segment.c 74 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840
  1. /*
  2. * segment.c - NILFS segment constructor.
  3. *
  4. * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License as published by
  8. * the Free Software Foundation; either version 2 of the License, or
  9. * (at your option) any later version.
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * You should have received a copy of the GNU General Public License
  17. * along with this program; if not, write to the Free Software
  18. * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
  19. *
  20. * Written by Ryusuke Konishi <ryusuke@osrg.net>
  21. *
  22. */
  23. #include <linux/pagemap.h>
  24. #include <linux/buffer_head.h>
  25. #include <linux/writeback.h>
  26. #include <linux/bio.h>
  27. #include <linux/completion.h>
  28. #include <linux/blkdev.h>
  29. #include <linux/backing-dev.h>
  30. #include <linux/freezer.h>
  31. #include <linux/kthread.h>
  32. #include <linux/crc32.h>
  33. #include <linux/pagevec.h>
  34. #include <linux/slab.h>
  35. #include "nilfs.h"
  36. #include "btnode.h"
  37. #include "page.h"
  38. #include "segment.h"
  39. #include "sufile.h"
  40. #include "cpfile.h"
  41. #include "ifile.h"
  42. #include "segbuf.h"
  43. /*
  44. * Segment constructor
  45. */
  46. #define SC_N_INODEVEC 16 /* Size of locally allocated inode vector */
  47. #define SC_MAX_SEGDELTA 64 /* Upper limit of the number of segments
  48. appended in collection retry loop */
  49. /* Construction mode */
  50. enum {
  51. SC_LSEG_SR = 1, /* Make a logical segment having a super root */
  52. SC_LSEG_DSYNC, /* Flush data blocks of a given file and make
  53. a logical segment without a super root */
  54. SC_FLUSH_FILE, /* Flush data files, leads to segment writes without
  55. creating a checkpoint */
  56. SC_FLUSH_DAT, /* Flush DAT file. This also creates segments without
  57. a checkpoint */
  58. };
  59. /* Stage numbers of dirty block collection */
  60. enum {
  61. NILFS_ST_INIT = 0,
  62. NILFS_ST_GC, /* Collecting dirty blocks for GC */
  63. NILFS_ST_FILE,
  64. NILFS_ST_IFILE,
  65. NILFS_ST_CPFILE,
  66. NILFS_ST_SUFILE,
  67. NILFS_ST_DAT,
  68. NILFS_ST_SR, /* Super root */
  69. NILFS_ST_DSYNC, /* Data sync blocks */
  70. NILFS_ST_DONE,
  71. };
  72. /* State flags of collection */
  73. #define NILFS_CF_NODE 0x0001 /* Collecting node blocks */
  74. #define NILFS_CF_IFILE_STARTED 0x0002 /* IFILE stage has started */
  75. #define NILFS_CF_SUFREED 0x0004 /* segment usages has been freed */
  76. #define NILFS_CF_HISTORY_MASK (NILFS_CF_IFILE_STARTED | NILFS_CF_SUFREED)
  77. /* Operations depending on the construction mode and file type */
  78. struct nilfs_sc_operations {
  79. int (*collect_data)(struct nilfs_sc_info *, struct buffer_head *,
  80. struct inode *);
  81. int (*collect_node)(struct nilfs_sc_info *, struct buffer_head *,
  82. struct inode *);
  83. int (*collect_bmap)(struct nilfs_sc_info *, struct buffer_head *,
  84. struct inode *);
  85. void (*write_data_binfo)(struct nilfs_sc_info *,
  86. struct nilfs_segsum_pointer *,
  87. union nilfs_binfo *);
  88. void (*write_node_binfo)(struct nilfs_sc_info *,
  89. struct nilfs_segsum_pointer *,
  90. union nilfs_binfo *);
  91. };
  92. /*
  93. * Other definitions
  94. */
  95. static void nilfs_segctor_start_timer(struct nilfs_sc_info *);
  96. static void nilfs_segctor_do_flush(struct nilfs_sc_info *, int);
  97. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *);
  98. static void nilfs_dispose_list(struct nilfs_sb_info *, struct list_head *,
  99. int);
  100. #define nilfs_cnt32_gt(a, b) \
  101. (typecheck(__u32, a) && typecheck(__u32, b) && \
  102. ((__s32)(b) - (__s32)(a) < 0))
  103. #define nilfs_cnt32_ge(a, b) \
  104. (typecheck(__u32, a) && typecheck(__u32, b) && \
  105. ((__s32)(a) - (__s32)(b) >= 0))
  106. #define nilfs_cnt32_lt(a, b) nilfs_cnt32_gt(b, a)
  107. #define nilfs_cnt32_le(a, b) nilfs_cnt32_ge(b, a)
  108. static int nilfs_prepare_segment_lock(struct nilfs_transaction_info *ti)
  109. {
  110. struct nilfs_transaction_info *cur_ti = current->journal_info;
  111. void *save = NULL;
  112. if (cur_ti) {
  113. if (cur_ti->ti_magic == NILFS_TI_MAGIC)
  114. return ++cur_ti->ti_count;
  115. else {
  116. /*
  117. * If journal_info field is occupied by other FS,
  118. * it is saved and will be restored on
  119. * nilfs_transaction_commit().
  120. */
  121. printk(KERN_WARNING
  122. "NILFS warning: journal info from a different "
  123. "FS\n");
  124. save = current->journal_info;
  125. }
  126. }
  127. if (!ti) {
  128. ti = kmem_cache_alloc(nilfs_transaction_cachep, GFP_NOFS);
  129. if (!ti)
  130. return -ENOMEM;
  131. ti->ti_flags = NILFS_TI_DYNAMIC_ALLOC;
  132. } else {
  133. ti->ti_flags = 0;
  134. }
  135. ti->ti_count = 0;
  136. ti->ti_save = save;
  137. ti->ti_magic = NILFS_TI_MAGIC;
  138. current->journal_info = ti;
  139. return 0;
  140. }
  141. /**
  142. * nilfs_transaction_begin - start indivisible file operations.
  143. * @sb: super block
  144. * @ti: nilfs_transaction_info
  145. * @vacancy_check: flags for vacancy rate checks
  146. *
  147. * nilfs_transaction_begin() acquires a reader/writer semaphore, called
  148. * the segment semaphore, to make a segment construction and write tasks
  149. * exclusive. The function is used with nilfs_transaction_commit() in pairs.
  150. * The region enclosed by these two functions can be nested. To avoid a
  151. * deadlock, the semaphore is only acquired or released in the outermost call.
  152. *
  153. * This function allocates a nilfs_transaction_info struct to keep context
  154. * information on it. It is initialized and hooked onto the current task in
  155. * the outermost call. If a pre-allocated struct is given to @ti, it is used
  156. * instead; otherwise a new struct is assigned from a slab.
  157. *
  158. * When @vacancy_check flag is set, this function will check the amount of
  159. * free space, and will wait for the GC to reclaim disk space if low capacity.
  160. *
  161. * Return Value: On success, 0 is returned. On error, one of the following
  162. * negative error code is returned.
  163. *
  164. * %-ENOMEM - Insufficient memory available.
  165. *
  166. * %-ENOSPC - No space left on device
  167. */
  168. int nilfs_transaction_begin(struct super_block *sb,
  169. struct nilfs_transaction_info *ti,
  170. int vacancy_check)
  171. {
  172. struct nilfs_sb_info *sbi;
  173. struct the_nilfs *nilfs;
  174. int ret = nilfs_prepare_segment_lock(ti);
  175. if (unlikely(ret < 0))
  176. return ret;
  177. if (ret > 0)
  178. return 0;
  179. vfs_check_frozen(sb, SB_FREEZE_WRITE);
  180. sbi = NILFS_SB(sb);
  181. nilfs = sbi->s_nilfs;
  182. down_read(&nilfs->ns_segctor_sem);
  183. if (vacancy_check && nilfs_near_disk_full(nilfs)) {
  184. up_read(&nilfs->ns_segctor_sem);
  185. ret = -ENOSPC;
  186. goto failed;
  187. }
  188. return 0;
  189. failed:
  190. ti = current->journal_info;
  191. current->journal_info = ti->ti_save;
  192. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  193. kmem_cache_free(nilfs_transaction_cachep, ti);
  194. return ret;
  195. }
  196. /**
  197. * nilfs_transaction_commit - commit indivisible file operations.
  198. * @sb: super block
  199. *
  200. * nilfs_transaction_commit() releases the read semaphore which is
  201. * acquired by nilfs_transaction_begin(). This is only performed
  202. * in outermost call of this function. If a commit flag is set,
  203. * nilfs_transaction_commit() sets a timer to start the segment
  204. * constructor. If a sync flag is set, it starts construction
  205. * directly.
  206. */
  207. int nilfs_transaction_commit(struct super_block *sb)
  208. {
  209. struct nilfs_transaction_info *ti = current->journal_info;
  210. struct nilfs_sb_info *sbi;
  211. struct nilfs_sc_info *sci;
  212. int err = 0;
  213. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  214. ti->ti_flags |= NILFS_TI_COMMIT;
  215. if (ti->ti_count > 0) {
  216. ti->ti_count--;
  217. return 0;
  218. }
  219. sbi = NILFS_SB(sb);
  220. sci = NILFS_SC(sbi);
  221. if (sci != NULL) {
  222. if (ti->ti_flags & NILFS_TI_COMMIT)
  223. nilfs_segctor_start_timer(sci);
  224. if (atomic_read(&sbi->s_nilfs->ns_ndirtyblks) >
  225. sci->sc_watermark)
  226. nilfs_segctor_do_flush(sci, 0);
  227. }
  228. up_read(&sbi->s_nilfs->ns_segctor_sem);
  229. current->journal_info = ti->ti_save;
  230. if (ti->ti_flags & NILFS_TI_SYNC)
  231. err = nilfs_construct_segment(sb);
  232. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  233. kmem_cache_free(nilfs_transaction_cachep, ti);
  234. return err;
  235. }
  236. void nilfs_transaction_abort(struct super_block *sb)
  237. {
  238. struct nilfs_transaction_info *ti = current->journal_info;
  239. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  240. if (ti->ti_count > 0) {
  241. ti->ti_count--;
  242. return;
  243. }
  244. up_read(&NILFS_SB(sb)->s_nilfs->ns_segctor_sem);
  245. current->journal_info = ti->ti_save;
  246. if (ti->ti_flags & NILFS_TI_DYNAMIC_ALLOC)
  247. kmem_cache_free(nilfs_transaction_cachep, ti);
  248. }
  249. void nilfs_relax_pressure_in_lock(struct super_block *sb)
  250. {
  251. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  252. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  253. struct the_nilfs *nilfs = sbi->s_nilfs;
  254. if (!sci || !sci->sc_flush_request)
  255. return;
  256. set_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  257. up_read(&nilfs->ns_segctor_sem);
  258. down_write(&nilfs->ns_segctor_sem);
  259. if (sci->sc_flush_request &&
  260. test_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags)) {
  261. struct nilfs_transaction_info *ti = current->journal_info;
  262. ti->ti_flags |= NILFS_TI_WRITER;
  263. nilfs_segctor_do_immediate_flush(sci);
  264. ti->ti_flags &= ~NILFS_TI_WRITER;
  265. }
  266. downgrade_write(&nilfs->ns_segctor_sem);
  267. }
  268. static void nilfs_transaction_lock(struct nilfs_sb_info *sbi,
  269. struct nilfs_transaction_info *ti,
  270. int gcflag)
  271. {
  272. struct nilfs_transaction_info *cur_ti = current->journal_info;
  273. WARN_ON(cur_ti);
  274. ti->ti_flags = NILFS_TI_WRITER;
  275. ti->ti_count = 0;
  276. ti->ti_save = cur_ti;
  277. ti->ti_magic = NILFS_TI_MAGIC;
  278. INIT_LIST_HEAD(&ti->ti_garbage);
  279. current->journal_info = ti;
  280. for (;;) {
  281. down_write(&sbi->s_nilfs->ns_segctor_sem);
  282. if (!test_bit(NILFS_SC_PRIOR_FLUSH, &NILFS_SC(sbi)->sc_flags))
  283. break;
  284. nilfs_segctor_do_immediate_flush(NILFS_SC(sbi));
  285. up_write(&sbi->s_nilfs->ns_segctor_sem);
  286. yield();
  287. }
  288. if (gcflag)
  289. ti->ti_flags |= NILFS_TI_GC;
  290. }
  291. static void nilfs_transaction_unlock(struct nilfs_sb_info *sbi)
  292. {
  293. struct nilfs_transaction_info *ti = current->journal_info;
  294. BUG_ON(ti == NULL || ti->ti_magic != NILFS_TI_MAGIC);
  295. BUG_ON(ti->ti_count > 0);
  296. up_write(&sbi->s_nilfs->ns_segctor_sem);
  297. current->journal_info = ti->ti_save;
  298. if (!list_empty(&ti->ti_garbage))
  299. nilfs_dispose_list(sbi, &ti->ti_garbage, 0);
  300. }
  301. static void *nilfs_segctor_map_segsum_entry(struct nilfs_sc_info *sci,
  302. struct nilfs_segsum_pointer *ssp,
  303. unsigned bytes)
  304. {
  305. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  306. unsigned blocksize = sci->sc_super->s_blocksize;
  307. void *p;
  308. if (unlikely(ssp->offset + bytes > blocksize)) {
  309. ssp->offset = 0;
  310. BUG_ON(NILFS_SEGBUF_BH_IS_LAST(ssp->bh,
  311. &segbuf->sb_segsum_buffers));
  312. ssp->bh = NILFS_SEGBUF_NEXT_BH(ssp->bh);
  313. }
  314. p = ssp->bh->b_data + ssp->offset;
  315. ssp->offset += bytes;
  316. return p;
  317. }
  318. /**
  319. * nilfs_segctor_reset_segment_buffer - reset the current segment buffer
  320. * @sci: nilfs_sc_info
  321. */
  322. static int nilfs_segctor_reset_segment_buffer(struct nilfs_sc_info *sci)
  323. {
  324. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  325. struct buffer_head *sumbh;
  326. unsigned sumbytes;
  327. unsigned flags = 0;
  328. int err;
  329. if (nilfs_doing_gc())
  330. flags = NILFS_SS_GC;
  331. err = nilfs_segbuf_reset(segbuf, flags, sci->sc_seg_ctime, sci->sc_cno);
  332. if (unlikely(err))
  333. return err;
  334. sumbh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  335. sumbytes = segbuf->sb_sum.sumbytes;
  336. sci->sc_finfo_ptr.bh = sumbh; sci->sc_finfo_ptr.offset = sumbytes;
  337. sci->sc_binfo_ptr.bh = sumbh; sci->sc_binfo_ptr.offset = sumbytes;
  338. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  339. return 0;
  340. }
  341. static int nilfs_segctor_feed_segment(struct nilfs_sc_info *sci)
  342. {
  343. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  344. if (NILFS_SEGBUF_IS_LAST(sci->sc_curseg, &sci->sc_segbufs))
  345. return -E2BIG; /* The current segment is filled up
  346. (internal code) */
  347. sci->sc_curseg = NILFS_NEXT_SEGBUF(sci->sc_curseg);
  348. return nilfs_segctor_reset_segment_buffer(sci);
  349. }
  350. static int nilfs_segctor_add_super_root(struct nilfs_sc_info *sci)
  351. {
  352. struct nilfs_segment_buffer *segbuf = sci->sc_curseg;
  353. int err;
  354. if (segbuf->sb_sum.nblocks >= segbuf->sb_rest_blocks) {
  355. err = nilfs_segctor_feed_segment(sci);
  356. if (err)
  357. return err;
  358. segbuf = sci->sc_curseg;
  359. }
  360. err = nilfs_segbuf_extend_payload(segbuf, &segbuf->sb_super_root);
  361. if (likely(!err))
  362. segbuf->sb_sum.flags |= NILFS_SS_SR;
  363. return err;
  364. }
  365. /*
  366. * Functions for making segment summary and payloads
  367. */
  368. static int nilfs_segctor_segsum_block_required(
  369. struct nilfs_sc_info *sci, const struct nilfs_segsum_pointer *ssp,
  370. unsigned binfo_size)
  371. {
  372. unsigned blocksize = sci->sc_super->s_blocksize;
  373. /* Size of finfo and binfo is enough small against blocksize */
  374. return ssp->offset + binfo_size +
  375. (!sci->sc_blk_cnt ? sizeof(struct nilfs_finfo) : 0) >
  376. blocksize;
  377. }
  378. static void nilfs_segctor_begin_finfo(struct nilfs_sc_info *sci,
  379. struct inode *inode)
  380. {
  381. sci->sc_curseg->sb_sum.nfinfo++;
  382. sci->sc_binfo_ptr = sci->sc_finfo_ptr;
  383. nilfs_segctor_map_segsum_entry(
  384. sci, &sci->sc_binfo_ptr, sizeof(struct nilfs_finfo));
  385. if (inode->i_sb && !test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  386. set_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  387. /* skip finfo */
  388. }
  389. static void nilfs_segctor_end_finfo(struct nilfs_sc_info *sci,
  390. struct inode *inode)
  391. {
  392. struct nilfs_finfo *finfo;
  393. struct nilfs_inode_info *ii;
  394. struct nilfs_segment_buffer *segbuf;
  395. __u64 cno;
  396. if (sci->sc_blk_cnt == 0)
  397. return;
  398. ii = NILFS_I(inode);
  399. if (test_bit(NILFS_I_GCINODE, &ii->i_state))
  400. cno = ii->i_cno;
  401. else if (NILFS_ROOT_METADATA_FILE(inode->i_ino))
  402. cno = 0;
  403. else
  404. cno = sci->sc_cno;
  405. finfo = nilfs_segctor_map_segsum_entry(sci, &sci->sc_finfo_ptr,
  406. sizeof(*finfo));
  407. finfo->fi_ino = cpu_to_le64(inode->i_ino);
  408. finfo->fi_nblocks = cpu_to_le32(sci->sc_blk_cnt);
  409. finfo->fi_ndatablk = cpu_to_le32(sci->sc_datablk_cnt);
  410. finfo->fi_cno = cpu_to_le64(cno);
  411. segbuf = sci->sc_curseg;
  412. segbuf->sb_sum.sumbytes = sci->sc_binfo_ptr.offset +
  413. sci->sc_super->s_blocksize * (segbuf->sb_sum.nsumblk - 1);
  414. sci->sc_finfo_ptr = sci->sc_binfo_ptr;
  415. sci->sc_blk_cnt = sci->sc_datablk_cnt = 0;
  416. }
  417. static int nilfs_segctor_add_file_block(struct nilfs_sc_info *sci,
  418. struct buffer_head *bh,
  419. struct inode *inode,
  420. unsigned binfo_size)
  421. {
  422. struct nilfs_segment_buffer *segbuf;
  423. int required, err = 0;
  424. retry:
  425. segbuf = sci->sc_curseg;
  426. required = nilfs_segctor_segsum_block_required(
  427. sci, &sci->sc_binfo_ptr, binfo_size);
  428. if (segbuf->sb_sum.nblocks + required + 1 > segbuf->sb_rest_blocks) {
  429. nilfs_segctor_end_finfo(sci, inode);
  430. err = nilfs_segctor_feed_segment(sci);
  431. if (err)
  432. return err;
  433. goto retry;
  434. }
  435. if (unlikely(required)) {
  436. err = nilfs_segbuf_extend_segsum(segbuf);
  437. if (unlikely(err))
  438. goto failed;
  439. }
  440. if (sci->sc_blk_cnt == 0)
  441. nilfs_segctor_begin_finfo(sci, inode);
  442. nilfs_segctor_map_segsum_entry(sci, &sci->sc_binfo_ptr, binfo_size);
  443. /* Substitution to vblocknr is delayed until update_blocknr() */
  444. nilfs_segbuf_add_file_buffer(segbuf, bh);
  445. sci->sc_blk_cnt++;
  446. failed:
  447. return err;
  448. }
  449. /*
  450. * Callback functions that enumerate, mark, and collect dirty blocks
  451. */
  452. static int nilfs_collect_file_data(struct nilfs_sc_info *sci,
  453. struct buffer_head *bh, struct inode *inode)
  454. {
  455. int err;
  456. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  457. if (err < 0)
  458. return err;
  459. err = nilfs_segctor_add_file_block(sci, bh, inode,
  460. sizeof(struct nilfs_binfo_v));
  461. if (!err)
  462. sci->sc_datablk_cnt++;
  463. return err;
  464. }
  465. static int nilfs_collect_file_node(struct nilfs_sc_info *sci,
  466. struct buffer_head *bh,
  467. struct inode *inode)
  468. {
  469. return nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  470. }
  471. static int nilfs_collect_file_bmap(struct nilfs_sc_info *sci,
  472. struct buffer_head *bh,
  473. struct inode *inode)
  474. {
  475. WARN_ON(!buffer_dirty(bh));
  476. return nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  477. }
  478. static void nilfs_write_file_data_binfo(struct nilfs_sc_info *sci,
  479. struct nilfs_segsum_pointer *ssp,
  480. union nilfs_binfo *binfo)
  481. {
  482. struct nilfs_binfo_v *binfo_v = nilfs_segctor_map_segsum_entry(
  483. sci, ssp, sizeof(*binfo_v));
  484. *binfo_v = binfo->bi_v;
  485. }
  486. static void nilfs_write_file_node_binfo(struct nilfs_sc_info *sci,
  487. struct nilfs_segsum_pointer *ssp,
  488. union nilfs_binfo *binfo)
  489. {
  490. __le64 *vblocknr = nilfs_segctor_map_segsum_entry(
  491. sci, ssp, sizeof(*vblocknr));
  492. *vblocknr = binfo->bi_v.bi_vblocknr;
  493. }
  494. static struct nilfs_sc_operations nilfs_sc_file_ops = {
  495. .collect_data = nilfs_collect_file_data,
  496. .collect_node = nilfs_collect_file_node,
  497. .collect_bmap = nilfs_collect_file_bmap,
  498. .write_data_binfo = nilfs_write_file_data_binfo,
  499. .write_node_binfo = nilfs_write_file_node_binfo,
  500. };
  501. static int nilfs_collect_dat_data(struct nilfs_sc_info *sci,
  502. struct buffer_head *bh, struct inode *inode)
  503. {
  504. int err;
  505. err = nilfs_bmap_propagate(NILFS_I(inode)->i_bmap, bh);
  506. if (err < 0)
  507. return err;
  508. err = nilfs_segctor_add_file_block(sci, bh, inode, sizeof(__le64));
  509. if (!err)
  510. sci->sc_datablk_cnt++;
  511. return err;
  512. }
  513. static int nilfs_collect_dat_bmap(struct nilfs_sc_info *sci,
  514. struct buffer_head *bh, struct inode *inode)
  515. {
  516. WARN_ON(!buffer_dirty(bh));
  517. return nilfs_segctor_add_file_block(sci, bh, inode,
  518. sizeof(struct nilfs_binfo_dat));
  519. }
  520. static void nilfs_write_dat_data_binfo(struct nilfs_sc_info *sci,
  521. struct nilfs_segsum_pointer *ssp,
  522. union nilfs_binfo *binfo)
  523. {
  524. __le64 *blkoff = nilfs_segctor_map_segsum_entry(sci, ssp,
  525. sizeof(*blkoff));
  526. *blkoff = binfo->bi_dat.bi_blkoff;
  527. }
  528. static void nilfs_write_dat_node_binfo(struct nilfs_sc_info *sci,
  529. struct nilfs_segsum_pointer *ssp,
  530. union nilfs_binfo *binfo)
  531. {
  532. struct nilfs_binfo_dat *binfo_dat =
  533. nilfs_segctor_map_segsum_entry(sci, ssp, sizeof(*binfo_dat));
  534. *binfo_dat = binfo->bi_dat;
  535. }
  536. static struct nilfs_sc_operations nilfs_sc_dat_ops = {
  537. .collect_data = nilfs_collect_dat_data,
  538. .collect_node = nilfs_collect_file_node,
  539. .collect_bmap = nilfs_collect_dat_bmap,
  540. .write_data_binfo = nilfs_write_dat_data_binfo,
  541. .write_node_binfo = nilfs_write_dat_node_binfo,
  542. };
  543. static struct nilfs_sc_operations nilfs_sc_dsync_ops = {
  544. .collect_data = nilfs_collect_file_data,
  545. .collect_node = NULL,
  546. .collect_bmap = NULL,
  547. .write_data_binfo = nilfs_write_file_data_binfo,
  548. .write_node_binfo = NULL,
  549. };
  550. static size_t nilfs_lookup_dirty_data_buffers(struct inode *inode,
  551. struct list_head *listp,
  552. size_t nlimit,
  553. loff_t start, loff_t end)
  554. {
  555. struct address_space *mapping = inode->i_mapping;
  556. struct pagevec pvec;
  557. pgoff_t index = 0, last = ULONG_MAX;
  558. size_t ndirties = 0;
  559. int i;
  560. if (unlikely(start != 0 || end != LLONG_MAX)) {
  561. /*
  562. * A valid range is given for sync-ing data pages. The
  563. * range is rounded to per-page; extra dirty buffers
  564. * may be included if blocksize < pagesize.
  565. */
  566. index = start >> PAGE_SHIFT;
  567. last = end >> PAGE_SHIFT;
  568. }
  569. pagevec_init(&pvec, 0);
  570. repeat:
  571. if (unlikely(index > last) ||
  572. !pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  573. min_t(pgoff_t, last - index,
  574. PAGEVEC_SIZE - 1) + 1))
  575. return ndirties;
  576. for (i = 0; i < pagevec_count(&pvec); i++) {
  577. struct buffer_head *bh, *head;
  578. struct page *page = pvec.pages[i];
  579. if (unlikely(page->index > last))
  580. break;
  581. if (mapping->host) {
  582. lock_page(page);
  583. if (!page_has_buffers(page))
  584. create_empty_buffers(page,
  585. 1 << inode->i_blkbits, 0);
  586. unlock_page(page);
  587. }
  588. bh = head = page_buffers(page);
  589. do {
  590. if (!buffer_dirty(bh))
  591. continue;
  592. get_bh(bh);
  593. list_add_tail(&bh->b_assoc_buffers, listp);
  594. ndirties++;
  595. if (unlikely(ndirties >= nlimit)) {
  596. pagevec_release(&pvec);
  597. cond_resched();
  598. return ndirties;
  599. }
  600. } while (bh = bh->b_this_page, bh != head);
  601. }
  602. pagevec_release(&pvec);
  603. cond_resched();
  604. goto repeat;
  605. }
  606. static void nilfs_lookup_dirty_node_buffers(struct inode *inode,
  607. struct list_head *listp)
  608. {
  609. struct nilfs_inode_info *ii = NILFS_I(inode);
  610. struct address_space *mapping = &ii->i_btnode_cache;
  611. struct pagevec pvec;
  612. struct buffer_head *bh, *head;
  613. unsigned int i;
  614. pgoff_t index = 0;
  615. pagevec_init(&pvec, 0);
  616. while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
  617. PAGEVEC_SIZE)) {
  618. for (i = 0; i < pagevec_count(&pvec); i++) {
  619. bh = head = page_buffers(pvec.pages[i]);
  620. do {
  621. if (buffer_dirty(bh)) {
  622. get_bh(bh);
  623. list_add_tail(&bh->b_assoc_buffers,
  624. listp);
  625. }
  626. bh = bh->b_this_page;
  627. } while (bh != head);
  628. }
  629. pagevec_release(&pvec);
  630. cond_resched();
  631. }
  632. }
  633. static void nilfs_dispose_list(struct nilfs_sb_info *sbi,
  634. struct list_head *head, int force)
  635. {
  636. struct nilfs_inode_info *ii, *n;
  637. struct nilfs_inode_info *ivec[SC_N_INODEVEC], **pii;
  638. unsigned nv = 0;
  639. while (!list_empty(head)) {
  640. spin_lock(&sbi->s_inode_lock);
  641. list_for_each_entry_safe(ii, n, head, i_dirty) {
  642. list_del_init(&ii->i_dirty);
  643. if (force) {
  644. if (unlikely(ii->i_bh)) {
  645. brelse(ii->i_bh);
  646. ii->i_bh = NULL;
  647. }
  648. } else if (test_bit(NILFS_I_DIRTY, &ii->i_state)) {
  649. set_bit(NILFS_I_QUEUED, &ii->i_state);
  650. list_add_tail(&ii->i_dirty,
  651. &sbi->s_dirty_files);
  652. continue;
  653. }
  654. ivec[nv++] = ii;
  655. if (nv == SC_N_INODEVEC)
  656. break;
  657. }
  658. spin_unlock(&sbi->s_inode_lock);
  659. for (pii = ivec; nv > 0; pii++, nv--)
  660. iput(&(*pii)->vfs_inode);
  661. }
  662. }
  663. static int nilfs_test_metadata_dirty(struct the_nilfs *nilfs,
  664. struct nilfs_root *root)
  665. {
  666. int ret = 0;
  667. if (nilfs_mdt_fetch_dirty(root->ifile))
  668. ret++;
  669. if (nilfs_mdt_fetch_dirty(nilfs->ns_cpfile))
  670. ret++;
  671. if (nilfs_mdt_fetch_dirty(nilfs->ns_sufile))
  672. ret++;
  673. if ((ret || nilfs_doing_gc()) && nilfs_mdt_fetch_dirty(nilfs->ns_dat))
  674. ret++;
  675. return ret;
  676. }
  677. static int nilfs_segctor_clean(struct nilfs_sc_info *sci)
  678. {
  679. return list_empty(&sci->sc_dirty_files) &&
  680. !test_bit(NILFS_SC_DIRTY, &sci->sc_flags) &&
  681. sci->sc_nfreesegs == 0 &&
  682. (!nilfs_doing_gc() || list_empty(&sci->sc_gc_inodes));
  683. }
  684. static int nilfs_segctor_confirm(struct nilfs_sc_info *sci)
  685. {
  686. struct nilfs_sb_info *sbi = sci->sc_sbi;
  687. int ret = 0;
  688. if (nilfs_test_metadata_dirty(sbi->s_nilfs, sci->sc_root))
  689. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  690. spin_lock(&sbi->s_inode_lock);
  691. if (list_empty(&sbi->s_dirty_files) && nilfs_segctor_clean(sci))
  692. ret++;
  693. spin_unlock(&sbi->s_inode_lock);
  694. return ret;
  695. }
  696. static void nilfs_segctor_clear_metadata_dirty(struct nilfs_sc_info *sci)
  697. {
  698. struct nilfs_sb_info *sbi = sci->sc_sbi;
  699. struct the_nilfs *nilfs = sbi->s_nilfs;
  700. nilfs_mdt_clear_dirty(sci->sc_root->ifile);
  701. nilfs_mdt_clear_dirty(nilfs->ns_cpfile);
  702. nilfs_mdt_clear_dirty(nilfs->ns_sufile);
  703. nilfs_mdt_clear_dirty(nilfs->ns_dat);
  704. }
  705. static int nilfs_segctor_create_checkpoint(struct nilfs_sc_info *sci)
  706. {
  707. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  708. struct buffer_head *bh_cp;
  709. struct nilfs_checkpoint *raw_cp;
  710. int err;
  711. /* XXX: this interface will be changed */
  712. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 1,
  713. &raw_cp, &bh_cp);
  714. if (likely(!err)) {
  715. /* The following code is duplicated with cpfile. But, it is
  716. needed to collect the checkpoint even if it was not newly
  717. created */
  718. nilfs_mdt_mark_buffer_dirty(bh_cp);
  719. nilfs_mdt_mark_dirty(nilfs->ns_cpfile);
  720. nilfs_cpfile_put_checkpoint(
  721. nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  722. } else
  723. WARN_ON(err == -EINVAL || err == -ENOENT);
  724. return err;
  725. }
  726. static int nilfs_segctor_fill_in_checkpoint(struct nilfs_sc_info *sci)
  727. {
  728. struct nilfs_sb_info *sbi = sci->sc_sbi;
  729. struct the_nilfs *nilfs = sbi->s_nilfs;
  730. struct buffer_head *bh_cp;
  731. struct nilfs_checkpoint *raw_cp;
  732. int err;
  733. err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, 0,
  734. &raw_cp, &bh_cp);
  735. if (unlikely(err)) {
  736. WARN_ON(err == -EINVAL || err == -ENOENT);
  737. goto failed_ibh;
  738. }
  739. raw_cp->cp_snapshot_list.ssl_next = 0;
  740. raw_cp->cp_snapshot_list.ssl_prev = 0;
  741. raw_cp->cp_inodes_count =
  742. cpu_to_le64(atomic_read(&sci->sc_root->inodes_count));
  743. raw_cp->cp_blocks_count =
  744. cpu_to_le64(atomic_read(&sci->sc_root->blocks_count));
  745. raw_cp->cp_nblk_inc =
  746. cpu_to_le64(sci->sc_nblk_inc + sci->sc_nblk_this_inc);
  747. raw_cp->cp_create = cpu_to_le64(sci->sc_seg_ctime);
  748. raw_cp->cp_cno = cpu_to_le64(nilfs->ns_cno);
  749. if (test_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags))
  750. nilfs_checkpoint_clear_minor(raw_cp);
  751. else
  752. nilfs_checkpoint_set_minor(raw_cp);
  753. nilfs_write_inode_common(sci->sc_root->ifile,
  754. &raw_cp->cp_ifile_inode, 1);
  755. nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, nilfs->ns_cno, bh_cp);
  756. return 0;
  757. failed_ibh:
  758. return err;
  759. }
  760. static void nilfs_fill_in_file_bmap(struct inode *ifile,
  761. struct nilfs_inode_info *ii)
  762. {
  763. struct buffer_head *ibh;
  764. struct nilfs_inode *raw_inode;
  765. if (test_bit(NILFS_I_BMAP, &ii->i_state)) {
  766. ibh = ii->i_bh;
  767. BUG_ON(!ibh);
  768. raw_inode = nilfs_ifile_map_inode(ifile, ii->vfs_inode.i_ino,
  769. ibh);
  770. nilfs_bmap_write(ii->i_bmap, raw_inode);
  771. nilfs_ifile_unmap_inode(ifile, ii->vfs_inode.i_ino, ibh);
  772. }
  773. }
  774. static void nilfs_segctor_fill_in_file_bmap(struct nilfs_sc_info *sci)
  775. {
  776. struct nilfs_inode_info *ii;
  777. list_for_each_entry(ii, &sci->sc_dirty_files, i_dirty) {
  778. nilfs_fill_in_file_bmap(sci->sc_root->ifile, ii);
  779. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  780. }
  781. }
  782. static void nilfs_segctor_fill_in_super_root(struct nilfs_sc_info *sci,
  783. struct the_nilfs *nilfs)
  784. {
  785. struct buffer_head *bh_sr;
  786. struct nilfs_super_root *raw_sr;
  787. unsigned isz = nilfs->ns_inode_size;
  788. bh_sr = NILFS_LAST_SEGBUF(&sci->sc_segbufs)->sb_super_root;
  789. raw_sr = (struct nilfs_super_root *)bh_sr->b_data;
  790. raw_sr->sr_bytes = cpu_to_le16(NILFS_SR_BYTES);
  791. raw_sr->sr_nongc_ctime
  792. = cpu_to_le64(nilfs_doing_gc() ?
  793. nilfs->ns_nongc_ctime : sci->sc_seg_ctime);
  794. raw_sr->sr_flags = 0;
  795. nilfs_write_inode_common(nilfs->ns_dat, (void *)raw_sr +
  796. NILFS_SR_DAT_OFFSET(isz), 1);
  797. nilfs_write_inode_common(nilfs->ns_cpfile, (void *)raw_sr +
  798. NILFS_SR_CPFILE_OFFSET(isz), 1);
  799. nilfs_write_inode_common(nilfs->ns_sufile, (void *)raw_sr +
  800. NILFS_SR_SUFILE_OFFSET(isz), 1);
  801. }
  802. static void nilfs_redirty_inodes(struct list_head *head)
  803. {
  804. struct nilfs_inode_info *ii;
  805. list_for_each_entry(ii, head, i_dirty) {
  806. if (test_bit(NILFS_I_COLLECTED, &ii->i_state))
  807. clear_bit(NILFS_I_COLLECTED, &ii->i_state);
  808. }
  809. }
  810. static void nilfs_drop_collected_inodes(struct list_head *head)
  811. {
  812. struct nilfs_inode_info *ii;
  813. list_for_each_entry(ii, head, i_dirty) {
  814. if (!test_and_clear_bit(NILFS_I_COLLECTED, &ii->i_state))
  815. continue;
  816. clear_bit(NILFS_I_INODE_DIRTY, &ii->i_state);
  817. set_bit(NILFS_I_UPDATED, &ii->i_state);
  818. }
  819. }
  820. static int nilfs_segctor_apply_buffers(struct nilfs_sc_info *sci,
  821. struct inode *inode,
  822. struct list_head *listp,
  823. int (*collect)(struct nilfs_sc_info *,
  824. struct buffer_head *,
  825. struct inode *))
  826. {
  827. struct buffer_head *bh, *n;
  828. int err = 0;
  829. if (collect) {
  830. list_for_each_entry_safe(bh, n, listp, b_assoc_buffers) {
  831. list_del_init(&bh->b_assoc_buffers);
  832. err = collect(sci, bh, inode);
  833. brelse(bh);
  834. if (unlikely(err))
  835. goto dispose_buffers;
  836. }
  837. return 0;
  838. }
  839. dispose_buffers:
  840. while (!list_empty(listp)) {
  841. bh = list_entry(listp->next, struct buffer_head,
  842. b_assoc_buffers);
  843. list_del_init(&bh->b_assoc_buffers);
  844. brelse(bh);
  845. }
  846. return err;
  847. }
  848. static size_t nilfs_segctor_buffer_rest(struct nilfs_sc_info *sci)
  849. {
  850. /* Remaining number of blocks within segment buffer */
  851. return sci->sc_segbuf_nblocks -
  852. (sci->sc_nblk_this_inc + sci->sc_curseg->sb_sum.nblocks);
  853. }
  854. static int nilfs_segctor_scan_file(struct nilfs_sc_info *sci,
  855. struct inode *inode,
  856. struct nilfs_sc_operations *sc_ops)
  857. {
  858. LIST_HEAD(data_buffers);
  859. LIST_HEAD(node_buffers);
  860. int err;
  861. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  862. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  863. n = nilfs_lookup_dirty_data_buffers(
  864. inode, &data_buffers, rest + 1, 0, LLONG_MAX);
  865. if (n > rest) {
  866. err = nilfs_segctor_apply_buffers(
  867. sci, inode, &data_buffers,
  868. sc_ops->collect_data);
  869. BUG_ON(!err); /* always receive -E2BIG or true error */
  870. goto break_or_fail;
  871. }
  872. }
  873. nilfs_lookup_dirty_node_buffers(inode, &node_buffers);
  874. if (!(sci->sc_stage.flags & NILFS_CF_NODE)) {
  875. err = nilfs_segctor_apply_buffers(
  876. sci, inode, &data_buffers, sc_ops->collect_data);
  877. if (unlikely(err)) {
  878. /* dispose node list */
  879. nilfs_segctor_apply_buffers(
  880. sci, inode, &node_buffers, NULL);
  881. goto break_or_fail;
  882. }
  883. sci->sc_stage.flags |= NILFS_CF_NODE;
  884. }
  885. /* Collect node */
  886. err = nilfs_segctor_apply_buffers(
  887. sci, inode, &node_buffers, sc_ops->collect_node);
  888. if (unlikely(err))
  889. goto break_or_fail;
  890. nilfs_bmap_lookup_dirty_buffers(NILFS_I(inode)->i_bmap, &node_buffers);
  891. err = nilfs_segctor_apply_buffers(
  892. sci, inode, &node_buffers, sc_ops->collect_bmap);
  893. if (unlikely(err))
  894. goto break_or_fail;
  895. nilfs_segctor_end_finfo(sci, inode);
  896. sci->sc_stage.flags &= ~NILFS_CF_NODE;
  897. break_or_fail:
  898. return err;
  899. }
  900. static int nilfs_segctor_scan_file_dsync(struct nilfs_sc_info *sci,
  901. struct inode *inode)
  902. {
  903. LIST_HEAD(data_buffers);
  904. size_t n, rest = nilfs_segctor_buffer_rest(sci);
  905. int err;
  906. n = nilfs_lookup_dirty_data_buffers(inode, &data_buffers, rest + 1,
  907. sci->sc_dsync_start,
  908. sci->sc_dsync_end);
  909. err = nilfs_segctor_apply_buffers(sci, inode, &data_buffers,
  910. nilfs_collect_file_data);
  911. if (!err) {
  912. nilfs_segctor_end_finfo(sci, inode);
  913. BUG_ON(n > rest);
  914. /* always receive -E2BIG or true error if n > rest */
  915. }
  916. return err;
  917. }
  918. static int nilfs_segctor_collect_blocks(struct nilfs_sc_info *sci, int mode)
  919. {
  920. struct nilfs_sb_info *sbi = sci->sc_sbi;
  921. struct the_nilfs *nilfs = sbi->s_nilfs;
  922. struct list_head *head;
  923. struct nilfs_inode_info *ii;
  924. size_t ndone;
  925. int err = 0;
  926. switch (sci->sc_stage.scnt) {
  927. case NILFS_ST_INIT:
  928. /* Pre-processes */
  929. sci->sc_stage.flags = 0;
  930. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags)) {
  931. sci->sc_nblk_inc = 0;
  932. sci->sc_curseg->sb_sum.flags = NILFS_SS_LOGBGN;
  933. if (mode == SC_LSEG_DSYNC) {
  934. sci->sc_stage.scnt = NILFS_ST_DSYNC;
  935. goto dsync_mode;
  936. }
  937. }
  938. sci->sc_stage.dirty_file_ptr = NULL;
  939. sci->sc_stage.gc_inode_ptr = NULL;
  940. if (mode == SC_FLUSH_DAT) {
  941. sci->sc_stage.scnt = NILFS_ST_DAT;
  942. goto dat_stage;
  943. }
  944. sci->sc_stage.scnt++; /* Fall through */
  945. case NILFS_ST_GC:
  946. if (nilfs_doing_gc()) {
  947. head = &sci->sc_gc_inodes;
  948. ii = list_prepare_entry(sci->sc_stage.gc_inode_ptr,
  949. head, i_dirty);
  950. list_for_each_entry_continue(ii, head, i_dirty) {
  951. err = nilfs_segctor_scan_file(
  952. sci, &ii->vfs_inode,
  953. &nilfs_sc_file_ops);
  954. if (unlikely(err)) {
  955. sci->sc_stage.gc_inode_ptr = list_entry(
  956. ii->i_dirty.prev,
  957. struct nilfs_inode_info,
  958. i_dirty);
  959. goto break_or_fail;
  960. }
  961. set_bit(NILFS_I_COLLECTED, &ii->i_state);
  962. }
  963. sci->sc_stage.gc_inode_ptr = NULL;
  964. }
  965. sci->sc_stage.scnt++; /* Fall through */
  966. case NILFS_ST_FILE:
  967. head = &sci->sc_dirty_files;
  968. ii = list_prepare_entry(sci->sc_stage.dirty_file_ptr, head,
  969. i_dirty);
  970. list_for_each_entry_continue(ii, head, i_dirty) {
  971. clear_bit(NILFS_I_DIRTY, &ii->i_state);
  972. err = nilfs_segctor_scan_file(sci, &ii->vfs_inode,
  973. &nilfs_sc_file_ops);
  974. if (unlikely(err)) {
  975. sci->sc_stage.dirty_file_ptr =
  976. list_entry(ii->i_dirty.prev,
  977. struct nilfs_inode_info,
  978. i_dirty);
  979. goto break_or_fail;
  980. }
  981. /* sci->sc_stage.dirty_file_ptr = NILFS_I(inode); */
  982. /* XXX: required ? */
  983. }
  984. sci->sc_stage.dirty_file_ptr = NULL;
  985. if (mode == SC_FLUSH_FILE) {
  986. sci->sc_stage.scnt = NILFS_ST_DONE;
  987. return 0;
  988. }
  989. sci->sc_stage.scnt++;
  990. sci->sc_stage.flags |= NILFS_CF_IFILE_STARTED;
  991. /* Fall through */
  992. case NILFS_ST_IFILE:
  993. err = nilfs_segctor_scan_file(sci, sci->sc_root->ifile,
  994. &nilfs_sc_file_ops);
  995. if (unlikely(err))
  996. break;
  997. sci->sc_stage.scnt++;
  998. /* Creating a checkpoint */
  999. err = nilfs_segctor_create_checkpoint(sci);
  1000. if (unlikely(err))
  1001. break;
  1002. /* Fall through */
  1003. case NILFS_ST_CPFILE:
  1004. err = nilfs_segctor_scan_file(sci, nilfs->ns_cpfile,
  1005. &nilfs_sc_file_ops);
  1006. if (unlikely(err))
  1007. break;
  1008. sci->sc_stage.scnt++; /* Fall through */
  1009. case NILFS_ST_SUFILE:
  1010. err = nilfs_sufile_freev(nilfs->ns_sufile, sci->sc_freesegs,
  1011. sci->sc_nfreesegs, &ndone);
  1012. if (unlikely(err)) {
  1013. nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1014. sci->sc_freesegs, ndone,
  1015. NULL);
  1016. break;
  1017. }
  1018. sci->sc_stage.flags |= NILFS_CF_SUFREED;
  1019. err = nilfs_segctor_scan_file(sci, nilfs->ns_sufile,
  1020. &nilfs_sc_file_ops);
  1021. if (unlikely(err))
  1022. break;
  1023. sci->sc_stage.scnt++; /* Fall through */
  1024. case NILFS_ST_DAT:
  1025. dat_stage:
  1026. err = nilfs_segctor_scan_file(sci, nilfs->ns_dat,
  1027. &nilfs_sc_dat_ops);
  1028. if (unlikely(err))
  1029. break;
  1030. if (mode == SC_FLUSH_DAT) {
  1031. sci->sc_stage.scnt = NILFS_ST_DONE;
  1032. return 0;
  1033. }
  1034. sci->sc_stage.scnt++; /* Fall through */
  1035. case NILFS_ST_SR:
  1036. if (mode == SC_LSEG_SR) {
  1037. /* Appending a super root */
  1038. err = nilfs_segctor_add_super_root(sci);
  1039. if (unlikely(err))
  1040. break;
  1041. }
  1042. /* End of a logical segment */
  1043. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1044. sci->sc_stage.scnt = NILFS_ST_DONE;
  1045. return 0;
  1046. case NILFS_ST_DSYNC:
  1047. dsync_mode:
  1048. sci->sc_curseg->sb_sum.flags |= NILFS_SS_SYNDT;
  1049. ii = sci->sc_dsync_inode;
  1050. if (!test_bit(NILFS_I_BUSY, &ii->i_state))
  1051. break;
  1052. err = nilfs_segctor_scan_file_dsync(sci, &ii->vfs_inode);
  1053. if (unlikely(err))
  1054. break;
  1055. sci->sc_curseg->sb_sum.flags |= NILFS_SS_LOGEND;
  1056. sci->sc_stage.scnt = NILFS_ST_DONE;
  1057. return 0;
  1058. case NILFS_ST_DONE:
  1059. return 0;
  1060. default:
  1061. BUG();
  1062. }
  1063. break_or_fail:
  1064. return err;
  1065. }
  1066. /**
  1067. * nilfs_segctor_begin_construction - setup segment buffer to make a new log
  1068. * @sci: nilfs_sc_info
  1069. * @nilfs: nilfs object
  1070. */
  1071. static int nilfs_segctor_begin_construction(struct nilfs_sc_info *sci,
  1072. struct the_nilfs *nilfs)
  1073. {
  1074. struct nilfs_segment_buffer *segbuf, *prev;
  1075. __u64 nextnum;
  1076. int err, alloc = 0;
  1077. segbuf = nilfs_segbuf_new(sci->sc_super);
  1078. if (unlikely(!segbuf))
  1079. return -ENOMEM;
  1080. if (list_empty(&sci->sc_write_logs)) {
  1081. nilfs_segbuf_map(segbuf, nilfs->ns_segnum,
  1082. nilfs->ns_pseg_offset, nilfs);
  1083. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1084. nilfs_shift_to_next_segment(nilfs);
  1085. nilfs_segbuf_map(segbuf, nilfs->ns_segnum, 0, nilfs);
  1086. }
  1087. segbuf->sb_sum.seg_seq = nilfs->ns_seg_seq;
  1088. nextnum = nilfs->ns_nextnum;
  1089. if (nilfs->ns_segnum == nilfs->ns_nextnum)
  1090. /* Start from the head of a new full segment */
  1091. alloc++;
  1092. } else {
  1093. /* Continue logs */
  1094. prev = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1095. nilfs_segbuf_map_cont(segbuf, prev);
  1096. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq;
  1097. nextnum = prev->sb_nextnum;
  1098. if (segbuf->sb_rest_blocks < NILFS_PSEG_MIN_BLOCKS) {
  1099. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1100. segbuf->sb_sum.seg_seq++;
  1101. alloc++;
  1102. }
  1103. }
  1104. err = nilfs_sufile_mark_dirty(nilfs->ns_sufile, segbuf->sb_segnum);
  1105. if (err)
  1106. goto failed;
  1107. if (alloc) {
  1108. err = nilfs_sufile_alloc(nilfs->ns_sufile, &nextnum);
  1109. if (err)
  1110. goto failed;
  1111. }
  1112. nilfs_segbuf_set_next_segnum(segbuf, nextnum, nilfs);
  1113. BUG_ON(!list_empty(&sci->sc_segbufs));
  1114. list_add_tail(&segbuf->sb_list, &sci->sc_segbufs);
  1115. sci->sc_segbuf_nblocks = segbuf->sb_rest_blocks;
  1116. return 0;
  1117. failed:
  1118. nilfs_segbuf_free(segbuf);
  1119. return err;
  1120. }
  1121. static int nilfs_segctor_extend_segments(struct nilfs_sc_info *sci,
  1122. struct the_nilfs *nilfs, int nadd)
  1123. {
  1124. struct nilfs_segment_buffer *segbuf, *prev;
  1125. struct inode *sufile = nilfs->ns_sufile;
  1126. __u64 nextnextnum;
  1127. LIST_HEAD(list);
  1128. int err, ret, i;
  1129. prev = NILFS_LAST_SEGBUF(&sci->sc_segbufs);
  1130. /*
  1131. * Since the segment specified with nextnum might be allocated during
  1132. * the previous construction, the buffer including its segusage may
  1133. * not be dirty. The following call ensures that the buffer is dirty
  1134. * and will pin the buffer on memory until the sufile is written.
  1135. */
  1136. err = nilfs_sufile_mark_dirty(sufile, prev->sb_nextnum);
  1137. if (unlikely(err))
  1138. return err;
  1139. for (i = 0; i < nadd; i++) {
  1140. /* extend segment info */
  1141. err = -ENOMEM;
  1142. segbuf = nilfs_segbuf_new(sci->sc_super);
  1143. if (unlikely(!segbuf))
  1144. goto failed;
  1145. /* map this buffer to region of segment on-disk */
  1146. nilfs_segbuf_map(segbuf, prev->sb_nextnum, 0, nilfs);
  1147. sci->sc_segbuf_nblocks += segbuf->sb_rest_blocks;
  1148. /* allocate the next next full segment */
  1149. err = nilfs_sufile_alloc(sufile, &nextnextnum);
  1150. if (unlikely(err))
  1151. goto failed_segbuf;
  1152. segbuf->sb_sum.seg_seq = prev->sb_sum.seg_seq + 1;
  1153. nilfs_segbuf_set_next_segnum(segbuf, nextnextnum, nilfs);
  1154. list_add_tail(&segbuf->sb_list, &list);
  1155. prev = segbuf;
  1156. }
  1157. list_splice_tail(&list, &sci->sc_segbufs);
  1158. return 0;
  1159. failed_segbuf:
  1160. nilfs_segbuf_free(segbuf);
  1161. failed:
  1162. list_for_each_entry(segbuf, &list, sb_list) {
  1163. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1164. WARN_ON(ret); /* never fails */
  1165. }
  1166. nilfs_destroy_logs(&list);
  1167. return err;
  1168. }
  1169. static void nilfs_free_incomplete_logs(struct list_head *logs,
  1170. struct the_nilfs *nilfs)
  1171. {
  1172. struct nilfs_segment_buffer *segbuf, *prev;
  1173. struct inode *sufile = nilfs->ns_sufile;
  1174. int ret;
  1175. segbuf = NILFS_FIRST_SEGBUF(logs);
  1176. if (nilfs->ns_nextnum != segbuf->sb_nextnum) {
  1177. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1178. WARN_ON(ret); /* never fails */
  1179. }
  1180. if (atomic_read(&segbuf->sb_err)) {
  1181. /* Case 1: The first segment failed */
  1182. if (segbuf->sb_pseg_start != segbuf->sb_fseg_start)
  1183. /* Case 1a: Partial segment appended into an existing
  1184. segment */
  1185. nilfs_terminate_segment(nilfs, segbuf->sb_fseg_start,
  1186. segbuf->sb_fseg_end);
  1187. else /* Case 1b: New full segment */
  1188. set_nilfs_discontinued(nilfs);
  1189. }
  1190. prev = segbuf;
  1191. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1192. if (prev->sb_nextnum != segbuf->sb_nextnum) {
  1193. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1194. WARN_ON(ret); /* never fails */
  1195. }
  1196. if (atomic_read(&segbuf->sb_err) &&
  1197. segbuf->sb_segnum != nilfs->ns_nextnum)
  1198. /* Case 2: extended segment (!= next) failed */
  1199. nilfs_sufile_set_error(sufile, segbuf->sb_segnum);
  1200. prev = segbuf;
  1201. }
  1202. }
  1203. static void nilfs_segctor_update_segusage(struct nilfs_sc_info *sci,
  1204. struct inode *sufile)
  1205. {
  1206. struct nilfs_segment_buffer *segbuf;
  1207. unsigned long live_blocks;
  1208. int ret;
  1209. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1210. live_blocks = segbuf->sb_sum.nblocks +
  1211. (segbuf->sb_pseg_start - segbuf->sb_fseg_start);
  1212. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1213. live_blocks,
  1214. sci->sc_seg_ctime);
  1215. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1216. }
  1217. }
  1218. static void nilfs_cancel_segusage(struct list_head *logs, struct inode *sufile)
  1219. {
  1220. struct nilfs_segment_buffer *segbuf;
  1221. int ret;
  1222. segbuf = NILFS_FIRST_SEGBUF(logs);
  1223. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1224. segbuf->sb_pseg_start -
  1225. segbuf->sb_fseg_start, 0);
  1226. WARN_ON(ret); /* always succeed because the segusage is dirty */
  1227. list_for_each_entry_continue(segbuf, logs, sb_list) {
  1228. ret = nilfs_sufile_set_segment_usage(sufile, segbuf->sb_segnum,
  1229. 0, 0);
  1230. WARN_ON(ret); /* always succeed */
  1231. }
  1232. }
  1233. static void nilfs_segctor_truncate_segments(struct nilfs_sc_info *sci,
  1234. struct nilfs_segment_buffer *last,
  1235. struct inode *sufile)
  1236. {
  1237. struct nilfs_segment_buffer *segbuf = last;
  1238. int ret;
  1239. list_for_each_entry_continue(segbuf, &sci->sc_segbufs, sb_list) {
  1240. sci->sc_segbuf_nblocks -= segbuf->sb_rest_blocks;
  1241. ret = nilfs_sufile_free(sufile, segbuf->sb_nextnum);
  1242. WARN_ON(ret);
  1243. }
  1244. nilfs_truncate_logs(&sci->sc_segbufs, last);
  1245. }
  1246. static int nilfs_segctor_collect(struct nilfs_sc_info *sci,
  1247. struct the_nilfs *nilfs, int mode)
  1248. {
  1249. struct nilfs_cstage prev_stage = sci->sc_stage;
  1250. int err, nadd = 1;
  1251. /* Collection retry loop */
  1252. for (;;) {
  1253. sci->sc_nblk_this_inc = 0;
  1254. sci->sc_curseg = NILFS_FIRST_SEGBUF(&sci->sc_segbufs);
  1255. err = nilfs_segctor_reset_segment_buffer(sci);
  1256. if (unlikely(err))
  1257. goto failed;
  1258. err = nilfs_segctor_collect_blocks(sci, mode);
  1259. sci->sc_nblk_this_inc += sci->sc_curseg->sb_sum.nblocks;
  1260. if (!err)
  1261. break;
  1262. if (unlikely(err != -E2BIG))
  1263. goto failed;
  1264. /* The current segment is filled up */
  1265. if (mode != SC_LSEG_SR || sci->sc_stage.scnt < NILFS_ST_CPFILE)
  1266. break;
  1267. nilfs_clear_logs(&sci->sc_segbufs);
  1268. err = nilfs_segctor_extend_segments(sci, nilfs, nadd);
  1269. if (unlikely(err))
  1270. return err;
  1271. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1272. err = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1273. sci->sc_freesegs,
  1274. sci->sc_nfreesegs,
  1275. NULL);
  1276. WARN_ON(err); /* do not happen */
  1277. }
  1278. nadd = min_t(int, nadd << 1, SC_MAX_SEGDELTA);
  1279. sci->sc_stage = prev_stage;
  1280. }
  1281. nilfs_segctor_truncate_segments(sci, sci->sc_curseg, nilfs->ns_sufile);
  1282. return 0;
  1283. failed:
  1284. return err;
  1285. }
  1286. static void nilfs_list_replace_buffer(struct buffer_head *old_bh,
  1287. struct buffer_head *new_bh)
  1288. {
  1289. BUG_ON(!list_empty(&new_bh->b_assoc_buffers));
  1290. list_replace_init(&old_bh->b_assoc_buffers, &new_bh->b_assoc_buffers);
  1291. /* The caller must release old_bh */
  1292. }
  1293. static int
  1294. nilfs_segctor_update_payload_blocknr(struct nilfs_sc_info *sci,
  1295. struct nilfs_segment_buffer *segbuf,
  1296. int mode)
  1297. {
  1298. struct inode *inode = NULL;
  1299. sector_t blocknr;
  1300. unsigned long nfinfo = segbuf->sb_sum.nfinfo;
  1301. unsigned long nblocks = 0, ndatablk = 0;
  1302. struct nilfs_sc_operations *sc_op = NULL;
  1303. struct nilfs_segsum_pointer ssp;
  1304. struct nilfs_finfo *finfo = NULL;
  1305. union nilfs_binfo binfo;
  1306. struct buffer_head *bh, *bh_org;
  1307. ino_t ino = 0;
  1308. int err = 0;
  1309. if (!nfinfo)
  1310. goto out;
  1311. blocknr = segbuf->sb_pseg_start + segbuf->sb_sum.nsumblk;
  1312. ssp.bh = NILFS_SEGBUF_FIRST_BH(&segbuf->sb_segsum_buffers);
  1313. ssp.offset = sizeof(struct nilfs_segment_summary);
  1314. list_for_each_entry(bh, &segbuf->sb_payload_buffers, b_assoc_buffers) {
  1315. if (bh == segbuf->sb_super_root)
  1316. break;
  1317. if (!finfo) {
  1318. finfo = nilfs_segctor_map_segsum_entry(
  1319. sci, &ssp, sizeof(*finfo));
  1320. ino = le64_to_cpu(finfo->fi_ino);
  1321. nblocks = le32_to_cpu(finfo->fi_nblocks);
  1322. ndatablk = le32_to_cpu(finfo->fi_ndatablk);
  1323. if (buffer_nilfs_node(bh))
  1324. inode = NILFS_BTNC_I(bh->b_page->mapping);
  1325. else
  1326. inode = NILFS_AS_I(bh->b_page->mapping);
  1327. if (mode == SC_LSEG_DSYNC)
  1328. sc_op = &nilfs_sc_dsync_ops;
  1329. else if (ino == NILFS_DAT_INO)
  1330. sc_op = &nilfs_sc_dat_ops;
  1331. else /* file blocks */
  1332. sc_op = &nilfs_sc_file_ops;
  1333. }
  1334. bh_org = bh;
  1335. get_bh(bh_org);
  1336. err = nilfs_bmap_assign(NILFS_I(inode)->i_bmap, &bh, blocknr,
  1337. &binfo);
  1338. if (bh != bh_org)
  1339. nilfs_list_replace_buffer(bh_org, bh);
  1340. brelse(bh_org);
  1341. if (unlikely(err))
  1342. goto failed_bmap;
  1343. if (ndatablk > 0)
  1344. sc_op->write_data_binfo(sci, &ssp, &binfo);
  1345. else
  1346. sc_op->write_node_binfo(sci, &ssp, &binfo);
  1347. blocknr++;
  1348. if (--nblocks == 0) {
  1349. finfo = NULL;
  1350. if (--nfinfo == 0)
  1351. break;
  1352. } else if (ndatablk > 0)
  1353. ndatablk--;
  1354. }
  1355. out:
  1356. return 0;
  1357. failed_bmap:
  1358. return err;
  1359. }
  1360. static int nilfs_segctor_assign(struct nilfs_sc_info *sci, int mode)
  1361. {
  1362. struct nilfs_segment_buffer *segbuf;
  1363. int err;
  1364. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1365. err = nilfs_segctor_update_payload_blocknr(sci, segbuf, mode);
  1366. if (unlikely(err))
  1367. return err;
  1368. nilfs_segbuf_fill_in_segsum(segbuf);
  1369. }
  1370. return 0;
  1371. }
  1372. static int
  1373. nilfs_copy_replace_page_buffers(struct page *page, struct list_head *out)
  1374. {
  1375. struct page *clone_page;
  1376. struct buffer_head *bh, *head, *bh2;
  1377. void *kaddr;
  1378. bh = head = page_buffers(page);
  1379. clone_page = nilfs_alloc_private_page(bh->b_bdev, bh->b_size, 0);
  1380. if (unlikely(!clone_page))
  1381. return -ENOMEM;
  1382. bh2 = page_buffers(clone_page);
  1383. kaddr = kmap_atomic(page, KM_USER0);
  1384. do {
  1385. if (list_empty(&bh->b_assoc_buffers))
  1386. continue;
  1387. get_bh(bh2);
  1388. page_cache_get(clone_page); /* for each bh */
  1389. memcpy(bh2->b_data, kaddr + bh_offset(bh), bh2->b_size);
  1390. bh2->b_blocknr = bh->b_blocknr;
  1391. list_replace(&bh->b_assoc_buffers, &bh2->b_assoc_buffers);
  1392. list_add_tail(&bh->b_assoc_buffers, out);
  1393. } while (bh = bh->b_this_page, bh2 = bh2->b_this_page, bh != head);
  1394. kunmap_atomic(kaddr, KM_USER0);
  1395. if (!TestSetPageWriteback(clone_page))
  1396. account_page_writeback(clone_page);
  1397. unlock_page(clone_page);
  1398. return 0;
  1399. }
  1400. static int nilfs_test_page_to_be_frozen(struct page *page)
  1401. {
  1402. struct address_space *mapping = page->mapping;
  1403. if (!mapping || !mapping->host || S_ISDIR(mapping->host->i_mode))
  1404. return 0;
  1405. if (page_mapped(page)) {
  1406. ClearPageChecked(page);
  1407. return 1;
  1408. }
  1409. return PageChecked(page);
  1410. }
  1411. static int nilfs_begin_page_io(struct page *page, struct list_head *out)
  1412. {
  1413. if (!page || PageWriteback(page))
  1414. /* For split b-tree node pages, this function may be called
  1415. twice. We ignore the 2nd or later calls by this check. */
  1416. return 0;
  1417. lock_page(page);
  1418. clear_page_dirty_for_io(page);
  1419. set_page_writeback(page);
  1420. unlock_page(page);
  1421. if (nilfs_test_page_to_be_frozen(page)) {
  1422. int err = nilfs_copy_replace_page_buffers(page, out);
  1423. if (unlikely(err))
  1424. return err;
  1425. }
  1426. return 0;
  1427. }
  1428. static int nilfs_segctor_prepare_write(struct nilfs_sc_info *sci,
  1429. struct page **failed_page)
  1430. {
  1431. struct nilfs_segment_buffer *segbuf;
  1432. struct page *bd_page = NULL, *fs_page = NULL;
  1433. struct list_head *list = &sci->sc_copied_buffers;
  1434. int err;
  1435. *failed_page = NULL;
  1436. list_for_each_entry(segbuf, &sci->sc_segbufs, sb_list) {
  1437. struct buffer_head *bh;
  1438. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1439. b_assoc_buffers) {
  1440. if (bh->b_page != bd_page) {
  1441. if (bd_page) {
  1442. lock_page(bd_page);
  1443. clear_page_dirty_for_io(bd_page);
  1444. set_page_writeback(bd_page);
  1445. unlock_page(bd_page);
  1446. }
  1447. bd_page = bh->b_page;
  1448. }
  1449. }
  1450. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1451. b_assoc_buffers) {
  1452. if (bh == segbuf->sb_super_root) {
  1453. if (bh->b_page != bd_page) {
  1454. lock_page(bd_page);
  1455. clear_page_dirty_for_io(bd_page);
  1456. set_page_writeback(bd_page);
  1457. unlock_page(bd_page);
  1458. bd_page = bh->b_page;
  1459. }
  1460. break;
  1461. }
  1462. if (bh->b_page != fs_page) {
  1463. err = nilfs_begin_page_io(fs_page, list);
  1464. if (unlikely(err)) {
  1465. *failed_page = fs_page;
  1466. goto out;
  1467. }
  1468. fs_page = bh->b_page;
  1469. }
  1470. }
  1471. }
  1472. if (bd_page) {
  1473. lock_page(bd_page);
  1474. clear_page_dirty_for_io(bd_page);
  1475. set_page_writeback(bd_page);
  1476. unlock_page(bd_page);
  1477. }
  1478. err = nilfs_begin_page_io(fs_page, list);
  1479. if (unlikely(err))
  1480. *failed_page = fs_page;
  1481. out:
  1482. return err;
  1483. }
  1484. static int nilfs_segctor_write(struct nilfs_sc_info *sci,
  1485. struct the_nilfs *nilfs)
  1486. {
  1487. int ret;
  1488. ret = nilfs_write_logs(&sci->sc_segbufs, nilfs);
  1489. list_splice_tail_init(&sci->sc_segbufs, &sci->sc_write_logs);
  1490. return ret;
  1491. }
  1492. static void __nilfs_end_page_io(struct page *page, int err)
  1493. {
  1494. if (!err) {
  1495. if (!nilfs_page_buffers_clean(page))
  1496. __set_page_dirty_nobuffers(page);
  1497. ClearPageError(page);
  1498. } else {
  1499. __set_page_dirty_nobuffers(page);
  1500. SetPageError(page);
  1501. }
  1502. if (buffer_nilfs_allocated(page_buffers(page))) {
  1503. if (TestClearPageWriteback(page))
  1504. dec_zone_page_state(page, NR_WRITEBACK);
  1505. } else
  1506. end_page_writeback(page);
  1507. }
  1508. static void nilfs_end_page_io(struct page *page, int err)
  1509. {
  1510. if (!page)
  1511. return;
  1512. if (buffer_nilfs_node(page_buffers(page)) && !PageWriteback(page)) {
  1513. /*
  1514. * For b-tree node pages, this function may be called twice
  1515. * or more because they might be split in a segment.
  1516. */
  1517. if (PageDirty(page)) {
  1518. /*
  1519. * For pages holding split b-tree node buffers, dirty
  1520. * flag on the buffers may be cleared discretely.
  1521. * In that case, the page is once redirtied for
  1522. * remaining buffers, and it must be cancelled if
  1523. * all the buffers get cleaned later.
  1524. */
  1525. lock_page(page);
  1526. if (nilfs_page_buffers_clean(page))
  1527. __nilfs_clear_page_dirty(page);
  1528. unlock_page(page);
  1529. }
  1530. return;
  1531. }
  1532. __nilfs_end_page_io(page, err);
  1533. }
  1534. static void nilfs_clear_copied_buffers(struct list_head *list, int err)
  1535. {
  1536. struct buffer_head *bh, *head;
  1537. struct page *page;
  1538. while (!list_empty(list)) {
  1539. bh = list_entry(list->next, struct buffer_head,
  1540. b_assoc_buffers);
  1541. page = bh->b_page;
  1542. page_cache_get(page);
  1543. head = bh = page_buffers(page);
  1544. do {
  1545. if (!list_empty(&bh->b_assoc_buffers)) {
  1546. list_del_init(&bh->b_assoc_buffers);
  1547. if (!err) {
  1548. set_buffer_uptodate(bh);
  1549. clear_buffer_dirty(bh);
  1550. clear_buffer_delay(bh);
  1551. clear_buffer_nilfs_volatile(bh);
  1552. }
  1553. brelse(bh); /* for b_assoc_buffers */
  1554. }
  1555. } while ((bh = bh->b_this_page) != head);
  1556. __nilfs_end_page_io(page, err);
  1557. page_cache_release(page);
  1558. }
  1559. }
  1560. static void nilfs_abort_logs(struct list_head *logs, struct page *failed_page,
  1561. int err)
  1562. {
  1563. struct nilfs_segment_buffer *segbuf;
  1564. struct page *bd_page = NULL, *fs_page = NULL;
  1565. struct buffer_head *bh;
  1566. if (list_empty(logs))
  1567. return;
  1568. list_for_each_entry(segbuf, logs, sb_list) {
  1569. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1570. b_assoc_buffers) {
  1571. if (bh->b_page != bd_page) {
  1572. if (bd_page)
  1573. end_page_writeback(bd_page);
  1574. bd_page = bh->b_page;
  1575. }
  1576. }
  1577. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1578. b_assoc_buffers) {
  1579. if (bh == segbuf->sb_super_root) {
  1580. if (bh->b_page != bd_page) {
  1581. end_page_writeback(bd_page);
  1582. bd_page = bh->b_page;
  1583. }
  1584. break;
  1585. }
  1586. if (bh->b_page != fs_page) {
  1587. nilfs_end_page_io(fs_page, err);
  1588. if (fs_page && fs_page == failed_page)
  1589. return;
  1590. fs_page = bh->b_page;
  1591. }
  1592. }
  1593. }
  1594. if (bd_page)
  1595. end_page_writeback(bd_page);
  1596. nilfs_end_page_io(fs_page, err);
  1597. }
  1598. static void nilfs_segctor_abort_construction(struct nilfs_sc_info *sci,
  1599. struct the_nilfs *nilfs, int err)
  1600. {
  1601. LIST_HEAD(logs);
  1602. int ret;
  1603. list_splice_tail_init(&sci->sc_write_logs, &logs);
  1604. ret = nilfs_wait_on_logs(&logs);
  1605. nilfs_abort_logs(&logs, NULL, ret ? : err);
  1606. list_splice_tail_init(&sci->sc_segbufs, &logs);
  1607. nilfs_cancel_segusage(&logs, nilfs->ns_sufile);
  1608. nilfs_free_incomplete_logs(&logs, nilfs);
  1609. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, err);
  1610. if (sci->sc_stage.flags & NILFS_CF_SUFREED) {
  1611. ret = nilfs_sufile_cancel_freev(nilfs->ns_sufile,
  1612. sci->sc_freesegs,
  1613. sci->sc_nfreesegs,
  1614. NULL);
  1615. WARN_ON(ret); /* do not happen */
  1616. }
  1617. nilfs_destroy_logs(&logs);
  1618. }
  1619. static void nilfs_set_next_segment(struct the_nilfs *nilfs,
  1620. struct nilfs_segment_buffer *segbuf)
  1621. {
  1622. nilfs->ns_segnum = segbuf->sb_segnum;
  1623. nilfs->ns_nextnum = segbuf->sb_nextnum;
  1624. nilfs->ns_pseg_offset = segbuf->sb_pseg_start - segbuf->sb_fseg_start
  1625. + segbuf->sb_sum.nblocks;
  1626. nilfs->ns_seg_seq = segbuf->sb_sum.seg_seq;
  1627. nilfs->ns_ctime = segbuf->sb_sum.ctime;
  1628. }
  1629. static void nilfs_segctor_complete_write(struct nilfs_sc_info *sci)
  1630. {
  1631. struct nilfs_segment_buffer *segbuf;
  1632. struct page *bd_page = NULL, *fs_page = NULL;
  1633. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  1634. int update_sr = false;
  1635. list_for_each_entry(segbuf, &sci->sc_write_logs, sb_list) {
  1636. struct buffer_head *bh;
  1637. list_for_each_entry(bh, &segbuf->sb_segsum_buffers,
  1638. b_assoc_buffers) {
  1639. set_buffer_uptodate(bh);
  1640. clear_buffer_dirty(bh);
  1641. if (bh->b_page != bd_page) {
  1642. if (bd_page)
  1643. end_page_writeback(bd_page);
  1644. bd_page = bh->b_page;
  1645. }
  1646. }
  1647. /*
  1648. * We assume that the buffers which belong to the same page
  1649. * continue over the buffer list.
  1650. * Under this assumption, the last BHs of pages is
  1651. * identifiable by the discontinuity of bh->b_page
  1652. * (page != fs_page).
  1653. *
  1654. * For B-tree node blocks, however, this assumption is not
  1655. * guaranteed. The cleanup code of B-tree node pages needs
  1656. * special care.
  1657. */
  1658. list_for_each_entry(bh, &segbuf->sb_payload_buffers,
  1659. b_assoc_buffers) {
  1660. set_buffer_uptodate(bh);
  1661. clear_buffer_dirty(bh);
  1662. clear_buffer_delay(bh);
  1663. clear_buffer_nilfs_volatile(bh);
  1664. clear_buffer_nilfs_redirected(bh);
  1665. if (bh == segbuf->sb_super_root) {
  1666. if (bh->b_page != bd_page) {
  1667. end_page_writeback(bd_page);
  1668. bd_page = bh->b_page;
  1669. }
  1670. update_sr = true;
  1671. break;
  1672. }
  1673. if (bh->b_page != fs_page) {
  1674. nilfs_end_page_io(fs_page, 0);
  1675. fs_page = bh->b_page;
  1676. }
  1677. }
  1678. if (!nilfs_segbuf_simplex(segbuf)) {
  1679. if (segbuf->sb_sum.flags & NILFS_SS_LOGBGN) {
  1680. set_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1681. sci->sc_lseg_stime = jiffies;
  1682. }
  1683. if (segbuf->sb_sum.flags & NILFS_SS_LOGEND)
  1684. clear_bit(NILFS_SC_UNCLOSED, &sci->sc_flags);
  1685. }
  1686. }
  1687. /*
  1688. * Since pages may continue over multiple segment buffers,
  1689. * end of the last page must be checked outside of the loop.
  1690. */
  1691. if (bd_page)
  1692. end_page_writeback(bd_page);
  1693. nilfs_end_page_io(fs_page, 0);
  1694. nilfs_clear_copied_buffers(&sci->sc_copied_buffers, 0);
  1695. nilfs_drop_collected_inodes(&sci->sc_dirty_files);
  1696. if (nilfs_doing_gc())
  1697. nilfs_drop_collected_inodes(&sci->sc_gc_inodes);
  1698. else
  1699. nilfs->ns_nongc_ctime = sci->sc_seg_ctime;
  1700. sci->sc_nblk_inc += sci->sc_nblk_this_inc;
  1701. segbuf = NILFS_LAST_SEGBUF(&sci->sc_write_logs);
  1702. nilfs_set_next_segment(nilfs, segbuf);
  1703. if (update_sr) {
  1704. nilfs_set_last_segment(nilfs, segbuf->sb_pseg_start,
  1705. segbuf->sb_sum.seg_seq, nilfs->ns_cno++);
  1706. clear_bit(NILFS_SC_HAVE_DELTA, &sci->sc_flags);
  1707. clear_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1708. set_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1709. nilfs_segctor_clear_metadata_dirty(sci);
  1710. } else
  1711. clear_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags);
  1712. }
  1713. static int nilfs_segctor_wait(struct nilfs_sc_info *sci)
  1714. {
  1715. int ret;
  1716. ret = nilfs_wait_on_logs(&sci->sc_write_logs);
  1717. if (!ret) {
  1718. nilfs_segctor_complete_write(sci);
  1719. nilfs_destroy_logs(&sci->sc_write_logs);
  1720. }
  1721. return ret;
  1722. }
  1723. static int nilfs_segctor_check_in_files(struct nilfs_sc_info *sci,
  1724. struct nilfs_sb_info *sbi)
  1725. {
  1726. struct nilfs_inode_info *ii, *n;
  1727. struct inode *ifile = sci->sc_root->ifile;
  1728. spin_lock(&sbi->s_inode_lock);
  1729. retry:
  1730. list_for_each_entry_safe(ii, n, &sbi->s_dirty_files, i_dirty) {
  1731. if (!ii->i_bh) {
  1732. struct buffer_head *ibh;
  1733. int err;
  1734. spin_unlock(&sbi->s_inode_lock);
  1735. err = nilfs_ifile_get_inode_block(
  1736. ifile, ii->vfs_inode.i_ino, &ibh);
  1737. if (unlikely(err)) {
  1738. nilfs_warning(sbi->s_super, __func__,
  1739. "failed to get inode block.\n");
  1740. return err;
  1741. }
  1742. nilfs_mdt_mark_buffer_dirty(ibh);
  1743. nilfs_mdt_mark_dirty(ifile);
  1744. spin_lock(&sbi->s_inode_lock);
  1745. if (likely(!ii->i_bh))
  1746. ii->i_bh = ibh;
  1747. else
  1748. brelse(ibh);
  1749. goto retry;
  1750. }
  1751. clear_bit(NILFS_I_QUEUED, &ii->i_state);
  1752. set_bit(NILFS_I_BUSY, &ii->i_state);
  1753. list_del(&ii->i_dirty);
  1754. list_add_tail(&ii->i_dirty, &sci->sc_dirty_files);
  1755. }
  1756. spin_unlock(&sbi->s_inode_lock);
  1757. return 0;
  1758. }
  1759. static void nilfs_segctor_check_out_files(struct nilfs_sc_info *sci,
  1760. struct nilfs_sb_info *sbi)
  1761. {
  1762. struct nilfs_transaction_info *ti = current->journal_info;
  1763. struct nilfs_inode_info *ii, *n;
  1764. spin_lock(&sbi->s_inode_lock);
  1765. list_for_each_entry_safe(ii, n, &sci->sc_dirty_files, i_dirty) {
  1766. if (!test_and_clear_bit(NILFS_I_UPDATED, &ii->i_state) ||
  1767. test_bit(NILFS_I_DIRTY, &ii->i_state))
  1768. continue;
  1769. clear_bit(NILFS_I_BUSY, &ii->i_state);
  1770. brelse(ii->i_bh);
  1771. ii->i_bh = NULL;
  1772. list_del(&ii->i_dirty);
  1773. list_add_tail(&ii->i_dirty, &ti->ti_garbage);
  1774. }
  1775. spin_unlock(&sbi->s_inode_lock);
  1776. }
  1777. /*
  1778. * Main procedure of segment constructor
  1779. */
  1780. static int nilfs_segctor_do_construct(struct nilfs_sc_info *sci, int mode)
  1781. {
  1782. struct nilfs_sb_info *sbi = sci->sc_sbi;
  1783. struct the_nilfs *nilfs = sbi->s_nilfs;
  1784. struct page *failed_page;
  1785. int err;
  1786. sci->sc_stage.scnt = NILFS_ST_INIT;
  1787. sci->sc_cno = nilfs->ns_cno;
  1788. err = nilfs_segctor_check_in_files(sci, sbi);
  1789. if (unlikely(err))
  1790. goto out;
  1791. if (nilfs_test_metadata_dirty(nilfs, sci->sc_root))
  1792. set_bit(NILFS_SC_DIRTY, &sci->sc_flags);
  1793. if (nilfs_segctor_clean(sci))
  1794. goto out;
  1795. do {
  1796. sci->sc_stage.flags &= ~NILFS_CF_HISTORY_MASK;
  1797. err = nilfs_segctor_begin_construction(sci, nilfs);
  1798. if (unlikely(err))
  1799. goto out;
  1800. /* Update time stamp */
  1801. sci->sc_seg_ctime = get_seconds();
  1802. err = nilfs_segctor_collect(sci, nilfs, mode);
  1803. if (unlikely(err))
  1804. goto failed;
  1805. /* Avoid empty segment */
  1806. if (sci->sc_stage.scnt == NILFS_ST_DONE &&
  1807. nilfs_segbuf_empty(sci->sc_curseg)) {
  1808. nilfs_segctor_abort_construction(sci, nilfs, 1);
  1809. goto out;
  1810. }
  1811. err = nilfs_segctor_assign(sci, mode);
  1812. if (unlikely(err))
  1813. goto failed;
  1814. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1815. nilfs_segctor_fill_in_file_bmap(sci);
  1816. if (mode == SC_LSEG_SR &&
  1817. sci->sc_stage.scnt >= NILFS_ST_CPFILE) {
  1818. err = nilfs_segctor_fill_in_checkpoint(sci);
  1819. if (unlikely(err))
  1820. goto failed_to_write;
  1821. nilfs_segctor_fill_in_super_root(sci, nilfs);
  1822. }
  1823. nilfs_segctor_update_segusage(sci, nilfs->ns_sufile);
  1824. /* Write partial segments */
  1825. err = nilfs_segctor_prepare_write(sci, &failed_page);
  1826. if (err) {
  1827. nilfs_abort_logs(&sci->sc_segbufs, failed_page, err);
  1828. goto failed_to_write;
  1829. }
  1830. nilfs_add_checksums_on_logs(&sci->sc_segbufs,
  1831. nilfs->ns_crc_seed);
  1832. err = nilfs_segctor_write(sci, nilfs);
  1833. if (unlikely(err))
  1834. goto failed_to_write;
  1835. if (sci->sc_stage.scnt == NILFS_ST_DONE ||
  1836. nilfs->ns_blocksize_bits != PAGE_CACHE_SHIFT) {
  1837. /*
  1838. * At this point, we avoid double buffering
  1839. * for blocksize < pagesize because page dirty
  1840. * flag is turned off during write and dirty
  1841. * buffers are not properly collected for
  1842. * pages crossing over segments.
  1843. */
  1844. err = nilfs_segctor_wait(sci);
  1845. if (err)
  1846. goto failed_to_write;
  1847. }
  1848. } while (sci->sc_stage.scnt != NILFS_ST_DONE);
  1849. out:
  1850. nilfs_segctor_check_out_files(sci, sbi);
  1851. return err;
  1852. failed_to_write:
  1853. if (sci->sc_stage.flags & NILFS_CF_IFILE_STARTED)
  1854. nilfs_redirty_inodes(&sci->sc_dirty_files);
  1855. failed:
  1856. if (nilfs_doing_gc())
  1857. nilfs_redirty_inodes(&sci->sc_gc_inodes);
  1858. nilfs_segctor_abort_construction(sci, nilfs, err);
  1859. goto out;
  1860. }
  1861. /**
  1862. * nilfs_segctor_start_timer - set timer of background write
  1863. * @sci: nilfs_sc_info
  1864. *
  1865. * If the timer has already been set, it ignores the new request.
  1866. * This function MUST be called within a section locking the segment
  1867. * semaphore.
  1868. */
  1869. static void nilfs_segctor_start_timer(struct nilfs_sc_info *sci)
  1870. {
  1871. spin_lock(&sci->sc_state_lock);
  1872. if (!(sci->sc_state & NILFS_SEGCTOR_COMMIT)) {
  1873. sci->sc_timer.expires = jiffies + sci->sc_interval;
  1874. add_timer(&sci->sc_timer);
  1875. sci->sc_state |= NILFS_SEGCTOR_COMMIT;
  1876. }
  1877. spin_unlock(&sci->sc_state_lock);
  1878. }
  1879. static void nilfs_segctor_do_flush(struct nilfs_sc_info *sci, int bn)
  1880. {
  1881. spin_lock(&sci->sc_state_lock);
  1882. if (!(sci->sc_flush_request & (1 << bn))) {
  1883. unsigned long prev_req = sci->sc_flush_request;
  1884. sci->sc_flush_request |= (1 << bn);
  1885. if (!prev_req)
  1886. wake_up(&sci->sc_wait_daemon);
  1887. }
  1888. spin_unlock(&sci->sc_state_lock);
  1889. }
  1890. /**
  1891. * nilfs_flush_segment - trigger a segment construction for resource control
  1892. * @sb: super block
  1893. * @ino: inode number of the file to be flushed out.
  1894. */
  1895. void nilfs_flush_segment(struct super_block *sb, ino_t ino)
  1896. {
  1897. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1898. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1899. if (!sci || nilfs_doing_construction())
  1900. return;
  1901. nilfs_segctor_do_flush(sci, NILFS_MDT_INODE(sb, ino) ? ino : 0);
  1902. /* assign bit 0 to data files */
  1903. }
  1904. struct nilfs_segctor_wait_request {
  1905. wait_queue_t wq;
  1906. __u32 seq;
  1907. int err;
  1908. atomic_t done;
  1909. };
  1910. static int nilfs_segctor_sync(struct nilfs_sc_info *sci)
  1911. {
  1912. struct nilfs_segctor_wait_request wait_req;
  1913. int err = 0;
  1914. spin_lock(&sci->sc_state_lock);
  1915. init_wait(&wait_req.wq);
  1916. wait_req.err = 0;
  1917. atomic_set(&wait_req.done, 0);
  1918. wait_req.seq = ++sci->sc_seq_request;
  1919. spin_unlock(&sci->sc_state_lock);
  1920. init_waitqueue_entry(&wait_req.wq, current);
  1921. add_wait_queue(&sci->sc_wait_request, &wait_req.wq);
  1922. set_current_state(TASK_INTERRUPTIBLE);
  1923. wake_up(&sci->sc_wait_daemon);
  1924. for (;;) {
  1925. if (atomic_read(&wait_req.done)) {
  1926. err = wait_req.err;
  1927. break;
  1928. }
  1929. if (!signal_pending(current)) {
  1930. schedule();
  1931. continue;
  1932. }
  1933. err = -ERESTARTSYS;
  1934. break;
  1935. }
  1936. finish_wait(&sci->sc_wait_request, &wait_req.wq);
  1937. return err;
  1938. }
  1939. static void nilfs_segctor_wakeup(struct nilfs_sc_info *sci, int err)
  1940. {
  1941. struct nilfs_segctor_wait_request *wrq, *n;
  1942. unsigned long flags;
  1943. spin_lock_irqsave(&sci->sc_wait_request.lock, flags);
  1944. list_for_each_entry_safe(wrq, n, &sci->sc_wait_request.task_list,
  1945. wq.task_list) {
  1946. if (!atomic_read(&wrq->done) &&
  1947. nilfs_cnt32_ge(sci->sc_seq_done, wrq->seq)) {
  1948. wrq->err = err;
  1949. atomic_set(&wrq->done, 1);
  1950. }
  1951. if (atomic_read(&wrq->done)) {
  1952. wrq->wq.func(&wrq->wq,
  1953. TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
  1954. 0, NULL);
  1955. }
  1956. }
  1957. spin_unlock_irqrestore(&sci->sc_wait_request.lock, flags);
  1958. }
  1959. /**
  1960. * nilfs_construct_segment - construct a logical segment
  1961. * @sb: super block
  1962. *
  1963. * Return Value: On success, 0 is retured. On errors, one of the following
  1964. * negative error code is returned.
  1965. *
  1966. * %-EROFS - Read only filesystem.
  1967. *
  1968. * %-EIO - I/O error
  1969. *
  1970. * %-ENOSPC - No space left on device (only in a panic state).
  1971. *
  1972. * %-ERESTARTSYS - Interrupted.
  1973. *
  1974. * %-ENOMEM - Insufficient memory available.
  1975. */
  1976. int nilfs_construct_segment(struct super_block *sb)
  1977. {
  1978. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  1979. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  1980. struct nilfs_transaction_info *ti;
  1981. int err;
  1982. if (!sci)
  1983. return -EROFS;
  1984. /* A call inside transactions causes a deadlock. */
  1985. BUG_ON((ti = current->journal_info) && ti->ti_magic == NILFS_TI_MAGIC);
  1986. err = nilfs_segctor_sync(sci);
  1987. return err;
  1988. }
  1989. /**
  1990. * nilfs_construct_dsync_segment - construct a data-only logical segment
  1991. * @sb: super block
  1992. * @inode: inode whose data blocks should be written out
  1993. * @start: start byte offset
  1994. * @end: end byte offset (inclusive)
  1995. *
  1996. * Return Value: On success, 0 is retured. On errors, one of the following
  1997. * negative error code is returned.
  1998. *
  1999. * %-EROFS - Read only filesystem.
  2000. *
  2001. * %-EIO - I/O error
  2002. *
  2003. * %-ENOSPC - No space left on device (only in a panic state).
  2004. *
  2005. * %-ERESTARTSYS - Interrupted.
  2006. *
  2007. * %-ENOMEM - Insufficient memory available.
  2008. */
  2009. int nilfs_construct_dsync_segment(struct super_block *sb, struct inode *inode,
  2010. loff_t start, loff_t end)
  2011. {
  2012. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2013. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2014. struct nilfs_inode_info *ii;
  2015. struct nilfs_transaction_info ti;
  2016. int err = 0;
  2017. if (!sci)
  2018. return -EROFS;
  2019. nilfs_transaction_lock(sbi, &ti, 0);
  2020. ii = NILFS_I(inode);
  2021. if (test_bit(NILFS_I_INODE_DIRTY, &ii->i_state) ||
  2022. nilfs_test_opt(sbi, STRICT_ORDER) ||
  2023. test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2024. nilfs_discontinued(sbi->s_nilfs)) {
  2025. nilfs_transaction_unlock(sbi);
  2026. err = nilfs_segctor_sync(sci);
  2027. return err;
  2028. }
  2029. spin_lock(&sbi->s_inode_lock);
  2030. if (!test_bit(NILFS_I_QUEUED, &ii->i_state) &&
  2031. !test_bit(NILFS_I_BUSY, &ii->i_state)) {
  2032. spin_unlock(&sbi->s_inode_lock);
  2033. nilfs_transaction_unlock(sbi);
  2034. return 0;
  2035. }
  2036. spin_unlock(&sbi->s_inode_lock);
  2037. sci->sc_dsync_inode = ii;
  2038. sci->sc_dsync_start = start;
  2039. sci->sc_dsync_end = end;
  2040. err = nilfs_segctor_do_construct(sci, SC_LSEG_DSYNC);
  2041. nilfs_transaction_unlock(sbi);
  2042. return err;
  2043. }
  2044. #define FLUSH_FILE_BIT (0x1) /* data file only */
  2045. #define FLUSH_DAT_BIT (1 << NILFS_DAT_INO) /* DAT only */
  2046. /**
  2047. * nilfs_segctor_accept - record accepted sequence count of log-write requests
  2048. * @sci: segment constructor object
  2049. */
  2050. static void nilfs_segctor_accept(struct nilfs_sc_info *sci)
  2051. {
  2052. spin_lock(&sci->sc_state_lock);
  2053. sci->sc_seq_accepted = sci->sc_seq_request;
  2054. spin_unlock(&sci->sc_state_lock);
  2055. del_timer_sync(&sci->sc_timer);
  2056. }
  2057. /**
  2058. * nilfs_segctor_notify - notify the result of request to caller threads
  2059. * @sci: segment constructor object
  2060. * @mode: mode of log forming
  2061. * @err: error code to be notified
  2062. */
  2063. static void nilfs_segctor_notify(struct nilfs_sc_info *sci, int mode, int err)
  2064. {
  2065. /* Clear requests (even when the construction failed) */
  2066. spin_lock(&sci->sc_state_lock);
  2067. if (mode == SC_LSEG_SR) {
  2068. sci->sc_state &= ~NILFS_SEGCTOR_COMMIT;
  2069. sci->sc_seq_done = sci->sc_seq_accepted;
  2070. nilfs_segctor_wakeup(sci, err);
  2071. sci->sc_flush_request = 0;
  2072. } else {
  2073. if (mode == SC_FLUSH_FILE)
  2074. sci->sc_flush_request &= ~FLUSH_FILE_BIT;
  2075. else if (mode == SC_FLUSH_DAT)
  2076. sci->sc_flush_request &= ~FLUSH_DAT_BIT;
  2077. /* re-enable timer if checkpoint creation was not done */
  2078. if ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2079. time_before(jiffies, sci->sc_timer.expires))
  2080. add_timer(&sci->sc_timer);
  2081. }
  2082. spin_unlock(&sci->sc_state_lock);
  2083. }
  2084. /**
  2085. * nilfs_segctor_construct - form logs and write them to disk
  2086. * @sci: segment constructor object
  2087. * @mode: mode of log forming
  2088. */
  2089. static int nilfs_segctor_construct(struct nilfs_sc_info *sci, int mode)
  2090. {
  2091. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2092. struct the_nilfs *nilfs = sbi->s_nilfs;
  2093. struct nilfs_super_block **sbp;
  2094. int err = 0;
  2095. nilfs_segctor_accept(sci);
  2096. if (nilfs_discontinued(nilfs))
  2097. mode = SC_LSEG_SR;
  2098. if (!nilfs_segctor_confirm(sci))
  2099. err = nilfs_segctor_do_construct(sci, mode);
  2100. if (likely(!err)) {
  2101. if (mode != SC_FLUSH_DAT)
  2102. atomic_set(&nilfs->ns_ndirtyblks, 0);
  2103. if (test_bit(NILFS_SC_SUPER_ROOT, &sci->sc_flags) &&
  2104. nilfs_discontinued(nilfs)) {
  2105. down_write(&nilfs->ns_sem);
  2106. err = -EIO;
  2107. sbp = nilfs_prepare_super(sbi,
  2108. nilfs_sb_will_flip(nilfs));
  2109. if (likely(sbp)) {
  2110. nilfs_set_log_cursor(sbp[0], nilfs);
  2111. err = nilfs_commit_super(sbi, NILFS_SB_COMMIT);
  2112. }
  2113. up_write(&nilfs->ns_sem);
  2114. }
  2115. }
  2116. nilfs_segctor_notify(sci, mode, err);
  2117. return err;
  2118. }
  2119. static void nilfs_construction_timeout(unsigned long data)
  2120. {
  2121. struct task_struct *p = (struct task_struct *)data;
  2122. wake_up_process(p);
  2123. }
  2124. static void
  2125. nilfs_remove_written_gcinodes(struct the_nilfs *nilfs, struct list_head *head)
  2126. {
  2127. struct nilfs_inode_info *ii, *n;
  2128. list_for_each_entry_safe(ii, n, head, i_dirty) {
  2129. if (!test_bit(NILFS_I_UPDATED, &ii->i_state))
  2130. continue;
  2131. list_del_init(&ii->i_dirty);
  2132. iput(&ii->vfs_inode);
  2133. }
  2134. }
  2135. int nilfs_clean_segments(struct super_block *sb, struct nilfs_argv *argv,
  2136. void **kbufs)
  2137. {
  2138. struct nilfs_sb_info *sbi = NILFS_SB(sb);
  2139. struct nilfs_sc_info *sci = NILFS_SC(sbi);
  2140. struct the_nilfs *nilfs = sbi->s_nilfs;
  2141. struct nilfs_transaction_info ti;
  2142. int err;
  2143. if (unlikely(!sci))
  2144. return -EROFS;
  2145. nilfs_transaction_lock(sbi, &ti, 1);
  2146. err = nilfs_mdt_save_to_shadow_map(nilfs->ns_dat);
  2147. if (unlikely(err))
  2148. goto out_unlock;
  2149. err = nilfs_ioctl_prepare_clean_segments(nilfs, argv, kbufs);
  2150. if (unlikely(err)) {
  2151. nilfs_mdt_restore_from_shadow_map(nilfs->ns_dat);
  2152. goto out_unlock;
  2153. }
  2154. sci->sc_freesegs = kbufs[4];
  2155. sci->sc_nfreesegs = argv[4].v_nmembs;
  2156. list_splice_tail_init(&nilfs->ns_gc_inodes, &sci->sc_gc_inodes);
  2157. for (;;) {
  2158. err = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2159. nilfs_remove_written_gcinodes(nilfs, &sci->sc_gc_inodes);
  2160. if (likely(!err))
  2161. break;
  2162. nilfs_warning(sb, __func__,
  2163. "segment construction failed. (err=%d)", err);
  2164. set_current_state(TASK_INTERRUPTIBLE);
  2165. schedule_timeout(sci->sc_interval);
  2166. }
  2167. if (nilfs_test_opt(sbi, DISCARD)) {
  2168. int ret = nilfs_discard_segments(nilfs, sci->sc_freesegs,
  2169. sci->sc_nfreesegs);
  2170. if (ret) {
  2171. printk(KERN_WARNING
  2172. "NILFS warning: error %d on discard request, "
  2173. "turning discards off for the device\n", ret);
  2174. nilfs_clear_opt(sbi, DISCARD);
  2175. }
  2176. }
  2177. out_unlock:
  2178. sci->sc_freesegs = NULL;
  2179. sci->sc_nfreesegs = 0;
  2180. nilfs_mdt_clear_shadow_map(nilfs->ns_dat);
  2181. nilfs_transaction_unlock(sbi);
  2182. return err;
  2183. }
  2184. static void nilfs_segctor_thread_construct(struct nilfs_sc_info *sci, int mode)
  2185. {
  2186. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2187. struct nilfs_transaction_info ti;
  2188. nilfs_transaction_lock(sbi, &ti, 0);
  2189. nilfs_segctor_construct(sci, mode);
  2190. /*
  2191. * Unclosed segment should be retried. We do this using sc_timer.
  2192. * Timeout of sc_timer will invoke complete construction which leads
  2193. * to close the current logical segment.
  2194. */
  2195. if (test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags))
  2196. nilfs_segctor_start_timer(sci);
  2197. nilfs_transaction_unlock(sbi);
  2198. }
  2199. static void nilfs_segctor_do_immediate_flush(struct nilfs_sc_info *sci)
  2200. {
  2201. int mode = 0;
  2202. int err;
  2203. spin_lock(&sci->sc_state_lock);
  2204. mode = (sci->sc_flush_request & FLUSH_DAT_BIT) ?
  2205. SC_FLUSH_DAT : SC_FLUSH_FILE;
  2206. spin_unlock(&sci->sc_state_lock);
  2207. if (mode) {
  2208. err = nilfs_segctor_do_construct(sci, mode);
  2209. spin_lock(&sci->sc_state_lock);
  2210. sci->sc_flush_request &= (mode == SC_FLUSH_FILE) ?
  2211. ~FLUSH_FILE_BIT : ~FLUSH_DAT_BIT;
  2212. spin_unlock(&sci->sc_state_lock);
  2213. }
  2214. clear_bit(NILFS_SC_PRIOR_FLUSH, &sci->sc_flags);
  2215. }
  2216. static int nilfs_segctor_flush_mode(struct nilfs_sc_info *sci)
  2217. {
  2218. if (!test_bit(NILFS_SC_UNCLOSED, &sci->sc_flags) ||
  2219. time_before(jiffies, sci->sc_lseg_stime + sci->sc_mjcp_freq)) {
  2220. if (!(sci->sc_flush_request & ~FLUSH_FILE_BIT))
  2221. return SC_FLUSH_FILE;
  2222. else if (!(sci->sc_flush_request & ~FLUSH_DAT_BIT))
  2223. return SC_FLUSH_DAT;
  2224. }
  2225. return SC_LSEG_SR;
  2226. }
  2227. /**
  2228. * nilfs_segctor_thread - main loop of the segment constructor thread.
  2229. * @arg: pointer to a struct nilfs_sc_info.
  2230. *
  2231. * nilfs_segctor_thread() initializes a timer and serves as a daemon
  2232. * to execute segment constructions.
  2233. */
  2234. static int nilfs_segctor_thread(void *arg)
  2235. {
  2236. struct nilfs_sc_info *sci = (struct nilfs_sc_info *)arg;
  2237. struct the_nilfs *nilfs = sci->sc_sbi->s_nilfs;
  2238. int timeout = 0;
  2239. sci->sc_timer.data = (unsigned long)current;
  2240. sci->sc_timer.function = nilfs_construction_timeout;
  2241. /* start sync. */
  2242. sci->sc_task = current;
  2243. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_start_thread() */
  2244. printk(KERN_INFO
  2245. "segctord starting. Construction interval = %lu seconds, "
  2246. "CP frequency < %lu seconds\n",
  2247. sci->sc_interval / HZ, sci->sc_mjcp_freq / HZ);
  2248. spin_lock(&sci->sc_state_lock);
  2249. loop:
  2250. for (;;) {
  2251. int mode;
  2252. if (sci->sc_state & NILFS_SEGCTOR_QUIT)
  2253. goto end_thread;
  2254. if (timeout || sci->sc_seq_request != sci->sc_seq_done)
  2255. mode = SC_LSEG_SR;
  2256. else if (!sci->sc_flush_request)
  2257. break;
  2258. else
  2259. mode = nilfs_segctor_flush_mode(sci);
  2260. spin_unlock(&sci->sc_state_lock);
  2261. nilfs_segctor_thread_construct(sci, mode);
  2262. spin_lock(&sci->sc_state_lock);
  2263. timeout = 0;
  2264. }
  2265. if (freezing(current)) {
  2266. spin_unlock(&sci->sc_state_lock);
  2267. refrigerator();
  2268. spin_lock(&sci->sc_state_lock);
  2269. } else {
  2270. DEFINE_WAIT(wait);
  2271. int should_sleep = 1;
  2272. prepare_to_wait(&sci->sc_wait_daemon, &wait,
  2273. TASK_INTERRUPTIBLE);
  2274. if (sci->sc_seq_request != sci->sc_seq_done)
  2275. should_sleep = 0;
  2276. else if (sci->sc_flush_request)
  2277. should_sleep = 0;
  2278. else if (sci->sc_state & NILFS_SEGCTOR_COMMIT)
  2279. should_sleep = time_before(jiffies,
  2280. sci->sc_timer.expires);
  2281. if (should_sleep) {
  2282. spin_unlock(&sci->sc_state_lock);
  2283. schedule();
  2284. spin_lock(&sci->sc_state_lock);
  2285. }
  2286. finish_wait(&sci->sc_wait_daemon, &wait);
  2287. timeout = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) &&
  2288. time_after_eq(jiffies, sci->sc_timer.expires));
  2289. if (nilfs_sb_dirty(nilfs) && nilfs_sb_need_update(nilfs))
  2290. set_nilfs_discontinued(nilfs);
  2291. }
  2292. goto loop;
  2293. end_thread:
  2294. spin_unlock(&sci->sc_state_lock);
  2295. /* end sync. */
  2296. sci->sc_task = NULL;
  2297. wake_up(&sci->sc_wait_task); /* for nilfs_segctor_kill_thread() */
  2298. return 0;
  2299. }
  2300. static int nilfs_segctor_start_thread(struct nilfs_sc_info *sci)
  2301. {
  2302. struct task_struct *t;
  2303. t = kthread_run(nilfs_segctor_thread, sci, "segctord");
  2304. if (IS_ERR(t)) {
  2305. int err = PTR_ERR(t);
  2306. printk(KERN_ERR "NILFS: error %d creating segctord thread\n",
  2307. err);
  2308. return err;
  2309. }
  2310. wait_event(sci->sc_wait_task, sci->sc_task != NULL);
  2311. return 0;
  2312. }
  2313. static void nilfs_segctor_kill_thread(struct nilfs_sc_info *sci)
  2314. __acquires(&sci->sc_state_lock)
  2315. __releases(&sci->sc_state_lock)
  2316. {
  2317. sci->sc_state |= NILFS_SEGCTOR_QUIT;
  2318. while (sci->sc_task) {
  2319. wake_up(&sci->sc_wait_daemon);
  2320. spin_unlock(&sci->sc_state_lock);
  2321. wait_event(sci->sc_wait_task, sci->sc_task == NULL);
  2322. spin_lock(&sci->sc_state_lock);
  2323. }
  2324. }
  2325. /*
  2326. * Setup & clean-up functions
  2327. */
  2328. static struct nilfs_sc_info *nilfs_segctor_new(struct nilfs_sb_info *sbi,
  2329. struct nilfs_root *root)
  2330. {
  2331. struct nilfs_sc_info *sci;
  2332. sci = kzalloc(sizeof(*sci), GFP_KERNEL);
  2333. if (!sci)
  2334. return NULL;
  2335. sci->sc_sbi = sbi;
  2336. sci->sc_super = sbi->s_super;
  2337. nilfs_get_root(root);
  2338. sci->sc_root = root;
  2339. init_waitqueue_head(&sci->sc_wait_request);
  2340. init_waitqueue_head(&sci->sc_wait_daemon);
  2341. init_waitqueue_head(&sci->sc_wait_task);
  2342. spin_lock_init(&sci->sc_state_lock);
  2343. INIT_LIST_HEAD(&sci->sc_dirty_files);
  2344. INIT_LIST_HEAD(&sci->sc_segbufs);
  2345. INIT_LIST_HEAD(&sci->sc_write_logs);
  2346. INIT_LIST_HEAD(&sci->sc_gc_inodes);
  2347. INIT_LIST_HEAD(&sci->sc_copied_buffers);
  2348. init_timer(&sci->sc_timer);
  2349. sci->sc_interval = HZ * NILFS_SC_DEFAULT_TIMEOUT;
  2350. sci->sc_mjcp_freq = HZ * NILFS_SC_DEFAULT_SR_FREQ;
  2351. sci->sc_watermark = NILFS_SC_DEFAULT_WATERMARK;
  2352. if (sbi->s_interval)
  2353. sci->sc_interval = sbi->s_interval;
  2354. if (sbi->s_watermark)
  2355. sci->sc_watermark = sbi->s_watermark;
  2356. return sci;
  2357. }
  2358. static void nilfs_segctor_write_out(struct nilfs_sc_info *sci)
  2359. {
  2360. int ret, retrycount = NILFS_SC_CLEANUP_RETRY;
  2361. /* The segctord thread was stopped and its timer was removed.
  2362. But some tasks remain. */
  2363. do {
  2364. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2365. struct nilfs_transaction_info ti;
  2366. nilfs_transaction_lock(sbi, &ti, 0);
  2367. ret = nilfs_segctor_construct(sci, SC_LSEG_SR);
  2368. nilfs_transaction_unlock(sbi);
  2369. } while (ret && retrycount-- > 0);
  2370. }
  2371. /**
  2372. * nilfs_segctor_destroy - destroy the segment constructor.
  2373. * @sci: nilfs_sc_info
  2374. *
  2375. * nilfs_segctor_destroy() kills the segctord thread and frees
  2376. * the nilfs_sc_info struct.
  2377. * Caller must hold the segment semaphore.
  2378. */
  2379. static void nilfs_segctor_destroy(struct nilfs_sc_info *sci)
  2380. {
  2381. struct nilfs_sb_info *sbi = sci->sc_sbi;
  2382. int flag;
  2383. up_write(&sbi->s_nilfs->ns_segctor_sem);
  2384. spin_lock(&sci->sc_state_lock);
  2385. nilfs_segctor_kill_thread(sci);
  2386. flag = ((sci->sc_state & NILFS_SEGCTOR_COMMIT) || sci->sc_flush_request
  2387. || sci->sc_seq_request != sci->sc_seq_done);
  2388. spin_unlock(&sci->sc_state_lock);
  2389. if (flag || !nilfs_segctor_confirm(sci))
  2390. nilfs_segctor_write_out(sci);
  2391. WARN_ON(!list_empty(&sci->sc_copied_buffers));
  2392. if (!list_empty(&sci->sc_dirty_files)) {
  2393. nilfs_warning(sbi->s_super, __func__,
  2394. "dirty file(s) after the final construction\n");
  2395. nilfs_dispose_list(sbi, &sci->sc_dirty_files, 1);
  2396. }
  2397. WARN_ON(!list_empty(&sci->sc_segbufs));
  2398. WARN_ON(!list_empty(&sci->sc_write_logs));
  2399. nilfs_put_root(sci->sc_root);
  2400. down_write(&sbi->s_nilfs->ns_segctor_sem);
  2401. del_timer_sync(&sci->sc_timer);
  2402. kfree(sci);
  2403. }
  2404. /**
  2405. * nilfs_attach_segment_constructor - attach a segment constructor
  2406. * @sbi: nilfs_sb_info
  2407. * @root: root object of the current filesystem tree
  2408. *
  2409. * nilfs_attach_segment_constructor() allocates a struct nilfs_sc_info,
  2410. * initializes it, and starts the segment constructor.
  2411. *
  2412. * Return Value: On success, 0 is returned. On error, one of the following
  2413. * negative error code is returned.
  2414. *
  2415. * %-ENOMEM - Insufficient memory available.
  2416. */
  2417. int nilfs_attach_segment_constructor(struct nilfs_sb_info *sbi,
  2418. struct nilfs_root *root)
  2419. {
  2420. int err;
  2421. if (NILFS_SC(sbi)) {
  2422. /*
  2423. * This happens if the filesystem was remounted
  2424. * read/write after nilfs_error degenerated it into a
  2425. * read-only mount.
  2426. */
  2427. nilfs_detach_segment_constructor(sbi);
  2428. }
  2429. sbi->s_sc_info = nilfs_segctor_new(sbi, root);
  2430. if (!sbi->s_sc_info)
  2431. return -ENOMEM;
  2432. err = nilfs_segctor_start_thread(NILFS_SC(sbi));
  2433. if (err) {
  2434. kfree(sbi->s_sc_info);
  2435. sbi->s_sc_info = NULL;
  2436. }
  2437. return err;
  2438. }
  2439. /**
  2440. * nilfs_detach_segment_constructor - destroy the segment constructor
  2441. * @sbi: nilfs_sb_info
  2442. *
  2443. * nilfs_detach_segment_constructor() kills the segment constructor daemon,
  2444. * frees the struct nilfs_sc_info, and destroy the dirty file list.
  2445. */
  2446. void nilfs_detach_segment_constructor(struct nilfs_sb_info *sbi)
  2447. {
  2448. struct the_nilfs *nilfs = sbi->s_nilfs;
  2449. LIST_HEAD(garbage_list);
  2450. down_write(&nilfs->ns_segctor_sem);
  2451. if (NILFS_SC(sbi)) {
  2452. nilfs_segctor_destroy(NILFS_SC(sbi));
  2453. sbi->s_sc_info = NULL;
  2454. }
  2455. /* Force to free the list of dirty files */
  2456. spin_lock(&sbi->s_inode_lock);
  2457. if (!list_empty(&sbi->s_dirty_files)) {
  2458. list_splice_init(&sbi->s_dirty_files, &garbage_list);
  2459. nilfs_warning(sbi->s_super, __func__,
  2460. "Non empty dirty list after the last "
  2461. "segment construction\n");
  2462. }
  2463. spin_unlock(&sbi->s_inode_lock);
  2464. up_write(&nilfs->ns_segctor_sem);
  2465. nilfs_dispose_list(sbi, &garbage_list, 1);
  2466. }