write.c 18 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756
  1. /* handling of writes to regular files and writing back to the server
  2. *
  3. * Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
  4. * Written by David Howells (dhowells@redhat.com)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License
  8. * as published by the Free Software Foundation; either version
  9. * 2 of the License, or (at your option) any later version.
  10. */
  11. #include <linux/backing-dev.h>
  12. #include <linux/slab.h>
  13. #include <linux/fs.h>
  14. #include <linux/pagemap.h>
  15. #include <linux/writeback.h>
  16. #include <linux/pagevec.h>
  17. #include "internal.h"
  18. static int afs_write_back_from_locked_page(struct afs_writeback *wb,
  19. struct page *page);
  20. /*
  21. * mark a page as having been made dirty and thus needing writeback
  22. */
  23. int afs_set_page_dirty(struct page *page)
  24. {
  25. _enter("");
  26. return __set_page_dirty_nobuffers(page);
  27. }
  28. /*
  29. * unlink a writeback record because its usage has reached zero
  30. * - must be called with the wb->vnode->writeback_lock held
  31. */
  32. static void afs_unlink_writeback(struct afs_writeback *wb)
  33. {
  34. struct afs_writeback *front;
  35. struct afs_vnode *vnode = wb->vnode;
  36. list_del_init(&wb->link);
  37. if (!list_empty(&vnode->writebacks)) {
  38. /* if an fsync rises to the front of the queue then wake it
  39. * up */
  40. front = list_entry(vnode->writebacks.next,
  41. struct afs_writeback, link);
  42. if (front->state == AFS_WBACK_SYNCING) {
  43. _debug("wake up sync");
  44. front->state = AFS_WBACK_COMPLETE;
  45. wake_up(&front->waitq);
  46. }
  47. }
  48. }
  49. /*
  50. * free a writeback record
  51. */
  52. static void afs_free_writeback(struct afs_writeback *wb)
  53. {
  54. _enter("");
  55. key_put(wb->key);
  56. kfree(wb);
  57. }
  58. /*
  59. * dispose of a reference to a writeback record
  60. */
  61. void afs_put_writeback(struct afs_writeback *wb)
  62. {
  63. struct afs_vnode *vnode = wb->vnode;
  64. _enter("{%d}", wb->usage);
  65. spin_lock(&vnode->writeback_lock);
  66. if (--wb->usage == 0)
  67. afs_unlink_writeback(wb);
  68. else
  69. wb = NULL;
  70. spin_unlock(&vnode->writeback_lock);
  71. if (wb)
  72. afs_free_writeback(wb);
  73. }
  74. /*
  75. * partly or wholly fill a page that's under preparation for writing
  76. */
  77. static int afs_fill_page(struct afs_vnode *vnode, struct key *key,
  78. loff_t pos, unsigned len, struct page *page)
  79. {
  80. loff_t i_size;
  81. unsigned eof;
  82. int ret;
  83. _enter(",,%llu,%u", (unsigned long long)pos, len);
  84. ASSERTCMP(len, <=, PAGE_CACHE_SIZE);
  85. i_size = i_size_read(&vnode->vfs_inode);
  86. if (pos + len > i_size)
  87. eof = i_size;
  88. else
  89. eof = PAGE_CACHE_SIZE;
  90. ret = afs_vnode_fetch_data(vnode, key, 0, eof, page);
  91. if (ret < 0) {
  92. if (ret == -ENOENT) {
  93. _debug("got NOENT from server"
  94. " - marking file deleted and stale");
  95. set_bit(AFS_VNODE_DELETED, &vnode->flags);
  96. ret = -ESTALE;
  97. }
  98. }
  99. _leave(" = %d", ret);
  100. return ret;
  101. }
  102. /*
  103. * prepare to perform part of a write to a page
  104. */
  105. int afs_write_begin(struct file *file, struct address_space *mapping,
  106. loff_t pos, unsigned len, unsigned flags,
  107. struct page **pagep, void **fsdata)
  108. {
  109. struct afs_writeback *candidate, *wb;
  110. struct afs_vnode *vnode = AFS_FS_I(file->f_dentry->d_inode);
  111. struct page *page;
  112. struct key *key = file->private_data;
  113. unsigned from = pos & (PAGE_CACHE_SIZE - 1);
  114. unsigned to = from + len;
  115. pgoff_t index = pos >> PAGE_CACHE_SHIFT;
  116. int ret;
  117. _enter("{%x:%u},{%lx},%u,%u",
  118. vnode->fid.vid, vnode->fid.vnode, index, from, to);
  119. candidate = kzalloc(sizeof(*candidate), GFP_KERNEL);
  120. if (!candidate)
  121. return -ENOMEM;
  122. candidate->vnode = vnode;
  123. candidate->first = candidate->last = index;
  124. candidate->offset_first = from;
  125. candidate->to_last = to;
  126. candidate->usage = 1;
  127. candidate->state = AFS_WBACK_PENDING;
  128. init_waitqueue_head(&candidate->waitq);
  129. page = grab_cache_page_write_begin(mapping, index, flags);
  130. if (!page) {
  131. kfree(candidate);
  132. return -ENOMEM;
  133. }
  134. *pagep = page;
  135. /* page won't leak in error case: it eventually gets cleaned off LRU */
  136. if (!PageUptodate(page)) {
  137. _debug("not up to date");
  138. ret = afs_fill_page(vnode, key, pos, len, page);
  139. if (ret < 0) {
  140. kfree(candidate);
  141. _leave(" = %d [prep]", ret);
  142. return ret;
  143. }
  144. SetPageUptodate(page);
  145. }
  146. try_again:
  147. spin_lock(&vnode->writeback_lock);
  148. /* see if this page is already pending a writeback under a suitable key
  149. * - if so we can just join onto that one */
  150. wb = (struct afs_writeback *) page_private(page);
  151. if (wb) {
  152. if (wb->key == key && wb->state == AFS_WBACK_PENDING)
  153. goto subsume_in_current_wb;
  154. goto flush_conflicting_wb;
  155. }
  156. if (index > 0) {
  157. /* see if we can find an already pending writeback that we can
  158. * append this page to */
  159. list_for_each_entry(wb, &vnode->writebacks, link) {
  160. if (wb->last == index - 1 && wb->key == key &&
  161. wb->state == AFS_WBACK_PENDING)
  162. goto append_to_previous_wb;
  163. }
  164. }
  165. list_add_tail(&candidate->link, &vnode->writebacks);
  166. candidate->key = key_get(key);
  167. spin_unlock(&vnode->writeback_lock);
  168. SetPagePrivate(page);
  169. set_page_private(page, (unsigned long) candidate);
  170. _leave(" = 0 [new]");
  171. return 0;
  172. subsume_in_current_wb:
  173. _debug("subsume");
  174. ASSERTRANGE(wb->first, <=, index, <=, wb->last);
  175. if (index == wb->first && from < wb->offset_first)
  176. wb->offset_first = from;
  177. if (index == wb->last && to > wb->to_last)
  178. wb->to_last = to;
  179. spin_unlock(&vnode->writeback_lock);
  180. kfree(candidate);
  181. _leave(" = 0 [sub]");
  182. return 0;
  183. append_to_previous_wb:
  184. _debug("append into %lx-%lx", wb->first, wb->last);
  185. wb->usage++;
  186. wb->last++;
  187. wb->to_last = to;
  188. spin_unlock(&vnode->writeback_lock);
  189. SetPagePrivate(page);
  190. set_page_private(page, (unsigned long) wb);
  191. kfree(candidate);
  192. _leave(" = 0 [app]");
  193. return 0;
  194. /* the page is currently bound to another context, so if it's dirty we
  195. * need to flush it before we can use the new context */
  196. flush_conflicting_wb:
  197. _debug("flush conflict");
  198. if (wb->state == AFS_WBACK_PENDING)
  199. wb->state = AFS_WBACK_CONFLICTING;
  200. spin_unlock(&vnode->writeback_lock);
  201. if (PageDirty(page)) {
  202. ret = afs_write_back_from_locked_page(wb, page);
  203. if (ret < 0) {
  204. afs_put_writeback(candidate);
  205. _leave(" = %d", ret);
  206. return ret;
  207. }
  208. }
  209. /* the page holds a ref on the writeback record */
  210. afs_put_writeback(wb);
  211. set_page_private(page, 0);
  212. ClearPagePrivate(page);
  213. goto try_again;
  214. }
  215. /*
  216. * finalise part of a write to a page
  217. */
  218. int afs_write_end(struct file *file, struct address_space *mapping,
  219. loff_t pos, unsigned len, unsigned copied,
  220. struct page *page, void *fsdata)
  221. {
  222. struct afs_vnode *vnode = AFS_FS_I(file->f_dentry->d_inode);
  223. loff_t i_size, maybe_i_size;
  224. _enter("{%x:%u},{%lx}",
  225. vnode->fid.vid, vnode->fid.vnode, page->index);
  226. maybe_i_size = pos + copied;
  227. i_size = i_size_read(&vnode->vfs_inode);
  228. if (maybe_i_size > i_size) {
  229. spin_lock(&vnode->writeback_lock);
  230. i_size = i_size_read(&vnode->vfs_inode);
  231. if (maybe_i_size > i_size)
  232. i_size_write(&vnode->vfs_inode, maybe_i_size);
  233. spin_unlock(&vnode->writeback_lock);
  234. }
  235. set_page_dirty(page);
  236. if (PageDirty(page))
  237. _debug("dirtied");
  238. unlock_page(page);
  239. page_cache_release(page);
  240. return copied;
  241. }
  242. /*
  243. * kill all the pages in the given range
  244. */
  245. static void afs_kill_pages(struct afs_vnode *vnode, bool error,
  246. pgoff_t first, pgoff_t last)
  247. {
  248. struct pagevec pv;
  249. unsigned count, loop;
  250. _enter("{%x:%u},%lx-%lx",
  251. vnode->fid.vid, vnode->fid.vnode, first, last);
  252. pagevec_init(&pv, 0);
  253. do {
  254. _debug("kill %lx-%lx", first, last);
  255. count = last - first + 1;
  256. if (count > PAGEVEC_SIZE)
  257. count = PAGEVEC_SIZE;
  258. pv.nr = find_get_pages_contig(vnode->vfs_inode.i_mapping,
  259. first, count, pv.pages);
  260. ASSERTCMP(pv.nr, ==, count);
  261. for (loop = 0; loop < count; loop++) {
  262. ClearPageUptodate(pv.pages[loop]);
  263. if (error)
  264. SetPageError(pv.pages[loop]);
  265. end_page_writeback(pv.pages[loop]);
  266. }
  267. __pagevec_release(&pv);
  268. } while (first < last);
  269. _leave("");
  270. }
  271. /*
  272. * synchronously write back the locked page and any subsequent non-locked dirty
  273. * pages also covered by the same writeback record
  274. */
  275. static int afs_write_back_from_locked_page(struct afs_writeback *wb,
  276. struct page *primary_page)
  277. {
  278. struct page *pages[8], *page;
  279. unsigned long count;
  280. unsigned n, offset, to;
  281. pgoff_t start, first, last;
  282. int loop, ret;
  283. _enter(",%lx", primary_page->index);
  284. count = 1;
  285. if (!clear_page_dirty_for_io(primary_page))
  286. BUG();
  287. if (test_set_page_writeback(primary_page))
  288. BUG();
  289. /* find all consecutive lockable dirty pages, stopping when we find a
  290. * page that is not immediately lockable, is not dirty or is missing,
  291. * or we reach the end of the range */
  292. start = primary_page->index;
  293. if (start >= wb->last)
  294. goto no_more;
  295. start++;
  296. do {
  297. _debug("more %lx [%lx]", start, count);
  298. n = wb->last - start + 1;
  299. if (n > ARRAY_SIZE(pages))
  300. n = ARRAY_SIZE(pages);
  301. n = find_get_pages_contig(wb->vnode->vfs_inode.i_mapping,
  302. start, n, pages);
  303. _debug("fgpc %u", n);
  304. if (n == 0)
  305. goto no_more;
  306. if (pages[0]->index != start) {
  307. do {
  308. put_page(pages[--n]);
  309. } while (n > 0);
  310. goto no_more;
  311. }
  312. for (loop = 0; loop < n; loop++) {
  313. page = pages[loop];
  314. if (page->index > wb->last)
  315. break;
  316. if (!trylock_page(page))
  317. break;
  318. if (!PageDirty(page) ||
  319. page_private(page) != (unsigned long) wb) {
  320. unlock_page(page);
  321. break;
  322. }
  323. if (!clear_page_dirty_for_io(page))
  324. BUG();
  325. if (test_set_page_writeback(page))
  326. BUG();
  327. unlock_page(page);
  328. put_page(page);
  329. }
  330. count += loop;
  331. if (loop < n) {
  332. for (; loop < n; loop++)
  333. put_page(pages[loop]);
  334. goto no_more;
  335. }
  336. start += loop;
  337. } while (start <= wb->last && count < 65536);
  338. no_more:
  339. /* we now have a contiguous set of dirty pages, each with writeback set
  340. * and the dirty mark cleared; the first page is locked and must remain
  341. * so, all the rest are unlocked */
  342. first = primary_page->index;
  343. last = first + count - 1;
  344. offset = (first == wb->first) ? wb->offset_first : 0;
  345. to = (last == wb->last) ? wb->to_last : PAGE_SIZE;
  346. _debug("write back %lx[%u..] to %lx[..%u]", first, offset, last, to);
  347. ret = afs_vnode_store_data(wb, first, last, offset, to);
  348. if (ret < 0) {
  349. switch (ret) {
  350. case -EDQUOT:
  351. case -ENOSPC:
  352. set_bit(AS_ENOSPC,
  353. &wb->vnode->vfs_inode.i_mapping->flags);
  354. break;
  355. case -EROFS:
  356. case -EIO:
  357. case -EREMOTEIO:
  358. case -EFBIG:
  359. case -ENOENT:
  360. case -ENOMEDIUM:
  361. case -ENXIO:
  362. afs_kill_pages(wb->vnode, true, first, last);
  363. set_bit(AS_EIO, &wb->vnode->vfs_inode.i_mapping->flags);
  364. break;
  365. case -EACCES:
  366. case -EPERM:
  367. case -ENOKEY:
  368. case -EKEYEXPIRED:
  369. case -EKEYREJECTED:
  370. case -EKEYREVOKED:
  371. afs_kill_pages(wb->vnode, false, first, last);
  372. break;
  373. default:
  374. break;
  375. }
  376. } else {
  377. ret = count;
  378. }
  379. _leave(" = %d", ret);
  380. return ret;
  381. }
  382. /*
  383. * write a page back to the server
  384. * - the caller locked the page for us
  385. */
  386. int afs_writepage(struct page *page, struct writeback_control *wbc)
  387. {
  388. struct afs_writeback *wb;
  389. int ret;
  390. _enter("{%lx},", page->index);
  391. wb = (struct afs_writeback *) page_private(page);
  392. ASSERT(wb != NULL);
  393. ret = afs_write_back_from_locked_page(wb, page);
  394. unlock_page(page);
  395. if (ret < 0) {
  396. _leave(" = %d", ret);
  397. return 0;
  398. }
  399. wbc->nr_to_write -= ret;
  400. _leave(" = 0");
  401. return 0;
  402. }
  403. /*
  404. * write a region of pages back to the server
  405. */
  406. static int afs_writepages_region(struct address_space *mapping,
  407. struct writeback_control *wbc,
  408. pgoff_t index, pgoff_t end, pgoff_t *_next)
  409. {
  410. struct afs_writeback *wb;
  411. struct page *page;
  412. int ret, n;
  413. _enter(",,%lx,%lx,", index, end);
  414. do {
  415. n = find_get_pages_tag(mapping, &index, PAGECACHE_TAG_DIRTY,
  416. 1, &page);
  417. if (!n)
  418. break;
  419. _debug("wback %lx", page->index);
  420. if (page->index > end) {
  421. *_next = index;
  422. page_cache_release(page);
  423. _leave(" = 0 [%lx]", *_next);
  424. return 0;
  425. }
  426. /* at this point we hold neither mapping->tree_lock nor lock on
  427. * the page itself: the page may be truncated or invalidated
  428. * (changing page->mapping to NULL), or even swizzled back from
  429. * swapper_space to tmpfs file mapping
  430. */
  431. lock_page(page);
  432. if (page->mapping != mapping) {
  433. unlock_page(page);
  434. page_cache_release(page);
  435. continue;
  436. }
  437. if (wbc->sync_mode != WB_SYNC_NONE)
  438. wait_on_page_writeback(page);
  439. if (PageWriteback(page) || !PageDirty(page)) {
  440. unlock_page(page);
  441. continue;
  442. }
  443. wb = (struct afs_writeback *) page_private(page);
  444. ASSERT(wb != NULL);
  445. spin_lock(&wb->vnode->writeback_lock);
  446. wb->state = AFS_WBACK_WRITING;
  447. spin_unlock(&wb->vnode->writeback_lock);
  448. ret = afs_write_back_from_locked_page(wb, page);
  449. unlock_page(page);
  450. page_cache_release(page);
  451. if (ret < 0) {
  452. _leave(" = %d", ret);
  453. return ret;
  454. }
  455. wbc->nr_to_write -= ret;
  456. cond_resched();
  457. } while (index < end && wbc->nr_to_write > 0);
  458. *_next = index;
  459. _leave(" = 0 [%lx]", *_next);
  460. return 0;
  461. }
  462. /*
  463. * write some of the pending data back to the server
  464. */
  465. int afs_writepages(struct address_space *mapping,
  466. struct writeback_control *wbc)
  467. {
  468. pgoff_t start, end, next;
  469. int ret;
  470. _enter("");
  471. if (wbc->range_cyclic) {
  472. start = mapping->writeback_index;
  473. end = -1;
  474. ret = afs_writepages_region(mapping, wbc, start, end, &next);
  475. if (start > 0 && wbc->nr_to_write > 0 && ret == 0)
  476. ret = afs_writepages_region(mapping, wbc, 0, start,
  477. &next);
  478. mapping->writeback_index = next;
  479. } else if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) {
  480. end = (pgoff_t)(LLONG_MAX >> PAGE_CACHE_SHIFT);
  481. ret = afs_writepages_region(mapping, wbc, 0, end, &next);
  482. if (wbc->nr_to_write > 0)
  483. mapping->writeback_index = next;
  484. } else {
  485. start = wbc->range_start >> PAGE_CACHE_SHIFT;
  486. end = wbc->range_end >> PAGE_CACHE_SHIFT;
  487. ret = afs_writepages_region(mapping, wbc, start, end, &next);
  488. }
  489. _leave(" = %d", ret);
  490. return ret;
  491. }
  492. /*
  493. * completion of write to server
  494. */
  495. void afs_pages_written_back(struct afs_vnode *vnode, struct afs_call *call)
  496. {
  497. struct afs_writeback *wb = call->wb;
  498. struct pagevec pv;
  499. unsigned count, loop;
  500. pgoff_t first = call->first, last = call->last;
  501. bool free_wb;
  502. _enter("{%x:%u},{%lx-%lx}",
  503. vnode->fid.vid, vnode->fid.vnode, first, last);
  504. ASSERT(wb != NULL);
  505. pagevec_init(&pv, 0);
  506. do {
  507. _debug("done %lx-%lx", first, last);
  508. count = last - first + 1;
  509. if (count > PAGEVEC_SIZE)
  510. count = PAGEVEC_SIZE;
  511. pv.nr = find_get_pages_contig(call->mapping, first, count,
  512. pv.pages);
  513. ASSERTCMP(pv.nr, ==, count);
  514. spin_lock(&vnode->writeback_lock);
  515. for (loop = 0; loop < count; loop++) {
  516. struct page *page = pv.pages[loop];
  517. end_page_writeback(page);
  518. if (page_private(page) == (unsigned long) wb) {
  519. set_page_private(page, 0);
  520. ClearPagePrivate(page);
  521. wb->usage--;
  522. }
  523. }
  524. free_wb = false;
  525. if (wb->usage == 0) {
  526. afs_unlink_writeback(wb);
  527. free_wb = true;
  528. }
  529. spin_unlock(&vnode->writeback_lock);
  530. first += count;
  531. if (free_wb) {
  532. afs_free_writeback(wb);
  533. wb = NULL;
  534. }
  535. __pagevec_release(&pv);
  536. } while (first <= last);
  537. _leave("");
  538. }
  539. /*
  540. * write to an AFS file
  541. */
  542. ssize_t afs_file_write(struct kiocb *iocb, const struct iovec *iov,
  543. unsigned long nr_segs, loff_t pos)
  544. {
  545. struct dentry *dentry = iocb->ki_filp->f_path.dentry;
  546. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  547. ssize_t result;
  548. size_t count = iov_length(iov, nr_segs);
  549. _enter("{%x.%u},{%zu},%lu,",
  550. vnode->fid.vid, vnode->fid.vnode, count, nr_segs);
  551. if (IS_SWAPFILE(&vnode->vfs_inode)) {
  552. printk(KERN_INFO
  553. "AFS: Attempt to write to active swap file!\n");
  554. return -EBUSY;
  555. }
  556. if (!count)
  557. return 0;
  558. result = generic_file_aio_write(iocb, iov, nr_segs, pos);
  559. if (IS_ERR_VALUE(result)) {
  560. _leave(" = %zd", result);
  561. return result;
  562. }
  563. _leave(" = %zd", result);
  564. return result;
  565. }
  566. /*
  567. * flush the vnode to the fileserver
  568. */
  569. int afs_writeback_all(struct afs_vnode *vnode)
  570. {
  571. struct address_space *mapping = vnode->vfs_inode.i_mapping;
  572. struct writeback_control wbc = {
  573. .sync_mode = WB_SYNC_ALL,
  574. .nr_to_write = LONG_MAX,
  575. .range_cyclic = 1,
  576. };
  577. int ret;
  578. _enter("");
  579. ret = mapping->a_ops->writepages(mapping, &wbc);
  580. __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
  581. _leave(" = %d", ret);
  582. return ret;
  583. }
  584. /*
  585. * flush any dirty pages for this process, and check for write errors.
  586. * - the return status from this call provides a reliable indication of
  587. * whether any write errors occurred for this process.
  588. */
  589. int afs_fsync(struct file *file, int datasync)
  590. {
  591. struct dentry *dentry = file->f_path.dentry;
  592. struct afs_writeback *wb, *xwb;
  593. struct afs_vnode *vnode = AFS_FS_I(dentry->d_inode);
  594. int ret;
  595. _enter("{%x:%u},{n=%s},%d",
  596. vnode->fid.vid, vnode->fid.vnode, dentry->d_name.name,
  597. datasync);
  598. /* use a writeback record as a marker in the queue - when this reaches
  599. * the front of the queue, all the outstanding writes are either
  600. * completed or rejected */
  601. wb = kzalloc(sizeof(*wb), GFP_KERNEL);
  602. if (!wb)
  603. return -ENOMEM;
  604. wb->vnode = vnode;
  605. wb->first = 0;
  606. wb->last = -1;
  607. wb->offset_first = 0;
  608. wb->to_last = PAGE_SIZE;
  609. wb->usage = 1;
  610. wb->state = AFS_WBACK_SYNCING;
  611. init_waitqueue_head(&wb->waitq);
  612. spin_lock(&vnode->writeback_lock);
  613. list_for_each_entry(xwb, &vnode->writebacks, link) {
  614. if (xwb->state == AFS_WBACK_PENDING)
  615. xwb->state = AFS_WBACK_CONFLICTING;
  616. }
  617. list_add_tail(&wb->link, &vnode->writebacks);
  618. spin_unlock(&vnode->writeback_lock);
  619. /* push all the outstanding writebacks to the server */
  620. ret = afs_writeback_all(vnode);
  621. if (ret < 0) {
  622. afs_put_writeback(wb);
  623. _leave(" = %d [wb]", ret);
  624. return ret;
  625. }
  626. /* wait for the preceding writes to actually complete */
  627. ret = wait_event_interruptible(wb->waitq,
  628. wb->state == AFS_WBACK_COMPLETE ||
  629. vnode->writebacks.next == &wb->link);
  630. afs_put_writeback(wb);
  631. _leave(" = %d", ret);
  632. return ret;
  633. }
  634. /*
  635. * notification that a previously read-only page is about to become writable
  636. * - if it returns an error, the caller will deliver a bus error signal
  637. */
  638. int afs_page_mkwrite(struct vm_area_struct *vma, struct page *page)
  639. {
  640. struct afs_vnode *vnode = AFS_FS_I(vma->vm_file->f_mapping->host);
  641. _enter("{{%x:%u}},{%lx}",
  642. vnode->fid.vid, vnode->fid.vnode, page->index);
  643. /* wait for the page to be written to the cache before we allow it to
  644. * be modified */
  645. #ifdef CONFIG_AFS_FSCACHE
  646. fscache_wait_on_page_write(vnode->cache, page);
  647. #endif
  648. _leave(" = 0");
  649. return 0;
  650. }