swiotlb-xen.c 14 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515
  1. /*
  2. * Copyright 2010
  3. * by Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
  4. *
  5. * This code provides a IOMMU for Xen PV guests with PCI passthrough.
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License v2.0 as published by
  9. * the Free Software Foundation
  10. *
  11. * This program is distributed in the hope that it will be useful,
  12. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  14. * GNU General Public License for more details.
  15. *
  16. * PV guests under Xen are running in an non-contiguous memory architecture.
  17. *
  18. * When PCI pass-through is utilized, this necessitates an IOMMU for
  19. * translating bus (DMA) to virtual and vice-versa and also providing a
  20. * mechanism to have contiguous pages for device drivers operations (say DMA
  21. * operations).
  22. *
  23. * Specifically, under Xen the Linux idea of pages is an illusion. It
  24. * assumes that pages start at zero and go up to the available memory. To
  25. * help with that, the Linux Xen MMU provides a lookup mechanism to
  26. * translate the page frame numbers (PFN) to machine frame numbers (MFN)
  27. * and vice-versa. The MFN are the "real" frame numbers. Furthermore
  28. * memory is not contiguous. Xen hypervisor stitches memory for guests
  29. * from different pools, which means there is no guarantee that PFN==MFN
  30. * and PFN+1==MFN+1. Lastly with Xen 4.0, pages (in debug mode) are
  31. * allocated in descending order (high to low), meaning the guest might
  32. * never get any MFN's under the 4GB mark.
  33. *
  34. */
  35. #include <linux/bootmem.h>
  36. #include <linux/dma-mapping.h>
  37. #include <xen/swiotlb-xen.h>
  38. #include <xen/page.h>
  39. #include <xen/xen-ops.h>
  40. /*
  41. * Used to do a quick range check in swiotlb_tbl_unmap_single and
  42. * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
  43. * API.
  44. */
  45. static char *xen_io_tlb_start, *xen_io_tlb_end;
  46. static unsigned long xen_io_tlb_nslabs;
  47. /*
  48. * Quick lookup value of the bus address of the IOTLB.
  49. */
  50. u64 start_dma_addr;
  51. static dma_addr_t xen_phys_to_bus(phys_addr_t paddr)
  52. {
  53. return phys_to_machine(XPADDR(paddr)).maddr;;
  54. }
  55. static phys_addr_t xen_bus_to_phys(dma_addr_t baddr)
  56. {
  57. return machine_to_phys(XMADDR(baddr)).paddr;
  58. }
  59. static dma_addr_t xen_virt_to_bus(void *address)
  60. {
  61. return xen_phys_to_bus(virt_to_phys(address));
  62. }
  63. static int check_pages_physically_contiguous(unsigned long pfn,
  64. unsigned int offset,
  65. size_t length)
  66. {
  67. unsigned long next_mfn;
  68. int i;
  69. int nr_pages;
  70. next_mfn = pfn_to_mfn(pfn);
  71. nr_pages = (offset + length + PAGE_SIZE-1) >> PAGE_SHIFT;
  72. for (i = 1; i < nr_pages; i++) {
  73. if (pfn_to_mfn(++pfn) != ++next_mfn)
  74. return 0;
  75. }
  76. return 1;
  77. }
  78. static int range_straddles_page_boundary(phys_addr_t p, size_t size)
  79. {
  80. unsigned long pfn = PFN_DOWN(p);
  81. unsigned int offset = p & ~PAGE_MASK;
  82. if (offset + size <= PAGE_SIZE)
  83. return 0;
  84. if (check_pages_physically_contiguous(pfn, offset, size))
  85. return 0;
  86. return 1;
  87. }
  88. static int is_xen_swiotlb_buffer(dma_addr_t dma_addr)
  89. {
  90. unsigned long mfn = PFN_DOWN(dma_addr);
  91. unsigned long pfn = mfn_to_local_pfn(mfn);
  92. phys_addr_t paddr;
  93. /* If the address is outside our domain, it CAN
  94. * have the same virtual address as another address
  95. * in our domain. Therefore _only_ check address within our domain.
  96. */
  97. if (pfn_valid(pfn)) {
  98. paddr = PFN_PHYS(pfn);
  99. return paddr >= virt_to_phys(xen_io_tlb_start) &&
  100. paddr < virt_to_phys(xen_io_tlb_end);
  101. }
  102. return 0;
  103. }
  104. static int max_dma_bits = 32;
  105. static int
  106. xen_swiotlb_fixup(void *buf, size_t size, unsigned long nslabs)
  107. {
  108. int i, rc;
  109. int dma_bits;
  110. dma_bits = get_order(IO_TLB_SEGSIZE << IO_TLB_SHIFT) + PAGE_SHIFT;
  111. i = 0;
  112. do {
  113. int slabs = min(nslabs - i, (unsigned long)IO_TLB_SEGSIZE);
  114. do {
  115. rc = xen_create_contiguous_region(
  116. (unsigned long)buf + (i << IO_TLB_SHIFT),
  117. get_order(slabs << IO_TLB_SHIFT),
  118. dma_bits);
  119. } while (rc && dma_bits++ < max_dma_bits);
  120. if (rc)
  121. return rc;
  122. i += slabs;
  123. } while (i < nslabs);
  124. return 0;
  125. }
  126. void __init xen_swiotlb_init(int verbose)
  127. {
  128. unsigned long bytes;
  129. int rc;
  130. xen_io_tlb_nslabs = (64 * 1024 * 1024 >> IO_TLB_SHIFT);
  131. xen_io_tlb_nslabs = ALIGN(xen_io_tlb_nslabs, IO_TLB_SEGSIZE);
  132. bytes = xen_io_tlb_nslabs << IO_TLB_SHIFT;
  133. /*
  134. * Get IO TLB memory from any location.
  135. */
  136. xen_io_tlb_start = alloc_bootmem(bytes);
  137. if (!xen_io_tlb_start)
  138. panic("Cannot allocate SWIOTLB buffer");
  139. xen_io_tlb_end = xen_io_tlb_start + bytes;
  140. /*
  141. * And replace that memory with pages under 4GB.
  142. */
  143. rc = xen_swiotlb_fixup(xen_io_tlb_start,
  144. bytes,
  145. xen_io_tlb_nslabs);
  146. if (rc)
  147. goto error;
  148. start_dma_addr = xen_virt_to_bus(xen_io_tlb_start);
  149. swiotlb_init_with_tbl(xen_io_tlb_start, xen_io_tlb_nslabs, verbose);
  150. return;
  151. error:
  152. panic("DMA(%d): Failed to exchange pages allocated for DMA with Xen! "\
  153. "We either don't have the permission or you do not have enough"\
  154. "free memory under 4GB!\n", rc);
  155. }
  156. void *
  157. xen_swiotlb_alloc_coherent(struct device *hwdev, size_t size,
  158. dma_addr_t *dma_handle, gfp_t flags)
  159. {
  160. void *ret;
  161. int order = get_order(size);
  162. u64 dma_mask = DMA_BIT_MASK(32);
  163. unsigned long vstart;
  164. /*
  165. * Ignore region specifiers - the kernel's ideas of
  166. * pseudo-phys memory layout has nothing to do with the
  167. * machine physical layout. We can't allocate highmem
  168. * because we can't return a pointer to it.
  169. */
  170. flags &= ~(__GFP_DMA | __GFP_HIGHMEM);
  171. if (dma_alloc_from_coherent(hwdev, size, dma_handle, &ret))
  172. return ret;
  173. vstart = __get_free_pages(flags, order);
  174. ret = (void *)vstart;
  175. if (hwdev && hwdev->coherent_dma_mask)
  176. dma_mask = dma_alloc_coherent_mask(hwdev, flags);
  177. if (ret) {
  178. if (xen_create_contiguous_region(vstart, order,
  179. fls64(dma_mask)) != 0) {
  180. free_pages(vstart, order);
  181. return NULL;
  182. }
  183. memset(ret, 0, size);
  184. *dma_handle = virt_to_machine(ret).maddr;
  185. }
  186. return ret;
  187. }
  188. EXPORT_SYMBOL_GPL(xen_swiotlb_alloc_coherent);
  189. void
  190. xen_swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
  191. dma_addr_t dev_addr)
  192. {
  193. int order = get_order(size);
  194. if (dma_release_from_coherent(hwdev, order, vaddr))
  195. return;
  196. xen_destroy_contiguous_region((unsigned long)vaddr, order);
  197. free_pages((unsigned long)vaddr, order);
  198. }
  199. EXPORT_SYMBOL_GPL(xen_swiotlb_free_coherent);
  200. /*
  201. * Map a single buffer of the indicated size for DMA in streaming mode. The
  202. * physical address to use is returned.
  203. *
  204. * Once the device is given the dma address, the device owns this memory until
  205. * either xen_swiotlb_unmap_page or xen_swiotlb_dma_sync_single is performed.
  206. */
  207. dma_addr_t xen_swiotlb_map_page(struct device *dev, struct page *page,
  208. unsigned long offset, size_t size,
  209. enum dma_data_direction dir,
  210. struct dma_attrs *attrs)
  211. {
  212. phys_addr_t phys = page_to_phys(page) + offset;
  213. dma_addr_t dev_addr = xen_phys_to_bus(phys);
  214. void *map;
  215. BUG_ON(dir == DMA_NONE);
  216. /*
  217. * If the address happens to be in the device's DMA window,
  218. * we can safely return the device addr and not worry about bounce
  219. * buffering it.
  220. */
  221. if (dma_capable(dev, dev_addr, size) &&
  222. !range_straddles_page_boundary(phys, size) && !swiotlb_force)
  223. return dev_addr;
  224. /*
  225. * Oh well, have to allocate and map a bounce buffer.
  226. */
  227. map = swiotlb_tbl_map_single(dev, start_dma_addr, phys, size, dir);
  228. if (!map)
  229. return DMA_ERROR_CODE;
  230. dev_addr = xen_virt_to_bus(map);
  231. /*
  232. * Ensure that the address returned is DMA'ble
  233. */
  234. if (!dma_capable(dev, dev_addr, size))
  235. panic("map_single: bounce buffer is not DMA'ble");
  236. return dev_addr;
  237. }
  238. EXPORT_SYMBOL_GPL(xen_swiotlb_map_page);
  239. /*
  240. * Unmap a single streaming mode DMA translation. The dma_addr and size must
  241. * match what was provided for in a previous xen_swiotlb_map_page call. All
  242. * other usages are undefined.
  243. *
  244. * After this call, reads by the cpu to the buffer are guaranteed to see
  245. * whatever the device wrote there.
  246. */
  247. static void xen_unmap_single(struct device *hwdev, dma_addr_t dev_addr,
  248. size_t size, enum dma_data_direction dir)
  249. {
  250. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  251. BUG_ON(dir == DMA_NONE);
  252. /* NOTE: We use dev_addr here, not paddr! */
  253. if (is_xen_swiotlb_buffer(dev_addr)) {
  254. swiotlb_tbl_unmap_single(hwdev, phys_to_virt(paddr), size, dir);
  255. return;
  256. }
  257. if (dir != DMA_FROM_DEVICE)
  258. return;
  259. /*
  260. * phys_to_virt doesn't work with hihgmem page but we could
  261. * call dma_mark_clean() with hihgmem page here. However, we
  262. * are fine since dma_mark_clean() is null on POWERPC. We can
  263. * make dma_mark_clean() take a physical address if necessary.
  264. */
  265. dma_mark_clean(phys_to_virt(paddr), size);
  266. }
  267. void xen_swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
  268. size_t size, enum dma_data_direction dir,
  269. struct dma_attrs *attrs)
  270. {
  271. xen_unmap_single(hwdev, dev_addr, size, dir);
  272. }
  273. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_page);
  274. /*
  275. * Make physical memory consistent for a single streaming mode DMA translation
  276. * after a transfer.
  277. *
  278. * If you perform a xen_swiotlb_map_page() but wish to interrogate the buffer
  279. * using the cpu, yet do not wish to teardown the dma mapping, you must
  280. * call this function before doing so. At the next point you give the dma
  281. * address back to the card, you must first perform a
  282. * xen_swiotlb_dma_sync_for_device, and then the device again owns the buffer
  283. */
  284. static void
  285. xen_swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
  286. size_t size, enum dma_data_direction dir,
  287. enum dma_sync_target target)
  288. {
  289. phys_addr_t paddr = xen_bus_to_phys(dev_addr);
  290. BUG_ON(dir == DMA_NONE);
  291. /* NOTE: We use dev_addr here, not paddr! */
  292. if (is_xen_swiotlb_buffer(dev_addr)) {
  293. swiotlb_tbl_sync_single(hwdev, phys_to_virt(paddr), size, dir,
  294. target);
  295. return;
  296. }
  297. if (dir != DMA_FROM_DEVICE)
  298. return;
  299. dma_mark_clean(phys_to_virt(paddr), size);
  300. }
  301. void
  302. xen_swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
  303. size_t size, enum dma_data_direction dir)
  304. {
  305. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
  306. }
  307. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_cpu);
  308. void
  309. xen_swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
  310. size_t size, enum dma_data_direction dir)
  311. {
  312. xen_swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
  313. }
  314. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_single_for_device);
  315. /*
  316. * Map a set of buffers described by scatterlist in streaming mode for DMA.
  317. * This is the scatter-gather version of the above xen_swiotlb_map_page
  318. * interface. Here the scatter gather list elements are each tagged with the
  319. * appropriate dma address and length. They are obtained via
  320. * sg_dma_{address,length}(SG).
  321. *
  322. * NOTE: An implementation may be able to use a smaller number of
  323. * DMA address/length pairs than there are SG table elements.
  324. * (for example via virtual mapping capabilities)
  325. * The routine returns the number of addr/length pairs actually
  326. * used, at most nents.
  327. *
  328. * Device ownership issues as mentioned above for xen_swiotlb_map_page are the
  329. * same here.
  330. */
  331. int
  332. xen_swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  333. int nelems, enum dma_data_direction dir,
  334. struct dma_attrs *attrs)
  335. {
  336. struct scatterlist *sg;
  337. int i;
  338. BUG_ON(dir == DMA_NONE);
  339. for_each_sg(sgl, sg, nelems, i) {
  340. phys_addr_t paddr = sg_phys(sg);
  341. dma_addr_t dev_addr = xen_phys_to_bus(paddr);
  342. if (swiotlb_force ||
  343. !dma_capable(hwdev, dev_addr, sg->length) ||
  344. range_straddles_page_boundary(paddr, sg->length)) {
  345. void *map = swiotlb_tbl_map_single(hwdev,
  346. start_dma_addr,
  347. sg_phys(sg),
  348. sg->length, dir);
  349. if (!map) {
  350. /* Don't panic here, we expect map_sg users
  351. to do proper error handling. */
  352. xen_swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
  353. attrs);
  354. sgl[0].dma_length = 0;
  355. return DMA_ERROR_CODE;
  356. }
  357. sg->dma_address = xen_virt_to_bus(map);
  358. } else
  359. sg->dma_address = dev_addr;
  360. sg->dma_length = sg->length;
  361. }
  362. return nelems;
  363. }
  364. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg_attrs);
  365. int
  366. xen_swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  367. enum dma_data_direction dir)
  368. {
  369. return xen_swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  370. }
  371. EXPORT_SYMBOL_GPL(xen_swiotlb_map_sg);
  372. /*
  373. * Unmap a set of streaming mode DMA translations. Again, cpu read rules
  374. * concerning calls here are the same as for swiotlb_unmap_page() above.
  375. */
  376. void
  377. xen_swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
  378. int nelems, enum dma_data_direction dir,
  379. struct dma_attrs *attrs)
  380. {
  381. struct scatterlist *sg;
  382. int i;
  383. BUG_ON(dir == DMA_NONE);
  384. for_each_sg(sgl, sg, nelems, i)
  385. xen_unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
  386. }
  387. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg_attrs);
  388. void
  389. xen_swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
  390. enum dma_data_direction dir)
  391. {
  392. return xen_swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
  393. }
  394. EXPORT_SYMBOL_GPL(xen_swiotlb_unmap_sg);
  395. /*
  396. * Make physical memory consistent for a set of streaming mode DMA translations
  397. * after a transfer.
  398. *
  399. * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
  400. * and usage.
  401. */
  402. static void
  403. xen_swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
  404. int nelems, enum dma_data_direction dir,
  405. enum dma_sync_target target)
  406. {
  407. struct scatterlist *sg;
  408. int i;
  409. for_each_sg(sgl, sg, nelems, i)
  410. xen_swiotlb_sync_single(hwdev, sg->dma_address,
  411. sg->dma_length, dir, target);
  412. }
  413. void
  414. xen_swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
  415. int nelems, enum dma_data_direction dir)
  416. {
  417. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
  418. }
  419. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_cpu);
  420. void
  421. xen_swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
  422. int nelems, enum dma_data_direction dir)
  423. {
  424. xen_swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
  425. }
  426. EXPORT_SYMBOL_GPL(xen_swiotlb_sync_sg_for_device);
  427. int
  428. xen_swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
  429. {
  430. return !dma_addr;
  431. }
  432. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_mapping_error);
  433. /*
  434. * Return whether the given device DMA address mask can be supported
  435. * properly. For example, if your device can only drive the low 24-bits
  436. * during bus mastering, then you would pass 0x00ffffff as the mask to
  437. * this function.
  438. */
  439. int
  440. xen_swiotlb_dma_supported(struct device *hwdev, u64 mask)
  441. {
  442. return xen_virt_to_bus(xen_io_tlb_end - 1) <= mask;
  443. }
  444. EXPORT_SYMBOL_GPL(xen_swiotlb_dma_supported);