sched_rt.c 41 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802
  1. /*
  2. * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
  3. * policies)
  4. */
  5. #ifdef CONFIG_RT_GROUP_SCHED
  6. #define rt_entity_is_task(rt_se) (!(rt_se)->my_q)
  7. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  8. {
  9. #ifdef CONFIG_SCHED_DEBUG
  10. WARN_ON_ONCE(!rt_entity_is_task(rt_se));
  11. #endif
  12. return container_of(rt_se, struct task_struct, rt);
  13. }
  14. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  15. {
  16. return rt_rq->rq;
  17. }
  18. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  19. {
  20. return rt_se->rt_rq;
  21. }
  22. #else /* CONFIG_RT_GROUP_SCHED */
  23. #define rt_entity_is_task(rt_se) (1)
  24. static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
  25. {
  26. return container_of(rt_se, struct task_struct, rt);
  27. }
  28. static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
  29. {
  30. return container_of(rt_rq, struct rq, rt);
  31. }
  32. static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
  33. {
  34. struct task_struct *p = rt_task_of(rt_se);
  35. struct rq *rq = task_rq(p);
  36. return &rq->rt;
  37. }
  38. #endif /* CONFIG_RT_GROUP_SCHED */
  39. #ifdef CONFIG_SMP
  40. static inline int rt_overloaded(struct rq *rq)
  41. {
  42. return atomic_read(&rq->rd->rto_count);
  43. }
  44. static inline void rt_set_overload(struct rq *rq)
  45. {
  46. if (!rq->online)
  47. return;
  48. cpumask_set_cpu(rq->cpu, rq->rd->rto_mask);
  49. /*
  50. * Make sure the mask is visible before we set
  51. * the overload count. That is checked to determine
  52. * if we should look at the mask. It would be a shame
  53. * if we looked at the mask, but the mask was not
  54. * updated yet.
  55. */
  56. wmb();
  57. atomic_inc(&rq->rd->rto_count);
  58. }
  59. static inline void rt_clear_overload(struct rq *rq)
  60. {
  61. if (!rq->online)
  62. return;
  63. /* the order here really doesn't matter */
  64. atomic_dec(&rq->rd->rto_count);
  65. cpumask_clear_cpu(rq->cpu, rq->rd->rto_mask);
  66. }
  67. static void update_rt_migration(struct rt_rq *rt_rq)
  68. {
  69. if (rt_rq->rt_nr_migratory && rt_rq->rt_nr_total > 1) {
  70. if (!rt_rq->overloaded) {
  71. rt_set_overload(rq_of_rt_rq(rt_rq));
  72. rt_rq->overloaded = 1;
  73. }
  74. } else if (rt_rq->overloaded) {
  75. rt_clear_overload(rq_of_rt_rq(rt_rq));
  76. rt_rq->overloaded = 0;
  77. }
  78. }
  79. static void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  80. {
  81. if (!rt_entity_is_task(rt_se))
  82. return;
  83. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  84. rt_rq->rt_nr_total++;
  85. if (rt_se->nr_cpus_allowed > 1)
  86. rt_rq->rt_nr_migratory++;
  87. update_rt_migration(rt_rq);
  88. }
  89. static void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  90. {
  91. if (!rt_entity_is_task(rt_se))
  92. return;
  93. rt_rq = &rq_of_rt_rq(rt_rq)->rt;
  94. rt_rq->rt_nr_total--;
  95. if (rt_se->nr_cpus_allowed > 1)
  96. rt_rq->rt_nr_migratory--;
  97. update_rt_migration(rt_rq);
  98. }
  99. static void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  100. {
  101. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  102. plist_node_init(&p->pushable_tasks, p->prio);
  103. plist_add(&p->pushable_tasks, &rq->rt.pushable_tasks);
  104. }
  105. static void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  106. {
  107. plist_del(&p->pushable_tasks, &rq->rt.pushable_tasks);
  108. }
  109. static inline int has_pushable_tasks(struct rq *rq)
  110. {
  111. return !plist_head_empty(&rq->rt.pushable_tasks);
  112. }
  113. #else
  114. static inline void enqueue_pushable_task(struct rq *rq, struct task_struct *p)
  115. {
  116. }
  117. static inline void dequeue_pushable_task(struct rq *rq, struct task_struct *p)
  118. {
  119. }
  120. static inline
  121. void inc_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  122. {
  123. }
  124. static inline
  125. void dec_rt_migration(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  126. {
  127. }
  128. #endif /* CONFIG_SMP */
  129. static inline int on_rt_rq(struct sched_rt_entity *rt_se)
  130. {
  131. return !list_empty(&rt_se->run_list);
  132. }
  133. #ifdef CONFIG_RT_GROUP_SCHED
  134. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  135. {
  136. if (!rt_rq->tg)
  137. return RUNTIME_INF;
  138. return rt_rq->rt_runtime;
  139. }
  140. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  141. {
  142. return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
  143. }
  144. static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
  145. {
  146. list_add_rcu(&rt_rq->leaf_rt_rq_list,
  147. &rq_of_rt_rq(rt_rq)->leaf_rt_rq_list);
  148. }
  149. static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
  150. {
  151. list_del_rcu(&rt_rq->leaf_rt_rq_list);
  152. }
  153. #define for_each_leaf_rt_rq(rt_rq, rq) \
  154. list_for_each_entry_rcu(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
  155. #define for_each_sched_rt_entity(rt_se) \
  156. for (; rt_se; rt_se = rt_se->parent)
  157. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  158. {
  159. return rt_se->my_q;
  160. }
  161. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head);
  162. static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
  163. static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  164. {
  165. int this_cpu = smp_processor_id();
  166. struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
  167. struct sched_rt_entity *rt_se;
  168. rt_se = rt_rq->tg->rt_se[this_cpu];
  169. if (rt_rq->rt_nr_running) {
  170. if (rt_se && !on_rt_rq(rt_se))
  171. enqueue_rt_entity(rt_se, false);
  172. if (rt_rq->highest_prio.curr < curr->prio)
  173. resched_task(curr);
  174. }
  175. }
  176. static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  177. {
  178. int this_cpu = smp_processor_id();
  179. struct sched_rt_entity *rt_se;
  180. rt_se = rt_rq->tg->rt_se[this_cpu];
  181. if (rt_se && on_rt_rq(rt_se))
  182. dequeue_rt_entity(rt_se);
  183. }
  184. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  185. {
  186. return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
  187. }
  188. static int rt_se_boosted(struct sched_rt_entity *rt_se)
  189. {
  190. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  191. struct task_struct *p;
  192. if (rt_rq)
  193. return !!rt_rq->rt_nr_boosted;
  194. p = rt_task_of(rt_se);
  195. return p->prio != p->normal_prio;
  196. }
  197. #ifdef CONFIG_SMP
  198. static inline const struct cpumask *sched_rt_period_mask(void)
  199. {
  200. return cpu_rq(smp_processor_id())->rd->span;
  201. }
  202. #else
  203. static inline const struct cpumask *sched_rt_period_mask(void)
  204. {
  205. return cpu_online_mask;
  206. }
  207. #endif
  208. static inline
  209. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  210. {
  211. return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
  212. }
  213. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  214. {
  215. return &rt_rq->tg->rt_bandwidth;
  216. }
  217. #else /* !CONFIG_RT_GROUP_SCHED */
  218. static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
  219. {
  220. return rt_rq->rt_runtime;
  221. }
  222. static inline u64 sched_rt_period(struct rt_rq *rt_rq)
  223. {
  224. return ktime_to_ns(def_rt_bandwidth.rt_period);
  225. }
  226. static inline void list_add_leaf_rt_rq(struct rt_rq *rt_rq)
  227. {
  228. }
  229. static inline void list_del_leaf_rt_rq(struct rt_rq *rt_rq)
  230. {
  231. }
  232. #define for_each_leaf_rt_rq(rt_rq, rq) \
  233. for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
  234. #define for_each_sched_rt_entity(rt_se) \
  235. for (; rt_se; rt_se = NULL)
  236. static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
  237. {
  238. return NULL;
  239. }
  240. static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
  241. {
  242. if (rt_rq->rt_nr_running)
  243. resched_task(rq_of_rt_rq(rt_rq)->curr);
  244. }
  245. static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
  246. {
  247. }
  248. static inline int rt_rq_throttled(struct rt_rq *rt_rq)
  249. {
  250. return rt_rq->rt_throttled;
  251. }
  252. static inline const struct cpumask *sched_rt_period_mask(void)
  253. {
  254. return cpu_online_mask;
  255. }
  256. static inline
  257. struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
  258. {
  259. return &cpu_rq(cpu)->rt;
  260. }
  261. static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
  262. {
  263. return &def_rt_bandwidth;
  264. }
  265. #endif /* CONFIG_RT_GROUP_SCHED */
  266. #ifdef CONFIG_SMP
  267. /*
  268. * We ran out of runtime, see if we can borrow some from our neighbours.
  269. */
  270. static int do_balance_runtime(struct rt_rq *rt_rq)
  271. {
  272. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  273. struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
  274. int i, weight, more = 0;
  275. u64 rt_period;
  276. weight = cpumask_weight(rd->span);
  277. raw_spin_lock(&rt_b->rt_runtime_lock);
  278. rt_period = ktime_to_ns(rt_b->rt_period);
  279. for_each_cpu(i, rd->span) {
  280. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  281. s64 diff;
  282. if (iter == rt_rq)
  283. continue;
  284. raw_spin_lock(&iter->rt_runtime_lock);
  285. /*
  286. * Either all rqs have inf runtime and there's nothing to steal
  287. * or __disable_runtime() below sets a specific rq to inf to
  288. * indicate its been disabled and disalow stealing.
  289. */
  290. if (iter->rt_runtime == RUNTIME_INF)
  291. goto next;
  292. /*
  293. * From runqueues with spare time, take 1/n part of their
  294. * spare time, but no more than our period.
  295. */
  296. diff = iter->rt_runtime - iter->rt_time;
  297. if (diff > 0) {
  298. diff = div_u64((u64)diff, weight);
  299. if (rt_rq->rt_runtime + diff > rt_period)
  300. diff = rt_period - rt_rq->rt_runtime;
  301. iter->rt_runtime -= diff;
  302. rt_rq->rt_runtime += diff;
  303. more = 1;
  304. if (rt_rq->rt_runtime == rt_period) {
  305. raw_spin_unlock(&iter->rt_runtime_lock);
  306. break;
  307. }
  308. }
  309. next:
  310. raw_spin_unlock(&iter->rt_runtime_lock);
  311. }
  312. raw_spin_unlock(&rt_b->rt_runtime_lock);
  313. return more;
  314. }
  315. /*
  316. * Ensure this RQ takes back all the runtime it lend to its neighbours.
  317. */
  318. static void __disable_runtime(struct rq *rq)
  319. {
  320. struct root_domain *rd = rq->rd;
  321. struct rt_rq *rt_rq;
  322. if (unlikely(!scheduler_running))
  323. return;
  324. for_each_leaf_rt_rq(rt_rq, rq) {
  325. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  326. s64 want;
  327. int i;
  328. raw_spin_lock(&rt_b->rt_runtime_lock);
  329. raw_spin_lock(&rt_rq->rt_runtime_lock);
  330. /*
  331. * Either we're all inf and nobody needs to borrow, or we're
  332. * already disabled and thus have nothing to do, or we have
  333. * exactly the right amount of runtime to take out.
  334. */
  335. if (rt_rq->rt_runtime == RUNTIME_INF ||
  336. rt_rq->rt_runtime == rt_b->rt_runtime)
  337. goto balanced;
  338. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  339. /*
  340. * Calculate the difference between what we started out with
  341. * and what we current have, that's the amount of runtime
  342. * we lend and now have to reclaim.
  343. */
  344. want = rt_b->rt_runtime - rt_rq->rt_runtime;
  345. /*
  346. * Greedy reclaim, take back as much as we can.
  347. */
  348. for_each_cpu(i, rd->span) {
  349. struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
  350. s64 diff;
  351. /*
  352. * Can't reclaim from ourselves or disabled runqueues.
  353. */
  354. if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
  355. continue;
  356. raw_spin_lock(&iter->rt_runtime_lock);
  357. if (want > 0) {
  358. diff = min_t(s64, iter->rt_runtime, want);
  359. iter->rt_runtime -= diff;
  360. want -= diff;
  361. } else {
  362. iter->rt_runtime -= want;
  363. want -= want;
  364. }
  365. raw_spin_unlock(&iter->rt_runtime_lock);
  366. if (!want)
  367. break;
  368. }
  369. raw_spin_lock(&rt_rq->rt_runtime_lock);
  370. /*
  371. * We cannot be left wanting - that would mean some runtime
  372. * leaked out of the system.
  373. */
  374. BUG_ON(want);
  375. balanced:
  376. /*
  377. * Disable all the borrow logic by pretending we have inf
  378. * runtime - in which case borrowing doesn't make sense.
  379. */
  380. rt_rq->rt_runtime = RUNTIME_INF;
  381. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  382. raw_spin_unlock(&rt_b->rt_runtime_lock);
  383. }
  384. }
  385. static void disable_runtime(struct rq *rq)
  386. {
  387. unsigned long flags;
  388. raw_spin_lock_irqsave(&rq->lock, flags);
  389. __disable_runtime(rq);
  390. raw_spin_unlock_irqrestore(&rq->lock, flags);
  391. }
  392. static void __enable_runtime(struct rq *rq)
  393. {
  394. struct rt_rq *rt_rq;
  395. if (unlikely(!scheduler_running))
  396. return;
  397. /*
  398. * Reset each runqueue's bandwidth settings
  399. */
  400. for_each_leaf_rt_rq(rt_rq, rq) {
  401. struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
  402. raw_spin_lock(&rt_b->rt_runtime_lock);
  403. raw_spin_lock(&rt_rq->rt_runtime_lock);
  404. rt_rq->rt_runtime = rt_b->rt_runtime;
  405. rt_rq->rt_time = 0;
  406. rt_rq->rt_throttled = 0;
  407. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  408. raw_spin_unlock(&rt_b->rt_runtime_lock);
  409. }
  410. }
  411. static void enable_runtime(struct rq *rq)
  412. {
  413. unsigned long flags;
  414. raw_spin_lock_irqsave(&rq->lock, flags);
  415. __enable_runtime(rq);
  416. raw_spin_unlock_irqrestore(&rq->lock, flags);
  417. }
  418. static int balance_runtime(struct rt_rq *rt_rq)
  419. {
  420. int more = 0;
  421. if (rt_rq->rt_time > rt_rq->rt_runtime) {
  422. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  423. more = do_balance_runtime(rt_rq);
  424. raw_spin_lock(&rt_rq->rt_runtime_lock);
  425. }
  426. return more;
  427. }
  428. #else /* !CONFIG_SMP */
  429. static inline int balance_runtime(struct rt_rq *rt_rq)
  430. {
  431. return 0;
  432. }
  433. #endif /* CONFIG_SMP */
  434. static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
  435. {
  436. int i, idle = 1;
  437. const struct cpumask *span;
  438. if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
  439. return 1;
  440. span = sched_rt_period_mask();
  441. for_each_cpu(i, span) {
  442. int enqueue = 0;
  443. struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
  444. struct rq *rq = rq_of_rt_rq(rt_rq);
  445. raw_spin_lock(&rq->lock);
  446. if (rt_rq->rt_time) {
  447. u64 runtime;
  448. raw_spin_lock(&rt_rq->rt_runtime_lock);
  449. if (rt_rq->rt_throttled)
  450. balance_runtime(rt_rq);
  451. runtime = rt_rq->rt_runtime;
  452. rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
  453. if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
  454. rt_rq->rt_throttled = 0;
  455. enqueue = 1;
  456. }
  457. if (rt_rq->rt_time || rt_rq->rt_nr_running)
  458. idle = 0;
  459. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  460. } else if (rt_rq->rt_nr_running)
  461. idle = 0;
  462. if (enqueue)
  463. sched_rt_rq_enqueue(rt_rq);
  464. raw_spin_unlock(&rq->lock);
  465. }
  466. return idle;
  467. }
  468. static inline int rt_se_prio(struct sched_rt_entity *rt_se)
  469. {
  470. #ifdef CONFIG_RT_GROUP_SCHED
  471. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  472. if (rt_rq)
  473. return rt_rq->highest_prio.curr;
  474. #endif
  475. return rt_task_of(rt_se)->prio;
  476. }
  477. static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
  478. {
  479. u64 runtime = sched_rt_runtime(rt_rq);
  480. if (rt_rq->rt_throttled)
  481. return rt_rq_throttled(rt_rq);
  482. if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
  483. return 0;
  484. balance_runtime(rt_rq);
  485. runtime = sched_rt_runtime(rt_rq);
  486. if (runtime == RUNTIME_INF)
  487. return 0;
  488. if (rt_rq->rt_time > runtime) {
  489. rt_rq->rt_throttled = 1;
  490. if (rt_rq_throttled(rt_rq)) {
  491. sched_rt_rq_dequeue(rt_rq);
  492. return 1;
  493. }
  494. }
  495. return 0;
  496. }
  497. /*
  498. * Update the current task's runtime statistics. Skip current tasks that
  499. * are not in our scheduling class.
  500. */
  501. static void update_curr_rt(struct rq *rq)
  502. {
  503. struct task_struct *curr = rq->curr;
  504. struct sched_rt_entity *rt_se = &curr->rt;
  505. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  506. u64 delta_exec;
  507. if (!task_has_rt_policy(curr))
  508. return;
  509. delta_exec = rq->clock_task - curr->se.exec_start;
  510. if (unlikely((s64)delta_exec < 0))
  511. delta_exec = 0;
  512. schedstat_set(curr->se.statistics.exec_max, max(curr->se.statistics.exec_max, delta_exec));
  513. curr->se.sum_exec_runtime += delta_exec;
  514. account_group_exec_runtime(curr, delta_exec);
  515. curr->se.exec_start = rq->clock_task;
  516. cpuacct_charge(curr, delta_exec);
  517. sched_rt_avg_update(rq, delta_exec);
  518. if (!rt_bandwidth_enabled())
  519. return;
  520. for_each_sched_rt_entity(rt_se) {
  521. rt_rq = rt_rq_of_se(rt_se);
  522. if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
  523. raw_spin_lock(&rt_rq->rt_runtime_lock);
  524. rt_rq->rt_time += delta_exec;
  525. if (sched_rt_runtime_exceeded(rt_rq))
  526. resched_task(curr);
  527. raw_spin_unlock(&rt_rq->rt_runtime_lock);
  528. }
  529. }
  530. }
  531. #if defined CONFIG_SMP
  532. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu);
  533. static inline int next_prio(struct rq *rq)
  534. {
  535. struct task_struct *next = pick_next_highest_task_rt(rq, rq->cpu);
  536. if (next && rt_prio(next->prio))
  537. return next->prio;
  538. else
  539. return MAX_RT_PRIO;
  540. }
  541. static void
  542. inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  543. {
  544. struct rq *rq = rq_of_rt_rq(rt_rq);
  545. if (prio < prev_prio) {
  546. /*
  547. * If the new task is higher in priority than anything on the
  548. * run-queue, we know that the previous high becomes our
  549. * next-highest.
  550. */
  551. rt_rq->highest_prio.next = prev_prio;
  552. if (rq->online)
  553. cpupri_set(&rq->rd->cpupri, rq->cpu, prio);
  554. } else if (prio == rt_rq->highest_prio.curr)
  555. /*
  556. * If the next task is equal in priority to the highest on
  557. * the run-queue, then we implicitly know that the next highest
  558. * task cannot be any lower than current
  559. */
  560. rt_rq->highest_prio.next = prio;
  561. else if (prio < rt_rq->highest_prio.next)
  562. /*
  563. * Otherwise, we need to recompute next-highest
  564. */
  565. rt_rq->highest_prio.next = next_prio(rq);
  566. }
  567. static void
  568. dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio)
  569. {
  570. struct rq *rq = rq_of_rt_rq(rt_rq);
  571. if (rt_rq->rt_nr_running && (prio <= rt_rq->highest_prio.next))
  572. rt_rq->highest_prio.next = next_prio(rq);
  573. if (rq->online && rt_rq->highest_prio.curr != prev_prio)
  574. cpupri_set(&rq->rd->cpupri, rq->cpu, rt_rq->highest_prio.curr);
  575. }
  576. #else /* CONFIG_SMP */
  577. static inline
  578. void inc_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  579. static inline
  580. void dec_rt_prio_smp(struct rt_rq *rt_rq, int prio, int prev_prio) {}
  581. #endif /* CONFIG_SMP */
  582. #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
  583. static void
  584. inc_rt_prio(struct rt_rq *rt_rq, int prio)
  585. {
  586. int prev_prio = rt_rq->highest_prio.curr;
  587. if (prio < prev_prio)
  588. rt_rq->highest_prio.curr = prio;
  589. inc_rt_prio_smp(rt_rq, prio, prev_prio);
  590. }
  591. static void
  592. dec_rt_prio(struct rt_rq *rt_rq, int prio)
  593. {
  594. int prev_prio = rt_rq->highest_prio.curr;
  595. if (rt_rq->rt_nr_running) {
  596. WARN_ON(prio < prev_prio);
  597. /*
  598. * This may have been our highest task, and therefore
  599. * we may have some recomputation to do
  600. */
  601. if (prio == prev_prio) {
  602. struct rt_prio_array *array = &rt_rq->active;
  603. rt_rq->highest_prio.curr =
  604. sched_find_first_bit(array->bitmap);
  605. }
  606. } else
  607. rt_rq->highest_prio.curr = MAX_RT_PRIO;
  608. dec_rt_prio_smp(rt_rq, prio, prev_prio);
  609. }
  610. #else
  611. static inline void inc_rt_prio(struct rt_rq *rt_rq, int prio) {}
  612. static inline void dec_rt_prio(struct rt_rq *rt_rq, int prio) {}
  613. #endif /* CONFIG_SMP || CONFIG_RT_GROUP_SCHED */
  614. #ifdef CONFIG_RT_GROUP_SCHED
  615. static void
  616. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  617. {
  618. if (rt_se_boosted(rt_se))
  619. rt_rq->rt_nr_boosted++;
  620. if (rt_rq->tg)
  621. start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
  622. }
  623. static void
  624. dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  625. {
  626. if (rt_se_boosted(rt_se))
  627. rt_rq->rt_nr_boosted--;
  628. WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
  629. }
  630. #else /* CONFIG_RT_GROUP_SCHED */
  631. static void
  632. inc_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  633. {
  634. start_rt_bandwidth(&def_rt_bandwidth);
  635. }
  636. static inline
  637. void dec_rt_group(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq) {}
  638. #endif /* CONFIG_RT_GROUP_SCHED */
  639. static inline
  640. void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  641. {
  642. int prio = rt_se_prio(rt_se);
  643. WARN_ON(!rt_prio(prio));
  644. rt_rq->rt_nr_running++;
  645. inc_rt_prio(rt_rq, prio);
  646. inc_rt_migration(rt_se, rt_rq);
  647. inc_rt_group(rt_se, rt_rq);
  648. }
  649. static inline
  650. void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
  651. {
  652. WARN_ON(!rt_prio(rt_se_prio(rt_se)));
  653. WARN_ON(!rt_rq->rt_nr_running);
  654. rt_rq->rt_nr_running--;
  655. dec_rt_prio(rt_rq, rt_se_prio(rt_se));
  656. dec_rt_migration(rt_se, rt_rq);
  657. dec_rt_group(rt_se, rt_rq);
  658. }
  659. static void __enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  660. {
  661. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  662. struct rt_prio_array *array = &rt_rq->active;
  663. struct rt_rq *group_rq = group_rt_rq(rt_se);
  664. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  665. /*
  666. * Don't enqueue the group if its throttled, or when empty.
  667. * The latter is a consequence of the former when a child group
  668. * get throttled and the current group doesn't have any other
  669. * active members.
  670. */
  671. if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
  672. return;
  673. if (!rt_rq->rt_nr_running)
  674. list_add_leaf_rt_rq(rt_rq);
  675. if (head)
  676. list_add(&rt_se->run_list, queue);
  677. else
  678. list_add_tail(&rt_se->run_list, queue);
  679. __set_bit(rt_se_prio(rt_se), array->bitmap);
  680. inc_rt_tasks(rt_se, rt_rq);
  681. }
  682. static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
  683. {
  684. struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
  685. struct rt_prio_array *array = &rt_rq->active;
  686. list_del_init(&rt_se->run_list);
  687. if (list_empty(array->queue + rt_se_prio(rt_se)))
  688. __clear_bit(rt_se_prio(rt_se), array->bitmap);
  689. dec_rt_tasks(rt_se, rt_rq);
  690. if (!rt_rq->rt_nr_running)
  691. list_del_leaf_rt_rq(rt_rq);
  692. }
  693. /*
  694. * Because the prio of an upper entry depends on the lower
  695. * entries, we must remove entries top - down.
  696. */
  697. static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
  698. {
  699. struct sched_rt_entity *back = NULL;
  700. for_each_sched_rt_entity(rt_se) {
  701. rt_se->back = back;
  702. back = rt_se;
  703. }
  704. for (rt_se = back; rt_se; rt_se = rt_se->back) {
  705. if (on_rt_rq(rt_se))
  706. __dequeue_rt_entity(rt_se);
  707. }
  708. }
  709. static void enqueue_rt_entity(struct sched_rt_entity *rt_se, bool head)
  710. {
  711. dequeue_rt_stack(rt_se);
  712. for_each_sched_rt_entity(rt_se)
  713. __enqueue_rt_entity(rt_se, head);
  714. }
  715. static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
  716. {
  717. dequeue_rt_stack(rt_se);
  718. for_each_sched_rt_entity(rt_se) {
  719. struct rt_rq *rt_rq = group_rt_rq(rt_se);
  720. if (rt_rq && rt_rq->rt_nr_running)
  721. __enqueue_rt_entity(rt_se, false);
  722. }
  723. }
  724. /*
  725. * Adding/removing a task to/from a priority array:
  726. */
  727. static void
  728. enqueue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  729. {
  730. struct sched_rt_entity *rt_se = &p->rt;
  731. if (flags & ENQUEUE_WAKEUP)
  732. rt_se->timeout = 0;
  733. enqueue_rt_entity(rt_se, flags & ENQUEUE_HEAD);
  734. if (!task_current(rq, p) && p->rt.nr_cpus_allowed > 1)
  735. enqueue_pushable_task(rq, p);
  736. }
  737. static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int flags)
  738. {
  739. struct sched_rt_entity *rt_se = &p->rt;
  740. update_curr_rt(rq);
  741. dequeue_rt_entity(rt_se);
  742. dequeue_pushable_task(rq, p);
  743. }
  744. /*
  745. * Put task to the end of the run list without the overhead of dequeue
  746. * followed by enqueue.
  747. */
  748. static void
  749. requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
  750. {
  751. if (on_rt_rq(rt_se)) {
  752. struct rt_prio_array *array = &rt_rq->active;
  753. struct list_head *queue = array->queue + rt_se_prio(rt_se);
  754. if (head)
  755. list_move(&rt_se->run_list, queue);
  756. else
  757. list_move_tail(&rt_se->run_list, queue);
  758. }
  759. }
  760. static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
  761. {
  762. struct sched_rt_entity *rt_se = &p->rt;
  763. struct rt_rq *rt_rq;
  764. for_each_sched_rt_entity(rt_se) {
  765. rt_rq = rt_rq_of_se(rt_se);
  766. requeue_rt_entity(rt_rq, rt_se, head);
  767. }
  768. }
  769. static void yield_task_rt(struct rq *rq)
  770. {
  771. requeue_task_rt(rq, rq->curr, 0);
  772. }
  773. #ifdef CONFIG_SMP
  774. static int find_lowest_rq(struct task_struct *task);
  775. static int
  776. select_task_rq_rt(struct rq *rq, struct task_struct *p, int sd_flag, int flags)
  777. {
  778. if (sd_flag != SD_BALANCE_WAKE)
  779. return smp_processor_id();
  780. /*
  781. * If the current task is an RT task, then
  782. * try to see if we can wake this RT task up on another
  783. * runqueue. Otherwise simply start this RT task
  784. * on its current runqueue.
  785. *
  786. * We want to avoid overloading runqueues. If the woken
  787. * task is a higher priority, then it will stay on this CPU
  788. * and the lower prio task should be moved to another CPU.
  789. * Even though this will probably make the lower prio task
  790. * lose its cache, we do not want to bounce a higher task
  791. * around just because it gave up its CPU, perhaps for a
  792. * lock?
  793. *
  794. * For equal prio tasks, we just let the scheduler sort it out.
  795. */
  796. if (unlikely(rt_task(rq->curr)) &&
  797. (rq->curr->rt.nr_cpus_allowed < 2 ||
  798. rq->curr->prio < p->prio) &&
  799. (p->rt.nr_cpus_allowed > 1)) {
  800. int cpu = find_lowest_rq(p);
  801. return (cpu == -1) ? task_cpu(p) : cpu;
  802. }
  803. /*
  804. * Otherwise, just let it ride on the affined RQ and the
  805. * post-schedule router will push the preempted task away
  806. */
  807. return task_cpu(p);
  808. }
  809. static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
  810. {
  811. if (rq->curr->rt.nr_cpus_allowed == 1)
  812. return;
  813. if (p->rt.nr_cpus_allowed != 1
  814. && cpupri_find(&rq->rd->cpupri, p, NULL))
  815. return;
  816. if (!cpupri_find(&rq->rd->cpupri, rq->curr, NULL))
  817. return;
  818. /*
  819. * There appears to be other cpus that can accept
  820. * current and none to run 'p', so lets reschedule
  821. * to try and push current away:
  822. */
  823. requeue_task_rt(rq, p, 1);
  824. resched_task(rq->curr);
  825. }
  826. #endif /* CONFIG_SMP */
  827. /*
  828. * Preempt the current task with a newly woken task if needed:
  829. */
  830. static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int flags)
  831. {
  832. if (p->prio < rq->curr->prio) {
  833. resched_task(rq->curr);
  834. return;
  835. }
  836. #ifdef CONFIG_SMP
  837. /*
  838. * If:
  839. *
  840. * - the newly woken task is of equal priority to the current task
  841. * - the newly woken task is non-migratable while current is migratable
  842. * - current will be preempted on the next reschedule
  843. *
  844. * we should check to see if current can readily move to a different
  845. * cpu. If so, we will reschedule to allow the push logic to try
  846. * to move current somewhere else, making room for our non-migratable
  847. * task.
  848. */
  849. if (p->prio == rq->curr->prio && !need_resched())
  850. check_preempt_equal_prio(rq, p);
  851. #endif
  852. }
  853. static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
  854. struct rt_rq *rt_rq)
  855. {
  856. struct rt_prio_array *array = &rt_rq->active;
  857. struct sched_rt_entity *next = NULL;
  858. struct list_head *queue;
  859. int idx;
  860. idx = sched_find_first_bit(array->bitmap);
  861. BUG_ON(idx >= MAX_RT_PRIO);
  862. queue = array->queue + idx;
  863. next = list_entry(queue->next, struct sched_rt_entity, run_list);
  864. return next;
  865. }
  866. static struct task_struct *_pick_next_task_rt(struct rq *rq)
  867. {
  868. struct sched_rt_entity *rt_se;
  869. struct task_struct *p;
  870. struct rt_rq *rt_rq;
  871. rt_rq = &rq->rt;
  872. if (unlikely(!rt_rq->rt_nr_running))
  873. return NULL;
  874. if (rt_rq_throttled(rt_rq))
  875. return NULL;
  876. do {
  877. rt_se = pick_next_rt_entity(rq, rt_rq);
  878. BUG_ON(!rt_se);
  879. rt_rq = group_rt_rq(rt_se);
  880. } while (rt_rq);
  881. p = rt_task_of(rt_se);
  882. p->se.exec_start = rq->clock_task;
  883. return p;
  884. }
  885. static struct task_struct *pick_next_task_rt(struct rq *rq)
  886. {
  887. struct task_struct *p = _pick_next_task_rt(rq);
  888. /* The running task is never eligible for pushing */
  889. if (p)
  890. dequeue_pushable_task(rq, p);
  891. #ifdef CONFIG_SMP
  892. /*
  893. * We detect this state here so that we can avoid taking the RQ
  894. * lock again later if there is no need to push
  895. */
  896. rq->post_schedule = has_pushable_tasks(rq);
  897. #endif
  898. return p;
  899. }
  900. static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
  901. {
  902. update_curr_rt(rq);
  903. p->se.exec_start = 0;
  904. /*
  905. * The previous task needs to be made eligible for pushing
  906. * if it is still active
  907. */
  908. if (p->se.on_rq && p->rt.nr_cpus_allowed > 1)
  909. enqueue_pushable_task(rq, p);
  910. }
  911. #ifdef CONFIG_SMP
  912. /* Only try algorithms three times */
  913. #define RT_MAX_TRIES 3
  914. static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
  915. static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
  916. {
  917. if (!task_running(rq, p) &&
  918. (cpu < 0 || cpumask_test_cpu(cpu, &p->cpus_allowed)) &&
  919. (p->rt.nr_cpus_allowed > 1))
  920. return 1;
  921. return 0;
  922. }
  923. /* Return the second highest RT task, NULL otherwise */
  924. static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
  925. {
  926. struct task_struct *next = NULL;
  927. struct sched_rt_entity *rt_se;
  928. struct rt_prio_array *array;
  929. struct rt_rq *rt_rq;
  930. int idx;
  931. for_each_leaf_rt_rq(rt_rq, rq) {
  932. array = &rt_rq->active;
  933. idx = sched_find_first_bit(array->bitmap);
  934. next_idx:
  935. if (idx >= MAX_RT_PRIO)
  936. continue;
  937. if (next && next->prio < idx)
  938. continue;
  939. list_for_each_entry(rt_se, array->queue + idx, run_list) {
  940. struct task_struct *p;
  941. if (!rt_entity_is_task(rt_se))
  942. continue;
  943. p = rt_task_of(rt_se);
  944. if (pick_rt_task(rq, p, cpu)) {
  945. next = p;
  946. break;
  947. }
  948. }
  949. if (!next) {
  950. idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
  951. goto next_idx;
  952. }
  953. }
  954. return next;
  955. }
  956. static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask);
  957. static int find_lowest_rq(struct task_struct *task)
  958. {
  959. struct sched_domain *sd;
  960. struct cpumask *lowest_mask = __get_cpu_var(local_cpu_mask);
  961. int this_cpu = smp_processor_id();
  962. int cpu = task_cpu(task);
  963. if (task->rt.nr_cpus_allowed == 1)
  964. return -1; /* No other targets possible */
  965. if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
  966. return -1; /* No targets found */
  967. /*
  968. * At this point we have built a mask of cpus representing the
  969. * lowest priority tasks in the system. Now we want to elect
  970. * the best one based on our affinity and topology.
  971. *
  972. * We prioritize the last cpu that the task executed on since
  973. * it is most likely cache-hot in that location.
  974. */
  975. if (cpumask_test_cpu(cpu, lowest_mask))
  976. return cpu;
  977. /*
  978. * Otherwise, we consult the sched_domains span maps to figure
  979. * out which cpu is logically closest to our hot cache data.
  980. */
  981. if (!cpumask_test_cpu(this_cpu, lowest_mask))
  982. this_cpu = -1; /* Skip this_cpu opt if not among lowest */
  983. for_each_domain(cpu, sd) {
  984. if (sd->flags & SD_WAKE_AFFINE) {
  985. int best_cpu;
  986. /*
  987. * "this_cpu" is cheaper to preempt than a
  988. * remote processor.
  989. */
  990. if (this_cpu != -1 &&
  991. cpumask_test_cpu(this_cpu, sched_domain_span(sd)))
  992. return this_cpu;
  993. best_cpu = cpumask_first_and(lowest_mask,
  994. sched_domain_span(sd));
  995. if (best_cpu < nr_cpu_ids)
  996. return best_cpu;
  997. }
  998. }
  999. /*
  1000. * And finally, if there were no matches within the domains
  1001. * just give the caller *something* to work with from the compatible
  1002. * locations.
  1003. */
  1004. if (this_cpu != -1)
  1005. return this_cpu;
  1006. cpu = cpumask_any(lowest_mask);
  1007. if (cpu < nr_cpu_ids)
  1008. return cpu;
  1009. return -1;
  1010. }
  1011. /* Will lock the rq it finds */
  1012. static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
  1013. {
  1014. struct rq *lowest_rq = NULL;
  1015. int tries;
  1016. int cpu;
  1017. for (tries = 0; tries < RT_MAX_TRIES; tries++) {
  1018. cpu = find_lowest_rq(task);
  1019. if ((cpu == -1) || (cpu == rq->cpu))
  1020. break;
  1021. lowest_rq = cpu_rq(cpu);
  1022. /* if the prio of this runqueue changed, try again */
  1023. if (double_lock_balance(rq, lowest_rq)) {
  1024. /*
  1025. * We had to unlock the run queue. In
  1026. * the mean time, task could have
  1027. * migrated already or had its affinity changed.
  1028. * Also make sure that it wasn't scheduled on its rq.
  1029. */
  1030. if (unlikely(task_rq(task) != rq ||
  1031. !cpumask_test_cpu(lowest_rq->cpu,
  1032. &task->cpus_allowed) ||
  1033. task_running(rq, task) ||
  1034. !task->se.on_rq)) {
  1035. raw_spin_unlock(&lowest_rq->lock);
  1036. lowest_rq = NULL;
  1037. break;
  1038. }
  1039. }
  1040. /* If this rq is still suitable use it. */
  1041. if (lowest_rq->rt.highest_prio.curr > task->prio)
  1042. break;
  1043. /* try again */
  1044. double_unlock_balance(rq, lowest_rq);
  1045. lowest_rq = NULL;
  1046. }
  1047. return lowest_rq;
  1048. }
  1049. static struct task_struct *pick_next_pushable_task(struct rq *rq)
  1050. {
  1051. struct task_struct *p;
  1052. if (!has_pushable_tasks(rq))
  1053. return NULL;
  1054. p = plist_first_entry(&rq->rt.pushable_tasks,
  1055. struct task_struct, pushable_tasks);
  1056. BUG_ON(rq->cpu != task_cpu(p));
  1057. BUG_ON(task_current(rq, p));
  1058. BUG_ON(p->rt.nr_cpus_allowed <= 1);
  1059. BUG_ON(!p->se.on_rq);
  1060. BUG_ON(!rt_task(p));
  1061. return p;
  1062. }
  1063. /*
  1064. * If the current CPU has more than one RT task, see if the non
  1065. * running task can migrate over to a CPU that is running a task
  1066. * of lesser priority.
  1067. */
  1068. static int push_rt_task(struct rq *rq)
  1069. {
  1070. struct task_struct *next_task;
  1071. struct rq *lowest_rq;
  1072. if (!rq->rt.overloaded)
  1073. return 0;
  1074. next_task = pick_next_pushable_task(rq);
  1075. if (!next_task)
  1076. return 0;
  1077. retry:
  1078. if (unlikely(next_task == rq->curr)) {
  1079. WARN_ON(1);
  1080. return 0;
  1081. }
  1082. /*
  1083. * It's possible that the next_task slipped in of
  1084. * higher priority than current. If that's the case
  1085. * just reschedule current.
  1086. */
  1087. if (unlikely(next_task->prio < rq->curr->prio)) {
  1088. resched_task(rq->curr);
  1089. return 0;
  1090. }
  1091. /* We might release rq lock */
  1092. get_task_struct(next_task);
  1093. /* find_lock_lowest_rq locks the rq if found */
  1094. lowest_rq = find_lock_lowest_rq(next_task, rq);
  1095. if (!lowest_rq) {
  1096. struct task_struct *task;
  1097. /*
  1098. * find lock_lowest_rq releases rq->lock
  1099. * so it is possible that next_task has migrated.
  1100. *
  1101. * We need to make sure that the task is still on the same
  1102. * run-queue and is also still the next task eligible for
  1103. * pushing.
  1104. */
  1105. task = pick_next_pushable_task(rq);
  1106. if (task_cpu(next_task) == rq->cpu && task == next_task) {
  1107. /*
  1108. * If we get here, the task hasnt moved at all, but
  1109. * it has failed to push. We will not try again,
  1110. * since the other cpus will pull from us when they
  1111. * are ready.
  1112. */
  1113. dequeue_pushable_task(rq, next_task);
  1114. goto out;
  1115. }
  1116. if (!task)
  1117. /* No more tasks, just exit */
  1118. goto out;
  1119. /*
  1120. * Something has shifted, try again.
  1121. */
  1122. put_task_struct(next_task);
  1123. next_task = task;
  1124. goto retry;
  1125. }
  1126. deactivate_task(rq, next_task, 0);
  1127. set_task_cpu(next_task, lowest_rq->cpu);
  1128. activate_task(lowest_rq, next_task, 0);
  1129. resched_task(lowest_rq->curr);
  1130. double_unlock_balance(rq, lowest_rq);
  1131. out:
  1132. put_task_struct(next_task);
  1133. return 1;
  1134. }
  1135. static void push_rt_tasks(struct rq *rq)
  1136. {
  1137. /* push_rt_task will return true if it moved an RT */
  1138. while (push_rt_task(rq))
  1139. ;
  1140. }
  1141. static int pull_rt_task(struct rq *this_rq)
  1142. {
  1143. int this_cpu = this_rq->cpu, ret = 0, cpu;
  1144. struct task_struct *p;
  1145. struct rq *src_rq;
  1146. if (likely(!rt_overloaded(this_rq)))
  1147. return 0;
  1148. for_each_cpu(cpu, this_rq->rd->rto_mask) {
  1149. if (this_cpu == cpu)
  1150. continue;
  1151. src_rq = cpu_rq(cpu);
  1152. /*
  1153. * Don't bother taking the src_rq->lock if the next highest
  1154. * task is known to be lower-priority than our current task.
  1155. * This may look racy, but if this value is about to go
  1156. * logically higher, the src_rq will push this task away.
  1157. * And if its going logically lower, we do not care
  1158. */
  1159. if (src_rq->rt.highest_prio.next >=
  1160. this_rq->rt.highest_prio.curr)
  1161. continue;
  1162. /*
  1163. * We can potentially drop this_rq's lock in
  1164. * double_lock_balance, and another CPU could
  1165. * alter this_rq
  1166. */
  1167. double_lock_balance(this_rq, src_rq);
  1168. /*
  1169. * Are there still pullable RT tasks?
  1170. */
  1171. if (src_rq->rt.rt_nr_running <= 1)
  1172. goto skip;
  1173. p = pick_next_highest_task_rt(src_rq, this_cpu);
  1174. /*
  1175. * Do we have an RT task that preempts
  1176. * the to-be-scheduled task?
  1177. */
  1178. if (p && (p->prio < this_rq->rt.highest_prio.curr)) {
  1179. WARN_ON(p == src_rq->curr);
  1180. WARN_ON(!p->se.on_rq);
  1181. /*
  1182. * There's a chance that p is higher in priority
  1183. * than what's currently running on its cpu.
  1184. * This is just that p is wakeing up and hasn't
  1185. * had a chance to schedule. We only pull
  1186. * p if it is lower in priority than the
  1187. * current task on the run queue
  1188. */
  1189. if (p->prio < src_rq->curr->prio)
  1190. goto skip;
  1191. ret = 1;
  1192. deactivate_task(src_rq, p, 0);
  1193. set_task_cpu(p, this_cpu);
  1194. activate_task(this_rq, p, 0);
  1195. /*
  1196. * We continue with the search, just in
  1197. * case there's an even higher prio task
  1198. * in another runqueue. (low likelyhood
  1199. * but possible)
  1200. */
  1201. }
  1202. skip:
  1203. double_unlock_balance(this_rq, src_rq);
  1204. }
  1205. return ret;
  1206. }
  1207. static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
  1208. {
  1209. /* Try to pull RT tasks here if we lower this rq's prio */
  1210. if (unlikely(rt_task(prev)) && rq->rt.highest_prio.curr > prev->prio)
  1211. pull_rt_task(rq);
  1212. }
  1213. static void post_schedule_rt(struct rq *rq)
  1214. {
  1215. push_rt_tasks(rq);
  1216. }
  1217. /*
  1218. * If we are not running and we are not going to reschedule soon, we should
  1219. * try to push tasks away now
  1220. */
  1221. static void task_woken_rt(struct rq *rq, struct task_struct *p)
  1222. {
  1223. if (!task_running(rq, p) &&
  1224. !test_tsk_need_resched(rq->curr) &&
  1225. has_pushable_tasks(rq) &&
  1226. p->rt.nr_cpus_allowed > 1 &&
  1227. rt_task(rq->curr) &&
  1228. (rq->curr->rt.nr_cpus_allowed < 2 ||
  1229. rq->curr->prio < p->prio))
  1230. push_rt_tasks(rq);
  1231. }
  1232. static void set_cpus_allowed_rt(struct task_struct *p,
  1233. const struct cpumask *new_mask)
  1234. {
  1235. int weight = cpumask_weight(new_mask);
  1236. BUG_ON(!rt_task(p));
  1237. /*
  1238. * Update the migration status of the RQ if we have an RT task
  1239. * which is running AND changing its weight value.
  1240. */
  1241. if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
  1242. struct rq *rq = task_rq(p);
  1243. if (!task_current(rq, p)) {
  1244. /*
  1245. * Make sure we dequeue this task from the pushable list
  1246. * before going further. It will either remain off of
  1247. * the list because we are no longer pushable, or it
  1248. * will be requeued.
  1249. */
  1250. if (p->rt.nr_cpus_allowed > 1)
  1251. dequeue_pushable_task(rq, p);
  1252. /*
  1253. * Requeue if our weight is changing and still > 1
  1254. */
  1255. if (weight > 1)
  1256. enqueue_pushable_task(rq, p);
  1257. }
  1258. if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
  1259. rq->rt.rt_nr_migratory++;
  1260. } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
  1261. BUG_ON(!rq->rt.rt_nr_migratory);
  1262. rq->rt.rt_nr_migratory--;
  1263. }
  1264. update_rt_migration(&rq->rt);
  1265. }
  1266. cpumask_copy(&p->cpus_allowed, new_mask);
  1267. p->rt.nr_cpus_allowed = weight;
  1268. }
  1269. /* Assumes rq->lock is held */
  1270. static void rq_online_rt(struct rq *rq)
  1271. {
  1272. if (rq->rt.overloaded)
  1273. rt_set_overload(rq);
  1274. __enable_runtime(rq);
  1275. cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio.curr);
  1276. }
  1277. /* Assumes rq->lock is held */
  1278. static void rq_offline_rt(struct rq *rq)
  1279. {
  1280. if (rq->rt.overloaded)
  1281. rt_clear_overload(rq);
  1282. __disable_runtime(rq);
  1283. cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
  1284. }
  1285. /*
  1286. * When switch from the rt queue, we bring ourselves to a position
  1287. * that we might want to pull RT tasks from other runqueues.
  1288. */
  1289. static void switched_from_rt(struct rq *rq, struct task_struct *p,
  1290. int running)
  1291. {
  1292. /*
  1293. * If there are other RT tasks then we will reschedule
  1294. * and the scheduling of the other RT tasks will handle
  1295. * the balancing. But if we are the last RT task
  1296. * we may need to handle the pulling of RT tasks
  1297. * now.
  1298. */
  1299. if (!rq->rt.rt_nr_running)
  1300. pull_rt_task(rq);
  1301. }
  1302. static inline void init_sched_rt_class(void)
  1303. {
  1304. unsigned int i;
  1305. for_each_possible_cpu(i)
  1306. zalloc_cpumask_var_node(&per_cpu(local_cpu_mask, i),
  1307. GFP_KERNEL, cpu_to_node(i));
  1308. }
  1309. #endif /* CONFIG_SMP */
  1310. /*
  1311. * When switching a task to RT, we may overload the runqueue
  1312. * with RT tasks. In this case we try to push them off to
  1313. * other runqueues.
  1314. */
  1315. static void switched_to_rt(struct rq *rq, struct task_struct *p,
  1316. int running)
  1317. {
  1318. int check_resched = 1;
  1319. /*
  1320. * If we are already running, then there's nothing
  1321. * that needs to be done. But if we are not running
  1322. * we may need to preempt the current running task.
  1323. * If that current running task is also an RT task
  1324. * then see if we can move to another run queue.
  1325. */
  1326. if (!running) {
  1327. #ifdef CONFIG_SMP
  1328. if (rq->rt.overloaded && push_rt_task(rq) &&
  1329. /* Don't resched if we changed runqueues */
  1330. rq != task_rq(p))
  1331. check_resched = 0;
  1332. #endif /* CONFIG_SMP */
  1333. if (check_resched && p->prio < rq->curr->prio)
  1334. resched_task(rq->curr);
  1335. }
  1336. }
  1337. /*
  1338. * Priority of the task has changed. This may cause
  1339. * us to initiate a push or pull.
  1340. */
  1341. static void prio_changed_rt(struct rq *rq, struct task_struct *p,
  1342. int oldprio, int running)
  1343. {
  1344. if (running) {
  1345. #ifdef CONFIG_SMP
  1346. /*
  1347. * If our priority decreases while running, we
  1348. * may need to pull tasks to this runqueue.
  1349. */
  1350. if (oldprio < p->prio)
  1351. pull_rt_task(rq);
  1352. /*
  1353. * If there's a higher priority task waiting to run
  1354. * then reschedule. Note, the above pull_rt_task
  1355. * can release the rq lock and p could migrate.
  1356. * Only reschedule if p is still on the same runqueue.
  1357. */
  1358. if (p->prio > rq->rt.highest_prio.curr && rq->curr == p)
  1359. resched_task(p);
  1360. #else
  1361. /* For UP simply resched on drop of prio */
  1362. if (oldprio < p->prio)
  1363. resched_task(p);
  1364. #endif /* CONFIG_SMP */
  1365. } else {
  1366. /*
  1367. * This task is not running, but if it is
  1368. * greater than the current running task
  1369. * then reschedule.
  1370. */
  1371. if (p->prio < rq->curr->prio)
  1372. resched_task(rq->curr);
  1373. }
  1374. }
  1375. static void watchdog(struct rq *rq, struct task_struct *p)
  1376. {
  1377. unsigned long soft, hard;
  1378. /* max may change after cur was read, this will be fixed next tick */
  1379. soft = task_rlimit(p, RLIMIT_RTTIME);
  1380. hard = task_rlimit_max(p, RLIMIT_RTTIME);
  1381. if (soft != RLIM_INFINITY) {
  1382. unsigned long next;
  1383. p->rt.timeout++;
  1384. next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
  1385. if (p->rt.timeout > next)
  1386. p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
  1387. }
  1388. }
  1389. static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
  1390. {
  1391. update_curr_rt(rq);
  1392. watchdog(rq, p);
  1393. /*
  1394. * RR tasks need a special form of timeslice management.
  1395. * FIFO tasks have no timeslices.
  1396. */
  1397. if (p->policy != SCHED_RR)
  1398. return;
  1399. if (--p->rt.time_slice)
  1400. return;
  1401. p->rt.time_slice = DEF_TIMESLICE;
  1402. /*
  1403. * Requeue to the end of queue if we are not the only element
  1404. * on the queue:
  1405. */
  1406. if (p->rt.run_list.prev != p->rt.run_list.next) {
  1407. requeue_task_rt(rq, p, 0);
  1408. set_tsk_need_resched(p);
  1409. }
  1410. }
  1411. static void set_curr_task_rt(struct rq *rq)
  1412. {
  1413. struct task_struct *p = rq->curr;
  1414. p->se.exec_start = rq->clock_task;
  1415. /* The running task is never eligible for pushing */
  1416. dequeue_pushable_task(rq, p);
  1417. }
  1418. static unsigned int get_rr_interval_rt(struct rq *rq, struct task_struct *task)
  1419. {
  1420. /*
  1421. * Time slice is 0 for SCHED_FIFO tasks
  1422. */
  1423. if (task->policy == SCHED_RR)
  1424. return DEF_TIMESLICE;
  1425. else
  1426. return 0;
  1427. }
  1428. static const struct sched_class rt_sched_class = {
  1429. .next = &fair_sched_class,
  1430. .enqueue_task = enqueue_task_rt,
  1431. .dequeue_task = dequeue_task_rt,
  1432. .yield_task = yield_task_rt,
  1433. .check_preempt_curr = check_preempt_curr_rt,
  1434. .pick_next_task = pick_next_task_rt,
  1435. .put_prev_task = put_prev_task_rt,
  1436. #ifdef CONFIG_SMP
  1437. .select_task_rq = select_task_rq_rt,
  1438. .set_cpus_allowed = set_cpus_allowed_rt,
  1439. .rq_online = rq_online_rt,
  1440. .rq_offline = rq_offline_rt,
  1441. .pre_schedule = pre_schedule_rt,
  1442. .post_schedule = post_schedule_rt,
  1443. .task_woken = task_woken_rt,
  1444. .switched_from = switched_from_rt,
  1445. #endif
  1446. .set_curr_task = set_curr_task_rt,
  1447. .task_tick = task_tick_rt,
  1448. .get_rr_interval = get_rr_interval_rt,
  1449. .prio_changed = prio_changed_rt,
  1450. .switched_to = switched_to_rt,
  1451. };
  1452. #ifdef CONFIG_SCHED_DEBUG
  1453. extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
  1454. static void print_rt_stats(struct seq_file *m, int cpu)
  1455. {
  1456. struct rt_rq *rt_rq;
  1457. rcu_read_lock();
  1458. for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
  1459. print_rt_rq(m, cpu, rt_rq);
  1460. rcu_read_unlock();
  1461. }
  1462. #endif /* CONFIG_SCHED_DEBUG */