timekeeping.c 23 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905
  1. /*
  2. * linux/kernel/time/timekeeping.c
  3. *
  4. * Kernel timekeeping code and accessor functions
  5. *
  6. * This code was moved from linux/kernel/timer.c.
  7. * Please see that file for copyright and history logs.
  8. *
  9. */
  10. #include <linux/module.h>
  11. #include <linux/interrupt.h>
  12. #include <linux/percpu.h>
  13. #include <linux/init.h>
  14. #include <linux/mm.h>
  15. #include <linux/sched.h>
  16. #include <linux/sysdev.h>
  17. #include <linux/clocksource.h>
  18. #include <linux/jiffies.h>
  19. #include <linux/time.h>
  20. #include <linux/tick.h>
  21. #include <linux/stop_machine.h>
  22. /* Structure holding internal timekeeping values. */
  23. struct timekeeper {
  24. /* Current clocksource used for timekeeping. */
  25. struct clocksource *clock;
  26. /* The shift value of the current clocksource. */
  27. int shift;
  28. /* Number of clock cycles in one NTP interval. */
  29. cycle_t cycle_interval;
  30. /* Number of clock shifted nano seconds in one NTP interval. */
  31. u64 xtime_interval;
  32. /* shifted nano seconds left over when rounding cycle_interval */
  33. s64 xtime_remainder;
  34. /* Raw nano seconds accumulated per NTP interval. */
  35. u32 raw_interval;
  36. /* Clock shifted nano seconds remainder not stored in xtime.tv_nsec. */
  37. u64 xtime_nsec;
  38. /* Difference between accumulated time and NTP time in ntp
  39. * shifted nano seconds. */
  40. s64 ntp_error;
  41. /* Shift conversion between clock shifted nano seconds and
  42. * ntp shifted nano seconds. */
  43. int ntp_error_shift;
  44. /* NTP adjusted clock multiplier */
  45. u32 mult;
  46. };
  47. struct timekeeper timekeeper;
  48. /**
  49. * timekeeper_setup_internals - Set up internals to use clocksource clock.
  50. *
  51. * @clock: Pointer to clocksource.
  52. *
  53. * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
  54. * pair and interval request.
  55. *
  56. * Unless you're the timekeeping code, you should not be using this!
  57. */
  58. static void timekeeper_setup_internals(struct clocksource *clock)
  59. {
  60. cycle_t interval;
  61. u64 tmp, ntpinterval;
  62. timekeeper.clock = clock;
  63. clock->cycle_last = clock->read(clock);
  64. /* Do the ns -> cycle conversion first, using original mult */
  65. tmp = NTP_INTERVAL_LENGTH;
  66. tmp <<= clock->shift;
  67. ntpinterval = tmp;
  68. tmp += clock->mult/2;
  69. do_div(tmp, clock->mult);
  70. if (tmp == 0)
  71. tmp = 1;
  72. interval = (cycle_t) tmp;
  73. timekeeper.cycle_interval = interval;
  74. /* Go back from cycles -> shifted ns */
  75. timekeeper.xtime_interval = (u64) interval * clock->mult;
  76. timekeeper.xtime_remainder = ntpinterval - timekeeper.xtime_interval;
  77. timekeeper.raw_interval =
  78. ((u64) interval * clock->mult) >> clock->shift;
  79. timekeeper.xtime_nsec = 0;
  80. timekeeper.shift = clock->shift;
  81. timekeeper.ntp_error = 0;
  82. timekeeper.ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
  83. /*
  84. * The timekeeper keeps its own mult values for the currently
  85. * active clocksource. These value will be adjusted via NTP
  86. * to counteract clock drifting.
  87. */
  88. timekeeper.mult = clock->mult;
  89. }
  90. /* Timekeeper helper functions. */
  91. static inline s64 timekeeping_get_ns(void)
  92. {
  93. cycle_t cycle_now, cycle_delta;
  94. struct clocksource *clock;
  95. /* read clocksource: */
  96. clock = timekeeper.clock;
  97. cycle_now = clock->read(clock);
  98. /* calculate the delta since the last update_wall_time: */
  99. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  100. /* return delta convert to nanoseconds using ntp adjusted mult. */
  101. return clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  102. timekeeper.shift);
  103. }
  104. static inline s64 timekeeping_get_ns_raw(void)
  105. {
  106. cycle_t cycle_now, cycle_delta;
  107. struct clocksource *clock;
  108. /* read clocksource: */
  109. clock = timekeeper.clock;
  110. cycle_now = clock->read(clock);
  111. /* calculate the delta since the last update_wall_time: */
  112. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  113. /* return delta convert to nanoseconds using ntp adjusted mult. */
  114. return clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  115. }
  116. /*
  117. * This read-write spinlock protects us from races in SMP while
  118. * playing with xtime.
  119. */
  120. __cacheline_aligned_in_smp DEFINE_SEQLOCK(xtime_lock);
  121. /*
  122. * The current time
  123. * wall_to_monotonic is what we need to add to xtime (or xtime corrected
  124. * for sub jiffie times) to get to monotonic time. Monotonic is pegged
  125. * at zero at system boot time, so wall_to_monotonic will be negative,
  126. * however, we will ALWAYS keep the tv_nsec part positive so we can use
  127. * the usual normalization.
  128. *
  129. * wall_to_monotonic is moved after resume from suspend for the monotonic
  130. * time not to jump. We need to add total_sleep_time to wall_to_monotonic
  131. * to get the real boot based time offset.
  132. *
  133. * - wall_to_monotonic is no longer the boot time, getboottime must be
  134. * used instead.
  135. */
  136. static struct timespec xtime __attribute__ ((aligned (16)));
  137. static struct timespec wall_to_monotonic __attribute__ ((aligned (16)));
  138. static struct timespec total_sleep_time;
  139. /*
  140. * The raw monotonic time for the CLOCK_MONOTONIC_RAW posix clock.
  141. */
  142. struct timespec raw_time;
  143. /* flag for if timekeeping is suspended */
  144. int __read_mostly timekeeping_suspended;
  145. /* must hold xtime_lock */
  146. void timekeeping_leap_insert(int leapsecond)
  147. {
  148. xtime.tv_sec += leapsecond;
  149. wall_to_monotonic.tv_sec -= leapsecond;
  150. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  151. timekeeper.mult);
  152. }
  153. /**
  154. * timekeeping_forward_now - update clock to the current time
  155. *
  156. * Forward the current clock to update its state since the last call to
  157. * update_wall_time(). This is useful before significant clock changes,
  158. * as it avoids having to deal with this time offset explicitly.
  159. */
  160. static void timekeeping_forward_now(void)
  161. {
  162. cycle_t cycle_now, cycle_delta;
  163. struct clocksource *clock;
  164. s64 nsec;
  165. clock = timekeeper.clock;
  166. cycle_now = clock->read(clock);
  167. cycle_delta = (cycle_now - clock->cycle_last) & clock->mask;
  168. clock->cycle_last = cycle_now;
  169. nsec = clocksource_cyc2ns(cycle_delta, timekeeper.mult,
  170. timekeeper.shift);
  171. /* If arch requires, add in gettimeoffset() */
  172. nsec += arch_gettimeoffset();
  173. timespec_add_ns(&xtime, nsec);
  174. nsec = clocksource_cyc2ns(cycle_delta, clock->mult, clock->shift);
  175. timespec_add_ns(&raw_time, nsec);
  176. }
  177. /**
  178. * getnstimeofday - Returns the time of day in a timespec
  179. * @ts: pointer to the timespec to be set
  180. *
  181. * Returns the time of day in a timespec.
  182. */
  183. void getnstimeofday(struct timespec *ts)
  184. {
  185. unsigned long seq;
  186. s64 nsecs;
  187. WARN_ON(timekeeping_suspended);
  188. do {
  189. seq = read_seqbegin(&xtime_lock);
  190. *ts = xtime;
  191. nsecs = timekeeping_get_ns();
  192. /* If arch requires, add in gettimeoffset() */
  193. nsecs += arch_gettimeoffset();
  194. } while (read_seqretry(&xtime_lock, seq));
  195. timespec_add_ns(ts, nsecs);
  196. }
  197. EXPORT_SYMBOL(getnstimeofday);
  198. ktime_t ktime_get(void)
  199. {
  200. unsigned int seq;
  201. s64 secs, nsecs;
  202. WARN_ON(timekeeping_suspended);
  203. do {
  204. seq = read_seqbegin(&xtime_lock);
  205. secs = xtime.tv_sec + wall_to_monotonic.tv_sec;
  206. nsecs = xtime.tv_nsec + wall_to_monotonic.tv_nsec;
  207. nsecs += timekeeping_get_ns();
  208. } while (read_seqretry(&xtime_lock, seq));
  209. /*
  210. * Use ktime_set/ktime_add_ns to create a proper ktime on
  211. * 32-bit architectures without CONFIG_KTIME_SCALAR.
  212. */
  213. return ktime_add_ns(ktime_set(secs, 0), nsecs);
  214. }
  215. EXPORT_SYMBOL_GPL(ktime_get);
  216. /**
  217. * ktime_get_ts - get the monotonic clock in timespec format
  218. * @ts: pointer to timespec variable
  219. *
  220. * The function calculates the monotonic clock from the realtime
  221. * clock and the wall_to_monotonic offset and stores the result
  222. * in normalized timespec format in the variable pointed to by @ts.
  223. */
  224. void ktime_get_ts(struct timespec *ts)
  225. {
  226. struct timespec tomono;
  227. unsigned int seq;
  228. s64 nsecs;
  229. WARN_ON(timekeeping_suspended);
  230. do {
  231. seq = read_seqbegin(&xtime_lock);
  232. *ts = xtime;
  233. tomono = wall_to_monotonic;
  234. nsecs = timekeeping_get_ns();
  235. } while (read_seqretry(&xtime_lock, seq));
  236. set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
  237. ts->tv_nsec + tomono.tv_nsec + nsecs);
  238. }
  239. EXPORT_SYMBOL_GPL(ktime_get_ts);
  240. /**
  241. * do_gettimeofday - Returns the time of day in a timeval
  242. * @tv: pointer to the timeval to be set
  243. *
  244. * NOTE: Users should be converted to using getnstimeofday()
  245. */
  246. void do_gettimeofday(struct timeval *tv)
  247. {
  248. struct timespec now;
  249. getnstimeofday(&now);
  250. tv->tv_sec = now.tv_sec;
  251. tv->tv_usec = now.tv_nsec/1000;
  252. }
  253. EXPORT_SYMBOL(do_gettimeofday);
  254. /**
  255. * do_settimeofday - Sets the time of day
  256. * @tv: pointer to the timespec variable containing the new time
  257. *
  258. * Sets the time of day to the new time and update NTP and notify hrtimers
  259. */
  260. int do_settimeofday(struct timespec *tv)
  261. {
  262. struct timespec ts_delta;
  263. unsigned long flags;
  264. if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
  265. return -EINVAL;
  266. write_seqlock_irqsave(&xtime_lock, flags);
  267. timekeeping_forward_now();
  268. ts_delta.tv_sec = tv->tv_sec - xtime.tv_sec;
  269. ts_delta.tv_nsec = tv->tv_nsec - xtime.tv_nsec;
  270. wall_to_monotonic = timespec_sub(wall_to_monotonic, ts_delta);
  271. xtime = *tv;
  272. timekeeper.ntp_error = 0;
  273. ntp_clear();
  274. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  275. timekeeper.mult);
  276. write_sequnlock_irqrestore(&xtime_lock, flags);
  277. /* signal hrtimers about time change */
  278. clock_was_set();
  279. return 0;
  280. }
  281. EXPORT_SYMBOL(do_settimeofday);
  282. /**
  283. * change_clocksource - Swaps clocksources if a new one is available
  284. *
  285. * Accumulates current time interval and initializes new clocksource
  286. */
  287. static int change_clocksource(void *data)
  288. {
  289. struct clocksource *new, *old;
  290. new = (struct clocksource *) data;
  291. timekeeping_forward_now();
  292. if (!new->enable || new->enable(new) == 0) {
  293. old = timekeeper.clock;
  294. timekeeper_setup_internals(new);
  295. if (old->disable)
  296. old->disable(old);
  297. }
  298. return 0;
  299. }
  300. /**
  301. * timekeeping_notify - Install a new clock source
  302. * @clock: pointer to the clock source
  303. *
  304. * This function is called from clocksource.c after a new, better clock
  305. * source has been registered. The caller holds the clocksource_mutex.
  306. */
  307. void timekeeping_notify(struct clocksource *clock)
  308. {
  309. if (timekeeper.clock == clock)
  310. return;
  311. stop_machine(change_clocksource, clock, NULL);
  312. tick_clock_notify();
  313. }
  314. /**
  315. * ktime_get_real - get the real (wall-) time in ktime_t format
  316. *
  317. * returns the time in ktime_t format
  318. */
  319. ktime_t ktime_get_real(void)
  320. {
  321. struct timespec now;
  322. getnstimeofday(&now);
  323. return timespec_to_ktime(now);
  324. }
  325. EXPORT_SYMBOL_GPL(ktime_get_real);
  326. /**
  327. * getrawmonotonic - Returns the raw monotonic time in a timespec
  328. * @ts: pointer to the timespec to be set
  329. *
  330. * Returns the raw monotonic time (completely un-modified by ntp)
  331. */
  332. void getrawmonotonic(struct timespec *ts)
  333. {
  334. unsigned long seq;
  335. s64 nsecs;
  336. do {
  337. seq = read_seqbegin(&xtime_lock);
  338. nsecs = timekeeping_get_ns_raw();
  339. *ts = raw_time;
  340. } while (read_seqretry(&xtime_lock, seq));
  341. timespec_add_ns(ts, nsecs);
  342. }
  343. EXPORT_SYMBOL(getrawmonotonic);
  344. /**
  345. * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
  346. */
  347. int timekeeping_valid_for_hres(void)
  348. {
  349. unsigned long seq;
  350. int ret;
  351. do {
  352. seq = read_seqbegin(&xtime_lock);
  353. ret = timekeeper.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
  354. } while (read_seqretry(&xtime_lock, seq));
  355. return ret;
  356. }
  357. /**
  358. * timekeeping_max_deferment - Returns max time the clocksource can be deferred
  359. *
  360. * Caller must observe xtime_lock via read_seqbegin/read_seqretry to
  361. * ensure that the clocksource does not change!
  362. */
  363. u64 timekeeping_max_deferment(void)
  364. {
  365. return timekeeper.clock->max_idle_ns;
  366. }
  367. /**
  368. * read_persistent_clock - Return time from the persistent clock.
  369. *
  370. * Weak dummy function for arches that do not yet support it.
  371. * Reads the time from the battery backed persistent clock.
  372. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  373. *
  374. * XXX - Do be sure to remove it once all arches implement it.
  375. */
  376. void __attribute__((weak)) read_persistent_clock(struct timespec *ts)
  377. {
  378. ts->tv_sec = 0;
  379. ts->tv_nsec = 0;
  380. }
  381. /**
  382. * read_boot_clock - Return time of the system start.
  383. *
  384. * Weak dummy function for arches that do not yet support it.
  385. * Function to read the exact time the system has been started.
  386. * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
  387. *
  388. * XXX - Do be sure to remove it once all arches implement it.
  389. */
  390. void __attribute__((weak)) read_boot_clock(struct timespec *ts)
  391. {
  392. ts->tv_sec = 0;
  393. ts->tv_nsec = 0;
  394. }
  395. /*
  396. * timekeeping_init - Initializes the clocksource and common timekeeping values
  397. */
  398. void __init timekeeping_init(void)
  399. {
  400. struct clocksource *clock;
  401. unsigned long flags;
  402. struct timespec now, boot;
  403. read_persistent_clock(&now);
  404. read_boot_clock(&boot);
  405. write_seqlock_irqsave(&xtime_lock, flags);
  406. ntp_init();
  407. clock = clocksource_default_clock();
  408. if (clock->enable)
  409. clock->enable(clock);
  410. timekeeper_setup_internals(clock);
  411. xtime.tv_sec = now.tv_sec;
  412. xtime.tv_nsec = now.tv_nsec;
  413. raw_time.tv_sec = 0;
  414. raw_time.tv_nsec = 0;
  415. if (boot.tv_sec == 0 && boot.tv_nsec == 0) {
  416. boot.tv_sec = xtime.tv_sec;
  417. boot.tv_nsec = xtime.tv_nsec;
  418. }
  419. set_normalized_timespec(&wall_to_monotonic,
  420. -boot.tv_sec, -boot.tv_nsec);
  421. total_sleep_time.tv_sec = 0;
  422. total_sleep_time.tv_nsec = 0;
  423. write_sequnlock_irqrestore(&xtime_lock, flags);
  424. }
  425. /* time in seconds when suspend began */
  426. static struct timespec timekeeping_suspend_time;
  427. /**
  428. * timekeeping_resume - Resumes the generic timekeeping subsystem.
  429. * @dev: unused
  430. *
  431. * This is for the generic clocksource timekeeping.
  432. * xtime/wall_to_monotonic/jiffies/etc are
  433. * still managed by arch specific suspend/resume code.
  434. */
  435. static int timekeeping_resume(struct sys_device *dev)
  436. {
  437. unsigned long flags;
  438. struct timespec ts;
  439. read_persistent_clock(&ts);
  440. clocksource_resume();
  441. write_seqlock_irqsave(&xtime_lock, flags);
  442. if (timespec_compare(&ts, &timekeeping_suspend_time) > 0) {
  443. ts = timespec_sub(ts, timekeeping_suspend_time);
  444. xtime = timespec_add(xtime, ts);
  445. wall_to_monotonic = timespec_sub(wall_to_monotonic, ts);
  446. total_sleep_time = timespec_add(total_sleep_time, ts);
  447. }
  448. /* re-base the last cycle value */
  449. timekeeper.clock->cycle_last = timekeeper.clock->read(timekeeper.clock);
  450. timekeeper.ntp_error = 0;
  451. timekeeping_suspended = 0;
  452. write_sequnlock_irqrestore(&xtime_lock, flags);
  453. touch_softlockup_watchdog();
  454. clockevents_notify(CLOCK_EVT_NOTIFY_RESUME, NULL);
  455. /* Resume hrtimers */
  456. hres_timers_resume();
  457. return 0;
  458. }
  459. static int timekeeping_suspend(struct sys_device *dev, pm_message_t state)
  460. {
  461. unsigned long flags;
  462. read_persistent_clock(&timekeeping_suspend_time);
  463. write_seqlock_irqsave(&xtime_lock, flags);
  464. timekeeping_forward_now();
  465. timekeeping_suspended = 1;
  466. write_sequnlock_irqrestore(&xtime_lock, flags);
  467. clockevents_notify(CLOCK_EVT_NOTIFY_SUSPEND, NULL);
  468. clocksource_suspend();
  469. return 0;
  470. }
  471. /* sysfs resume/suspend bits for timekeeping */
  472. static struct sysdev_class timekeeping_sysclass = {
  473. .name = "timekeeping",
  474. .resume = timekeeping_resume,
  475. .suspend = timekeeping_suspend,
  476. };
  477. static struct sys_device device_timer = {
  478. .id = 0,
  479. .cls = &timekeeping_sysclass,
  480. };
  481. static int __init timekeeping_init_device(void)
  482. {
  483. int error = sysdev_class_register(&timekeeping_sysclass);
  484. if (!error)
  485. error = sysdev_register(&device_timer);
  486. return error;
  487. }
  488. device_initcall(timekeeping_init_device);
  489. /*
  490. * If the error is already larger, we look ahead even further
  491. * to compensate for late or lost adjustments.
  492. */
  493. static __always_inline int timekeeping_bigadjust(s64 error, s64 *interval,
  494. s64 *offset)
  495. {
  496. s64 tick_error, i;
  497. u32 look_ahead, adj;
  498. s32 error2, mult;
  499. /*
  500. * Use the current error value to determine how much to look ahead.
  501. * The larger the error the slower we adjust for it to avoid problems
  502. * with losing too many ticks, otherwise we would overadjust and
  503. * produce an even larger error. The smaller the adjustment the
  504. * faster we try to adjust for it, as lost ticks can do less harm
  505. * here. This is tuned so that an error of about 1 msec is adjusted
  506. * within about 1 sec (or 2^20 nsec in 2^SHIFT_HZ ticks).
  507. */
  508. error2 = timekeeper.ntp_error >> (NTP_SCALE_SHIFT + 22 - 2 * SHIFT_HZ);
  509. error2 = abs(error2);
  510. for (look_ahead = 0; error2 > 0; look_ahead++)
  511. error2 >>= 2;
  512. /*
  513. * Now calculate the error in (1 << look_ahead) ticks, but first
  514. * remove the single look ahead already included in the error.
  515. */
  516. tick_error = tick_length >> (timekeeper.ntp_error_shift + 1);
  517. tick_error -= timekeeper.xtime_interval >> 1;
  518. error = ((error - tick_error) >> look_ahead) + tick_error;
  519. /* Finally calculate the adjustment shift value. */
  520. i = *interval;
  521. mult = 1;
  522. if (error < 0) {
  523. error = -error;
  524. *interval = -*interval;
  525. *offset = -*offset;
  526. mult = -1;
  527. }
  528. for (adj = 0; error > i; adj++)
  529. error >>= 1;
  530. *interval <<= adj;
  531. *offset <<= adj;
  532. return mult << adj;
  533. }
  534. /*
  535. * Adjust the multiplier to reduce the error value,
  536. * this is optimized for the most common adjustments of -1,0,1,
  537. * for other values we can do a bit more work.
  538. */
  539. static void timekeeping_adjust(s64 offset)
  540. {
  541. s64 error, interval = timekeeper.cycle_interval;
  542. int adj;
  543. error = timekeeper.ntp_error >> (timekeeper.ntp_error_shift - 1);
  544. if (error > interval) {
  545. error >>= 2;
  546. if (likely(error <= interval))
  547. adj = 1;
  548. else
  549. adj = timekeeping_bigadjust(error, &interval, &offset);
  550. } else if (error < -interval) {
  551. error >>= 2;
  552. if (likely(error >= -interval)) {
  553. adj = -1;
  554. interval = -interval;
  555. offset = -offset;
  556. } else
  557. adj = timekeeping_bigadjust(error, &interval, &offset);
  558. } else
  559. return;
  560. timekeeper.mult += adj;
  561. timekeeper.xtime_interval += interval;
  562. timekeeper.xtime_nsec -= offset;
  563. timekeeper.ntp_error -= (interval - offset) <<
  564. timekeeper.ntp_error_shift;
  565. }
  566. /**
  567. * logarithmic_accumulation - shifted accumulation of cycles
  568. *
  569. * This functions accumulates a shifted interval of cycles into
  570. * into a shifted interval nanoseconds. Allows for O(log) accumulation
  571. * loop.
  572. *
  573. * Returns the unconsumed cycles.
  574. */
  575. static cycle_t logarithmic_accumulation(cycle_t offset, int shift)
  576. {
  577. u64 nsecps = (u64)NSEC_PER_SEC << timekeeper.shift;
  578. u64 raw_nsecs;
  579. /* If the offset is smaller then a shifted interval, do nothing */
  580. if (offset < timekeeper.cycle_interval<<shift)
  581. return offset;
  582. /* Accumulate one shifted interval */
  583. offset -= timekeeper.cycle_interval << shift;
  584. timekeeper.clock->cycle_last += timekeeper.cycle_interval << shift;
  585. timekeeper.xtime_nsec += timekeeper.xtime_interval << shift;
  586. while (timekeeper.xtime_nsec >= nsecps) {
  587. timekeeper.xtime_nsec -= nsecps;
  588. xtime.tv_sec++;
  589. second_overflow();
  590. }
  591. /* Accumulate raw time */
  592. raw_nsecs = timekeeper.raw_interval << shift;
  593. raw_nsecs += raw_time.tv_nsec;
  594. if (raw_nsecs >= NSEC_PER_SEC) {
  595. u64 raw_secs = raw_nsecs;
  596. raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
  597. raw_time.tv_sec += raw_secs;
  598. }
  599. raw_time.tv_nsec = raw_nsecs;
  600. /* Accumulate error between NTP and clock interval */
  601. timekeeper.ntp_error += tick_length << shift;
  602. timekeeper.ntp_error -=
  603. (timekeeper.xtime_interval + timekeeper.xtime_remainder) <<
  604. (timekeeper.ntp_error_shift + shift);
  605. return offset;
  606. }
  607. /**
  608. * update_wall_time - Uses the current clocksource to increment the wall time
  609. *
  610. * Called from the timer interrupt, must hold a write on xtime_lock.
  611. */
  612. void update_wall_time(void)
  613. {
  614. struct clocksource *clock;
  615. cycle_t offset;
  616. int shift = 0, maxshift;
  617. /* Make sure we're fully resumed: */
  618. if (unlikely(timekeeping_suspended))
  619. return;
  620. clock = timekeeper.clock;
  621. #ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
  622. offset = timekeeper.cycle_interval;
  623. #else
  624. offset = (clock->read(clock) - clock->cycle_last) & clock->mask;
  625. #endif
  626. timekeeper.xtime_nsec = (s64)xtime.tv_nsec << timekeeper.shift;
  627. /*
  628. * With NO_HZ we may have to accumulate many cycle_intervals
  629. * (think "ticks") worth of time at once. To do this efficiently,
  630. * we calculate the largest doubling multiple of cycle_intervals
  631. * that is smaller then the offset. We then accumulate that
  632. * chunk in one go, and then try to consume the next smaller
  633. * doubled multiple.
  634. */
  635. shift = ilog2(offset) - ilog2(timekeeper.cycle_interval);
  636. shift = max(0, shift);
  637. /* Bound shift to one less then what overflows tick_length */
  638. maxshift = (8*sizeof(tick_length) - (ilog2(tick_length)+1)) - 1;
  639. shift = min(shift, maxshift);
  640. while (offset >= timekeeper.cycle_interval) {
  641. offset = logarithmic_accumulation(offset, shift);
  642. if(offset < timekeeper.cycle_interval<<shift)
  643. shift--;
  644. }
  645. /* correct the clock when NTP error is too big */
  646. timekeeping_adjust(offset);
  647. /*
  648. * Since in the loop above, we accumulate any amount of time
  649. * in xtime_nsec over a second into xtime.tv_sec, its possible for
  650. * xtime_nsec to be fairly small after the loop. Further, if we're
  651. * slightly speeding the clocksource up in timekeeping_adjust(),
  652. * its possible the required corrective factor to xtime_nsec could
  653. * cause it to underflow.
  654. *
  655. * Now, we cannot simply roll the accumulated second back, since
  656. * the NTP subsystem has been notified via second_overflow. So
  657. * instead we push xtime_nsec forward by the amount we underflowed,
  658. * and add that amount into the error.
  659. *
  660. * We'll correct this error next time through this function, when
  661. * xtime_nsec is not as small.
  662. */
  663. if (unlikely((s64)timekeeper.xtime_nsec < 0)) {
  664. s64 neg = -(s64)timekeeper.xtime_nsec;
  665. timekeeper.xtime_nsec = 0;
  666. timekeeper.ntp_error += neg << timekeeper.ntp_error_shift;
  667. }
  668. /*
  669. * Store full nanoseconds into xtime after rounding it up and
  670. * add the remainder to the error difference.
  671. */
  672. xtime.tv_nsec = ((s64) timekeeper.xtime_nsec >> timekeeper.shift) + 1;
  673. timekeeper.xtime_nsec -= (s64) xtime.tv_nsec << timekeeper.shift;
  674. timekeeper.ntp_error += timekeeper.xtime_nsec <<
  675. timekeeper.ntp_error_shift;
  676. /*
  677. * Finally, make sure that after the rounding
  678. * xtime.tv_nsec isn't larger then NSEC_PER_SEC
  679. */
  680. if (unlikely(xtime.tv_nsec >= NSEC_PER_SEC)) {
  681. xtime.tv_nsec -= NSEC_PER_SEC;
  682. xtime.tv_sec++;
  683. second_overflow();
  684. }
  685. /* check to see if there is a new clocksource to use */
  686. update_vsyscall(&xtime, &wall_to_monotonic, timekeeper.clock,
  687. timekeeper.mult);
  688. }
  689. /**
  690. * getboottime - Return the real time of system boot.
  691. * @ts: pointer to the timespec to be set
  692. *
  693. * Returns the time of day in a timespec.
  694. *
  695. * This is based on the wall_to_monotonic offset and the total suspend
  696. * time. Calls to settimeofday will affect the value returned (which
  697. * basically means that however wrong your real time clock is at boot time,
  698. * you get the right time here).
  699. */
  700. void getboottime(struct timespec *ts)
  701. {
  702. struct timespec boottime = {
  703. .tv_sec = wall_to_monotonic.tv_sec + total_sleep_time.tv_sec,
  704. .tv_nsec = wall_to_monotonic.tv_nsec + total_sleep_time.tv_nsec
  705. };
  706. set_normalized_timespec(ts, -boottime.tv_sec, -boottime.tv_nsec);
  707. }
  708. EXPORT_SYMBOL_GPL(getboottime);
  709. /**
  710. * monotonic_to_bootbased - Convert the monotonic time to boot based.
  711. * @ts: pointer to the timespec to be converted
  712. */
  713. void monotonic_to_bootbased(struct timespec *ts)
  714. {
  715. *ts = timespec_add(*ts, total_sleep_time);
  716. }
  717. EXPORT_SYMBOL_GPL(monotonic_to_bootbased);
  718. unsigned long get_seconds(void)
  719. {
  720. return xtime.tv_sec;
  721. }
  722. EXPORT_SYMBOL(get_seconds);
  723. struct timespec __current_kernel_time(void)
  724. {
  725. return xtime;
  726. }
  727. struct timespec __get_wall_to_monotonic(void)
  728. {
  729. return wall_to_monotonic;
  730. }
  731. struct timespec current_kernel_time(void)
  732. {
  733. struct timespec now;
  734. unsigned long seq;
  735. do {
  736. seq = read_seqbegin(&xtime_lock);
  737. now = xtime;
  738. } while (read_seqretry(&xtime_lock, seq));
  739. return now;
  740. }
  741. EXPORT_SYMBOL(current_kernel_time);
  742. struct timespec get_monotonic_coarse(void)
  743. {
  744. struct timespec now, mono;
  745. unsigned long seq;
  746. do {
  747. seq = read_seqbegin(&xtime_lock);
  748. now = xtime;
  749. mono = wall_to_monotonic;
  750. } while (read_seqretry(&xtime_lock, seq));
  751. set_normalized_timespec(&now, now.tv_sec + mono.tv_sec,
  752. now.tv_nsec + mono.tv_nsec);
  753. return now;
  754. }