ordered-data.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963
  1. /*
  2. * Copyright (C) 2007 Oracle. All rights reserved.
  3. *
  4. * This program is free software; you can redistribute it and/or
  5. * modify it under the terms of the GNU General Public
  6. * License v2 as published by the Free Software Foundation.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  11. * General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public
  14. * License along with this program; if not, write to the
  15. * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16. * Boston, MA 021110-1307, USA.
  17. */
  18. #include <linux/slab.h>
  19. #include <linux/blkdev.h>
  20. #include <linux/writeback.h>
  21. #include <linux/pagevec.h>
  22. #include "ctree.h"
  23. #include "transaction.h"
  24. #include "btrfs_inode.h"
  25. #include "extent_io.h"
  26. static u64 entry_end(struct btrfs_ordered_extent *entry)
  27. {
  28. if (entry->file_offset + entry->len < entry->file_offset)
  29. return (u64)-1;
  30. return entry->file_offset + entry->len;
  31. }
  32. /* returns NULL if the insertion worked, or it returns the node it did find
  33. * in the tree
  34. */
  35. static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
  36. struct rb_node *node)
  37. {
  38. struct rb_node **p = &root->rb_node;
  39. struct rb_node *parent = NULL;
  40. struct btrfs_ordered_extent *entry;
  41. while (*p) {
  42. parent = *p;
  43. entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
  44. if (file_offset < entry->file_offset)
  45. p = &(*p)->rb_left;
  46. else if (file_offset >= entry_end(entry))
  47. p = &(*p)->rb_right;
  48. else
  49. return parent;
  50. }
  51. rb_link_node(node, parent, p);
  52. rb_insert_color(node, root);
  53. return NULL;
  54. }
  55. /*
  56. * look for a given offset in the tree, and if it can't be found return the
  57. * first lesser offset
  58. */
  59. static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
  60. struct rb_node **prev_ret)
  61. {
  62. struct rb_node *n = root->rb_node;
  63. struct rb_node *prev = NULL;
  64. struct rb_node *test;
  65. struct btrfs_ordered_extent *entry;
  66. struct btrfs_ordered_extent *prev_entry = NULL;
  67. while (n) {
  68. entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
  69. prev = n;
  70. prev_entry = entry;
  71. if (file_offset < entry->file_offset)
  72. n = n->rb_left;
  73. else if (file_offset >= entry_end(entry))
  74. n = n->rb_right;
  75. else
  76. return n;
  77. }
  78. if (!prev_ret)
  79. return NULL;
  80. while (prev && file_offset >= entry_end(prev_entry)) {
  81. test = rb_next(prev);
  82. if (!test)
  83. break;
  84. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  85. rb_node);
  86. if (file_offset < entry_end(prev_entry))
  87. break;
  88. prev = test;
  89. }
  90. if (prev)
  91. prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
  92. rb_node);
  93. while (prev && file_offset < entry_end(prev_entry)) {
  94. test = rb_prev(prev);
  95. if (!test)
  96. break;
  97. prev_entry = rb_entry(test, struct btrfs_ordered_extent,
  98. rb_node);
  99. prev = test;
  100. }
  101. *prev_ret = prev;
  102. return NULL;
  103. }
  104. /*
  105. * helper to check if a given offset is inside a given entry
  106. */
  107. static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
  108. {
  109. if (file_offset < entry->file_offset ||
  110. entry->file_offset + entry->len <= file_offset)
  111. return 0;
  112. return 1;
  113. }
  114. static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
  115. u64 len)
  116. {
  117. if (file_offset + len <= entry->file_offset ||
  118. entry->file_offset + entry->len <= file_offset)
  119. return 0;
  120. return 1;
  121. }
  122. /*
  123. * look find the first ordered struct that has this offset, otherwise
  124. * the first one less than this offset
  125. */
  126. static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
  127. u64 file_offset)
  128. {
  129. struct rb_root *root = &tree->tree;
  130. struct rb_node *prev;
  131. struct rb_node *ret;
  132. struct btrfs_ordered_extent *entry;
  133. if (tree->last) {
  134. entry = rb_entry(tree->last, struct btrfs_ordered_extent,
  135. rb_node);
  136. if (offset_in_entry(entry, file_offset))
  137. return tree->last;
  138. }
  139. ret = __tree_search(root, file_offset, &prev);
  140. if (!ret)
  141. ret = prev;
  142. if (ret)
  143. tree->last = ret;
  144. return ret;
  145. }
  146. /* allocate and add a new ordered_extent into the per-inode tree.
  147. * file_offset is the logical offset in the file
  148. *
  149. * start is the disk block number of an extent already reserved in the
  150. * extent allocation tree
  151. *
  152. * len is the length of the extent
  153. *
  154. * The tree is given a single reference on the ordered extent that was
  155. * inserted.
  156. */
  157. static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  158. u64 start, u64 len, u64 disk_len,
  159. int type, int dio)
  160. {
  161. struct btrfs_ordered_inode_tree *tree;
  162. struct rb_node *node;
  163. struct btrfs_ordered_extent *entry;
  164. tree = &BTRFS_I(inode)->ordered_tree;
  165. entry = kzalloc(sizeof(*entry), GFP_NOFS);
  166. if (!entry)
  167. return -ENOMEM;
  168. entry->file_offset = file_offset;
  169. entry->start = start;
  170. entry->len = len;
  171. entry->disk_len = disk_len;
  172. entry->bytes_left = len;
  173. entry->inode = inode;
  174. if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
  175. set_bit(type, &entry->flags);
  176. if (dio)
  177. set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
  178. /* one ref for the tree */
  179. atomic_set(&entry->refs, 1);
  180. init_waitqueue_head(&entry->wait);
  181. INIT_LIST_HEAD(&entry->list);
  182. INIT_LIST_HEAD(&entry->root_extent_list);
  183. spin_lock(&tree->lock);
  184. node = tree_insert(&tree->tree, file_offset,
  185. &entry->rb_node);
  186. BUG_ON(node);
  187. spin_unlock(&tree->lock);
  188. spin_lock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  189. list_add_tail(&entry->root_extent_list,
  190. &BTRFS_I(inode)->root->fs_info->ordered_extents);
  191. spin_unlock(&BTRFS_I(inode)->root->fs_info->ordered_extent_lock);
  192. BUG_ON(node);
  193. return 0;
  194. }
  195. int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
  196. u64 start, u64 len, u64 disk_len, int type)
  197. {
  198. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  199. disk_len, type, 0);
  200. }
  201. int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
  202. u64 start, u64 len, u64 disk_len, int type)
  203. {
  204. return __btrfs_add_ordered_extent(inode, file_offset, start, len,
  205. disk_len, type, 1);
  206. }
  207. /*
  208. * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
  209. * when an ordered extent is finished. If the list covers more than one
  210. * ordered extent, it is split across multiples.
  211. */
  212. int btrfs_add_ordered_sum(struct inode *inode,
  213. struct btrfs_ordered_extent *entry,
  214. struct btrfs_ordered_sum *sum)
  215. {
  216. struct btrfs_ordered_inode_tree *tree;
  217. tree = &BTRFS_I(inode)->ordered_tree;
  218. spin_lock(&tree->lock);
  219. list_add_tail(&sum->list, &entry->list);
  220. spin_unlock(&tree->lock);
  221. return 0;
  222. }
  223. /*
  224. * this is used to account for finished IO across a given range
  225. * of the file. The IO may span ordered extents. If
  226. * a given ordered_extent is completely done, 1 is returned, otherwise
  227. * 0.
  228. *
  229. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  230. * to make sure this function only returns 1 once for a given ordered extent.
  231. *
  232. * file_offset is updated to one byte past the range that is recorded as
  233. * complete. This allows you to walk forward in the file.
  234. */
  235. int btrfs_dec_test_first_ordered_pending(struct inode *inode,
  236. struct btrfs_ordered_extent **cached,
  237. u64 *file_offset, u64 io_size)
  238. {
  239. struct btrfs_ordered_inode_tree *tree;
  240. struct rb_node *node;
  241. struct btrfs_ordered_extent *entry = NULL;
  242. int ret;
  243. u64 dec_end;
  244. u64 dec_start;
  245. u64 to_dec;
  246. tree = &BTRFS_I(inode)->ordered_tree;
  247. spin_lock(&tree->lock);
  248. node = tree_search(tree, *file_offset);
  249. if (!node) {
  250. ret = 1;
  251. goto out;
  252. }
  253. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  254. if (!offset_in_entry(entry, *file_offset)) {
  255. ret = 1;
  256. goto out;
  257. }
  258. dec_start = max(*file_offset, entry->file_offset);
  259. dec_end = min(*file_offset + io_size, entry->file_offset +
  260. entry->len);
  261. *file_offset = dec_end;
  262. if (dec_start > dec_end) {
  263. printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
  264. (unsigned long long)dec_start,
  265. (unsigned long long)dec_end);
  266. }
  267. to_dec = dec_end - dec_start;
  268. if (to_dec > entry->bytes_left) {
  269. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  270. (unsigned long long)entry->bytes_left,
  271. (unsigned long long)to_dec);
  272. }
  273. entry->bytes_left -= to_dec;
  274. if (entry->bytes_left == 0)
  275. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  276. else
  277. ret = 1;
  278. out:
  279. if (!ret && cached && entry) {
  280. *cached = entry;
  281. atomic_inc(&entry->refs);
  282. }
  283. spin_unlock(&tree->lock);
  284. return ret == 0;
  285. }
  286. /*
  287. * this is used to account for finished IO across a given range
  288. * of the file. The IO should not span ordered extents. If
  289. * a given ordered_extent is completely done, 1 is returned, otherwise
  290. * 0.
  291. *
  292. * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
  293. * to make sure this function only returns 1 once for a given ordered extent.
  294. */
  295. int btrfs_dec_test_ordered_pending(struct inode *inode,
  296. struct btrfs_ordered_extent **cached,
  297. u64 file_offset, u64 io_size)
  298. {
  299. struct btrfs_ordered_inode_tree *tree;
  300. struct rb_node *node;
  301. struct btrfs_ordered_extent *entry = NULL;
  302. int ret;
  303. tree = &BTRFS_I(inode)->ordered_tree;
  304. spin_lock(&tree->lock);
  305. node = tree_search(tree, file_offset);
  306. if (!node) {
  307. ret = 1;
  308. goto out;
  309. }
  310. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  311. if (!offset_in_entry(entry, file_offset)) {
  312. ret = 1;
  313. goto out;
  314. }
  315. if (io_size > entry->bytes_left) {
  316. printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
  317. (unsigned long long)entry->bytes_left,
  318. (unsigned long long)io_size);
  319. }
  320. entry->bytes_left -= io_size;
  321. if (entry->bytes_left == 0)
  322. ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
  323. else
  324. ret = 1;
  325. out:
  326. if (!ret && cached && entry) {
  327. *cached = entry;
  328. atomic_inc(&entry->refs);
  329. }
  330. spin_unlock(&tree->lock);
  331. return ret == 0;
  332. }
  333. /*
  334. * used to drop a reference on an ordered extent. This will free
  335. * the extent if the last reference is dropped
  336. */
  337. int btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
  338. {
  339. struct list_head *cur;
  340. struct btrfs_ordered_sum *sum;
  341. if (atomic_dec_and_test(&entry->refs)) {
  342. while (!list_empty(&entry->list)) {
  343. cur = entry->list.next;
  344. sum = list_entry(cur, struct btrfs_ordered_sum, list);
  345. list_del(&sum->list);
  346. kfree(sum);
  347. }
  348. kfree(entry);
  349. }
  350. return 0;
  351. }
  352. /*
  353. * remove an ordered extent from the tree. No references are dropped
  354. * and you must wake_up entry->wait. You must hold the tree lock
  355. * while you call this function.
  356. */
  357. static int __btrfs_remove_ordered_extent(struct inode *inode,
  358. struct btrfs_ordered_extent *entry)
  359. {
  360. struct btrfs_ordered_inode_tree *tree;
  361. struct btrfs_root *root = BTRFS_I(inode)->root;
  362. struct rb_node *node;
  363. tree = &BTRFS_I(inode)->ordered_tree;
  364. node = &entry->rb_node;
  365. rb_erase(node, &tree->tree);
  366. tree->last = NULL;
  367. set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
  368. spin_lock(&root->fs_info->ordered_extent_lock);
  369. list_del_init(&entry->root_extent_list);
  370. /*
  371. * we have no more ordered extents for this inode and
  372. * no dirty pages. We can safely remove it from the
  373. * list of ordered extents
  374. */
  375. if (RB_EMPTY_ROOT(&tree->tree) &&
  376. !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
  377. list_del_init(&BTRFS_I(inode)->ordered_operations);
  378. }
  379. spin_unlock(&root->fs_info->ordered_extent_lock);
  380. return 0;
  381. }
  382. /*
  383. * remove an ordered extent from the tree. No references are dropped
  384. * but any waiters are woken.
  385. */
  386. int btrfs_remove_ordered_extent(struct inode *inode,
  387. struct btrfs_ordered_extent *entry)
  388. {
  389. struct btrfs_ordered_inode_tree *tree;
  390. int ret;
  391. tree = &BTRFS_I(inode)->ordered_tree;
  392. spin_lock(&tree->lock);
  393. ret = __btrfs_remove_ordered_extent(inode, entry);
  394. spin_unlock(&tree->lock);
  395. wake_up(&entry->wait);
  396. return ret;
  397. }
  398. /*
  399. * wait for all the ordered extents in a root. This is done when balancing
  400. * space between drives.
  401. */
  402. int btrfs_wait_ordered_extents(struct btrfs_root *root,
  403. int nocow_only, int delay_iput)
  404. {
  405. struct list_head splice;
  406. struct list_head *cur;
  407. struct btrfs_ordered_extent *ordered;
  408. struct inode *inode;
  409. INIT_LIST_HEAD(&splice);
  410. spin_lock(&root->fs_info->ordered_extent_lock);
  411. list_splice_init(&root->fs_info->ordered_extents, &splice);
  412. while (!list_empty(&splice)) {
  413. cur = splice.next;
  414. ordered = list_entry(cur, struct btrfs_ordered_extent,
  415. root_extent_list);
  416. if (nocow_only &&
  417. !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags) &&
  418. !test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
  419. list_move(&ordered->root_extent_list,
  420. &root->fs_info->ordered_extents);
  421. cond_resched_lock(&root->fs_info->ordered_extent_lock);
  422. continue;
  423. }
  424. list_del_init(&ordered->root_extent_list);
  425. atomic_inc(&ordered->refs);
  426. /*
  427. * the inode may be getting freed (in sys_unlink path).
  428. */
  429. inode = igrab(ordered->inode);
  430. spin_unlock(&root->fs_info->ordered_extent_lock);
  431. if (inode) {
  432. btrfs_start_ordered_extent(inode, ordered, 1);
  433. btrfs_put_ordered_extent(ordered);
  434. if (delay_iput)
  435. btrfs_add_delayed_iput(inode);
  436. else
  437. iput(inode);
  438. } else {
  439. btrfs_put_ordered_extent(ordered);
  440. }
  441. spin_lock(&root->fs_info->ordered_extent_lock);
  442. }
  443. spin_unlock(&root->fs_info->ordered_extent_lock);
  444. return 0;
  445. }
  446. /*
  447. * this is used during transaction commit to write all the inodes
  448. * added to the ordered operation list. These files must be fully on
  449. * disk before the transaction commits.
  450. *
  451. * we have two modes here, one is to just start the IO via filemap_flush
  452. * and the other is to wait for all the io. When we wait, we have an
  453. * extra check to make sure the ordered operation list really is empty
  454. * before we return
  455. */
  456. int btrfs_run_ordered_operations(struct btrfs_root *root, int wait)
  457. {
  458. struct btrfs_inode *btrfs_inode;
  459. struct inode *inode;
  460. struct list_head splice;
  461. INIT_LIST_HEAD(&splice);
  462. mutex_lock(&root->fs_info->ordered_operations_mutex);
  463. spin_lock(&root->fs_info->ordered_extent_lock);
  464. again:
  465. list_splice_init(&root->fs_info->ordered_operations, &splice);
  466. while (!list_empty(&splice)) {
  467. btrfs_inode = list_entry(splice.next, struct btrfs_inode,
  468. ordered_operations);
  469. inode = &btrfs_inode->vfs_inode;
  470. list_del_init(&btrfs_inode->ordered_operations);
  471. /*
  472. * the inode may be getting freed (in sys_unlink path).
  473. */
  474. inode = igrab(inode);
  475. if (!wait && inode) {
  476. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  477. &root->fs_info->ordered_operations);
  478. }
  479. spin_unlock(&root->fs_info->ordered_extent_lock);
  480. if (inode) {
  481. if (wait)
  482. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  483. else
  484. filemap_flush(inode->i_mapping);
  485. btrfs_add_delayed_iput(inode);
  486. }
  487. cond_resched();
  488. spin_lock(&root->fs_info->ordered_extent_lock);
  489. }
  490. if (wait && !list_empty(&root->fs_info->ordered_operations))
  491. goto again;
  492. spin_unlock(&root->fs_info->ordered_extent_lock);
  493. mutex_unlock(&root->fs_info->ordered_operations_mutex);
  494. return 0;
  495. }
  496. /*
  497. * Used to start IO or wait for a given ordered extent to finish.
  498. *
  499. * If wait is one, this effectively waits on page writeback for all the pages
  500. * in the extent, and it waits on the io completion code to insert
  501. * metadata into the btree corresponding to the extent
  502. */
  503. void btrfs_start_ordered_extent(struct inode *inode,
  504. struct btrfs_ordered_extent *entry,
  505. int wait)
  506. {
  507. u64 start = entry->file_offset;
  508. u64 end = start + entry->len - 1;
  509. /*
  510. * pages in the range can be dirty, clean or writeback. We
  511. * start IO on any dirty ones so the wait doesn't stall waiting
  512. * for pdflush to find them
  513. */
  514. if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
  515. filemap_fdatawrite_range(inode->i_mapping, start, end);
  516. if (wait) {
  517. wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
  518. &entry->flags));
  519. }
  520. }
  521. /*
  522. * Used to wait on ordered extents across a large range of bytes.
  523. */
  524. int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
  525. {
  526. u64 end;
  527. u64 orig_end;
  528. struct btrfs_ordered_extent *ordered;
  529. int found;
  530. if (start + len < start) {
  531. orig_end = INT_LIMIT(loff_t);
  532. } else {
  533. orig_end = start + len - 1;
  534. if (orig_end > INT_LIMIT(loff_t))
  535. orig_end = INT_LIMIT(loff_t);
  536. }
  537. again:
  538. /* start IO across the range first to instantiate any delalloc
  539. * extents
  540. */
  541. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  542. /* The compression code will leave pages locked but return from
  543. * writepage without setting the page writeback. Starting again
  544. * with WB_SYNC_ALL will end up waiting for the IO to actually start.
  545. */
  546. filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
  547. filemap_fdatawait_range(inode->i_mapping, start, orig_end);
  548. end = orig_end;
  549. found = 0;
  550. while (1) {
  551. ordered = btrfs_lookup_first_ordered_extent(inode, end);
  552. if (!ordered)
  553. break;
  554. if (ordered->file_offset > orig_end) {
  555. btrfs_put_ordered_extent(ordered);
  556. break;
  557. }
  558. if (ordered->file_offset + ordered->len < start) {
  559. btrfs_put_ordered_extent(ordered);
  560. break;
  561. }
  562. found++;
  563. btrfs_start_ordered_extent(inode, ordered, 1);
  564. end = ordered->file_offset;
  565. btrfs_put_ordered_extent(ordered);
  566. if (end == 0 || end == start)
  567. break;
  568. end--;
  569. }
  570. if (found || test_range_bit(&BTRFS_I(inode)->io_tree, start, orig_end,
  571. EXTENT_DELALLOC, 0, NULL)) {
  572. schedule_timeout(1);
  573. goto again;
  574. }
  575. return 0;
  576. }
  577. /*
  578. * find an ordered extent corresponding to file_offset. return NULL if
  579. * nothing is found, otherwise take a reference on the extent and return it
  580. */
  581. struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
  582. u64 file_offset)
  583. {
  584. struct btrfs_ordered_inode_tree *tree;
  585. struct rb_node *node;
  586. struct btrfs_ordered_extent *entry = NULL;
  587. tree = &BTRFS_I(inode)->ordered_tree;
  588. spin_lock(&tree->lock);
  589. node = tree_search(tree, file_offset);
  590. if (!node)
  591. goto out;
  592. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  593. if (!offset_in_entry(entry, file_offset))
  594. entry = NULL;
  595. if (entry)
  596. atomic_inc(&entry->refs);
  597. out:
  598. spin_unlock(&tree->lock);
  599. return entry;
  600. }
  601. /* Since the DIO code tries to lock a wide area we need to look for any ordered
  602. * extents that exist in the range, rather than just the start of the range.
  603. */
  604. struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
  605. u64 file_offset,
  606. u64 len)
  607. {
  608. struct btrfs_ordered_inode_tree *tree;
  609. struct rb_node *node;
  610. struct btrfs_ordered_extent *entry = NULL;
  611. tree = &BTRFS_I(inode)->ordered_tree;
  612. spin_lock(&tree->lock);
  613. node = tree_search(tree, file_offset);
  614. if (!node) {
  615. node = tree_search(tree, file_offset + len);
  616. if (!node)
  617. goto out;
  618. }
  619. while (1) {
  620. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  621. if (range_overlaps(entry, file_offset, len))
  622. break;
  623. if (entry->file_offset >= file_offset + len) {
  624. entry = NULL;
  625. break;
  626. }
  627. entry = NULL;
  628. node = rb_next(node);
  629. if (!node)
  630. break;
  631. }
  632. out:
  633. if (entry)
  634. atomic_inc(&entry->refs);
  635. spin_unlock(&tree->lock);
  636. return entry;
  637. }
  638. /*
  639. * lookup and return any extent before 'file_offset'. NULL is returned
  640. * if none is found
  641. */
  642. struct btrfs_ordered_extent *
  643. btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
  644. {
  645. struct btrfs_ordered_inode_tree *tree;
  646. struct rb_node *node;
  647. struct btrfs_ordered_extent *entry = NULL;
  648. tree = &BTRFS_I(inode)->ordered_tree;
  649. spin_lock(&tree->lock);
  650. node = tree_search(tree, file_offset);
  651. if (!node)
  652. goto out;
  653. entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  654. atomic_inc(&entry->refs);
  655. out:
  656. spin_unlock(&tree->lock);
  657. return entry;
  658. }
  659. /*
  660. * After an extent is done, call this to conditionally update the on disk
  661. * i_size. i_size is updated to cover any fully written part of the file.
  662. */
  663. int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
  664. struct btrfs_ordered_extent *ordered)
  665. {
  666. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  667. struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
  668. u64 disk_i_size;
  669. u64 new_i_size;
  670. u64 i_size_test;
  671. u64 i_size = i_size_read(inode);
  672. struct rb_node *node;
  673. struct rb_node *prev = NULL;
  674. struct btrfs_ordered_extent *test;
  675. int ret = 1;
  676. if (ordered)
  677. offset = entry_end(ordered);
  678. else
  679. offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
  680. spin_lock(&tree->lock);
  681. disk_i_size = BTRFS_I(inode)->disk_i_size;
  682. /* truncate file */
  683. if (disk_i_size > i_size) {
  684. BTRFS_I(inode)->disk_i_size = i_size;
  685. ret = 0;
  686. goto out;
  687. }
  688. /*
  689. * if the disk i_size is already at the inode->i_size, or
  690. * this ordered extent is inside the disk i_size, we're done
  691. */
  692. if (disk_i_size == i_size || offset <= disk_i_size) {
  693. goto out;
  694. }
  695. /*
  696. * we can't update the disk_isize if there are delalloc bytes
  697. * between disk_i_size and this ordered extent
  698. */
  699. if (test_range_bit(io_tree, disk_i_size, offset - 1,
  700. EXTENT_DELALLOC, 0, NULL)) {
  701. goto out;
  702. }
  703. /*
  704. * walk backward from this ordered extent to disk_i_size.
  705. * if we find an ordered extent then we can't update disk i_size
  706. * yet
  707. */
  708. if (ordered) {
  709. node = rb_prev(&ordered->rb_node);
  710. } else {
  711. prev = tree_search(tree, offset);
  712. /*
  713. * we insert file extents without involving ordered struct,
  714. * so there should be no ordered struct cover this offset
  715. */
  716. if (prev) {
  717. test = rb_entry(prev, struct btrfs_ordered_extent,
  718. rb_node);
  719. BUG_ON(offset_in_entry(test, offset));
  720. }
  721. node = prev;
  722. }
  723. while (node) {
  724. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  725. if (test->file_offset + test->len <= disk_i_size)
  726. break;
  727. if (test->file_offset >= i_size)
  728. break;
  729. if (test->file_offset >= disk_i_size)
  730. goto out;
  731. node = rb_prev(node);
  732. }
  733. new_i_size = min_t(u64, offset, i_size);
  734. /*
  735. * at this point, we know we can safely update i_size to at least
  736. * the offset from this ordered extent. But, we need to
  737. * walk forward and see if ios from higher up in the file have
  738. * finished.
  739. */
  740. if (ordered) {
  741. node = rb_next(&ordered->rb_node);
  742. } else {
  743. if (prev)
  744. node = rb_next(prev);
  745. else
  746. node = rb_first(&tree->tree);
  747. }
  748. i_size_test = 0;
  749. if (node) {
  750. /*
  751. * do we have an area where IO might have finished
  752. * between our ordered extent and the next one.
  753. */
  754. test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
  755. if (test->file_offset > offset)
  756. i_size_test = test->file_offset;
  757. } else {
  758. i_size_test = i_size;
  759. }
  760. /*
  761. * i_size_test is the end of a region after this ordered
  762. * extent where there are no ordered extents. As long as there
  763. * are no delalloc bytes in this area, it is safe to update
  764. * disk_i_size to the end of the region.
  765. */
  766. if (i_size_test > offset &&
  767. !test_range_bit(io_tree, offset, i_size_test - 1,
  768. EXTENT_DELALLOC, 0, NULL)) {
  769. new_i_size = min_t(u64, i_size_test, i_size);
  770. }
  771. BTRFS_I(inode)->disk_i_size = new_i_size;
  772. ret = 0;
  773. out:
  774. /*
  775. * we need to remove the ordered extent with the tree lock held
  776. * so that other people calling this function don't find our fully
  777. * processed ordered entry and skip updating the i_size
  778. */
  779. if (ordered)
  780. __btrfs_remove_ordered_extent(inode, ordered);
  781. spin_unlock(&tree->lock);
  782. if (ordered)
  783. wake_up(&ordered->wait);
  784. return ret;
  785. }
  786. /*
  787. * search the ordered extents for one corresponding to 'offset' and
  788. * try to find a checksum. This is used because we allow pages to
  789. * be reclaimed before their checksum is actually put into the btree
  790. */
  791. int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
  792. u32 *sum)
  793. {
  794. struct btrfs_ordered_sum *ordered_sum;
  795. struct btrfs_sector_sum *sector_sums;
  796. struct btrfs_ordered_extent *ordered;
  797. struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
  798. unsigned long num_sectors;
  799. unsigned long i;
  800. u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
  801. int ret = 1;
  802. ordered = btrfs_lookup_ordered_extent(inode, offset);
  803. if (!ordered)
  804. return 1;
  805. spin_lock(&tree->lock);
  806. list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
  807. if (disk_bytenr >= ordered_sum->bytenr) {
  808. num_sectors = ordered_sum->len / sectorsize;
  809. sector_sums = ordered_sum->sums;
  810. for (i = 0; i < num_sectors; i++) {
  811. if (sector_sums[i].bytenr == disk_bytenr) {
  812. *sum = sector_sums[i].sum;
  813. ret = 0;
  814. goto out;
  815. }
  816. }
  817. }
  818. }
  819. out:
  820. spin_unlock(&tree->lock);
  821. btrfs_put_ordered_extent(ordered);
  822. return ret;
  823. }
  824. /*
  825. * add a given inode to the list of inodes that must be fully on
  826. * disk before a transaction commit finishes.
  827. *
  828. * This basically gives us the ext3 style data=ordered mode, and it is mostly
  829. * used to make sure renamed files are fully on disk.
  830. *
  831. * It is a noop if the inode is already fully on disk.
  832. *
  833. * If trans is not null, we'll do a friendly check for a transaction that
  834. * is already flushing things and force the IO down ourselves.
  835. */
  836. int btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
  837. struct btrfs_root *root,
  838. struct inode *inode)
  839. {
  840. u64 last_mod;
  841. last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
  842. /*
  843. * if this file hasn't been changed since the last transaction
  844. * commit, we can safely return without doing anything
  845. */
  846. if (last_mod < root->fs_info->last_trans_committed)
  847. return 0;
  848. /*
  849. * the transaction is already committing. Just start the IO and
  850. * don't bother with all of this list nonsense
  851. */
  852. if (trans && root->fs_info->running_transaction->blocked) {
  853. btrfs_wait_ordered_range(inode, 0, (u64)-1);
  854. return 0;
  855. }
  856. spin_lock(&root->fs_info->ordered_extent_lock);
  857. if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
  858. list_add_tail(&BTRFS_I(inode)->ordered_operations,
  859. &root->fs_info->ordered_operations);
  860. }
  861. spin_unlock(&root->fs_info->ordered_extent_lock);
  862. return 0;
  863. }