dispc.c 72 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169
  1. /*
  2. * linux/drivers/video/omap2/dss/dispc.c
  3. *
  4. * Copyright (C) 2009 Nokia Corporation
  5. * Author: Tomi Valkeinen <tomi.valkeinen@nokia.com>
  6. *
  7. * Some code and ideas taken from drivers/video/omap/ driver
  8. * by Imre Deak.
  9. *
  10. * This program is free software; you can redistribute it and/or modify it
  11. * under the terms of the GNU General Public License version 2 as published by
  12. * the Free Software Foundation.
  13. *
  14. * This program is distributed in the hope that it will be useful, but WITHOUT
  15. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  16. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  17. * more details.
  18. *
  19. * You should have received a copy of the GNU General Public License along with
  20. * this program. If not, see <http://www.gnu.org/licenses/>.
  21. */
  22. #define DSS_SUBSYS_NAME "DISPC"
  23. #include <linux/kernel.h>
  24. #include <linux/dma-mapping.h>
  25. #include <linux/vmalloc.h>
  26. #include <linux/clk.h>
  27. #include <linux/io.h>
  28. #include <linux/jiffies.h>
  29. #include <linux/seq_file.h>
  30. #include <linux/delay.h>
  31. #include <linux/workqueue.h>
  32. #include <linux/hardirq.h>
  33. #include <plat/sram.h>
  34. #include <plat/clock.h>
  35. #include <plat/display.h>
  36. #include "dss.h"
  37. #include "dss_features.h"
  38. /* DISPC */
  39. #define DISPC_BASE 0x48050400
  40. #define DISPC_SZ_REGS SZ_1K
  41. struct dispc_reg { u16 idx; };
  42. #define DISPC_REG(idx) ((const struct dispc_reg) { idx })
  43. /* DISPC common */
  44. #define DISPC_REVISION DISPC_REG(0x0000)
  45. #define DISPC_SYSCONFIG DISPC_REG(0x0010)
  46. #define DISPC_SYSSTATUS DISPC_REG(0x0014)
  47. #define DISPC_IRQSTATUS DISPC_REG(0x0018)
  48. #define DISPC_IRQENABLE DISPC_REG(0x001C)
  49. #define DISPC_CONTROL DISPC_REG(0x0040)
  50. #define DISPC_CONFIG DISPC_REG(0x0044)
  51. #define DISPC_CAPABLE DISPC_REG(0x0048)
  52. #define DISPC_DEFAULT_COLOR0 DISPC_REG(0x004C)
  53. #define DISPC_DEFAULT_COLOR1 DISPC_REG(0x0050)
  54. #define DISPC_TRANS_COLOR0 DISPC_REG(0x0054)
  55. #define DISPC_TRANS_COLOR1 DISPC_REG(0x0058)
  56. #define DISPC_LINE_STATUS DISPC_REG(0x005C)
  57. #define DISPC_LINE_NUMBER DISPC_REG(0x0060)
  58. #define DISPC_TIMING_H DISPC_REG(0x0064)
  59. #define DISPC_TIMING_V DISPC_REG(0x0068)
  60. #define DISPC_POL_FREQ DISPC_REG(0x006C)
  61. #define DISPC_DIVISOR DISPC_REG(0x0070)
  62. #define DISPC_GLOBAL_ALPHA DISPC_REG(0x0074)
  63. #define DISPC_SIZE_DIG DISPC_REG(0x0078)
  64. #define DISPC_SIZE_LCD DISPC_REG(0x007C)
  65. /* DISPC GFX plane */
  66. #define DISPC_GFX_BA0 DISPC_REG(0x0080)
  67. #define DISPC_GFX_BA1 DISPC_REG(0x0084)
  68. #define DISPC_GFX_POSITION DISPC_REG(0x0088)
  69. #define DISPC_GFX_SIZE DISPC_REG(0x008C)
  70. #define DISPC_GFX_ATTRIBUTES DISPC_REG(0x00A0)
  71. #define DISPC_GFX_FIFO_THRESHOLD DISPC_REG(0x00A4)
  72. #define DISPC_GFX_FIFO_SIZE_STATUS DISPC_REG(0x00A8)
  73. #define DISPC_GFX_ROW_INC DISPC_REG(0x00AC)
  74. #define DISPC_GFX_PIXEL_INC DISPC_REG(0x00B0)
  75. #define DISPC_GFX_WINDOW_SKIP DISPC_REG(0x00B4)
  76. #define DISPC_GFX_TABLE_BA DISPC_REG(0x00B8)
  77. #define DISPC_DATA_CYCLE1 DISPC_REG(0x01D4)
  78. #define DISPC_DATA_CYCLE2 DISPC_REG(0x01D8)
  79. #define DISPC_DATA_CYCLE3 DISPC_REG(0x01DC)
  80. #define DISPC_CPR_COEF_R DISPC_REG(0x0220)
  81. #define DISPC_CPR_COEF_G DISPC_REG(0x0224)
  82. #define DISPC_CPR_COEF_B DISPC_REG(0x0228)
  83. #define DISPC_GFX_PRELOAD DISPC_REG(0x022C)
  84. /* DISPC Video plane, n = 0 for VID1 and n = 1 for VID2 */
  85. #define DISPC_VID_REG(n, idx) DISPC_REG(0x00BC + (n)*0x90 + idx)
  86. #define DISPC_VID_BA0(n) DISPC_VID_REG(n, 0x0000)
  87. #define DISPC_VID_BA1(n) DISPC_VID_REG(n, 0x0004)
  88. #define DISPC_VID_POSITION(n) DISPC_VID_REG(n, 0x0008)
  89. #define DISPC_VID_SIZE(n) DISPC_VID_REG(n, 0x000C)
  90. #define DISPC_VID_ATTRIBUTES(n) DISPC_VID_REG(n, 0x0010)
  91. #define DISPC_VID_FIFO_THRESHOLD(n) DISPC_VID_REG(n, 0x0014)
  92. #define DISPC_VID_FIFO_SIZE_STATUS(n) DISPC_VID_REG(n, 0x0018)
  93. #define DISPC_VID_ROW_INC(n) DISPC_VID_REG(n, 0x001C)
  94. #define DISPC_VID_PIXEL_INC(n) DISPC_VID_REG(n, 0x0020)
  95. #define DISPC_VID_FIR(n) DISPC_VID_REG(n, 0x0024)
  96. #define DISPC_VID_PICTURE_SIZE(n) DISPC_VID_REG(n, 0x0028)
  97. #define DISPC_VID_ACCU0(n) DISPC_VID_REG(n, 0x002C)
  98. #define DISPC_VID_ACCU1(n) DISPC_VID_REG(n, 0x0030)
  99. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  100. #define DISPC_VID_FIR_COEF_H(n, i) DISPC_REG(0x00F0 + (n)*0x90 + (i)*0x8)
  101. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  102. #define DISPC_VID_FIR_COEF_HV(n, i) DISPC_REG(0x00F4 + (n)*0x90 + (i)*0x8)
  103. /* coef index i = {0, 1, 2, 3, 4} */
  104. #define DISPC_VID_CONV_COEF(n, i) DISPC_REG(0x0130 + (n)*0x90 + (i)*0x4)
  105. /* coef index i = {0, 1, 2, 3, 4, 5, 6, 7} */
  106. #define DISPC_VID_FIR_COEF_V(n, i) DISPC_REG(0x01E0 + (n)*0x20 + (i)*0x4)
  107. #define DISPC_VID_PRELOAD(n) DISPC_REG(0x230 + (n)*0x04)
  108. #define DISPC_IRQ_MASK_ERROR (DISPC_IRQ_GFX_FIFO_UNDERFLOW | \
  109. DISPC_IRQ_OCP_ERR | \
  110. DISPC_IRQ_VID1_FIFO_UNDERFLOW | \
  111. DISPC_IRQ_VID2_FIFO_UNDERFLOW | \
  112. DISPC_IRQ_SYNC_LOST | \
  113. DISPC_IRQ_SYNC_LOST_DIGIT)
  114. #define DISPC_MAX_NR_ISRS 8
  115. struct omap_dispc_isr_data {
  116. omap_dispc_isr_t isr;
  117. void *arg;
  118. u32 mask;
  119. };
  120. struct dispc_h_coef {
  121. s8 hc4;
  122. s8 hc3;
  123. u8 hc2;
  124. s8 hc1;
  125. s8 hc0;
  126. };
  127. struct dispc_v_coef {
  128. s8 vc22;
  129. s8 vc2;
  130. u8 vc1;
  131. s8 vc0;
  132. s8 vc00;
  133. };
  134. #define REG_GET(idx, start, end) \
  135. FLD_GET(dispc_read_reg(idx), start, end)
  136. #define REG_FLD_MOD(idx, val, start, end) \
  137. dispc_write_reg(idx, FLD_MOD(dispc_read_reg(idx), val, start, end))
  138. static const struct dispc_reg dispc_reg_att[] = { DISPC_GFX_ATTRIBUTES,
  139. DISPC_VID_ATTRIBUTES(0),
  140. DISPC_VID_ATTRIBUTES(1) };
  141. struct dispc_irq_stats {
  142. unsigned long last_reset;
  143. unsigned irq_count;
  144. unsigned irqs[32];
  145. };
  146. static struct {
  147. void __iomem *base;
  148. u32 fifo_size[3];
  149. spinlock_t irq_lock;
  150. u32 irq_error_mask;
  151. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  152. u32 error_irqs;
  153. struct work_struct error_work;
  154. u32 ctx[DISPC_SZ_REGS / sizeof(u32)];
  155. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  156. spinlock_t irq_stats_lock;
  157. struct dispc_irq_stats irq_stats;
  158. #endif
  159. } dispc;
  160. static void _omap_dispc_set_irqs(void);
  161. static inline void dispc_write_reg(const struct dispc_reg idx, u32 val)
  162. {
  163. __raw_writel(val, dispc.base + idx.idx);
  164. }
  165. static inline u32 dispc_read_reg(const struct dispc_reg idx)
  166. {
  167. return __raw_readl(dispc.base + idx.idx);
  168. }
  169. #define SR(reg) \
  170. dispc.ctx[(DISPC_##reg).idx / sizeof(u32)] = dispc_read_reg(DISPC_##reg)
  171. #define RR(reg) \
  172. dispc_write_reg(DISPC_##reg, dispc.ctx[(DISPC_##reg).idx / sizeof(u32)])
  173. void dispc_save_context(void)
  174. {
  175. if (cpu_is_omap24xx())
  176. return;
  177. SR(SYSCONFIG);
  178. SR(IRQENABLE);
  179. SR(CONTROL);
  180. SR(CONFIG);
  181. SR(DEFAULT_COLOR0);
  182. SR(DEFAULT_COLOR1);
  183. SR(TRANS_COLOR0);
  184. SR(TRANS_COLOR1);
  185. SR(LINE_NUMBER);
  186. SR(TIMING_H);
  187. SR(TIMING_V);
  188. SR(POL_FREQ);
  189. SR(DIVISOR);
  190. SR(GLOBAL_ALPHA);
  191. SR(SIZE_DIG);
  192. SR(SIZE_LCD);
  193. SR(GFX_BA0);
  194. SR(GFX_BA1);
  195. SR(GFX_POSITION);
  196. SR(GFX_SIZE);
  197. SR(GFX_ATTRIBUTES);
  198. SR(GFX_FIFO_THRESHOLD);
  199. SR(GFX_ROW_INC);
  200. SR(GFX_PIXEL_INC);
  201. SR(GFX_WINDOW_SKIP);
  202. SR(GFX_TABLE_BA);
  203. SR(DATA_CYCLE1);
  204. SR(DATA_CYCLE2);
  205. SR(DATA_CYCLE3);
  206. SR(CPR_COEF_R);
  207. SR(CPR_COEF_G);
  208. SR(CPR_COEF_B);
  209. SR(GFX_PRELOAD);
  210. /* VID1 */
  211. SR(VID_BA0(0));
  212. SR(VID_BA1(0));
  213. SR(VID_POSITION(0));
  214. SR(VID_SIZE(0));
  215. SR(VID_ATTRIBUTES(0));
  216. SR(VID_FIFO_THRESHOLD(0));
  217. SR(VID_ROW_INC(0));
  218. SR(VID_PIXEL_INC(0));
  219. SR(VID_FIR(0));
  220. SR(VID_PICTURE_SIZE(0));
  221. SR(VID_ACCU0(0));
  222. SR(VID_ACCU1(0));
  223. SR(VID_FIR_COEF_H(0, 0));
  224. SR(VID_FIR_COEF_H(0, 1));
  225. SR(VID_FIR_COEF_H(0, 2));
  226. SR(VID_FIR_COEF_H(0, 3));
  227. SR(VID_FIR_COEF_H(0, 4));
  228. SR(VID_FIR_COEF_H(0, 5));
  229. SR(VID_FIR_COEF_H(0, 6));
  230. SR(VID_FIR_COEF_H(0, 7));
  231. SR(VID_FIR_COEF_HV(0, 0));
  232. SR(VID_FIR_COEF_HV(0, 1));
  233. SR(VID_FIR_COEF_HV(0, 2));
  234. SR(VID_FIR_COEF_HV(0, 3));
  235. SR(VID_FIR_COEF_HV(0, 4));
  236. SR(VID_FIR_COEF_HV(0, 5));
  237. SR(VID_FIR_COEF_HV(0, 6));
  238. SR(VID_FIR_COEF_HV(0, 7));
  239. SR(VID_CONV_COEF(0, 0));
  240. SR(VID_CONV_COEF(0, 1));
  241. SR(VID_CONV_COEF(0, 2));
  242. SR(VID_CONV_COEF(0, 3));
  243. SR(VID_CONV_COEF(0, 4));
  244. SR(VID_FIR_COEF_V(0, 0));
  245. SR(VID_FIR_COEF_V(0, 1));
  246. SR(VID_FIR_COEF_V(0, 2));
  247. SR(VID_FIR_COEF_V(0, 3));
  248. SR(VID_FIR_COEF_V(0, 4));
  249. SR(VID_FIR_COEF_V(0, 5));
  250. SR(VID_FIR_COEF_V(0, 6));
  251. SR(VID_FIR_COEF_V(0, 7));
  252. SR(VID_PRELOAD(0));
  253. /* VID2 */
  254. SR(VID_BA0(1));
  255. SR(VID_BA1(1));
  256. SR(VID_POSITION(1));
  257. SR(VID_SIZE(1));
  258. SR(VID_ATTRIBUTES(1));
  259. SR(VID_FIFO_THRESHOLD(1));
  260. SR(VID_ROW_INC(1));
  261. SR(VID_PIXEL_INC(1));
  262. SR(VID_FIR(1));
  263. SR(VID_PICTURE_SIZE(1));
  264. SR(VID_ACCU0(1));
  265. SR(VID_ACCU1(1));
  266. SR(VID_FIR_COEF_H(1, 0));
  267. SR(VID_FIR_COEF_H(1, 1));
  268. SR(VID_FIR_COEF_H(1, 2));
  269. SR(VID_FIR_COEF_H(1, 3));
  270. SR(VID_FIR_COEF_H(1, 4));
  271. SR(VID_FIR_COEF_H(1, 5));
  272. SR(VID_FIR_COEF_H(1, 6));
  273. SR(VID_FIR_COEF_H(1, 7));
  274. SR(VID_FIR_COEF_HV(1, 0));
  275. SR(VID_FIR_COEF_HV(1, 1));
  276. SR(VID_FIR_COEF_HV(1, 2));
  277. SR(VID_FIR_COEF_HV(1, 3));
  278. SR(VID_FIR_COEF_HV(1, 4));
  279. SR(VID_FIR_COEF_HV(1, 5));
  280. SR(VID_FIR_COEF_HV(1, 6));
  281. SR(VID_FIR_COEF_HV(1, 7));
  282. SR(VID_CONV_COEF(1, 0));
  283. SR(VID_CONV_COEF(1, 1));
  284. SR(VID_CONV_COEF(1, 2));
  285. SR(VID_CONV_COEF(1, 3));
  286. SR(VID_CONV_COEF(1, 4));
  287. SR(VID_FIR_COEF_V(1, 0));
  288. SR(VID_FIR_COEF_V(1, 1));
  289. SR(VID_FIR_COEF_V(1, 2));
  290. SR(VID_FIR_COEF_V(1, 3));
  291. SR(VID_FIR_COEF_V(1, 4));
  292. SR(VID_FIR_COEF_V(1, 5));
  293. SR(VID_FIR_COEF_V(1, 6));
  294. SR(VID_FIR_COEF_V(1, 7));
  295. SR(VID_PRELOAD(1));
  296. }
  297. void dispc_restore_context(void)
  298. {
  299. RR(SYSCONFIG);
  300. /*RR(IRQENABLE);*/
  301. /*RR(CONTROL);*/
  302. RR(CONFIG);
  303. RR(DEFAULT_COLOR0);
  304. RR(DEFAULT_COLOR1);
  305. RR(TRANS_COLOR0);
  306. RR(TRANS_COLOR1);
  307. RR(LINE_NUMBER);
  308. RR(TIMING_H);
  309. RR(TIMING_V);
  310. RR(POL_FREQ);
  311. RR(DIVISOR);
  312. RR(GLOBAL_ALPHA);
  313. RR(SIZE_DIG);
  314. RR(SIZE_LCD);
  315. RR(GFX_BA0);
  316. RR(GFX_BA1);
  317. RR(GFX_POSITION);
  318. RR(GFX_SIZE);
  319. RR(GFX_ATTRIBUTES);
  320. RR(GFX_FIFO_THRESHOLD);
  321. RR(GFX_ROW_INC);
  322. RR(GFX_PIXEL_INC);
  323. RR(GFX_WINDOW_SKIP);
  324. RR(GFX_TABLE_BA);
  325. RR(DATA_CYCLE1);
  326. RR(DATA_CYCLE2);
  327. RR(DATA_CYCLE3);
  328. RR(CPR_COEF_R);
  329. RR(CPR_COEF_G);
  330. RR(CPR_COEF_B);
  331. RR(GFX_PRELOAD);
  332. /* VID1 */
  333. RR(VID_BA0(0));
  334. RR(VID_BA1(0));
  335. RR(VID_POSITION(0));
  336. RR(VID_SIZE(0));
  337. RR(VID_ATTRIBUTES(0));
  338. RR(VID_FIFO_THRESHOLD(0));
  339. RR(VID_ROW_INC(0));
  340. RR(VID_PIXEL_INC(0));
  341. RR(VID_FIR(0));
  342. RR(VID_PICTURE_SIZE(0));
  343. RR(VID_ACCU0(0));
  344. RR(VID_ACCU1(0));
  345. RR(VID_FIR_COEF_H(0, 0));
  346. RR(VID_FIR_COEF_H(0, 1));
  347. RR(VID_FIR_COEF_H(0, 2));
  348. RR(VID_FIR_COEF_H(0, 3));
  349. RR(VID_FIR_COEF_H(0, 4));
  350. RR(VID_FIR_COEF_H(0, 5));
  351. RR(VID_FIR_COEF_H(0, 6));
  352. RR(VID_FIR_COEF_H(0, 7));
  353. RR(VID_FIR_COEF_HV(0, 0));
  354. RR(VID_FIR_COEF_HV(0, 1));
  355. RR(VID_FIR_COEF_HV(0, 2));
  356. RR(VID_FIR_COEF_HV(0, 3));
  357. RR(VID_FIR_COEF_HV(0, 4));
  358. RR(VID_FIR_COEF_HV(0, 5));
  359. RR(VID_FIR_COEF_HV(0, 6));
  360. RR(VID_FIR_COEF_HV(0, 7));
  361. RR(VID_CONV_COEF(0, 0));
  362. RR(VID_CONV_COEF(0, 1));
  363. RR(VID_CONV_COEF(0, 2));
  364. RR(VID_CONV_COEF(0, 3));
  365. RR(VID_CONV_COEF(0, 4));
  366. RR(VID_FIR_COEF_V(0, 0));
  367. RR(VID_FIR_COEF_V(0, 1));
  368. RR(VID_FIR_COEF_V(0, 2));
  369. RR(VID_FIR_COEF_V(0, 3));
  370. RR(VID_FIR_COEF_V(0, 4));
  371. RR(VID_FIR_COEF_V(0, 5));
  372. RR(VID_FIR_COEF_V(0, 6));
  373. RR(VID_FIR_COEF_V(0, 7));
  374. RR(VID_PRELOAD(0));
  375. /* VID2 */
  376. RR(VID_BA0(1));
  377. RR(VID_BA1(1));
  378. RR(VID_POSITION(1));
  379. RR(VID_SIZE(1));
  380. RR(VID_ATTRIBUTES(1));
  381. RR(VID_FIFO_THRESHOLD(1));
  382. RR(VID_ROW_INC(1));
  383. RR(VID_PIXEL_INC(1));
  384. RR(VID_FIR(1));
  385. RR(VID_PICTURE_SIZE(1));
  386. RR(VID_ACCU0(1));
  387. RR(VID_ACCU1(1));
  388. RR(VID_FIR_COEF_H(1, 0));
  389. RR(VID_FIR_COEF_H(1, 1));
  390. RR(VID_FIR_COEF_H(1, 2));
  391. RR(VID_FIR_COEF_H(1, 3));
  392. RR(VID_FIR_COEF_H(1, 4));
  393. RR(VID_FIR_COEF_H(1, 5));
  394. RR(VID_FIR_COEF_H(1, 6));
  395. RR(VID_FIR_COEF_H(1, 7));
  396. RR(VID_FIR_COEF_HV(1, 0));
  397. RR(VID_FIR_COEF_HV(1, 1));
  398. RR(VID_FIR_COEF_HV(1, 2));
  399. RR(VID_FIR_COEF_HV(1, 3));
  400. RR(VID_FIR_COEF_HV(1, 4));
  401. RR(VID_FIR_COEF_HV(1, 5));
  402. RR(VID_FIR_COEF_HV(1, 6));
  403. RR(VID_FIR_COEF_HV(1, 7));
  404. RR(VID_CONV_COEF(1, 0));
  405. RR(VID_CONV_COEF(1, 1));
  406. RR(VID_CONV_COEF(1, 2));
  407. RR(VID_CONV_COEF(1, 3));
  408. RR(VID_CONV_COEF(1, 4));
  409. RR(VID_FIR_COEF_V(1, 0));
  410. RR(VID_FIR_COEF_V(1, 1));
  411. RR(VID_FIR_COEF_V(1, 2));
  412. RR(VID_FIR_COEF_V(1, 3));
  413. RR(VID_FIR_COEF_V(1, 4));
  414. RR(VID_FIR_COEF_V(1, 5));
  415. RR(VID_FIR_COEF_V(1, 6));
  416. RR(VID_FIR_COEF_V(1, 7));
  417. RR(VID_PRELOAD(1));
  418. /* enable last, because LCD & DIGIT enable are here */
  419. RR(CONTROL);
  420. /* clear spurious SYNC_LOST_DIGIT interrupts */
  421. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  422. /*
  423. * enable last so IRQs won't trigger before
  424. * the context is fully restored
  425. */
  426. RR(IRQENABLE);
  427. }
  428. #undef SR
  429. #undef RR
  430. static inline void enable_clocks(bool enable)
  431. {
  432. if (enable)
  433. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  434. else
  435. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  436. }
  437. bool dispc_go_busy(enum omap_channel channel)
  438. {
  439. int bit;
  440. if (channel == OMAP_DSS_CHANNEL_LCD)
  441. bit = 5; /* GOLCD */
  442. else
  443. bit = 6; /* GODIGIT */
  444. return REG_GET(DISPC_CONTROL, bit, bit) == 1;
  445. }
  446. void dispc_go(enum omap_channel channel)
  447. {
  448. int bit;
  449. enable_clocks(1);
  450. if (channel == OMAP_DSS_CHANNEL_LCD)
  451. bit = 0; /* LCDENABLE */
  452. else
  453. bit = 1; /* DIGITALENABLE */
  454. /* if the channel is not enabled, we don't need GO */
  455. if (REG_GET(DISPC_CONTROL, bit, bit) == 0)
  456. goto end;
  457. if (channel == OMAP_DSS_CHANNEL_LCD)
  458. bit = 5; /* GOLCD */
  459. else
  460. bit = 6; /* GODIGIT */
  461. if (REG_GET(DISPC_CONTROL, bit, bit) == 1) {
  462. DSSERR("GO bit not down for channel %d\n", channel);
  463. goto end;
  464. }
  465. DSSDBG("GO %s\n", channel == OMAP_DSS_CHANNEL_LCD ? "LCD" : "DIGIT");
  466. REG_FLD_MOD(DISPC_CONTROL, 1, bit, bit);
  467. end:
  468. enable_clocks(0);
  469. }
  470. static void _dispc_write_firh_reg(enum omap_plane plane, int reg, u32 value)
  471. {
  472. BUG_ON(plane == OMAP_DSS_GFX);
  473. dispc_write_reg(DISPC_VID_FIR_COEF_H(plane-1, reg), value);
  474. }
  475. static void _dispc_write_firhv_reg(enum omap_plane plane, int reg, u32 value)
  476. {
  477. BUG_ON(plane == OMAP_DSS_GFX);
  478. dispc_write_reg(DISPC_VID_FIR_COEF_HV(plane-1, reg), value);
  479. }
  480. static void _dispc_write_firv_reg(enum omap_plane plane, int reg, u32 value)
  481. {
  482. BUG_ON(plane == OMAP_DSS_GFX);
  483. dispc_write_reg(DISPC_VID_FIR_COEF_V(plane-1, reg), value);
  484. }
  485. static void _dispc_set_scale_coef(enum omap_plane plane, int hscaleup,
  486. int vscaleup, int five_taps)
  487. {
  488. /* Coefficients for horizontal up-sampling */
  489. static const struct dispc_h_coef coef_hup[8] = {
  490. { 0, 0, 128, 0, 0 },
  491. { -1, 13, 124, -8, 0 },
  492. { -2, 30, 112, -11, -1 },
  493. { -5, 51, 95, -11, -2 },
  494. { 0, -9, 73, 73, -9 },
  495. { -2, -11, 95, 51, -5 },
  496. { -1, -11, 112, 30, -2 },
  497. { 0, -8, 124, 13, -1 },
  498. };
  499. /* Coefficients for vertical up-sampling */
  500. static const struct dispc_v_coef coef_vup_3tap[8] = {
  501. { 0, 0, 128, 0, 0 },
  502. { 0, 3, 123, 2, 0 },
  503. { 0, 12, 111, 5, 0 },
  504. { 0, 32, 89, 7, 0 },
  505. { 0, 0, 64, 64, 0 },
  506. { 0, 7, 89, 32, 0 },
  507. { 0, 5, 111, 12, 0 },
  508. { 0, 2, 123, 3, 0 },
  509. };
  510. static const struct dispc_v_coef coef_vup_5tap[8] = {
  511. { 0, 0, 128, 0, 0 },
  512. { -1, 13, 124, -8, 0 },
  513. { -2, 30, 112, -11, -1 },
  514. { -5, 51, 95, -11, -2 },
  515. { 0, -9, 73, 73, -9 },
  516. { -2, -11, 95, 51, -5 },
  517. { -1, -11, 112, 30, -2 },
  518. { 0, -8, 124, 13, -1 },
  519. };
  520. /* Coefficients for horizontal down-sampling */
  521. static const struct dispc_h_coef coef_hdown[8] = {
  522. { 0, 36, 56, 36, 0 },
  523. { 4, 40, 55, 31, -2 },
  524. { 8, 44, 54, 27, -5 },
  525. { 12, 48, 53, 22, -7 },
  526. { -9, 17, 52, 51, 17 },
  527. { -7, 22, 53, 48, 12 },
  528. { -5, 27, 54, 44, 8 },
  529. { -2, 31, 55, 40, 4 },
  530. };
  531. /* Coefficients for vertical down-sampling */
  532. static const struct dispc_v_coef coef_vdown_3tap[8] = {
  533. { 0, 36, 56, 36, 0 },
  534. { 0, 40, 57, 31, 0 },
  535. { 0, 45, 56, 27, 0 },
  536. { 0, 50, 55, 23, 0 },
  537. { 0, 18, 55, 55, 0 },
  538. { 0, 23, 55, 50, 0 },
  539. { 0, 27, 56, 45, 0 },
  540. { 0, 31, 57, 40, 0 },
  541. };
  542. static const struct dispc_v_coef coef_vdown_5tap[8] = {
  543. { 0, 36, 56, 36, 0 },
  544. { 4, 40, 55, 31, -2 },
  545. { 8, 44, 54, 27, -5 },
  546. { 12, 48, 53, 22, -7 },
  547. { -9, 17, 52, 51, 17 },
  548. { -7, 22, 53, 48, 12 },
  549. { -5, 27, 54, 44, 8 },
  550. { -2, 31, 55, 40, 4 },
  551. };
  552. const struct dispc_h_coef *h_coef;
  553. const struct dispc_v_coef *v_coef;
  554. int i;
  555. if (hscaleup)
  556. h_coef = coef_hup;
  557. else
  558. h_coef = coef_hdown;
  559. if (vscaleup)
  560. v_coef = five_taps ? coef_vup_5tap : coef_vup_3tap;
  561. else
  562. v_coef = five_taps ? coef_vdown_5tap : coef_vdown_3tap;
  563. for (i = 0; i < 8; i++) {
  564. u32 h, hv;
  565. h = FLD_VAL(h_coef[i].hc0, 7, 0)
  566. | FLD_VAL(h_coef[i].hc1, 15, 8)
  567. | FLD_VAL(h_coef[i].hc2, 23, 16)
  568. | FLD_VAL(h_coef[i].hc3, 31, 24);
  569. hv = FLD_VAL(h_coef[i].hc4, 7, 0)
  570. | FLD_VAL(v_coef[i].vc0, 15, 8)
  571. | FLD_VAL(v_coef[i].vc1, 23, 16)
  572. | FLD_VAL(v_coef[i].vc2, 31, 24);
  573. _dispc_write_firh_reg(plane, i, h);
  574. _dispc_write_firhv_reg(plane, i, hv);
  575. }
  576. if (five_taps) {
  577. for (i = 0; i < 8; i++) {
  578. u32 v;
  579. v = FLD_VAL(v_coef[i].vc00, 7, 0)
  580. | FLD_VAL(v_coef[i].vc22, 15, 8);
  581. _dispc_write_firv_reg(plane, i, v);
  582. }
  583. }
  584. }
  585. static void _dispc_setup_color_conv_coef(void)
  586. {
  587. const struct color_conv_coef {
  588. int ry, rcr, rcb, gy, gcr, gcb, by, bcr, bcb;
  589. int full_range;
  590. } ctbl_bt601_5 = {
  591. 298, 409, 0, 298, -208, -100, 298, 0, 517, 0,
  592. };
  593. const struct color_conv_coef *ct;
  594. #define CVAL(x, y) (FLD_VAL(x, 26, 16) | FLD_VAL(y, 10, 0))
  595. ct = &ctbl_bt601_5;
  596. dispc_write_reg(DISPC_VID_CONV_COEF(0, 0), CVAL(ct->rcr, ct->ry));
  597. dispc_write_reg(DISPC_VID_CONV_COEF(0, 1), CVAL(ct->gy, ct->rcb));
  598. dispc_write_reg(DISPC_VID_CONV_COEF(0, 2), CVAL(ct->gcb, ct->gcr));
  599. dispc_write_reg(DISPC_VID_CONV_COEF(0, 3), CVAL(ct->bcr, ct->by));
  600. dispc_write_reg(DISPC_VID_CONV_COEF(0, 4), CVAL(0, ct->bcb));
  601. dispc_write_reg(DISPC_VID_CONV_COEF(1, 0), CVAL(ct->rcr, ct->ry));
  602. dispc_write_reg(DISPC_VID_CONV_COEF(1, 1), CVAL(ct->gy, ct->rcb));
  603. dispc_write_reg(DISPC_VID_CONV_COEF(1, 2), CVAL(ct->gcb, ct->gcr));
  604. dispc_write_reg(DISPC_VID_CONV_COEF(1, 3), CVAL(ct->bcr, ct->by));
  605. dispc_write_reg(DISPC_VID_CONV_COEF(1, 4), CVAL(0, ct->bcb));
  606. #undef CVAL
  607. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(0), ct->full_range, 11, 11);
  608. REG_FLD_MOD(DISPC_VID_ATTRIBUTES(1), ct->full_range, 11, 11);
  609. }
  610. static void _dispc_set_plane_ba0(enum omap_plane plane, u32 paddr)
  611. {
  612. const struct dispc_reg ba0_reg[] = { DISPC_GFX_BA0,
  613. DISPC_VID_BA0(0),
  614. DISPC_VID_BA0(1) };
  615. dispc_write_reg(ba0_reg[plane], paddr);
  616. }
  617. static void _dispc_set_plane_ba1(enum omap_plane plane, u32 paddr)
  618. {
  619. const struct dispc_reg ba1_reg[] = { DISPC_GFX_BA1,
  620. DISPC_VID_BA1(0),
  621. DISPC_VID_BA1(1) };
  622. dispc_write_reg(ba1_reg[plane], paddr);
  623. }
  624. static void _dispc_set_plane_pos(enum omap_plane plane, int x, int y)
  625. {
  626. const struct dispc_reg pos_reg[] = { DISPC_GFX_POSITION,
  627. DISPC_VID_POSITION(0),
  628. DISPC_VID_POSITION(1) };
  629. u32 val = FLD_VAL(y, 26, 16) | FLD_VAL(x, 10, 0);
  630. dispc_write_reg(pos_reg[plane], val);
  631. }
  632. static void _dispc_set_pic_size(enum omap_plane plane, int width, int height)
  633. {
  634. const struct dispc_reg siz_reg[] = { DISPC_GFX_SIZE,
  635. DISPC_VID_PICTURE_SIZE(0),
  636. DISPC_VID_PICTURE_SIZE(1) };
  637. u32 val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  638. dispc_write_reg(siz_reg[plane], val);
  639. }
  640. static void _dispc_set_vid_size(enum omap_plane plane, int width, int height)
  641. {
  642. u32 val;
  643. const struct dispc_reg vsi_reg[] = { DISPC_VID_SIZE(0),
  644. DISPC_VID_SIZE(1) };
  645. BUG_ON(plane == OMAP_DSS_GFX);
  646. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  647. dispc_write_reg(vsi_reg[plane-1], val);
  648. }
  649. static void _dispc_setup_global_alpha(enum omap_plane plane, u8 global_alpha)
  650. {
  651. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  652. return;
  653. BUG_ON(!dss_has_feature(FEAT_GLOBAL_ALPHA_VID1) &&
  654. plane == OMAP_DSS_VIDEO1);
  655. if (plane == OMAP_DSS_GFX)
  656. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 7, 0);
  657. else if (plane == OMAP_DSS_VIDEO2)
  658. REG_FLD_MOD(DISPC_GLOBAL_ALPHA, global_alpha, 23, 16);
  659. }
  660. static void _dispc_set_pix_inc(enum omap_plane plane, s32 inc)
  661. {
  662. const struct dispc_reg ri_reg[] = { DISPC_GFX_PIXEL_INC,
  663. DISPC_VID_PIXEL_INC(0),
  664. DISPC_VID_PIXEL_INC(1) };
  665. dispc_write_reg(ri_reg[plane], inc);
  666. }
  667. static void _dispc_set_row_inc(enum omap_plane plane, s32 inc)
  668. {
  669. const struct dispc_reg ri_reg[] = { DISPC_GFX_ROW_INC,
  670. DISPC_VID_ROW_INC(0),
  671. DISPC_VID_ROW_INC(1) };
  672. dispc_write_reg(ri_reg[plane], inc);
  673. }
  674. static void _dispc_set_color_mode(enum omap_plane plane,
  675. enum omap_color_mode color_mode)
  676. {
  677. u32 m = 0;
  678. switch (color_mode) {
  679. case OMAP_DSS_COLOR_CLUT1:
  680. m = 0x0; break;
  681. case OMAP_DSS_COLOR_CLUT2:
  682. m = 0x1; break;
  683. case OMAP_DSS_COLOR_CLUT4:
  684. m = 0x2; break;
  685. case OMAP_DSS_COLOR_CLUT8:
  686. m = 0x3; break;
  687. case OMAP_DSS_COLOR_RGB12U:
  688. m = 0x4; break;
  689. case OMAP_DSS_COLOR_ARGB16:
  690. m = 0x5; break;
  691. case OMAP_DSS_COLOR_RGB16:
  692. m = 0x6; break;
  693. case OMAP_DSS_COLOR_RGB24U:
  694. m = 0x8; break;
  695. case OMAP_DSS_COLOR_RGB24P:
  696. m = 0x9; break;
  697. case OMAP_DSS_COLOR_YUV2:
  698. m = 0xa; break;
  699. case OMAP_DSS_COLOR_UYVY:
  700. m = 0xb; break;
  701. case OMAP_DSS_COLOR_ARGB32:
  702. m = 0xc; break;
  703. case OMAP_DSS_COLOR_RGBA32:
  704. m = 0xd; break;
  705. case OMAP_DSS_COLOR_RGBX32:
  706. m = 0xe; break;
  707. default:
  708. BUG(); break;
  709. }
  710. REG_FLD_MOD(dispc_reg_att[plane], m, 4, 1);
  711. }
  712. static void _dispc_set_channel_out(enum omap_plane plane,
  713. enum omap_channel channel)
  714. {
  715. int shift;
  716. u32 val;
  717. switch (plane) {
  718. case OMAP_DSS_GFX:
  719. shift = 8;
  720. break;
  721. case OMAP_DSS_VIDEO1:
  722. case OMAP_DSS_VIDEO2:
  723. shift = 16;
  724. break;
  725. default:
  726. BUG();
  727. return;
  728. }
  729. val = dispc_read_reg(dispc_reg_att[plane]);
  730. val = FLD_MOD(val, channel, shift, shift);
  731. dispc_write_reg(dispc_reg_att[plane], val);
  732. }
  733. void dispc_set_burst_size(enum omap_plane plane,
  734. enum omap_burst_size burst_size)
  735. {
  736. int shift;
  737. u32 val;
  738. enable_clocks(1);
  739. switch (plane) {
  740. case OMAP_DSS_GFX:
  741. shift = 6;
  742. break;
  743. case OMAP_DSS_VIDEO1:
  744. case OMAP_DSS_VIDEO2:
  745. shift = 14;
  746. break;
  747. default:
  748. BUG();
  749. return;
  750. }
  751. val = dispc_read_reg(dispc_reg_att[plane]);
  752. val = FLD_MOD(val, burst_size, shift+1, shift);
  753. dispc_write_reg(dispc_reg_att[plane], val);
  754. enable_clocks(0);
  755. }
  756. static void _dispc_set_vid_color_conv(enum omap_plane plane, bool enable)
  757. {
  758. u32 val;
  759. BUG_ON(plane == OMAP_DSS_GFX);
  760. val = dispc_read_reg(dispc_reg_att[plane]);
  761. val = FLD_MOD(val, enable, 9, 9);
  762. dispc_write_reg(dispc_reg_att[plane], val);
  763. }
  764. void dispc_enable_replication(enum omap_plane plane, bool enable)
  765. {
  766. int bit;
  767. if (plane == OMAP_DSS_GFX)
  768. bit = 5;
  769. else
  770. bit = 10;
  771. enable_clocks(1);
  772. REG_FLD_MOD(dispc_reg_att[plane], enable, bit, bit);
  773. enable_clocks(0);
  774. }
  775. void dispc_set_lcd_size(u16 width, u16 height)
  776. {
  777. u32 val;
  778. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  779. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  780. enable_clocks(1);
  781. dispc_write_reg(DISPC_SIZE_LCD, val);
  782. enable_clocks(0);
  783. }
  784. void dispc_set_digit_size(u16 width, u16 height)
  785. {
  786. u32 val;
  787. BUG_ON((width > (1 << 11)) || (height > (1 << 11)));
  788. val = FLD_VAL(height - 1, 26, 16) | FLD_VAL(width - 1, 10, 0);
  789. enable_clocks(1);
  790. dispc_write_reg(DISPC_SIZE_DIG, val);
  791. enable_clocks(0);
  792. }
  793. static void dispc_read_plane_fifo_sizes(void)
  794. {
  795. const struct dispc_reg fsz_reg[] = { DISPC_GFX_FIFO_SIZE_STATUS,
  796. DISPC_VID_FIFO_SIZE_STATUS(0),
  797. DISPC_VID_FIFO_SIZE_STATUS(1) };
  798. u32 size;
  799. int plane;
  800. u8 start, end;
  801. enable_clocks(1);
  802. dss_feat_get_reg_field(FEAT_REG_FIFOSIZE, &start, &end);
  803. for (plane = 0; plane < ARRAY_SIZE(dispc.fifo_size); ++plane) {
  804. size = FLD_GET(dispc_read_reg(fsz_reg[plane]), start, end);
  805. dispc.fifo_size[plane] = size;
  806. }
  807. enable_clocks(0);
  808. }
  809. u32 dispc_get_plane_fifo_size(enum omap_plane plane)
  810. {
  811. return dispc.fifo_size[plane];
  812. }
  813. void dispc_setup_plane_fifo(enum omap_plane plane, u32 low, u32 high)
  814. {
  815. const struct dispc_reg ftrs_reg[] = { DISPC_GFX_FIFO_THRESHOLD,
  816. DISPC_VID_FIFO_THRESHOLD(0),
  817. DISPC_VID_FIFO_THRESHOLD(1) };
  818. u8 hi_start, hi_end, lo_start, lo_end;
  819. enable_clocks(1);
  820. DSSDBG("fifo(%d) low/high old %u/%u, new %u/%u\n",
  821. plane,
  822. REG_GET(ftrs_reg[plane], 11, 0),
  823. REG_GET(ftrs_reg[plane], 27, 16),
  824. low, high);
  825. dss_feat_get_reg_field(FEAT_REG_FIFOHIGHTHRESHOLD, &hi_start, &hi_end);
  826. dss_feat_get_reg_field(FEAT_REG_FIFOLOWTHRESHOLD, &lo_start, &lo_end);
  827. dispc_write_reg(ftrs_reg[plane],
  828. FLD_VAL(high, hi_start, hi_end) |
  829. FLD_VAL(low, lo_start, lo_end));
  830. enable_clocks(0);
  831. }
  832. void dispc_enable_fifomerge(bool enable)
  833. {
  834. enable_clocks(1);
  835. DSSDBG("FIFO merge %s\n", enable ? "enabled" : "disabled");
  836. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 14, 14);
  837. enable_clocks(0);
  838. }
  839. static void _dispc_set_fir(enum omap_plane plane, int hinc, int vinc)
  840. {
  841. u32 val;
  842. const struct dispc_reg fir_reg[] = { DISPC_VID_FIR(0),
  843. DISPC_VID_FIR(1) };
  844. u8 hinc_start, hinc_end, vinc_start, vinc_end;
  845. BUG_ON(plane == OMAP_DSS_GFX);
  846. dss_feat_get_reg_field(FEAT_REG_FIRHINC, &hinc_start, &hinc_end);
  847. dss_feat_get_reg_field(FEAT_REG_FIRVINC, &vinc_start, &vinc_end);
  848. val = FLD_VAL(vinc, vinc_start, vinc_end) |
  849. FLD_VAL(hinc, hinc_start, hinc_end);
  850. dispc_write_reg(fir_reg[plane-1], val);
  851. }
  852. static void _dispc_set_vid_accu0(enum omap_plane plane, int haccu, int vaccu)
  853. {
  854. u32 val;
  855. const struct dispc_reg ac0_reg[] = { DISPC_VID_ACCU0(0),
  856. DISPC_VID_ACCU0(1) };
  857. BUG_ON(plane == OMAP_DSS_GFX);
  858. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  859. dispc_write_reg(ac0_reg[plane-1], val);
  860. }
  861. static void _dispc_set_vid_accu1(enum omap_plane plane, int haccu, int vaccu)
  862. {
  863. u32 val;
  864. const struct dispc_reg ac1_reg[] = { DISPC_VID_ACCU1(0),
  865. DISPC_VID_ACCU1(1) };
  866. BUG_ON(plane == OMAP_DSS_GFX);
  867. val = FLD_VAL(vaccu, 25, 16) | FLD_VAL(haccu, 9, 0);
  868. dispc_write_reg(ac1_reg[plane-1], val);
  869. }
  870. static void _dispc_set_scaling(enum omap_plane plane,
  871. u16 orig_width, u16 orig_height,
  872. u16 out_width, u16 out_height,
  873. bool ilace, bool five_taps,
  874. bool fieldmode)
  875. {
  876. int fir_hinc;
  877. int fir_vinc;
  878. int hscaleup, vscaleup;
  879. int accu0 = 0;
  880. int accu1 = 0;
  881. u32 l;
  882. BUG_ON(plane == OMAP_DSS_GFX);
  883. hscaleup = orig_width <= out_width;
  884. vscaleup = orig_height <= out_height;
  885. _dispc_set_scale_coef(plane, hscaleup, vscaleup, five_taps);
  886. if (!orig_width || orig_width == out_width)
  887. fir_hinc = 0;
  888. else
  889. fir_hinc = 1024 * orig_width / out_width;
  890. if (!orig_height || orig_height == out_height)
  891. fir_vinc = 0;
  892. else
  893. fir_vinc = 1024 * orig_height / out_height;
  894. _dispc_set_fir(plane, fir_hinc, fir_vinc);
  895. l = dispc_read_reg(dispc_reg_att[plane]);
  896. l &= ~((0x0f << 5) | (0x3 << 21));
  897. l |= fir_hinc ? (1 << 5) : 0;
  898. l |= fir_vinc ? (1 << 6) : 0;
  899. l |= hscaleup ? 0 : (1 << 7);
  900. l |= vscaleup ? 0 : (1 << 8);
  901. l |= five_taps ? (1 << 21) : 0;
  902. l |= five_taps ? (1 << 22) : 0;
  903. dispc_write_reg(dispc_reg_att[plane], l);
  904. /*
  905. * field 0 = even field = bottom field
  906. * field 1 = odd field = top field
  907. */
  908. if (ilace && !fieldmode) {
  909. accu1 = 0;
  910. accu0 = (fir_vinc / 2) & 0x3ff;
  911. if (accu0 >= 1024/2) {
  912. accu1 = 1024/2;
  913. accu0 -= accu1;
  914. }
  915. }
  916. _dispc_set_vid_accu0(plane, 0, accu0);
  917. _dispc_set_vid_accu1(plane, 0, accu1);
  918. }
  919. static void _dispc_set_rotation_attrs(enum omap_plane plane, u8 rotation,
  920. bool mirroring, enum omap_color_mode color_mode)
  921. {
  922. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  923. color_mode == OMAP_DSS_COLOR_UYVY) {
  924. int vidrot = 0;
  925. if (mirroring) {
  926. switch (rotation) {
  927. case OMAP_DSS_ROT_0:
  928. vidrot = 2;
  929. break;
  930. case OMAP_DSS_ROT_90:
  931. vidrot = 1;
  932. break;
  933. case OMAP_DSS_ROT_180:
  934. vidrot = 0;
  935. break;
  936. case OMAP_DSS_ROT_270:
  937. vidrot = 3;
  938. break;
  939. }
  940. } else {
  941. switch (rotation) {
  942. case OMAP_DSS_ROT_0:
  943. vidrot = 0;
  944. break;
  945. case OMAP_DSS_ROT_90:
  946. vidrot = 1;
  947. break;
  948. case OMAP_DSS_ROT_180:
  949. vidrot = 2;
  950. break;
  951. case OMAP_DSS_ROT_270:
  952. vidrot = 3;
  953. break;
  954. }
  955. }
  956. REG_FLD_MOD(dispc_reg_att[plane], vidrot, 13, 12);
  957. if (rotation == OMAP_DSS_ROT_90 || rotation == OMAP_DSS_ROT_270)
  958. REG_FLD_MOD(dispc_reg_att[plane], 0x1, 18, 18);
  959. else
  960. REG_FLD_MOD(dispc_reg_att[plane], 0x0, 18, 18);
  961. } else {
  962. REG_FLD_MOD(dispc_reg_att[plane], 0, 13, 12);
  963. REG_FLD_MOD(dispc_reg_att[plane], 0, 18, 18);
  964. }
  965. }
  966. static int color_mode_to_bpp(enum omap_color_mode color_mode)
  967. {
  968. switch (color_mode) {
  969. case OMAP_DSS_COLOR_CLUT1:
  970. return 1;
  971. case OMAP_DSS_COLOR_CLUT2:
  972. return 2;
  973. case OMAP_DSS_COLOR_CLUT4:
  974. return 4;
  975. case OMAP_DSS_COLOR_CLUT8:
  976. return 8;
  977. case OMAP_DSS_COLOR_RGB12U:
  978. case OMAP_DSS_COLOR_RGB16:
  979. case OMAP_DSS_COLOR_ARGB16:
  980. case OMAP_DSS_COLOR_YUV2:
  981. case OMAP_DSS_COLOR_UYVY:
  982. return 16;
  983. case OMAP_DSS_COLOR_RGB24P:
  984. return 24;
  985. case OMAP_DSS_COLOR_RGB24U:
  986. case OMAP_DSS_COLOR_ARGB32:
  987. case OMAP_DSS_COLOR_RGBA32:
  988. case OMAP_DSS_COLOR_RGBX32:
  989. return 32;
  990. default:
  991. BUG();
  992. }
  993. }
  994. static s32 pixinc(int pixels, u8 ps)
  995. {
  996. if (pixels == 1)
  997. return 1;
  998. else if (pixels > 1)
  999. return 1 + (pixels - 1) * ps;
  1000. else if (pixels < 0)
  1001. return 1 - (-pixels + 1) * ps;
  1002. else
  1003. BUG();
  1004. }
  1005. static void calc_vrfb_rotation_offset(u8 rotation, bool mirror,
  1006. u16 screen_width,
  1007. u16 width, u16 height,
  1008. enum omap_color_mode color_mode, bool fieldmode,
  1009. unsigned int field_offset,
  1010. unsigned *offset0, unsigned *offset1,
  1011. s32 *row_inc, s32 *pix_inc)
  1012. {
  1013. u8 ps;
  1014. /* FIXME CLUT formats */
  1015. switch (color_mode) {
  1016. case OMAP_DSS_COLOR_CLUT1:
  1017. case OMAP_DSS_COLOR_CLUT2:
  1018. case OMAP_DSS_COLOR_CLUT4:
  1019. case OMAP_DSS_COLOR_CLUT8:
  1020. BUG();
  1021. return;
  1022. case OMAP_DSS_COLOR_YUV2:
  1023. case OMAP_DSS_COLOR_UYVY:
  1024. ps = 4;
  1025. break;
  1026. default:
  1027. ps = color_mode_to_bpp(color_mode) / 8;
  1028. break;
  1029. }
  1030. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1031. width, height);
  1032. /*
  1033. * field 0 = even field = bottom field
  1034. * field 1 = odd field = top field
  1035. */
  1036. switch (rotation + mirror * 4) {
  1037. case OMAP_DSS_ROT_0:
  1038. case OMAP_DSS_ROT_180:
  1039. /*
  1040. * If the pixel format is YUV or UYVY divide the width
  1041. * of the image by 2 for 0 and 180 degree rotation.
  1042. */
  1043. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1044. color_mode == OMAP_DSS_COLOR_UYVY)
  1045. width = width >> 1;
  1046. case OMAP_DSS_ROT_90:
  1047. case OMAP_DSS_ROT_270:
  1048. *offset1 = 0;
  1049. if (field_offset)
  1050. *offset0 = field_offset * screen_width * ps;
  1051. else
  1052. *offset0 = 0;
  1053. *row_inc = pixinc(1 + (screen_width - width) +
  1054. (fieldmode ? screen_width : 0),
  1055. ps);
  1056. *pix_inc = pixinc(1, ps);
  1057. break;
  1058. case OMAP_DSS_ROT_0 + 4:
  1059. case OMAP_DSS_ROT_180 + 4:
  1060. /* If the pixel format is YUV or UYVY divide the width
  1061. * of the image by 2 for 0 degree and 180 degree
  1062. */
  1063. if (color_mode == OMAP_DSS_COLOR_YUV2 ||
  1064. color_mode == OMAP_DSS_COLOR_UYVY)
  1065. width = width >> 1;
  1066. case OMAP_DSS_ROT_90 + 4:
  1067. case OMAP_DSS_ROT_270 + 4:
  1068. *offset1 = 0;
  1069. if (field_offset)
  1070. *offset0 = field_offset * screen_width * ps;
  1071. else
  1072. *offset0 = 0;
  1073. *row_inc = pixinc(1 - (screen_width + width) -
  1074. (fieldmode ? screen_width : 0),
  1075. ps);
  1076. *pix_inc = pixinc(1, ps);
  1077. break;
  1078. default:
  1079. BUG();
  1080. }
  1081. }
  1082. static void calc_dma_rotation_offset(u8 rotation, bool mirror,
  1083. u16 screen_width,
  1084. u16 width, u16 height,
  1085. enum omap_color_mode color_mode, bool fieldmode,
  1086. unsigned int field_offset,
  1087. unsigned *offset0, unsigned *offset1,
  1088. s32 *row_inc, s32 *pix_inc)
  1089. {
  1090. u8 ps;
  1091. u16 fbw, fbh;
  1092. /* FIXME CLUT formats */
  1093. switch (color_mode) {
  1094. case OMAP_DSS_COLOR_CLUT1:
  1095. case OMAP_DSS_COLOR_CLUT2:
  1096. case OMAP_DSS_COLOR_CLUT4:
  1097. case OMAP_DSS_COLOR_CLUT8:
  1098. BUG();
  1099. return;
  1100. default:
  1101. ps = color_mode_to_bpp(color_mode) / 8;
  1102. break;
  1103. }
  1104. DSSDBG("calc_rot(%d): scrw %d, %dx%d\n", rotation, screen_width,
  1105. width, height);
  1106. /* width & height are overlay sizes, convert to fb sizes */
  1107. if (rotation == OMAP_DSS_ROT_0 || rotation == OMAP_DSS_ROT_180) {
  1108. fbw = width;
  1109. fbh = height;
  1110. } else {
  1111. fbw = height;
  1112. fbh = width;
  1113. }
  1114. /*
  1115. * field 0 = even field = bottom field
  1116. * field 1 = odd field = top field
  1117. */
  1118. switch (rotation + mirror * 4) {
  1119. case OMAP_DSS_ROT_0:
  1120. *offset1 = 0;
  1121. if (field_offset)
  1122. *offset0 = *offset1 + field_offset * screen_width * ps;
  1123. else
  1124. *offset0 = *offset1;
  1125. *row_inc = pixinc(1 + (screen_width - fbw) +
  1126. (fieldmode ? screen_width : 0),
  1127. ps);
  1128. *pix_inc = pixinc(1, ps);
  1129. break;
  1130. case OMAP_DSS_ROT_90:
  1131. *offset1 = screen_width * (fbh - 1) * ps;
  1132. if (field_offset)
  1133. *offset0 = *offset1 + field_offset * ps;
  1134. else
  1135. *offset0 = *offset1;
  1136. *row_inc = pixinc(screen_width * (fbh - 1) + 1 +
  1137. (fieldmode ? 1 : 0), ps);
  1138. *pix_inc = pixinc(-screen_width, ps);
  1139. break;
  1140. case OMAP_DSS_ROT_180:
  1141. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1142. if (field_offset)
  1143. *offset0 = *offset1 - field_offset * screen_width * ps;
  1144. else
  1145. *offset0 = *offset1;
  1146. *row_inc = pixinc(-1 -
  1147. (screen_width - fbw) -
  1148. (fieldmode ? screen_width : 0),
  1149. ps);
  1150. *pix_inc = pixinc(-1, ps);
  1151. break;
  1152. case OMAP_DSS_ROT_270:
  1153. *offset1 = (fbw - 1) * ps;
  1154. if (field_offset)
  1155. *offset0 = *offset1 - field_offset * ps;
  1156. else
  1157. *offset0 = *offset1;
  1158. *row_inc = pixinc(-screen_width * (fbh - 1) - 1 -
  1159. (fieldmode ? 1 : 0), ps);
  1160. *pix_inc = pixinc(screen_width, ps);
  1161. break;
  1162. /* mirroring */
  1163. case OMAP_DSS_ROT_0 + 4:
  1164. *offset1 = (fbw - 1) * ps;
  1165. if (field_offset)
  1166. *offset0 = *offset1 + field_offset * screen_width * ps;
  1167. else
  1168. *offset0 = *offset1;
  1169. *row_inc = pixinc(screen_width * 2 - 1 +
  1170. (fieldmode ? screen_width : 0),
  1171. ps);
  1172. *pix_inc = pixinc(-1, ps);
  1173. break;
  1174. case OMAP_DSS_ROT_90 + 4:
  1175. *offset1 = 0;
  1176. if (field_offset)
  1177. *offset0 = *offset1 + field_offset * ps;
  1178. else
  1179. *offset0 = *offset1;
  1180. *row_inc = pixinc(-screen_width * (fbh - 1) + 1 +
  1181. (fieldmode ? 1 : 0),
  1182. ps);
  1183. *pix_inc = pixinc(screen_width, ps);
  1184. break;
  1185. case OMAP_DSS_ROT_180 + 4:
  1186. *offset1 = screen_width * (fbh - 1) * ps;
  1187. if (field_offset)
  1188. *offset0 = *offset1 - field_offset * screen_width * ps;
  1189. else
  1190. *offset0 = *offset1;
  1191. *row_inc = pixinc(1 - screen_width * 2 -
  1192. (fieldmode ? screen_width : 0),
  1193. ps);
  1194. *pix_inc = pixinc(1, ps);
  1195. break;
  1196. case OMAP_DSS_ROT_270 + 4:
  1197. *offset1 = (screen_width * (fbh - 1) + fbw - 1) * ps;
  1198. if (field_offset)
  1199. *offset0 = *offset1 - field_offset * ps;
  1200. else
  1201. *offset0 = *offset1;
  1202. *row_inc = pixinc(screen_width * (fbh - 1) - 1 -
  1203. (fieldmode ? 1 : 0),
  1204. ps);
  1205. *pix_inc = pixinc(-screen_width, ps);
  1206. break;
  1207. default:
  1208. BUG();
  1209. }
  1210. }
  1211. static unsigned long calc_fclk_five_taps(u16 width, u16 height,
  1212. u16 out_width, u16 out_height, enum omap_color_mode color_mode)
  1213. {
  1214. u32 fclk = 0;
  1215. /* FIXME venc pclk? */
  1216. u64 tmp, pclk = dispc_pclk_rate();
  1217. if (height > out_height) {
  1218. /* FIXME get real display PPL */
  1219. unsigned int ppl = 800;
  1220. tmp = pclk * height * out_width;
  1221. do_div(tmp, 2 * out_height * ppl);
  1222. fclk = tmp;
  1223. if (height > 2 * out_height) {
  1224. if (ppl == out_width)
  1225. return 0;
  1226. tmp = pclk * (height - 2 * out_height) * out_width;
  1227. do_div(tmp, 2 * out_height * (ppl - out_width));
  1228. fclk = max(fclk, (u32) tmp);
  1229. }
  1230. }
  1231. if (width > out_width) {
  1232. tmp = pclk * width;
  1233. do_div(tmp, out_width);
  1234. fclk = max(fclk, (u32) tmp);
  1235. if (color_mode == OMAP_DSS_COLOR_RGB24U)
  1236. fclk <<= 1;
  1237. }
  1238. return fclk;
  1239. }
  1240. static unsigned long calc_fclk(u16 width, u16 height,
  1241. u16 out_width, u16 out_height)
  1242. {
  1243. unsigned int hf, vf;
  1244. /*
  1245. * FIXME how to determine the 'A' factor
  1246. * for the no downscaling case ?
  1247. */
  1248. if (width > 3 * out_width)
  1249. hf = 4;
  1250. else if (width > 2 * out_width)
  1251. hf = 3;
  1252. else if (width > out_width)
  1253. hf = 2;
  1254. else
  1255. hf = 1;
  1256. if (height > out_height)
  1257. vf = 2;
  1258. else
  1259. vf = 1;
  1260. /* FIXME venc pclk? */
  1261. return dispc_pclk_rate() * vf * hf;
  1262. }
  1263. void dispc_set_channel_out(enum omap_plane plane, enum omap_channel channel_out)
  1264. {
  1265. enable_clocks(1);
  1266. _dispc_set_channel_out(plane, channel_out);
  1267. enable_clocks(0);
  1268. }
  1269. static int _dispc_setup_plane(enum omap_plane plane,
  1270. u32 paddr, u16 screen_width,
  1271. u16 pos_x, u16 pos_y,
  1272. u16 width, u16 height,
  1273. u16 out_width, u16 out_height,
  1274. enum omap_color_mode color_mode,
  1275. bool ilace,
  1276. enum omap_dss_rotation_type rotation_type,
  1277. u8 rotation, int mirror,
  1278. u8 global_alpha)
  1279. {
  1280. const int maxdownscale = cpu_is_omap34xx() ? 4 : 2;
  1281. bool five_taps = 0;
  1282. bool fieldmode = 0;
  1283. int cconv = 0;
  1284. unsigned offset0, offset1;
  1285. s32 row_inc;
  1286. s32 pix_inc;
  1287. u16 frame_height = height;
  1288. unsigned int field_offset = 0;
  1289. if (paddr == 0)
  1290. return -EINVAL;
  1291. if (ilace && height == out_height)
  1292. fieldmode = 1;
  1293. if (ilace) {
  1294. if (fieldmode)
  1295. height /= 2;
  1296. pos_y /= 2;
  1297. out_height /= 2;
  1298. DSSDBG("adjusting for ilace: height %d, pos_y %d, "
  1299. "out_height %d\n",
  1300. height, pos_y, out_height);
  1301. }
  1302. if (plane == OMAP_DSS_GFX) {
  1303. if (width != out_width || height != out_height)
  1304. return -EINVAL;
  1305. switch (color_mode) {
  1306. case OMAP_DSS_COLOR_ARGB16:
  1307. case OMAP_DSS_COLOR_ARGB32:
  1308. case OMAP_DSS_COLOR_RGBA32:
  1309. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  1310. return -EINVAL;
  1311. case OMAP_DSS_COLOR_RGBX32:
  1312. if (cpu_is_omap24xx())
  1313. return -EINVAL;
  1314. /* fall through */
  1315. case OMAP_DSS_COLOR_RGB12U:
  1316. case OMAP_DSS_COLOR_RGB16:
  1317. case OMAP_DSS_COLOR_RGB24P:
  1318. case OMAP_DSS_COLOR_RGB24U:
  1319. break;
  1320. default:
  1321. return -EINVAL;
  1322. }
  1323. } else {
  1324. /* video plane */
  1325. unsigned long fclk = 0;
  1326. if (out_width < width / maxdownscale ||
  1327. out_width > width * 8)
  1328. return -EINVAL;
  1329. if (out_height < height / maxdownscale ||
  1330. out_height > height * 8)
  1331. return -EINVAL;
  1332. switch (color_mode) {
  1333. case OMAP_DSS_COLOR_RGBX32:
  1334. case OMAP_DSS_COLOR_RGB12U:
  1335. if (cpu_is_omap24xx())
  1336. return -EINVAL;
  1337. /* fall through */
  1338. case OMAP_DSS_COLOR_RGB16:
  1339. case OMAP_DSS_COLOR_RGB24P:
  1340. case OMAP_DSS_COLOR_RGB24U:
  1341. break;
  1342. case OMAP_DSS_COLOR_ARGB16:
  1343. case OMAP_DSS_COLOR_ARGB32:
  1344. case OMAP_DSS_COLOR_RGBA32:
  1345. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  1346. return -EINVAL;
  1347. if (!dss_has_feature(FEAT_GLOBAL_ALPHA_VID1) &&
  1348. plane == OMAP_DSS_VIDEO1)
  1349. return -EINVAL;
  1350. break;
  1351. case OMAP_DSS_COLOR_YUV2:
  1352. case OMAP_DSS_COLOR_UYVY:
  1353. cconv = 1;
  1354. break;
  1355. default:
  1356. return -EINVAL;
  1357. }
  1358. /* Must use 5-tap filter? */
  1359. five_taps = height > out_height * 2;
  1360. if (!five_taps) {
  1361. fclk = calc_fclk(width, height,
  1362. out_width, out_height);
  1363. /* Try 5-tap filter if 3-tap fclk is too high */
  1364. if (cpu_is_omap34xx() && height > out_height &&
  1365. fclk > dispc_fclk_rate())
  1366. five_taps = true;
  1367. }
  1368. if (width > (2048 >> five_taps)) {
  1369. DSSERR("failed to set up scaling, fclk too low\n");
  1370. return -EINVAL;
  1371. }
  1372. if (five_taps)
  1373. fclk = calc_fclk_five_taps(width, height,
  1374. out_width, out_height, color_mode);
  1375. DSSDBG("required fclk rate = %lu Hz\n", fclk);
  1376. DSSDBG("current fclk rate = %lu Hz\n", dispc_fclk_rate());
  1377. if (!fclk || fclk > dispc_fclk_rate()) {
  1378. DSSERR("failed to set up scaling, "
  1379. "required fclk rate = %lu Hz, "
  1380. "current fclk rate = %lu Hz\n",
  1381. fclk, dispc_fclk_rate());
  1382. return -EINVAL;
  1383. }
  1384. }
  1385. if (ilace && !fieldmode) {
  1386. /*
  1387. * when downscaling the bottom field may have to start several
  1388. * source lines below the top field. Unfortunately ACCUI
  1389. * registers will only hold the fractional part of the offset
  1390. * so the integer part must be added to the base address of the
  1391. * bottom field.
  1392. */
  1393. if (!height || height == out_height)
  1394. field_offset = 0;
  1395. else
  1396. field_offset = height / out_height / 2;
  1397. }
  1398. /* Fields are independent but interleaved in memory. */
  1399. if (fieldmode)
  1400. field_offset = 1;
  1401. if (rotation_type == OMAP_DSS_ROT_DMA)
  1402. calc_dma_rotation_offset(rotation, mirror,
  1403. screen_width, width, frame_height, color_mode,
  1404. fieldmode, field_offset,
  1405. &offset0, &offset1, &row_inc, &pix_inc);
  1406. else
  1407. calc_vrfb_rotation_offset(rotation, mirror,
  1408. screen_width, width, frame_height, color_mode,
  1409. fieldmode, field_offset,
  1410. &offset0, &offset1, &row_inc, &pix_inc);
  1411. DSSDBG("offset0 %u, offset1 %u, row_inc %d, pix_inc %d\n",
  1412. offset0, offset1, row_inc, pix_inc);
  1413. _dispc_set_color_mode(plane, color_mode);
  1414. _dispc_set_plane_ba0(plane, paddr + offset0);
  1415. _dispc_set_plane_ba1(plane, paddr + offset1);
  1416. _dispc_set_row_inc(plane, row_inc);
  1417. _dispc_set_pix_inc(plane, pix_inc);
  1418. DSSDBG("%d,%d %dx%d -> %dx%d\n", pos_x, pos_y, width, height,
  1419. out_width, out_height);
  1420. _dispc_set_plane_pos(plane, pos_x, pos_y);
  1421. _dispc_set_pic_size(plane, width, height);
  1422. if (plane != OMAP_DSS_GFX) {
  1423. _dispc_set_scaling(plane, width, height,
  1424. out_width, out_height,
  1425. ilace, five_taps, fieldmode);
  1426. _dispc_set_vid_size(plane, out_width, out_height);
  1427. _dispc_set_vid_color_conv(plane, cconv);
  1428. }
  1429. _dispc_set_rotation_attrs(plane, rotation, mirror, color_mode);
  1430. if (plane != OMAP_DSS_VIDEO1)
  1431. _dispc_setup_global_alpha(plane, global_alpha);
  1432. return 0;
  1433. }
  1434. static void _dispc_enable_plane(enum omap_plane plane, bool enable)
  1435. {
  1436. REG_FLD_MOD(dispc_reg_att[plane], enable ? 1 : 0, 0, 0);
  1437. }
  1438. static void dispc_disable_isr(void *data, u32 mask)
  1439. {
  1440. struct completion *compl = data;
  1441. complete(compl);
  1442. }
  1443. static void _enable_lcd_out(bool enable)
  1444. {
  1445. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 0, 0);
  1446. }
  1447. static void dispc_enable_lcd_out(bool enable)
  1448. {
  1449. struct completion frame_done_completion;
  1450. bool is_on;
  1451. int r;
  1452. enable_clocks(1);
  1453. /* When we disable LCD output, we need to wait until frame is done.
  1454. * Otherwise the DSS is still working, and turning off the clocks
  1455. * prevents DSS from going to OFF mode */
  1456. is_on = REG_GET(DISPC_CONTROL, 0, 0);
  1457. if (!enable && is_on) {
  1458. init_completion(&frame_done_completion);
  1459. r = omap_dispc_register_isr(dispc_disable_isr,
  1460. &frame_done_completion,
  1461. DISPC_IRQ_FRAMEDONE);
  1462. if (r)
  1463. DSSERR("failed to register FRAMEDONE isr\n");
  1464. }
  1465. _enable_lcd_out(enable);
  1466. if (!enable && is_on) {
  1467. if (!wait_for_completion_timeout(&frame_done_completion,
  1468. msecs_to_jiffies(100)))
  1469. DSSERR("timeout waiting for FRAME DONE\n");
  1470. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1471. &frame_done_completion,
  1472. DISPC_IRQ_FRAMEDONE);
  1473. if (r)
  1474. DSSERR("failed to unregister FRAMEDONE isr\n");
  1475. }
  1476. enable_clocks(0);
  1477. }
  1478. static void _enable_digit_out(bool enable)
  1479. {
  1480. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 1, 1);
  1481. }
  1482. static void dispc_enable_digit_out(bool enable)
  1483. {
  1484. struct completion frame_done_completion;
  1485. int r;
  1486. enable_clocks(1);
  1487. if (REG_GET(DISPC_CONTROL, 1, 1) == enable) {
  1488. enable_clocks(0);
  1489. return;
  1490. }
  1491. if (enable) {
  1492. unsigned long flags;
  1493. /* When we enable digit output, we'll get an extra digit
  1494. * sync lost interrupt, that we need to ignore */
  1495. spin_lock_irqsave(&dispc.irq_lock, flags);
  1496. dispc.irq_error_mask &= ~DISPC_IRQ_SYNC_LOST_DIGIT;
  1497. _omap_dispc_set_irqs();
  1498. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1499. }
  1500. /* When we disable digit output, we need to wait until fields are done.
  1501. * Otherwise the DSS is still working, and turning off the clocks
  1502. * prevents DSS from going to OFF mode. And when enabling, we need to
  1503. * wait for the extra sync losts */
  1504. init_completion(&frame_done_completion);
  1505. r = omap_dispc_register_isr(dispc_disable_isr, &frame_done_completion,
  1506. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1507. if (r)
  1508. DSSERR("failed to register EVSYNC isr\n");
  1509. _enable_digit_out(enable);
  1510. /* XXX I understand from TRM that we should only wait for the
  1511. * current field to complete. But it seems we have to wait
  1512. * for both fields */
  1513. if (!wait_for_completion_timeout(&frame_done_completion,
  1514. msecs_to_jiffies(100)))
  1515. DSSERR("timeout waiting for EVSYNC\n");
  1516. if (!wait_for_completion_timeout(&frame_done_completion,
  1517. msecs_to_jiffies(100)))
  1518. DSSERR("timeout waiting for EVSYNC\n");
  1519. r = omap_dispc_unregister_isr(dispc_disable_isr,
  1520. &frame_done_completion,
  1521. DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD);
  1522. if (r)
  1523. DSSERR("failed to unregister EVSYNC isr\n");
  1524. if (enable) {
  1525. unsigned long flags;
  1526. spin_lock_irqsave(&dispc.irq_lock, flags);
  1527. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  1528. dispc_write_reg(DISPC_IRQSTATUS, DISPC_IRQ_SYNC_LOST_DIGIT);
  1529. _omap_dispc_set_irqs();
  1530. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  1531. }
  1532. enable_clocks(0);
  1533. }
  1534. bool dispc_is_channel_enabled(enum omap_channel channel)
  1535. {
  1536. if (channel == OMAP_DSS_CHANNEL_LCD)
  1537. return !!REG_GET(DISPC_CONTROL, 0, 0);
  1538. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1539. return !!REG_GET(DISPC_CONTROL, 1, 1);
  1540. else
  1541. BUG();
  1542. }
  1543. void dispc_enable_channel(enum omap_channel channel, bool enable)
  1544. {
  1545. if (channel == OMAP_DSS_CHANNEL_LCD)
  1546. dispc_enable_lcd_out(enable);
  1547. else if (channel == OMAP_DSS_CHANNEL_DIGIT)
  1548. dispc_enable_digit_out(enable);
  1549. else
  1550. BUG();
  1551. }
  1552. void dispc_lcd_enable_signal_polarity(bool act_high)
  1553. {
  1554. enable_clocks(1);
  1555. REG_FLD_MOD(DISPC_CONTROL, act_high ? 1 : 0, 29, 29);
  1556. enable_clocks(0);
  1557. }
  1558. void dispc_lcd_enable_signal(bool enable)
  1559. {
  1560. enable_clocks(1);
  1561. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 28, 28);
  1562. enable_clocks(0);
  1563. }
  1564. void dispc_pck_free_enable(bool enable)
  1565. {
  1566. enable_clocks(1);
  1567. REG_FLD_MOD(DISPC_CONTROL, enable ? 1 : 0, 27, 27);
  1568. enable_clocks(0);
  1569. }
  1570. void dispc_enable_fifohandcheck(bool enable)
  1571. {
  1572. enable_clocks(1);
  1573. REG_FLD_MOD(DISPC_CONFIG, enable ? 1 : 0, 16, 16);
  1574. enable_clocks(0);
  1575. }
  1576. void dispc_set_lcd_display_type(enum omap_lcd_display_type type)
  1577. {
  1578. int mode;
  1579. switch (type) {
  1580. case OMAP_DSS_LCD_DISPLAY_STN:
  1581. mode = 0;
  1582. break;
  1583. case OMAP_DSS_LCD_DISPLAY_TFT:
  1584. mode = 1;
  1585. break;
  1586. default:
  1587. BUG();
  1588. return;
  1589. }
  1590. enable_clocks(1);
  1591. REG_FLD_MOD(DISPC_CONTROL, mode, 3, 3);
  1592. enable_clocks(0);
  1593. }
  1594. void dispc_set_loadmode(enum omap_dss_load_mode mode)
  1595. {
  1596. enable_clocks(1);
  1597. REG_FLD_MOD(DISPC_CONFIG, mode, 2, 1);
  1598. enable_clocks(0);
  1599. }
  1600. void dispc_set_default_color(enum omap_channel channel, u32 color)
  1601. {
  1602. const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
  1603. DISPC_DEFAULT_COLOR1 };
  1604. enable_clocks(1);
  1605. dispc_write_reg(def_reg[channel], color);
  1606. enable_clocks(0);
  1607. }
  1608. u32 dispc_get_default_color(enum omap_channel channel)
  1609. {
  1610. const struct dispc_reg def_reg[] = { DISPC_DEFAULT_COLOR0,
  1611. DISPC_DEFAULT_COLOR1 };
  1612. u32 l;
  1613. BUG_ON(channel != OMAP_DSS_CHANNEL_DIGIT &&
  1614. channel != OMAP_DSS_CHANNEL_LCD);
  1615. enable_clocks(1);
  1616. l = dispc_read_reg(def_reg[channel]);
  1617. enable_clocks(0);
  1618. return l;
  1619. }
  1620. void dispc_set_trans_key(enum omap_channel ch,
  1621. enum omap_dss_trans_key_type type,
  1622. u32 trans_key)
  1623. {
  1624. const struct dispc_reg tr_reg[] = {
  1625. DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
  1626. enable_clocks(1);
  1627. if (ch == OMAP_DSS_CHANNEL_LCD)
  1628. REG_FLD_MOD(DISPC_CONFIG, type, 11, 11);
  1629. else /* OMAP_DSS_CHANNEL_DIGIT */
  1630. REG_FLD_MOD(DISPC_CONFIG, type, 13, 13);
  1631. dispc_write_reg(tr_reg[ch], trans_key);
  1632. enable_clocks(0);
  1633. }
  1634. void dispc_get_trans_key(enum omap_channel ch,
  1635. enum omap_dss_trans_key_type *type,
  1636. u32 *trans_key)
  1637. {
  1638. const struct dispc_reg tr_reg[] = {
  1639. DISPC_TRANS_COLOR0, DISPC_TRANS_COLOR1 };
  1640. enable_clocks(1);
  1641. if (type) {
  1642. if (ch == OMAP_DSS_CHANNEL_LCD)
  1643. *type = REG_GET(DISPC_CONFIG, 11, 11);
  1644. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1645. *type = REG_GET(DISPC_CONFIG, 13, 13);
  1646. else
  1647. BUG();
  1648. }
  1649. if (trans_key)
  1650. *trans_key = dispc_read_reg(tr_reg[ch]);
  1651. enable_clocks(0);
  1652. }
  1653. void dispc_enable_trans_key(enum omap_channel ch, bool enable)
  1654. {
  1655. enable_clocks(1);
  1656. if (ch == OMAP_DSS_CHANNEL_LCD)
  1657. REG_FLD_MOD(DISPC_CONFIG, enable, 10, 10);
  1658. else /* OMAP_DSS_CHANNEL_DIGIT */
  1659. REG_FLD_MOD(DISPC_CONFIG, enable, 12, 12);
  1660. enable_clocks(0);
  1661. }
  1662. void dispc_enable_alpha_blending(enum omap_channel ch, bool enable)
  1663. {
  1664. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  1665. return;
  1666. enable_clocks(1);
  1667. if (ch == OMAP_DSS_CHANNEL_LCD)
  1668. REG_FLD_MOD(DISPC_CONFIG, enable, 18, 18);
  1669. else /* OMAP_DSS_CHANNEL_DIGIT */
  1670. REG_FLD_MOD(DISPC_CONFIG, enable, 19, 19);
  1671. enable_clocks(0);
  1672. }
  1673. bool dispc_alpha_blending_enabled(enum omap_channel ch)
  1674. {
  1675. bool enabled;
  1676. if (!dss_has_feature(FEAT_GLOBAL_ALPHA))
  1677. return false;
  1678. enable_clocks(1);
  1679. if (ch == OMAP_DSS_CHANNEL_LCD)
  1680. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1681. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1682. enabled = REG_GET(DISPC_CONFIG, 18, 18);
  1683. else
  1684. BUG();
  1685. enable_clocks(0);
  1686. return enabled;
  1687. }
  1688. bool dispc_trans_key_enabled(enum omap_channel ch)
  1689. {
  1690. bool enabled;
  1691. enable_clocks(1);
  1692. if (ch == OMAP_DSS_CHANNEL_LCD)
  1693. enabled = REG_GET(DISPC_CONFIG, 10, 10);
  1694. else if (ch == OMAP_DSS_CHANNEL_DIGIT)
  1695. enabled = REG_GET(DISPC_CONFIG, 12, 12);
  1696. else
  1697. BUG();
  1698. enable_clocks(0);
  1699. return enabled;
  1700. }
  1701. void dispc_set_tft_data_lines(u8 data_lines)
  1702. {
  1703. int code;
  1704. switch (data_lines) {
  1705. case 12:
  1706. code = 0;
  1707. break;
  1708. case 16:
  1709. code = 1;
  1710. break;
  1711. case 18:
  1712. code = 2;
  1713. break;
  1714. case 24:
  1715. code = 3;
  1716. break;
  1717. default:
  1718. BUG();
  1719. return;
  1720. }
  1721. enable_clocks(1);
  1722. REG_FLD_MOD(DISPC_CONTROL, code, 9, 8);
  1723. enable_clocks(0);
  1724. }
  1725. void dispc_set_parallel_interface_mode(enum omap_parallel_interface_mode mode)
  1726. {
  1727. u32 l;
  1728. int stallmode;
  1729. int gpout0 = 1;
  1730. int gpout1;
  1731. switch (mode) {
  1732. case OMAP_DSS_PARALLELMODE_BYPASS:
  1733. stallmode = 0;
  1734. gpout1 = 1;
  1735. break;
  1736. case OMAP_DSS_PARALLELMODE_RFBI:
  1737. stallmode = 1;
  1738. gpout1 = 0;
  1739. break;
  1740. case OMAP_DSS_PARALLELMODE_DSI:
  1741. stallmode = 1;
  1742. gpout1 = 1;
  1743. break;
  1744. default:
  1745. BUG();
  1746. return;
  1747. }
  1748. enable_clocks(1);
  1749. l = dispc_read_reg(DISPC_CONTROL);
  1750. l = FLD_MOD(l, stallmode, 11, 11);
  1751. l = FLD_MOD(l, gpout0, 15, 15);
  1752. l = FLD_MOD(l, gpout1, 16, 16);
  1753. dispc_write_reg(DISPC_CONTROL, l);
  1754. enable_clocks(0);
  1755. }
  1756. static bool _dispc_lcd_timings_ok(int hsw, int hfp, int hbp,
  1757. int vsw, int vfp, int vbp)
  1758. {
  1759. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1760. if (hsw < 1 || hsw > 64 ||
  1761. hfp < 1 || hfp > 256 ||
  1762. hbp < 1 || hbp > 256 ||
  1763. vsw < 1 || vsw > 64 ||
  1764. vfp < 0 || vfp > 255 ||
  1765. vbp < 0 || vbp > 255)
  1766. return false;
  1767. } else {
  1768. if (hsw < 1 || hsw > 256 ||
  1769. hfp < 1 || hfp > 4096 ||
  1770. hbp < 1 || hbp > 4096 ||
  1771. vsw < 1 || vsw > 256 ||
  1772. vfp < 0 || vfp > 4095 ||
  1773. vbp < 0 || vbp > 4095)
  1774. return false;
  1775. }
  1776. return true;
  1777. }
  1778. bool dispc_lcd_timings_ok(struct omap_video_timings *timings)
  1779. {
  1780. return _dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1781. timings->hbp, timings->vsw,
  1782. timings->vfp, timings->vbp);
  1783. }
  1784. static void _dispc_set_lcd_timings(int hsw, int hfp, int hbp,
  1785. int vsw, int vfp, int vbp)
  1786. {
  1787. u32 timing_h, timing_v;
  1788. if (cpu_is_omap24xx() || omap_rev() < OMAP3430_REV_ES3_0) {
  1789. timing_h = FLD_VAL(hsw-1, 5, 0) | FLD_VAL(hfp-1, 15, 8) |
  1790. FLD_VAL(hbp-1, 27, 20);
  1791. timing_v = FLD_VAL(vsw-1, 5, 0) | FLD_VAL(vfp, 15, 8) |
  1792. FLD_VAL(vbp, 27, 20);
  1793. } else {
  1794. timing_h = FLD_VAL(hsw-1, 7, 0) | FLD_VAL(hfp-1, 19, 8) |
  1795. FLD_VAL(hbp-1, 31, 20);
  1796. timing_v = FLD_VAL(vsw-1, 7, 0) | FLD_VAL(vfp, 19, 8) |
  1797. FLD_VAL(vbp, 31, 20);
  1798. }
  1799. enable_clocks(1);
  1800. dispc_write_reg(DISPC_TIMING_H, timing_h);
  1801. dispc_write_reg(DISPC_TIMING_V, timing_v);
  1802. enable_clocks(0);
  1803. }
  1804. /* change name to mode? */
  1805. void dispc_set_lcd_timings(struct omap_video_timings *timings)
  1806. {
  1807. unsigned xtot, ytot;
  1808. unsigned long ht, vt;
  1809. if (!_dispc_lcd_timings_ok(timings->hsw, timings->hfp,
  1810. timings->hbp, timings->vsw,
  1811. timings->vfp, timings->vbp))
  1812. BUG();
  1813. _dispc_set_lcd_timings(timings->hsw, timings->hfp, timings->hbp,
  1814. timings->vsw, timings->vfp, timings->vbp);
  1815. dispc_set_lcd_size(timings->x_res, timings->y_res);
  1816. xtot = timings->x_res + timings->hfp + timings->hsw + timings->hbp;
  1817. ytot = timings->y_res + timings->vfp + timings->vsw + timings->vbp;
  1818. ht = (timings->pixel_clock * 1000) / xtot;
  1819. vt = (timings->pixel_clock * 1000) / xtot / ytot;
  1820. DSSDBG("xres %u yres %u\n", timings->x_res, timings->y_res);
  1821. DSSDBG("pck %u\n", timings->pixel_clock);
  1822. DSSDBG("hsw %d hfp %d hbp %d vsw %d vfp %d vbp %d\n",
  1823. timings->hsw, timings->hfp, timings->hbp,
  1824. timings->vsw, timings->vfp, timings->vbp);
  1825. DSSDBG("hsync %luHz, vsync %luHz\n", ht, vt);
  1826. }
  1827. static void dispc_set_lcd_divisor(u16 lck_div, u16 pck_div)
  1828. {
  1829. BUG_ON(lck_div < 1);
  1830. BUG_ON(pck_div < 2);
  1831. enable_clocks(1);
  1832. dispc_write_reg(DISPC_DIVISOR,
  1833. FLD_VAL(lck_div, 23, 16) | FLD_VAL(pck_div, 7, 0));
  1834. enable_clocks(0);
  1835. }
  1836. static void dispc_get_lcd_divisor(int *lck_div, int *pck_div)
  1837. {
  1838. u32 l;
  1839. l = dispc_read_reg(DISPC_DIVISOR);
  1840. *lck_div = FLD_GET(l, 23, 16);
  1841. *pck_div = FLD_GET(l, 7, 0);
  1842. }
  1843. unsigned long dispc_fclk_rate(void)
  1844. {
  1845. unsigned long r = 0;
  1846. if (dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK)
  1847. r = dss_clk_get_rate(DSS_CLK_FCK1);
  1848. else
  1849. #ifdef CONFIG_OMAP2_DSS_DSI
  1850. r = dsi_get_dsi1_pll_rate();
  1851. #else
  1852. BUG();
  1853. #endif
  1854. return r;
  1855. }
  1856. unsigned long dispc_lclk_rate(void)
  1857. {
  1858. int lcd;
  1859. unsigned long r;
  1860. u32 l;
  1861. l = dispc_read_reg(DISPC_DIVISOR);
  1862. lcd = FLD_GET(l, 23, 16);
  1863. r = dispc_fclk_rate();
  1864. return r / lcd;
  1865. }
  1866. unsigned long dispc_pclk_rate(void)
  1867. {
  1868. int lcd, pcd;
  1869. unsigned long r;
  1870. u32 l;
  1871. l = dispc_read_reg(DISPC_DIVISOR);
  1872. lcd = FLD_GET(l, 23, 16);
  1873. pcd = FLD_GET(l, 7, 0);
  1874. r = dispc_fclk_rate();
  1875. return r / lcd / pcd;
  1876. }
  1877. void dispc_dump_clocks(struct seq_file *s)
  1878. {
  1879. int lcd, pcd;
  1880. enable_clocks(1);
  1881. dispc_get_lcd_divisor(&lcd, &pcd);
  1882. seq_printf(s, "- DISPC -\n");
  1883. seq_printf(s, "dispc fclk source = %s\n",
  1884. dss_get_dispc_clk_source() == DSS_SRC_DSS1_ALWON_FCLK ?
  1885. "dss1_alwon_fclk" : "dsi1_pll_fclk");
  1886. seq_printf(s, "fck\t\t%-16lu\n", dispc_fclk_rate());
  1887. seq_printf(s, "lck\t\t%-16lulck div\t%u\n", dispc_lclk_rate(), lcd);
  1888. seq_printf(s, "pck\t\t%-16lupck div\t%u\n", dispc_pclk_rate(), pcd);
  1889. enable_clocks(0);
  1890. }
  1891. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  1892. void dispc_dump_irqs(struct seq_file *s)
  1893. {
  1894. unsigned long flags;
  1895. struct dispc_irq_stats stats;
  1896. spin_lock_irqsave(&dispc.irq_stats_lock, flags);
  1897. stats = dispc.irq_stats;
  1898. memset(&dispc.irq_stats, 0, sizeof(dispc.irq_stats));
  1899. dispc.irq_stats.last_reset = jiffies;
  1900. spin_unlock_irqrestore(&dispc.irq_stats_lock, flags);
  1901. seq_printf(s, "period %u ms\n",
  1902. jiffies_to_msecs(jiffies - stats.last_reset));
  1903. seq_printf(s, "irqs %d\n", stats.irq_count);
  1904. #define PIS(x) \
  1905. seq_printf(s, "%-20s %10d\n", #x, stats.irqs[ffs(DISPC_IRQ_##x)-1]);
  1906. PIS(FRAMEDONE);
  1907. PIS(VSYNC);
  1908. PIS(EVSYNC_EVEN);
  1909. PIS(EVSYNC_ODD);
  1910. PIS(ACBIAS_COUNT_STAT);
  1911. PIS(PROG_LINE_NUM);
  1912. PIS(GFX_FIFO_UNDERFLOW);
  1913. PIS(GFX_END_WIN);
  1914. PIS(PAL_GAMMA_MASK);
  1915. PIS(OCP_ERR);
  1916. PIS(VID1_FIFO_UNDERFLOW);
  1917. PIS(VID1_END_WIN);
  1918. PIS(VID2_FIFO_UNDERFLOW);
  1919. PIS(VID2_END_WIN);
  1920. PIS(SYNC_LOST);
  1921. PIS(SYNC_LOST_DIGIT);
  1922. PIS(WAKEUP);
  1923. #undef PIS
  1924. }
  1925. #endif
  1926. void dispc_dump_regs(struct seq_file *s)
  1927. {
  1928. #define DUMPREG(r) seq_printf(s, "%-35s %08x\n", #r, dispc_read_reg(r))
  1929. dss_clk_enable(DSS_CLK_ICK | DSS_CLK_FCK1);
  1930. DUMPREG(DISPC_REVISION);
  1931. DUMPREG(DISPC_SYSCONFIG);
  1932. DUMPREG(DISPC_SYSSTATUS);
  1933. DUMPREG(DISPC_IRQSTATUS);
  1934. DUMPREG(DISPC_IRQENABLE);
  1935. DUMPREG(DISPC_CONTROL);
  1936. DUMPREG(DISPC_CONFIG);
  1937. DUMPREG(DISPC_CAPABLE);
  1938. DUMPREG(DISPC_DEFAULT_COLOR0);
  1939. DUMPREG(DISPC_DEFAULT_COLOR1);
  1940. DUMPREG(DISPC_TRANS_COLOR0);
  1941. DUMPREG(DISPC_TRANS_COLOR1);
  1942. DUMPREG(DISPC_LINE_STATUS);
  1943. DUMPREG(DISPC_LINE_NUMBER);
  1944. DUMPREG(DISPC_TIMING_H);
  1945. DUMPREG(DISPC_TIMING_V);
  1946. DUMPREG(DISPC_POL_FREQ);
  1947. DUMPREG(DISPC_DIVISOR);
  1948. DUMPREG(DISPC_GLOBAL_ALPHA);
  1949. DUMPREG(DISPC_SIZE_DIG);
  1950. DUMPREG(DISPC_SIZE_LCD);
  1951. DUMPREG(DISPC_GFX_BA0);
  1952. DUMPREG(DISPC_GFX_BA1);
  1953. DUMPREG(DISPC_GFX_POSITION);
  1954. DUMPREG(DISPC_GFX_SIZE);
  1955. DUMPREG(DISPC_GFX_ATTRIBUTES);
  1956. DUMPREG(DISPC_GFX_FIFO_THRESHOLD);
  1957. DUMPREG(DISPC_GFX_FIFO_SIZE_STATUS);
  1958. DUMPREG(DISPC_GFX_ROW_INC);
  1959. DUMPREG(DISPC_GFX_PIXEL_INC);
  1960. DUMPREG(DISPC_GFX_WINDOW_SKIP);
  1961. DUMPREG(DISPC_GFX_TABLE_BA);
  1962. DUMPREG(DISPC_DATA_CYCLE1);
  1963. DUMPREG(DISPC_DATA_CYCLE2);
  1964. DUMPREG(DISPC_DATA_CYCLE3);
  1965. DUMPREG(DISPC_CPR_COEF_R);
  1966. DUMPREG(DISPC_CPR_COEF_G);
  1967. DUMPREG(DISPC_CPR_COEF_B);
  1968. DUMPREG(DISPC_GFX_PRELOAD);
  1969. DUMPREG(DISPC_VID_BA0(0));
  1970. DUMPREG(DISPC_VID_BA1(0));
  1971. DUMPREG(DISPC_VID_POSITION(0));
  1972. DUMPREG(DISPC_VID_SIZE(0));
  1973. DUMPREG(DISPC_VID_ATTRIBUTES(0));
  1974. DUMPREG(DISPC_VID_FIFO_THRESHOLD(0));
  1975. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(0));
  1976. DUMPREG(DISPC_VID_ROW_INC(0));
  1977. DUMPREG(DISPC_VID_PIXEL_INC(0));
  1978. DUMPREG(DISPC_VID_FIR(0));
  1979. DUMPREG(DISPC_VID_PICTURE_SIZE(0));
  1980. DUMPREG(DISPC_VID_ACCU0(0));
  1981. DUMPREG(DISPC_VID_ACCU1(0));
  1982. DUMPREG(DISPC_VID_BA0(1));
  1983. DUMPREG(DISPC_VID_BA1(1));
  1984. DUMPREG(DISPC_VID_POSITION(1));
  1985. DUMPREG(DISPC_VID_SIZE(1));
  1986. DUMPREG(DISPC_VID_ATTRIBUTES(1));
  1987. DUMPREG(DISPC_VID_FIFO_THRESHOLD(1));
  1988. DUMPREG(DISPC_VID_FIFO_SIZE_STATUS(1));
  1989. DUMPREG(DISPC_VID_ROW_INC(1));
  1990. DUMPREG(DISPC_VID_PIXEL_INC(1));
  1991. DUMPREG(DISPC_VID_FIR(1));
  1992. DUMPREG(DISPC_VID_PICTURE_SIZE(1));
  1993. DUMPREG(DISPC_VID_ACCU0(1));
  1994. DUMPREG(DISPC_VID_ACCU1(1));
  1995. DUMPREG(DISPC_VID_FIR_COEF_H(0, 0));
  1996. DUMPREG(DISPC_VID_FIR_COEF_H(0, 1));
  1997. DUMPREG(DISPC_VID_FIR_COEF_H(0, 2));
  1998. DUMPREG(DISPC_VID_FIR_COEF_H(0, 3));
  1999. DUMPREG(DISPC_VID_FIR_COEF_H(0, 4));
  2000. DUMPREG(DISPC_VID_FIR_COEF_H(0, 5));
  2001. DUMPREG(DISPC_VID_FIR_COEF_H(0, 6));
  2002. DUMPREG(DISPC_VID_FIR_COEF_H(0, 7));
  2003. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 0));
  2004. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 1));
  2005. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 2));
  2006. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 3));
  2007. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 4));
  2008. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 5));
  2009. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 6));
  2010. DUMPREG(DISPC_VID_FIR_COEF_HV(0, 7));
  2011. DUMPREG(DISPC_VID_CONV_COEF(0, 0));
  2012. DUMPREG(DISPC_VID_CONV_COEF(0, 1));
  2013. DUMPREG(DISPC_VID_CONV_COEF(0, 2));
  2014. DUMPREG(DISPC_VID_CONV_COEF(0, 3));
  2015. DUMPREG(DISPC_VID_CONV_COEF(0, 4));
  2016. DUMPREG(DISPC_VID_FIR_COEF_V(0, 0));
  2017. DUMPREG(DISPC_VID_FIR_COEF_V(0, 1));
  2018. DUMPREG(DISPC_VID_FIR_COEF_V(0, 2));
  2019. DUMPREG(DISPC_VID_FIR_COEF_V(0, 3));
  2020. DUMPREG(DISPC_VID_FIR_COEF_V(0, 4));
  2021. DUMPREG(DISPC_VID_FIR_COEF_V(0, 5));
  2022. DUMPREG(DISPC_VID_FIR_COEF_V(0, 6));
  2023. DUMPREG(DISPC_VID_FIR_COEF_V(0, 7));
  2024. DUMPREG(DISPC_VID_FIR_COEF_H(1, 0));
  2025. DUMPREG(DISPC_VID_FIR_COEF_H(1, 1));
  2026. DUMPREG(DISPC_VID_FIR_COEF_H(1, 2));
  2027. DUMPREG(DISPC_VID_FIR_COEF_H(1, 3));
  2028. DUMPREG(DISPC_VID_FIR_COEF_H(1, 4));
  2029. DUMPREG(DISPC_VID_FIR_COEF_H(1, 5));
  2030. DUMPREG(DISPC_VID_FIR_COEF_H(1, 6));
  2031. DUMPREG(DISPC_VID_FIR_COEF_H(1, 7));
  2032. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 0));
  2033. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 1));
  2034. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 2));
  2035. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 3));
  2036. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 4));
  2037. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 5));
  2038. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 6));
  2039. DUMPREG(DISPC_VID_FIR_COEF_HV(1, 7));
  2040. DUMPREG(DISPC_VID_CONV_COEF(1, 0));
  2041. DUMPREG(DISPC_VID_CONV_COEF(1, 1));
  2042. DUMPREG(DISPC_VID_CONV_COEF(1, 2));
  2043. DUMPREG(DISPC_VID_CONV_COEF(1, 3));
  2044. DUMPREG(DISPC_VID_CONV_COEF(1, 4));
  2045. DUMPREG(DISPC_VID_FIR_COEF_V(1, 0));
  2046. DUMPREG(DISPC_VID_FIR_COEF_V(1, 1));
  2047. DUMPREG(DISPC_VID_FIR_COEF_V(1, 2));
  2048. DUMPREG(DISPC_VID_FIR_COEF_V(1, 3));
  2049. DUMPREG(DISPC_VID_FIR_COEF_V(1, 4));
  2050. DUMPREG(DISPC_VID_FIR_COEF_V(1, 5));
  2051. DUMPREG(DISPC_VID_FIR_COEF_V(1, 6));
  2052. DUMPREG(DISPC_VID_FIR_COEF_V(1, 7));
  2053. DUMPREG(DISPC_VID_PRELOAD(0));
  2054. DUMPREG(DISPC_VID_PRELOAD(1));
  2055. dss_clk_disable(DSS_CLK_ICK | DSS_CLK_FCK1);
  2056. #undef DUMPREG
  2057. }
  2058. static void _dispc_set_pol_freq(bool onoff, bool rf, bool ieo, bool ipc,
  2059. bool ihs, bool ivs, u8 acbi, u8 acb)
  2060. {
  2061. u32 l = 0;
  2062. DSSDBG("onoff %d rf %d ieo %d ipc %d ihs %d ivs %d acbi %d acb %d\n",
  2063. onoff, rf, ieo, ipc, ihs, ivs, acbi, acb);
  2064. l |= FLD_VAL(onoff, 17, 17);
  2065. l |= FLD_VAL(rf, 16, 16);
  2066. l |= FLD_VAL(ieo, 15, 15);
  2067. l |= FLD_VAL(ipc, 14, 14);
  2068. l |= FLD_VAL(ihs, 13, 13);
  2069. l |= FLD_VAL(ivs, 12, 12);
  2070. l |= FLD_VAL(acbi, 11, 8);
  2071. l |= FLD_VAL(acb, 7, 0);
  2072. enable_clocks(1);
  2073. dispc_write_reg(DISPC_POL_FREQ, l);
  2074. enable_clocks(0);
  2075. }
  2076. void dispc_set_pol_freq(enum omap_panel_config config, u8 acbi, u8 acb)
  2077. {
  2078. _dispc_set_pol_freq((config & OMAP_DSS_LCD_ONOFF) != 0,
  2079. (config & OMAP_DSS_LCD_RF) != 0,
  2080. (config & OMAP_DSS_LCD_IEO) != 0,
  2081. (config & OMAP_DSS_LCD_IPC) != 0,
  2082. (config & OMAP_DSS_LCD_IHS) != 0,
  2083. (config & OMAP_DSS_LCD_IVS) != 0,
  2084. acbi, acb);
  2085. }
  2086. /* with fck as input clock rate, find dispc dividers that produce req_pck */
  2087. void dispc_find_clk_divs(bool is_tft, unsigned long req_pck, unsigned long fck,
  2088. struct dispc_clock_info *cinfo)
  2089. {
  2090. u16 pcd_min = is_tft ? 2 : 3;
  2091. unsigned long best_pck;
  2092. u16 best_ld, cur_ld;
  2093. u16 best_pd, cur_pd;
  2094. best_pck = 0;
  2095. best_ld = 0;
  2096. best_pd = 0;
  2097. for (cur_ld = 1; cur_ld <= 255; ++cur_ld) {
  2098. unsigned long lck = fck / cur_ld;
  2099. for (cur_pd = pcd_min; cur_pd <= 255; ++cur_pd) {
  2100. unsigned long pck = lck / cur_pd;
  2101. long old_delta = abs(best_pck - req_pck);
  2102. long new_delta = abs(pck - req_pck);
  2103. if (best_pck == 0 || new_delta < old_delta) {
  2104. best_pck = pck;
  2105. best_ld = cur_ld;
  2106. best_pd = cur_pd;
  2107. if (pck == req_pck)
  2108. goto found;
  2109. }
  2110. if (pck < req_pck)
  2111. break;
  2112. }
  2113. if (lck / pcd_min < req_pck)
  2114. break;
  2115. }
  2116. found:
  2117. cinfo->lck_div = best_ld;
  2118. cinfo->pck_div = best_pd;
  2119. cinfo->lck = fck / cinfo->lck_div;
  2120. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2121. }
  2122. /* calculate clock rates using dividers in cinfo */
  2123. int dispc_calc_clock_rates(unsigned long dispc_fclk_rate,
  2124. struct dispc_clock_info *cinfo)
  2125. {
  2126. if (cinfo->lck_div > 255 || cinfo->lck_div == 0)
  2127. return -EINVAL;
  2128. if (cinfo->pck_div < 2 || cinfo->pck_div > 255)
  2129. return -EINVAL;
  2130. cinfo->lck = dispc_fclk_rate / cinfo->lck_div;
  2131. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2132. return 0;
  2133. }
  2134. int dispc_set_clock_div(struct dispc_clock_info *cinfo)
  2135. {
  2136. DSSDBG("lck = %lu (%u)\n", cinfo->lck, cinfo->lck_div);
  2137. DSSDBG("pck = %lu (%u)\n", cinfo->pck, cinfo->pck_div);
  2138. dispc_set_lcd_divisor(cinfo->lck_div, cinfo->pck_div);
  2139. return 0;
  2140. }
  2141. int dispc_get_clock_div(struct dispc_clock_info *cinfo)
  2142. {
  2143. unsigned long fck;
  2144. fck = dispc_fclk_rate();
  2145. cinfo->lck_div = REG_GET(DISPC_DIVISOR, 23, 16);
  2146. cinfo->pck_div = REG_GET(DISPC_DIVISOR, 7, 0);
  2147. cinfo->lck = fck / cinfo->lck_div;
  2148. cinfo->pck = cinfo->lck / cinfo->pck_div;
  2149. return 0;
  2150. }
  2151. /* dispc.irq_lock has to be locked by the caller */
  2152. static void _omap_dispc_set_irqs(void)
  2153. {
  2154. u32 mask;
  2155. u32 old_mask;
  2156. int i;
  2157. struct omap_dispc_isr_data *isr_data;
  2158. mask = dispc.irq_error_mask;
  2159. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2160. isr_data = &dispc.registered_isr[i];
  2161. if (isr_data->isr == NULL)
  2162. continue;
  2163. mask |= isr_data->mask;
  2164. }
  2165. enable_clocks(1);
  2166. old_mask = dispc_read_reg(DISPC_IRQENABLE);
  2167. /* clear the irqstatus for newly enabled irqs */
  2168. dispc_write_reg(DISPC_IRQSTATUS, (mask ^ old_mask) & mask);
  2169. dispc_write_reg(DISPC_IRQENABLE, mask);
  2170. enable_clocks(0);
  2171. }
  2172. int omap_dispc_register_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2173. {
  2174. int i;
  2175. int ret;
  2176. unsigned long flags;
  2177. struct omap_dispc_isr_data *isr_data;
  2178. if (isr == NULL)
  2179. return -EINVAL;
  2180. spin_lock_irqsave(&dispc.irq_lock, flags);
  2181. /* check for duplicate entry */
  2182. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2183. isr_data = &dispc.registered_isr[i];
  2184. if (isr_data->isr == isr && isr_data->arg == arg &&
  2185. isr_data->mask == mask) {
  2186. ret = -EINVAL;
  2187. goto err;
  2188. }
  2189. }
  2190. isr_data = NULL;
  2191. ret = -EBUSY;
  2192. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2193. isr_data = &dispc.registered_isr[i];
  2194. if (isr_data->isr != NULL)
  2195. continue;
  2196. isr_data->isr = isr;
  2197. isr_data->arg = arg;
  2198. isr_data->mask = mask;
  2199. ret = 0;
  2200. break;
  2201. }
  2202. _omap_dispc_set_irqs();
  2203. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2204. return 0;
  2205. err:
  2206. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2207. return ret;
  2208. }
  2209. EXPORT_SYMBOL(omap_dispc_register_isr);
  2210. int omap_dispc_unregister_isr(omap_dispc_isr_t isr, void *arg, u32 mask)
  2211. {
  2212. int i;
  2213. unsigned long flags;
  2214. int ret = -EINVAL;
  2215. struct omap_dispc_isr_data *isr_data;
  2216. spin_lock_irqsave(&dispc.irq_lock, flags);
  2217. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2218. isr_data = &dispc.registered_isr[i];
  2219. if (isr_data->isr != isr || isr_data->arg != arg ||
  2220. isr_data->mask != mask)
  2221. continue;
  2222. /* found the correct isr */
  2223. isr_data->isr = NULL;
  2224. isr_data->arg = NULL;
  2225. isr_data->mask = 0;
  2226. ret = 0;
  2227. break;
  2228. }
  2229. if (ret == 0)
  2230. _omap_dispc_set_irqs();
  2231. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2232. return ret;
  2233. }
  2234. EXPORT_SYMBOL(omap_dispc_unregister_isr);
  2235. #ifdef DEBUG
  2236. static void print_irq_status(u32 status)
  2237. {
  2238. if ((status & dispc.irq_error_mask) == 0)
  2239. return;
  2240. printk(KERN_DEBUG "DISPC IRQ: 0x%x: ", status);
  2241. #define PIS(x) \
  2242. if (status & DISPC_IRQ_##x) \
  2243. printk(#x " ");
  2244. PIS(GFX_FIFO_UNDERFLOW);
  2245. PIS(OCP_ERR);
  2246. PIS(VID1_FIFO_UNDERFLOW);
  2247. PIS(VID2_FIFO_UNDERFLOW);
  2248. PIS(SYNC_LOST);
  2249. PIS(SYNC_LOST_DIGIT);
  2250. #undef PIS
  2251. printk("\n");
  2252. }
  2253. #endif
  2254. /* Called from dss.c. Note that we don't touch clocks here,
  2255. * but we presume they are on because we got an IRQ. However,
  2256. * an irq handler may turn the clocks off, so we may not have
  2257. * clock later in the function. */
  2258. void dispc_irq_handler(void)
  2259. {
  2260. int i;
  2261. u32 irqstatus;
  2262. u32 handledirqs = 0;
  2263. u32 unhandled_errors;
  2264. struct omap_dispc_isr_data *isr_data;
  2265. struct omap_dispc_isr_data registered_isr[DISPC_MAX_NR_ISRS];
  2266. spin_lock(&dispc.irq_lock);
  2267. irqstatus = dispc_read_reg(DISPC_IRQSTATUS);
  2268. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2269. spin_lock(&dispc.irq_stats_lock);
  2270. dispc.irq_stats.irq_count++;
  2271. dss_collect_irq_stats(irqstatus, dispc.irq_stats.irqs);
  2272. spin_unlock(&dispc.irq_stats_lock);
  2273. #endif
  2274. #ifdef DEBUG
  2275. if (dss_debug)
  2276. print_irq_status(irqstatus);
  2277. #endif
  2278. /* Ack the interrupt. Do it here before clocks are possibly turned
  2279. * off */
  2280. dispc_write_reg(DISPC_IRQSTATUS, irqstatus);
  2281. /* flush posted write */
  2282. dispc_read_reg(DISPC_IRQSTATUS);
  2283. /* make a copy and unlock, so that isrs can unregister
  2284. * themselves */
  2285. memcpy(registered_isr, dispc.registered_isr,
  2286. sizeof(registered_isr));
  2287. spin_unlock(&dispc.irq_lock);
  2288. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2289. isr_data = &registered_isr[i];
  2290. if (!isr_data->isr)
  2291. continue;
  2292. if (isr_data->mask & irqstatus) {
  2293. isr_data->isr(isr_data->arg, irqstatus);
  2294. handledirqs |= isr_data->mask;
  2295. }
  2296. }
  2297. spin_lock(&dispc.irq_lock);
  2298. unhandled_errors = irqstatus & ~handledirqs & dispc.irq_error_mask;
  2299. if (unhandled_errors) {
  2300. dispc.error_irqs |= unhandled_errors;
  2301. dispc.irq_error_mask &= ~unhandled_errors;
  2302. _omap_dispc_set_irqs();
  2303. schedule_work(&dispc.error_work);
  2304. }
  2305. spin_unlock(&dispc.irq_lock);
  2306. }
  2307. static void dispc_error_worker(struct work_struct *work)
  2308. {
  2309. int i;
  2310. u32 errors;
  2311. unsigned long flags;
  2312. spin_lock_irqsave(&dispc.irq_lock, flags);
  2313. errors = dispc.error_irqs;
  2314. dispc.error_irqs = 0;
  2315. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2316. if (errors & DISPC_IRQ_GFX_FIFO_UNDERFLOW) {
  2317. DSSERR("GFX_FIFO_UNDERFLOW, disabling GFX\n");
  2318. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2319. struct omap_overlay *ovl;
  2320. ovl = omap_dss_get_overlay(i);
  2321. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2322. continue;
  2323. if (ovl->id == 0) {
  2324. dispc_enable_plane(ovl->id, 0);
  2325. dispc_go(ovl->manager->id);
  2326. mdelay(50);
  2327. break;
  2328. }
  2329. }
  2330. }
  2331. if (errors & DISPC_IRQ_VID1_FIFO_UNDERFLOW) {
  2332. DSSERR("VID1_FIFO_UNDERFLOW, disabling VID1\n");
  2333. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2334. struct omap_overlay *ovl;
  2335. ovl = omap_dss_get_overlay(i);
  2336. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2337. continue;
  2338. if (ovl->id == 1) {
  2339. dispc_enable_plane(ovl->id, 0);
  2340. dispc_go(ovl->manager->id);
  2341. mdelay(50);
  2342. break;
  2343. }
  2344. }
  2345. }
  2346. if (errors & DISPC_IRQ_VID2_FIFO_UNDERFLOW) {
  2347. DSSERR("VID2_FIFO_UNDERFLOW, disabling VID2\n");
  2348. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2349. struct omap_overlay *ovl;
  2350. ovl = omap_dss_get_overlay(i);
  2351. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2352. continue;
  2353. if (ovl->id == 2) {
  2354. dispc_enable_plane(ovl->id, 0);
  2355. dispc_go(ovl->manager->id);
  2356. mdelay(50);
  2357. break;
  2358. }
  2359. }
  2360. }
  2361. if (errors & DISPC_IRQ_SYNC_LOST) {
  2362. struct omap_overlay_manager *manager = NULL;
  2363. bool enable = false;
  2364. DSSERR("SYNC_LOST, disabling LCD\n");
  2365. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2366. struct omap_overlay_manager *mgr;
  2367. mgr = omap_dss_get_overlay_manager(i);
  2368. if (mgr->id == OMAP_DSS_CHANNEL_LCD) {
  2369. manager = mgr;
  2370. enable = mgr->device->state ==
  2371. OMAP_DSS_DISPLAY_ACTIVE;
  2372. mgr->device->driver->disable(mgr->device);
  2373. break;
  2374. }
  2375. }
  2376. if (manager) {
  2377. struct omap_dss_device *dssdev = manager->device;
  2378. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2379. struct omap_overlay *ovl;
  2380. ovl = omap_dss_get_overlay(i);
  2381. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2382. continue;
  2383. if (ovl->id != 0 && ovl->manager == manager)
  2384. dispc_enable_plane(ovl->id, 0);
  2385. }
  2386. dispc_go(manager->id);
  2387. mdelay(50);
  2388. if (enable)
  2389. dssdev->driver->enable(dssdev);
  2390. }
  2391. }
  2392. if (errors & DISPC_IRQ_SYNC_LOST_DIGIT) {
  2393. struct omap_overlay_manager *manager = NULL;
  2394. bool enable = false;
  2395. DSSERR("SYNC_LOST_DIGIT, disabling TV\n");
  2396. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2397. struct omap_overlay_manager *mgr;
  2398. mgr = omap_dss_get_overlay_manager(i);
  2399. if (mgr->id == OMAP_DSS_CHANNEL_DIGIT) {
  2400. manager = mgr;
  2401. enable = mgr->device->state ==
  2402. OMAP_DSS_DISPLAY_ACTIVE;
  2403. mgr->device->driver->disable(mgr->device);
  2404. break;
  2405. }
  2406. }
  2407. if (manager) {
  2408. struct omap_dss_device *dssdev = manager->device;
  2409. for (i = 0; i < omap_dss_get_num_overlays(); ++i) {
  2410. struct omap_overlay *ovl;
  2411. ovl = omap_dss_get_overlay(i);
  2412. if (!(ovl->caps & OMAP_DSS_OVL_CAP_DISPC))
  2413. continue;
  2414. if (ovl->id != 0 && ovl->manager == manager)
  2415. dispc_enable_plane(ovl->id, 0);
  2416. }
  2417. dispc_go(manager->id);
  2418. mdelay(50);
  2419. if (enable)
  2420. dssdev->driver->enable(dssdev);
  2421. }
  2422. }
  2423. if (errors & DISPC_IRQ_OCP_ERR) {
  2424. DSSERR("OCP_ERR\n");
  2425. for (i = 0; i < omap_dss_get_num_overlay_managers(); ++i) {
  2426. struct omap_overlay_manager *mgr;
  2427. mgr = omap_dss_get_overlay_manager(i);
  2428. if (mgr->caps & OMAP_DSS_OVL_CAP_DISPC)
  2429. mgr->device->driver->disable(mgr->device);
  2430. }
  2431. }
  2432. spin_lock_irqsave(&dispc.irq_lock, flags);
  2433. dispc.irq_error_mask |= errors;
  2434. _omap_dispc_set_irqs();
  2435. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2436. }
  2437. int omap_dispc_wait_for_irq_timeout(u32 irqmask, unsigned long timeout)
  2438. {
  2439. void dispc_irq_wait_handler(void *data, u32 mask)
  2440. {
  2441. complete((struct completion *)data);
  2442. }
  2443. int r;
  2444. DECLARE_COMPLETION_ONSTACK(completion);
  2445. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2446. irqmask);
  2447. if (r)
  2448. return r;
  2449. timeout = wait_for_completion_timeout(&completion, timeout);
  2450. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2451. if (timeout == 0)
  2452. return -ETIMEDOUT;
  2453. if (timeout == -ERESTARTSYS)
  2454. return -ERESTARTSYS;
  2455. return 0;
  2456. }
  2457. int omap_dispc_wait_for_irq_interruptible_timeout(u32 irqmask,
  2458. unsigned long timeout)
  2459. {
  2460. void dispc_irq_wait_handler(void *data, u32 mask)
  2461. {
  2462. complete((struct completion *)data);
  2463. }
  2464. int r;
  2465. DECLARE_COMPLETION_ONSTACK(completion);
  2466. r = omap_dispc_register_isr(dispc_irq_wait_handler, &completion,
  2467. irqmask);
  2468. if (r)
  2469. return r;
  2470. timeout = wait_for_completion_interruptible_timeout(&completion,
  2471. timeout);
  2472. omap_dispc_unregister_isr(dispc_irq_wait_handler, &completion, irqmask);
  2473. if (timeout == 0)
  2474. return -ETIMEDOUT;
  2475. if (timeout == -ERESTARTSYS)
  2476. return -ERESTARTSYS;
  2477. return 0;
  2478. }
  2479. #ifdef CONFIG_OMAP2_DSS_FAKE_VSYNC
  2480. void dispc_fake_vsync_irq(void)
  2481. {
  2482. u32 irqstatus = DISPC_IRQ_VSYNC;
  2483. int i;
  2484. WARN_ON(!in_interrupt());
  2485. for (i = 0; i < DISPC_MAX_NR_ISRS; i++) {
  2486. struct omap_dispc_isr_data *isr_data;
  2487. isr_data = &dispc.registered_isr[i];
  2488. if (!isr_data->isr)
  2489. continue;
  2490. if (isr_data->mask & irqstatus)
  2491. isr_data->isr(isr_data->arg, irqstatus);
  2492. }
  2493. }
  2494. #endif
  2495. static void _omap_dispc_initialize_irq(void)
  2496. {
  2497. unsigned long flags;
  2498. spin_lock_irqsave(&dispc.irq_lock, flags);
  2499. memset(dispc.registered_isr, 0, sizeof(dispc.registered_isr));
  2500. dispc.irq_error_mask = DISPC_IRQ_MASK_ERROR;
  2501. /* there's SYNC_LOST_DIGIT waiting after enabling the DSS,
  2502. * so clear it */
  2503. dispc_write_reg(DISPC_IRQSTATUS, dispc_read_reg(DISPC_IRQSTATUS));
  2504. _omap_dispc_set_irqs();
  2505. spin_unlock_irqrestore(&dispc.irq_lock, flags);
  2506. }
  2507. void dispc_enable_sidle(void)
  2508. {
  2509. REG_FLD_MOD(DISPC_SYSCONFIG, 2, 4, 3); /* SIDLEMODE: smart idle */
  2510. }
  2511. void dispc_disable_sidle(void)
  2512. {
  2513. REG_FLD_MOD(DISPC_SYSCONFIG, 1, 4, 3); /* SIDLEMODE: no idle */
  2514. }
  2515. static void _omap_dispc_initial_config(void)
  2516. {
  2517. u32 l;
  2518. l = dispc_read_reg(DISPC_SYSCONFIG);
  2519. l = FLD_MOD(l, 2, 13, 12); /* MIDLEMODE: smart standby */
  2520. l = FLD_MOD(l, 2, 4, 3); /* SIDLEMODE: smart idle */
  2521. l = FLD_MOD(l, 1, 2, 2); /* ENWAKEUP */
  2522. l = FLD_MOD(l, 1, 0, 0); /* AUTOIDLE */
  2523. dispc_write_reg(DISPC_SYSCONFIG, l);
  2524. /* FUNCGATED */
  2525. REG_FLD_MOD(DISPC_CONFIG, 1, 9, 9);
  2526. /* L3 firewall setting: enable access to OCM RAM */
  2527. /* XXX this should be somewhere in plat-omap */
  2528. if (cpu_is_omap24xx())
  2529. __raw_writel(0x402000b0, OMAP2_L3_IO_ADDRESS(0x680050a0));
  2530. _dispc_setup_color_conv_coef();
  2531. dispc_set_loadmode(OMAP_DSS_LOAD_FRAME_ONLY);
  2532. dispc_read_plane_fifo_sizes();
  2533. }
  2534. int dispc_init(void)
  2535. {
  2536. u32 rev;
  2537. spin_lock_init(&dispc.irq_lock);
  2538. #ifdef CONFIG_OMAP2_DSS_COLLECT_IRQ_STATS
  2539. spin_lock_init(&dispc.irq_stats_lock);
  2540. dispc.irq_stats.last_reset = jiffies;
  2541. #endif
  2542. INIT_WORK(&dispc.error_work, dispc_error_worker);
  2543. dispc.base = ioremap(DISPC_BASE, DISPC_SZ_REGS);
  2544. if (!dispc.base) {
  2545. DSSERR("can't ioremap DISPC\n");
  2546. return -ENOMEM;
  2547. }
  2548. enable_clocks(1);
  2549. _omap_dispc_initial_config();
  2550. _omap_dispc_initialize_irq();
  2551. dispc_save_context();
  2552. rev = dispc_read_reg(DISPC_REVISION);
  2553. printk(KERN_INFO "OMAP DISPC rev %d.%d\n",
  2554. FLD_GET(rev, 7, 4), FLD_GET(rev, 3, 0));
  2555. enable_clocks(0);
  2556. return 0;
  2557. }
  2558. void dispc_exit(void)
  2559. {
  2560. iounmap(dispc.base);
  2561. }
  2562. int dispc_enable_plane(enum omap_plane plane, bool enable)
  2563. {
  2564. DSSDBG("dispc_enable_plane %d, %d\n", plane, enable);
  2565. enable_clocks(1);
  2566. _dispc_enable_plane(plane, enable);
  2567. enable_clocks(0);
  2568. return 0;
  2569. }
  2570. int dispc_setup_plane(enum omap_plane plane,
  2571. u32 paddr, u16 screen_width,
  2572. u16 pos_x, u16 pos_y,
  2573. u16 width, u16 height,
  2574. u16 out_width, u16 out_height,
  2575. enum omap_color_mode color_mode,
  2576. bool ilace,
  2577. enum omap_dss_rotation_type rotation_type,
  2578. u8 rotation, bool mirror, u8 global_alpha)
  2579. {
  2580. int r = 0;
  2581. DSSDBG("dispc_setup_plane %d, pa %x, sw %d, %d,%d, %dx%d -> "
  2582. "%dx%d, ilace %d, cmode %x, rot %d, mir %d\n",
  2583. plane, paddr, screen_width, pos_x, pos_y,
  2584. width, height,
  2585. out_width, out_height,
  2586. ilace, color_mode,
  2587. rotation, mirror);
  2588. enable_clocks(1);
  2589. r = _dispc_setup_plane(plane,
  2590. paddr, screen_width,
  2591. pos_x, pos_y,
  2592. width, height,
  2593. out_width, out_height,
  2594. color_mode, ilace,
  2595. rotation_type,
  2596. rotation, mirror,
  2597. global_alpha);
  2598. enable_clocks(0);
  2599. return r;
  2600. }