dev_parms *parms)
  272. {
  273. }
  274. static void dn_dev_sysctl_register(struct net_device *dev, struct dn_dev_parms *parms)
  275. {
  276. }
  277. #endif /* CONFIG_SYSCTL */
  278. static inline __u16 mtu2blksize(struct net_device *dev)
  279. {
  280. u32 blksize = dev->mtu;
  281. if (blksize > 0xffff)
  282. blksize = 0xffff;
  283. if (dev->type == ARPHRD_ETHER ||
  284. dev->type == ARPHRD_PPP ||
  285. dev->type == ARPHRD_IPGRE ||
  286. dev->type == ARPHRD_LOOPBACK)
  287. blksize -= 2;
  288. return (__u16)blksize;
  289. }
  290. static struct dn_ifaddr *dn_dev_alloc_ifa(void)
  291. {
  292. struct dn_ifaddr *ifa;
  293. ifa = kzalloc(sizeof(*ifa), GFP_KERNEL);
  294. return ifa;
  295. }
  296. static void dn_dev_free_ifa_rcu(struct rcu_head *head)
  297. {
  298. kfree(container_of(head, struct dn_ifaddr, rcu));
  299. }
  300. static void dn_dev_free_ifa(struct dn_ifaddr *ifa)
  301. {
  302. call_rcu(&ifa->rcu, dn_dev_free_ifa_rcu);
  303. }
  304. static void dn_dev_del_ifa(struct dn_dev *dn_db, struct dn_ifaddr __rcu **ifap, int destroy)
  305. {
  306. struct dn_ifaddr *ifa1 = rtnl_dereference(*ifap);
  307. unsigned char mac_addr[6];
  308. struct net_device *dev = dn_db->dev;
  309. ASSERT_RTNL();
  310. *ifap = ifa1->ifa_next;
  311. if (dn_db->dev->type == ARPHRD_ETHER) {
  312. if (ifa1->ifa_local != dn_eth2dn(dev->dev_addr)) {
  313. dn_dn2eth(mac_addr, ifa1->ifa_local);
  314. dev_mc_del(dev, mac_addr);
  315. }
  316. }
  317. dn_ifaddr_notify(RTM_DELADDR, ifa1);
  318. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_DOWN, ifa1);
  319. if (destroy) {
  320. dn_dev_free_ifa(ifa1);
  321. if (dn_db->ifa_list == NULL)
  322. dn_dev_delete(dn_db->dev);
  323. }
  324. }
  325. static int dn_dev_insert_ifa(struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  326. {
  327. struct net_device *dev = dn_db->dev;
  328. struct dn_ifaddr *ifa1;
  329. unsigned char mac_addr[6];
  330. ASSERT_RTNL();
  331. /* Check for duplicates */
  332. for (ifa1 = rtnl_dereference(dn_db->ifa_list);
  333. ifa1 != NULL;
  334. ifa1 = rtnl_dereference(ifa1->ifa_next)) {
  335. if (ifa1->ifa_local == ifa->ifa_local)
  336. return -EEXIST;
  337. }
  338. if (dev->type == ARPHRD_ETHER) {
  339. if (ifa->ifa_local != dn_eth2dn(dev->dev_addr)) {
  340. dn_dn2eth(mac_addr, ifa->ifa_local);
  341. dev_mc_add(dev, mac_addr);
  342. }
  343. }
  344. ifa->ifa_next = dn_db->ifa_list;
  345. rcu_assign_pointer(dn_db->ifa_list, ifa);
  346. dn_ifaddr_notify(RTM_NEWADDR, ifa);
  347. blocking_notifier_call_chain(&dnaddr_chain, NETDEV_UP, ifa);
  348. return 0;
  349. }
  350. static int dn_dev_set_ifa(struct net_device *dev, struct dn_ifaddr *ifa)
  351. {
  352. struct dn_dev *dn_db = rtnl_dereference(dev->dn_ptr);
  353. int rv;
  354. if (dn_db == NULL) {
  355. int err;
  356. dn_db = dn_dev_create(dev, &err);
  357. if (dn_db == NULL)
  358. return err;
  359. }
  360. ifa->ifa_dev = dn_db;
  361. if (dev->flags & IFF_LOOPBACK)
  362. ifa->ifa_scope = RT_SCOPE_HOST;
  363. rv = dn_dev_insert_ifa(dn_db, ifa);
  364. if (rv)
  365. dn_dev_free_ifa(ifa);
  366. return rv;
  367. }
  368. int dn_dev_ioctl(unsigned int cmd, void __user *arg)
  369. {
  370. char buffer[DN_IFREQ_SIZE];
  371. struct ifreq *ifr = (struct ifreq *)buffer;
  372. struct sockaddr_dn *sdn = (struct sockaddr_dn *)&ifr->ifr_addr;
  373. struct dn_dev *dn_db;
  374. struct net_device *dev;
  375. struct dn_ifaddr *ifa = NULL;
  376. struct dn_ifaddr __rcu **ifap = NULL;
  377. int ret = 0;
  378. if (copy_from_user(ifr, arg, DN_IFREQ_SIZE))
  379. return -EFAULT;
  380. ifr->ifr_name[IFNAMSIZ-1] = 0;
  381. dev_load(&init_net, ifr->ifr_name);
  382. switch(cmd) {
  383. case SIOCGIFADDR:
  384. break;
  385. case SIOCSIFADDR:
  386. if (!capable(CAP_NET_ADMIN))
  387. return -EACCES;
  388. if (sdn->sdn_family != AF_DECnet)
  389. return -EINVAL;
  390. break;
  391. default:
  392. return -EINVAL;
  393. }
  394. rtnl_lock();
  395. if ((dev = __dev_get_by_name(&init_net, ifr->ifr_name)) == NULL) {
  396. ret = -ENODEV;
  397. goto done;
  398. }
  399. if ((dn_db = rtnl_dereference(dev->dn_ptr)) != NULL) {
  400. for (ifap = &dn_db->ifa_list;
  401. (ifa = rtnl_dereference(*ifap)) != NULL;
  402. ifap = &ifa->ifa_next)
  403. if (strcmp(ifr->ifr_name, ifa->ifa_label) == 0)
  404. break;
  405. }
  406. if (ifa == NULL && cmd != SIOCSIFADDR) {
  407. ret = -EADDRNOTAVAIL;
  408. goto done;
  409. }
  410. switch(cmd) {
  411. case SIOCGIFADDR:
  412. *((__le16 *)sdn->sdn_nodeaddr) = ifa->ifa_local;
  413. goto rarok;
  414. case SIOCSIFADDR:
  415. if (!ifa) {
  416. if ((ifa = dn_dev_alloc_ifa()) == NULL) {
  417. ret = -ENOBUFS;
  418. break;
  419. }
  420. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  421. } else {
  422. if (ifa->ifa_local == dn_saddr2dn(sdn))
  423. break;
  424. dn_dev_del_ifa(dn_db, ifap, 0);
  425. }
  426. ifa->ifa_local = ifa->ifa_address = dn_saddr2dn(sdn);
  427. ret = dn_dev_set_ifa(dev, ifa);
  428. }
  429. done:
  430. rtnl_unlock();
  431. return ret;
  432. rarok:
  433. if (copy_to_user(arg, ifr, DN_IFREQ_SIZE))
  434. ret = -EFAULT;
  435. goto done;
  436. }
  437. struct net_device *dn_dev_get_default(void)
  438. {
  439. struct net_device *dev;
  440. spin_lock(&dndev_lock);
  441. dev = decnet_default_device;
  442. if (dev) {
  443. if (dev->dn_ptr)
  444. dev_hold(dev);
  445. else
  446. dev = NULL;
  447. }
  448. spin_unlock(&dndev_lock);
  449. return dev;
  450. }
  451. int dn_dev_set_default(struct net_device *dev, int force)
  452. {
  453. struct net_device *old = NULL;
  454. int rv = -EBUSY;
  455. if (!dev->dn_ptr)
  456. return -ENODEV;
  457. spin_lock(&dndev_lock);
  458. if (force || decnet_default_device == NULL) {
  459. old = decnet_default_device;
  460. decnet_default_device = dev;
  461. rv = 0;
  462. }
  463. spin_unlock(&dndev_lock);
  464. if (old)
  465. dev_put(old);
  466. return rv;
  467. }
  468. static void dn_dev_check_default(struct net_device *dev)
  469. {
  470. spin_lock(&dndev_lock);
  471. if (dev == decnet_default_device) {
  472. decnet_default_device = NULL;
  473. } else {
  474. dev = NULL;
  475. }
  476. spin_unlock(&dndev_lock);
  477. if (dev)
  478. dev_put(dev);
  479. }
  480. /*
  481. * Called with RTNL
  482. */
  483. static struct dn_dev *dn_dev_by_index(int ifindex)
  484. {
  485. struct net_device *dev;
  486. struct dn_dev *dn_dev = NULL;
  487. dev = __dev_get_by_index(&init_net, ifindex);
  488. if (dev)
  489. dn_dev = rtnl_dereference(dev->dn_ptr);
  490. return dn_dev;
  491. }
  492. static const struct nla_policy dn_ifa_policy[IFA_MAX+1] = {
  493. [IFA_ADDRESS] = { .type = NLA_U16 },
  494. [IFA_LOCAL] = { .type = NLA_U16 },
  495. [IFA_LABEL] = { .type = NLA_STRING,
  496. .len = IFNAMSIZ - 1 },
  497. };
  498. static int dn_nl_deladdr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  499. {
  500. struct net *net = sock_net(skb->sk);
  501. struct nlattr *tb[IFA_MAX+1];
  502. struct dn_dev *dn_db;
  503. struct ifaddrmsg *ifm;
  504. struct dn_ifaddr *ifa;
  505. struct dn_ifaddr __rcu **ifap;
  506. int err = -EINVAL;
  507. if (!net_eq(net, &init_net))
  508. goto errout;
  509. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, dn_ifa_policy);
  510. if (err < 0)
  511. goto errout;
  512. err = -ENODEV;
  513. ifm = nlmsg_data(nlh);
  514. if ((dn_db = dn_dev_by_index(ifm->ifa_index)) == NULL)
  515. goto errout;
  516. err = -EADDRNOTAVAIL;
  517. for (ifap = &dn_db->ifa_list;
  518. (ifa = rtnl_dereference(*ifap)) != NULL;
  519. ifap = &ifa->ifa_next) {
  520. if (tb[IFA_LOCAL] &&
  521. nla_memcmp(tb[IFA_LOCAL], &ifa->ifa_local, 2))
  522. continue;
  523. if (tb[IFA_LABEL] && nla_strcmp(tb[IFA_LABEL], ifa->ifa_label))
  524. continue;
  525. dn_dev_del_ifa(dn_db, ifap, 1);
  526. return 0;
  527. }
  528. errout:
  529. return err;
  530. }
  531. static int dn_nl_newaddr(struct sk_buff *skb, struct nlmsghdr *nlh, void *arg)
  532. {
  533. struct net *net = sock_net(skb->sk);
  534. struct nlattr *tb[IFA_MAX+1];
  535. struct net_device *dev;
  536. struct dn_dev *dn_db;
  537. struct ifaddrmsg *ifm;
  538. struct dn_ifaddr *ifa;
  539. int err;
  540. if (!net_eq(net, &init_net))
  541. return -EINVAL;
  542. err = nlmsg_parse(nlh, sizeof(*ifm), tb, IFA_MAX, dn_ifa_policy);
  543. if (err < 0)
  544. return err;
  545. if (tb[IFA_LOCAL] == NULL)
  546. return -EINVAL;
  547. ifm = nlmsg_data(nlh);
  548. if ((dev = __dev_get_by_index(&init_net, ifm->ifa_index)) == NULL)
  549. return -ENODEV;
  550. if ((dn_db = rtnl_dereference(dev->dn_ptr)) == NULL) {
  551. dn_db = dn_dev_create(dev, &err);
  552. if (!dn_db)
  553. return err;
  554. }
  555. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  556. return -ENOBUFS;
  557. if (tb[IFA_ADDRESS] == NULL)
  558. tb[IFA_ADDRESS] = tb[IFA_LOCAL];
  559. ifa->ifa_local = nla_get_le16(tb[IFA_LOCAL]);
  560. ifa->ifa_address = nla_get_le16(tb[IFA_ADDRESS]);
  561. ifa->ifa_flags = ifm->ifa_flags;
  562. ifa->ifa_scope = ifm->ifa_scope;
  563. ifa->ifa_dev = dn_db;
  564. if (tb[IFA_LABEL])
  565. nla_strlcpy(ifa->ifa_label, tb[IFA_LABEL], IFNAMSIZ);
  566. else
  567. memcpy(ifa->ifa_label, dev->name, IFNAMSIZ);
  568. err = dn_dev_insert_ifa(dn_db, ifa);
  569. if (err)
  570. dn_dev_free_ifa(ifa);
  571. return err;
  572. }
  573. static inline size_t dn_ifaddr_nlmsg_size(void)
  574. {
  575. return NLMSG_ALIGN(sizeof(struct ifaddrmsg))
  576. + nla_total_size(IFNAMSIZ) /* IFA_LABEL */
  577. + nla_total_size(2) /* IFA_ADDRESS */
  578. + nla_total_size(2); /* IFA_LOCAL */
  579. }
  580. static int dn_nl_fill_ifaddr(struct sk_buff *skb, struct dn_ifaddr *ifa,
  581. u32 pid, u32 seq, int event, unsigned int flags)
  582. {
  583. struct ifaddrmsg *ifm;
  584. struct nlmsghdr *nlh;
  585. nlh = nlmsg_put(skb, pid, seq, event, sizeof(*ifm), flags);
  586. if (nlh == NULL)
  587. return -EMSGSIZE;
  588. ifm = nlmsg_data(nlh);
  589. ifm->ifa_family = AF_DECnet;
  590. ifm->ifa_prefixlen = 16;
  591. ifm->ifa_flags = ifa->ifa_flags | IFA_F_PERMANENT;
  592. ifm->ifa_scope = ifa->ifa_scope;
  593. ifm->ifa_index = ifa->ifa_dev->dev->ifindex;
  594. if (ifa->ifa_address)
  595. NLA_PUT_LE16(skb, IFA_ADDRESS, ifa->ifa_address);
  596. if (ifa->ifa_local)
  597. NLA_PUT_LE16(skb, IFA_LOCAL, ifa->ifa_local);
  598. if (ifa->ifa_label[0])
  599. NLA_PUT_STRING(skb, IFA_LABEL, ifa->ifa_label);
  600. return nlmsg_end(skb, nlh);
  601. nla_put_failure:
  602. nlmsg_cancel(skb, nlh);
  603. return -EMSGSIZE;
  604. }
  605. static void dn_ifaddr_notify(int event, struct dn_ifaddr *ifa)
  606. {
  607. struct sk_buff *skb;
  608. int err = -ENOBUFS;
  609. skb = alloc_skb(dn_ifaddr_nlmsg_size(), GFP_KERNEL);
  610. if (skb == NULL)
  611. goto errout;
  612. err = dn_nl_fill_ifaddr(skb, ifa, 0, 0, event, 0);
  613. if (err < 0) {
  614. /* -EMSGSIZE implies BUG in dn_ifaddr_nlmsg_size() */
  615. WARN_ON(err == -EMSGSIZE);
  616. kfree_skb(skb);
  617. goto errout;
  618. }
  619. rtnl_notify(skb, &init_net, 0, RTNLGRP_DECnet_IFADDR, NULL, GFP_KERNEL);
  620. return;
  621. errout:
  622. if (err < 0)
  623. rtnl_set_sk_err(&init_net, RTNLGRP_DECnet_IFADDR, err);
  624. }
  625. static int dn_nl_dump_ifaddr(struct sk_buff *skb, struct netlink_callback *cb)
  626. {
  627. struct net *net = sock_net(skb->sk);
  628. int idx, dn_idx = 0, skip_ndevs, skip_naddr;
  629. struct net_device *dev;
  630. struct dn_dev *dn_db;
  631. struct dn_ifaddr *ifa;
  632. if (!net_eq(net, &init_net))
  633. return 0;
  634. skip_ndevs = cb->args[0];
  635. skip_naddr = cb->args[1];
  636. idx = 0;
  637. for_each_netdev(&init_net, dev) {
  638. if (idx < skip_ndevs)
  639. goto cont;
  640. else if (idx > skip_ndevs) {
  641. /* Only skip over addresses for first dev dumped
  642. * in this iteration (idx == skip_ndevs) */
  643. skip_naddr = 0;
  644. }
  645. if ((dn_db = rtnl_dereference(dev->dn_ptr)) == NULL)
  646. goto cont;
  647. for (ifa = rtnl_dereference(dn_db->ifa_list), dn_idx = 0; ifa;
  648. ifa = rtnl_dereference(ifa->ifa_next), dn_idx++) {
  649. if (dn_idx < skip_naddr)
  650. continue;
  651. if (dn_nl_fill_ifaddr(skb, ifa, NETLINK_CB(cb->skb).pid,
  652. cb->nlh->nlmsg_seq, RTM_NEWADDR,
  653. NLM_F_MULTI) < 0)
  654. goto done;
  655. }
  656. cont:
  657. idx++;
  658. }
  659. done:
  660. cb->args[0] = idx;
  661. cb->args[1] = dn_idx;
  662. return skb->len;
  663. }
  664. static int dn_dev_get_first(struct net_device *dev, __le16 *addr)
  665. {
  666. struct dn_dev *dn_db;
  667. struct dn_ifaddr *ifa;
  668. int rv = -ENODEV;
  669. rcu_read_lock();
  670. dn_db = rcu_dereference(dev->dn_ptr);
  671. if (dn_db == NULL)
  672. goto out;
  673. ifa = rcu_dereference(dn_db->ifa_list);
  674. if (ifa != NULL) {
  675. *addr = ifa->ifa_local;
  676. rv = 0;
  677. }
  678. out:
  679. rcu_read_unlock();
  680. return rv;
  681. }
  682. /*
  683. * Find a default address to bind to.
  684. *
  685. * This is one of those areas where the initial VMS concepts don't really
  686. * map onto the Linux concepts, and since we introduced multiple addresses
  687. * per interface we have to cope with slightly odd ways of finding out what
  688. * "our address" really is. Mostly it's not a problem; for this we just guess
  689. * a sensible default. Eventually the routing code will take care of all the
  690. * nasties for us I hope.
  691. */
  692. int dn_dev_bind_default(__le16 *addr)
  693. {
  694. struct net_device *dev;
  695. int rv;
  696. dev = dn_dev_get_default();
  697. last_chance:
  698. if (dev) {
  699. rv = dn_dev_get_first(dev, addr);
  700. dev_put(dev);
  701. if (rv == 0 || dev == init_net.loopback_dev)
  702. return rv;
  703. }
  704. dev = init_net.loopback_dev;
  705. dev_hold(dev);
  706. goto last_chance;
  707. }
  708. static void dn_send_endnode_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  709. {
  710. struct endnode_hello_message *msg;
  711. struct sk_buff *skb = NULL;
  712. __le16 *pktlen;
  713. struct dn_dev *dn_db = rcu_dereference_raw(dev->dn_ptr);
  714. if ((skb = dn_alloc_skb(NULL, sizeof(*msg), GFP_ATOMIC)) == NULL)
  715. return;
  716. skb->dev = dev;
  717. msg = (struct endnode_hello_message *)skb_put(skb,sizeof(*msg));
  718. msg->msgflg = 0x0D;
  719. memcpy(msg->tiver, dn_eco_version, 3);
  720. dn_dn2eth(msg->id, ifa->ifa_local);
  721. msg->iinfo = DN_RT_INFO_ENDN;
  722. msg->blksize = cpu_to_le16(mtu2blksize(dev));
  723. msg->area = 0x00;
  724. memset(msg->seed, 0, 8);
  725. memcpy(msg->neighbor, dn_hiord, ETH_ALEN);
  726. if (dn_db->router) {
  727. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  728. dn_dn2eth(msg->neighbor, dn->addr);
  729. }
  730. msg->timer = cpu_to_le16((unsigned short)dn_db->parms.t3);
  731. msg->mpd = 0x00;
  732. msg->datalen = 0x02;
  733. memset(msg->data, 0xAA, 2);
  734. pktlen = (__le16 *)skb_push(skb,2);
  735. *pktlen = cpu_to_le16(skb->len - 2);
  736. skb_reset_network_header(skb);
  737. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, msg->id);
  738. }
  739. #define DRDELAY (5 * HZ)
  740. static int dn_am_i_a_router(struct dn_neigh *dn, struct dn_dev *dn_db, struct dn_ifaddr *ifa)
  741. {
  742. /* First check time since device went up */
  743. if ((jiffies - dn_db->uptime) < DRDELAY)
  744. return 0;
  745. /* If there is no router, then yes... */
  746. if (!dn_db->router)
  747. return 1;
  748. /* otherwise only if we have a higher priority or.. */
  749. if (dn->priority < dn_db->parms.priority)
  750. return 1;
  751. /* if we have equal priority and a higher node number */
  752. if (dn->priority != dn_db->parms.priority)
  753. return 0;
  754. if (le16_to_cpu(dn->addr) < le16_to_cpu(ifa->ifa_local))
  755. return 1;
  756. return 0;
  757. }
  758. static void dn_send_router_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  759. {
  760. int n;
  761. struct dn_dev *dn_db = rcu_dereference_raw(dev->dn_ptr);
  762. struct dn_neigh *dn = (struct dn_neigh *)dn_db->router;
  763. struct sk_buff *skb;
  764. size_t size;
  765. unsigned char *ptr;
  766. unsigned char *i1, *i2;
  767. __le16 *pktlen;
  768. char *src;
  769. if (mtu2blksize(dev) < (26 + 7))
  770. return;
  771. n = mtu2blksize(dev) - 26;
  772. n /= 7;
  773. if (n > 32)
  774. n = 32;
  775. size = 2 + 26 + 7 * n;
  776. if ((skb = dn_alloc_skb(NULL, size, GFP_ATOMIC)) == NULL)
  777. return;
  778. skb->dev = dev;
  779. ptr = skb_put(skb, size);
  780. *ptr++ = DN_RT_PKT_CNTL | DN_RT_PKT_ERTH;
  781. *ptr++ = 2; /* ECO */
  782. *ptr++ = 0;
  783. *ptr++ = 0;
  784. dn_dn2eth(ptr, ifa->ifa_local);
  785. src = ptr;
  786. ptr += ETH_ALEN;
  787. *ptr++ = dn_db->parms.forwarding == 1 ?
  788. DN_RT_INFO_L1RT : DN_RT_INFO_L2RT;
  789. *((__le16 *)ptr) = cpu_to_le16(mtu2blksize(dev));
  790. ptr += 2;
  791. *ptr++ = dn_db->parms.priority; /* Priority */
  792. *ptr++ = 0; /* Area: Reserved */
  793. *((__le16 *)ptr) = cpu_to_le16((unsigned short)dn_db->parms.t3);
  794. ptr += 2;
  795. *ptr++ = 0; /* MPD: Reserved */
  796. i1 = ptr++;
  797. memset(ptr, 0, 7); /* Name: Reserved */
  798. ptr += 7;
  799. i2 = ptr++;
  800. n = dn_neigh_elist(dev, ptr, n);
  801. *i2 = 7 * n;
  802. *i1 = 8 + *i2;
  803. skb_trim(skb, (27 + *i2));
  804. pktlen = (__le16 *)skb_push(skb, 2);
  805. *pktlen = cpu_to_le16(skb->len - 2);
  806. skb_reset_network_header(skb);
  807. if (dn_am_i_a_router(dn, dn_db, ifa)) {
  808. struct sk_buff *skb2 = skb_copy(skb, GFP_ATOMIC);
  809. if (skb2) {
  810. dn_rt_finish_output(skb2, dn_rt_all_end_mcast, src);
  811. }
  812. }
  813. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  814. }
  815. static void dn_send_brd_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  816. {
  817. struct dn_dev *dn_db = rcu_dereference_raw(dev->dn_ptr);
  818. if (dn_db->parms.forwarding == 0)
  819. dn_send_endnode_hello(dev, ifa);
  820. else
  821. dn_send_router_hello(dev, ifa);
  822. }
  823. static void dn_send_ptp_hello(struct net_device *dev, struct dn_ifaddr *ifa)
  824. {
  825. int tdlen = 16;
  826. int size = dev->hard_header_len + 2 + 4 + tdlen;
  827. struct sk_buff *skb = dn_alloc_skb(NULL, size, GFP_ATOMIC);
  828. int i;
  829. unsigned char *ptr;
  830. char src[ETH_ALEN];
  831. if (skb == NULL)
  832. return ;
  833. skb->dev = dev;
  834. skb_push(skb, dev->hard_header_len);
  835. ptr = skb_put(skb, 2 + 4 + tdlen);
  836. *ptr++ = DN_RT_PKT_HELO;
  837. *((__le16 *)ptr) = ifa->ifa_local;
  838. ptr += 2;
  839. *ptr++ = tdlen;
  840. for(i = 0; i < tdlen; i++)
  841. *ptr++ = 0252;
  842. dn_dn2eth(src, ifa->ifa_local);
  843. dn_rt_finish_output(skb, dn_rt_all_rt_mcast, src);
  844. }
  845. static int dn_eth_up(struct net_device *dev)
  846. {
  847. struct dn_dev *dn_db = rcu_dereference_raw(dev->dn_ptr);
  848. if (dn_db->parms.forwarding == 0)
  849. dev_mc_add(dev, dn_rt_all_end_mcast);
  850. else
  851. dev_mc_add(dev, dn_rt_all_rt_mcast);
  852. dn_db->use_long = 1;
  853. return 0;
  854. }
  855. static void dn_eth_down(struct net_device *dev)
  856. {
  857. struct dn_dev *dn_db = rcu_dereference_raw(dev->dn_ptr);
  858. if (dn_db->parms.forwarding == 0)
  859. dev_mc_del(dev, dn_rt_all_end_mcast);
  860. else
  861. dev_mc_del(dev, dn_rt_all_rt_mcast);
  862. }
  863. static void dn_dev_set_timer(struct net_device *dev);
  864. static void dn_dev_timer_func(unsigned long arg)
  865. {
  866. struct net_device *dev = (struct net_device *)arg;
  867. struct dn_dev *dn_db;
  868. struct dn_ifaddr *ifa;
  869. rcu_read_lock();
  870. dn_db = rcu_dereference(dev->dn_ptr);
  871. if (dn_db->t3 <= dn_db->parms.t2) {
  872. if (dn_db->parms.timer3) {
  873. for (ifa = rcu_dereference(dn_db->ifa_list);
  874. ifa;
  875. ifa = rcu_dereference(ifa->ifa_next)) {
  876. if (!(ifa->ifa_flags & IFA_F_SECONDARY))
  877. dn_db->parms.timer3(dev, ifa);
  878. }
  879. }
  880. dn_db->t3 = dn_db->parms.t3;
  881. } else {
  882. dn_db->t3 -= dn_db->parms.t2;
  883. }
  884. rcu_read_unlock();
  885. dn_dev_set_timer(dev);
  886. }
  887. static void dn_dev_set_timer(struct net_device *dev)
  888. {
  889. struct dn_dev *dn_db = rcu_dereference_raw(dev->dn_ptr);
  890. if (dn_db->parms.t2 > dn_db->parms.t3)
  891. dn_db->parms.t2 = dn_db->parms.t3;
  892. dn_db->timer.data = (unsigned long)dev;
  893. dn_db->timer.function = dn_dev_timer_func;
  894. dn_db->timer.expires = jiffies + (dn_db->parms.t2 * HZ);
  895. add_timer(&dn_db->timer);
  896. }
  897. static struct dn_dev *dn_dev_create(struct net_device *dev, int *err)
  898. {
  899. int i;
  900. struct dn_dev_parms *p = dn_dev_list;
  901. struct dn_dev *dn_db;
  902. for(i = 0; i < DN_DEV_LIST_SIZE; i++, p++) {
  903. if (p->type == dev->type)
  904. break;
  905. }
  906. *err = -ENODEV;
  907. if (i == DN_DEV_LIST_SIZE)
  908. return NULL;
  909. *err = -ENOBUFS;
  910. if ((dn_db = kzalloc(sizeof(struct dn_dev), GFP_ATOMIC)) == NULL)
  911. return NULL;
  912. memcpy(&dn_db->parms, p, sizeof(struct dn_dev_parms));
  913. rcu_assign_pointer(dev->dn_ptr, dn_db);
  914. dn_db->dev = dev;
  915. init_timer(&dn_db->timer);
  916. dn_db->uptime = jiffies;
  917. dn_db->neigh_parms = neigh_parms_alloc(dev, &dn_neigh_table);
  918. if (!dn_db->neigh_parms) {
  919. rcu_assign_pointer(dev->dn_ptr, NULL);
  920. kfree(dn_db);
  921. return NULL;
  922. }
  923. if (dn_db->parms.up) {
  924. if (dn_db->parms.up(dev) < 0) {
  925. neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
  926. dev->dn_ptr = NULL;
  927. kfree(dn_db);
  928. return NULL;
  929. }
  930. }
  931. dn_dev_sysctl_register(dev, &dn_db->parms);
  932. dn_dev_set_timer(dev);
  933. *err = 0;
  934. return dn_db;
  935. }
  936. /*
  937. * This processes a device up event. We only start up
  938. * the loopback device & ethernet devices with correct
  939. * MAC addreses automatically. Others must be started
  940. * specifically.
  941. *
  942. * FIXME: How should we configure the loopback address ? If we could dispense
  943. * with using decnet_address here and for autobind, it will be one less thing
  944. * for users to worry about setting up.
  945. */
  946. void dn_dev_up(struct net_device *dev)
  947. {
  948. struct dn_ifaddr *ifa;
  949. __le16 addr = decnet_address;
  950. int maybe_default = 0;
  951. struct dn_dev *dn_db = rtnl_dereference(dev->dn_ptr);
  952. if ((dev->type != ARPHRD_ETHER) && (dev->type != ARPHRD_LOOPBACK))
  953. return;
  954. /*
  955. * Need to ensure that loopback device has a dn_db attached to it
  956. * to allow creation of neighbours against it, even though it might
  957. * not have a local address of its own. Might as well do the same for
  958. * all autoconfigured interfaces.
  959. */
  960. if (dn_db == NULL) {
  961. int err;
  962. dn_db = dn_dev_create(dev, &err);
  963. if (dn_db == NULL)
  964. return;
  965. }
  966. if (dev->type == ARPHRD_ETHER) {
  967. if (memcmp(dev->dev_addr, dn_hiord, 4) != 0)
  968. return;
  969. addr = dn_eth2dn(dev->dev_addr);
  970. maybe_default = 1;
  971. }
  972. if (addr == 0)
  973. return;
  974. if ((ifa = dn_dev_alloc_ifa()) == NULL)
  975. return;
  976. ifa->ifa_local = ifa->ifa_address = addr;
  977. ifa->ifa_flags = 0;
  978. ifa->ifa_scope = RT_SCOPE_UNIVERSE;
  979. strcpy(ifa->ifa_label, dev->name);
  980. dn_dev_set_ifa(dev, ifa);
  981. /*
  982. * Automagically set the default device to the first automatically
  983. * configured ethernet card in the system.
  984. */
  985. if (maybe_default) {
  986. dev_hold(dev);
  987. if (dn_dev_set_default(dev, 0))
  988. dev_put(dev);
  989. }
  990. }
  991. static void dn_dev_delete(struct net_device *dev)
  992. {
  993. struct dn_dev *dn_db = rtnl_dereference(dev->dn_ptr);
  994. if (dn_db == NULL)
  995. return;
  996. del_timer_sync(&dn_db->timer);
  997. dn_dev_sysctl_unregister(&dn_db->parms);
  998. dn_dev_check_default(dev);
  999. neigh_ifdown(&dn_neigh_table, dev);
  1000. if (dn_db->parms.down)
  1001. dn_db->parms.down(dev);
  1002. dev->dn_ptr = NULL;
  1003. neigh_parms_release(&dn_neigh_table, dn_db->neigh_parms);
  1004. neigh_ifdown(&dn_neigh_table, dev);
  1005. if (dn_db->router)
  1006. neigh_release(dn_db->router);
  1007. if (dn_db->peer)
  1008. neigh_release(dn_db->peer);
  1009. kfree(dn_db);
  1010. }
  1011. void dn_dev_down(struct net_device *dev)
  1012. {
  1013. struct dn_dev *dn_db = rtnl_dereference(dev->dn_ptr);
  1014. struct dn_ifaddr *ifa;
  1015. if (dn_db == NULL)
  1016. return;
  1017. while ((ifa = rtnl_dereference(dn_db->ifa_list)) != NULL) {
  1018. dn_dev_del_ifa(dn_db, &dn_db->ifa_list, 0);
  1019. dn_dev_free_ifa(ifa);
  1020. }
  1021. dn_dev_delete(dev);
  1022. }
  1023. void dn_dev_init_pkt(struct sk_buff *skb)
  1024. {
  1025. }
  1026. void dn_dev_veri_pkt(struct sk_buff *skb)
  1027. {
  1028. }
  1029. void dn_dev_hello(struct sk_buff *skb)
  1030. {
  1031. }
  1032. void dn_dev_devices_off(void)
  1033. {
  1034. struct net_device *dev;
  1035. rtnl_lock();
  1036. for_each_netdev(&init_net, dev)
  1037. dn_dev_down(dev);
  1038. rtnl_unlock();
  1039. }
  1040. void dn_dev_devices_on(void)
  1041. {
  1042. struct net_device *dev;
  1043. rtnl_lock();
  1044. for_each_netdev(&init_net, dev) {
  1045. if (dev->flags & IFF_UP)
  1046. dn_dev_up(dev);
  1047. }
  1048. rtnl_unlock();
  1049. }
  1050. int register_dnaddr_notifier(struct notifier_block *nb)
  1051. {
  1052. return blocking_notifier_chain_register(&dnaddr_chain, nb);
  1053. }
  1054. int unregister_dnaddr_notifier(struct notifier_block *nb)
  1055. {
  1056. return blocking_notifier_chain_unregister(&dnaddr_chain, nb);
  1057. }
  1058. #ifdef CONFIG_PROC_FS
  1059. static inline int is_dn_dev(struct net_device *dev)
  1060. {
  1061. return dev->dn_ptr != NULL;
  1062. }
  1063. static void *dn_dev_seq_start(struct seq_file *seq, loff_t *pos)
  1064. __acquires(RCU)
  1065. {
  1066. int i;
  1067. struct net_device *dev;
  1068. rcu_read_lock();
  1069. if (*pos == 0)
  1070. return SEQ_START_TOKEN;
  1071. i = 1;
  1072. for_each_netdev_rcu(&init_net, dev) {
  1073. if (!is_dn_dev(dev))
  1074. continue;
  1075. if (i++ == *pos)
  1076. return dev;
  1077. }
  1078. return NULL;
  1079. }
  1080. static void *dn_dev_seq_next(struct seq_file *seq, void *v, loff_t *pos)
  1081. {
  1082. struct net_device *dev;
  1083. ++*pos;
  1084. dev = (struct net_device *)v;
  1085. if (v == SEQ_START_TOKEN)
  1086. dev = net_device_entry(&init_net.dev_base_head);
  1087. for_each_netdev_continue_rcu(&init_net, dev) {
  1088. if (!is_dn_dev(dev))
  1089. continue;
  1090. return dev;
  1091. }
  1092. return NULL;
  1093. }
  1094. static void dn_dev_seq_stop(struct seq_file *seq, void *v)
  1095. __releases(RCU)
  1096. {
  1097. rcu_read_unlock();
  1098. }
  1099. static char *dn_type2asc(char type)
  1100. {
  1101. switch(type) {
  1102. case DN_DEV_BCAST:
  1103. return "B";
  1104. case DN_DEV_UCAST:
  1105. return "U";
  1106. case DN_DEV_MPOINT:
  1107. return "M";
  1108. }
  1109. return "?";
  1110. }
  1111. static int dn_dev_seq_show(struct seq_file *seq, void *v)
  1112. {
  1113. if (v == SEQ_START_TOKEN)
  1114. seq_puts(seq, "Name Flags T1 Timer1 T3 Timer3 BlkSize Pri State DevType Router Peer\n");
  1115. else {
  1116. struct net_device *dev = v;
  1117. char peer_buf[DN_ASCBUF_LEN];
  1118. char router_buf[DN_ASCBUF_LEN];
  1119. struct dn_dev *dn_db = rcu_dereference(dev->dn_ptr);
  1120. seq_printf(seq, "%-8s %1s %04u %04u %04lu %04lu"
  1121. " %04hu %03d %02x %-10s %-7s %-7s\n",
  1122. dev->name ? dev->name : "???",
  1123. dn_type2asc(dn_db->parms.mode),
  1124. 0, 0,
  1125. dn_db->t3, dn_db->parms.t3,
  1126. mtu2blksize(dev),
  1127. dn_db->parms.priority,
  1128. dn_db->parms.state, dn_db->parms.name,
  1129. dn_db->router ? dn_addr2asc(le16_to_cpu(*(__le16 *)dn_db->router->primary_key), router_buf) : "",
  1130. dn_db->peer ? dn_addr2asc(le16_to_cpu(*(__le16 *)dn_db->peer->primary_key), peer_buf) : "");
  1131. }
  1132. return 0;
  1133. }
  1134. static const struct seq_operations dn_dev_seq_ops = {
  1135. .start = dn_dev_seq_start,
  1136. .next = dn_dev_seq_next,
  1137. .stop = dn_dev_seq_stop,
  1138. .show = dn_dev_seq_show,
  1139. };
  1140. static int dn_dev_seq_open(struct inode *inode, struct file *file)
  1141. {
  1142. return seq_open(file, &dn_dev_seq_ops);
  1143. }
  1144. static const struct file_operations dn_dev_seq_fops = {
  1145. .owner = THIS_MODULE,
  1146. .open = dn_dev_seq_open,
  1147. .read = seq_read,
  1148. .llseek = seq_lseek,
  1149. .release = seq_release,
  1150. };
  1151. #endif /* CONFIG_PROC_FS */
  1152. static int addr[2];
  1153. module_param_array(addr, int, NULL, 0444);
  1154. MODULE_PARM_DESC(addr, "The DECnet address of this machine: area,node");
  1155. void __init dn_dev_init(void)
  1156. {
  1157. if (addr[0] > 63 || addr[0] < 0) {
  1158. printk(KERN_ERR "DECnet: Area must be between 0 and 63");
  1159. return;
  1160. }
  1161. if (addr[1] > 1023 || addr[1] < 0) {
  1162. printk(KERN_ERR "DECnet: Node must be between 0 and 1023");
  1163. return;
  1164. }
  1165. decnet_address = cpu_to_le16((addr[0] << 10) | addr[1]);
  1166. dn_dev_devices_on();
  1167. rtnl_register(PF_DECnet, RTM_NEWADDR, dn_nl_newaddr, NULL);
  1168. rtnl_register(PF_DECnet, RTM_DELADDR, dn_nl_deladdr, NULL);
  1169. rtnl_register(PF_DECnet, RTM_GETADDR, NULL, dn_nl_dump_ifaddr);
  1170. proc_net_fops_create(&init_net, "decnet_dev", S_IRUGO, &dn_dev_seq_fops);
  1171. #ifdef CONFIG_SYSCTL
  1172. {
  1173. int i;
  1174. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1175. dn_dev_sysctl_register(NULL, &dn_dev_list[i]);
  1176. }
  1177. #endif /* CONFIG_SYSCTL */
  1178. }
  1179. void __exit dn_dev_cleanup(void)
  1180. {
  1181. #ifdef CONFIG_SYSCTL
  1182. {
  1183. int i;
  1184. for(i = 0; i < DN_DEV_LIST_SIZE; i++)
  1185. dn_dev_sysctl_unregister(&dn_dev_list[i]);
  1186. }
  1187. #endif /* CONFIG_SYSCTL */
  1188. proc_net_remove(&init_net, "decnet_dev");
  1189. dn_dev_devices_off();
  1190. }