s3c-hsotg.c 89 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422
  1. /* linux/drivers/usb/gadget/s3c-hsotg.c
  2. *
  3. * Copyright 2008 Openmoko, Inc.
  4. * Copyright 2008 Simtec Electronics
  5. * Ben Dooks <ben@simtec.co.uk>
  6. * http://armlinux.simtec.co.uk/
  7. *
  8. * S3C USB2.0 High-speed / OtG driver
  9. *
  10. * This program is free software; you can redistribute it and/or modify
  11. * it under the terms of the GNU General Public License version 2 as
  12. * published by the Free Software Foundation.
  13. */
  14. #include <linux/kernel.h>
  15. #include <linux/module.h>
  16. #include <linux/spinlock.h>
  17. #include <linux/interrupt.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/dma-mapping.h>
  20. #include <linux/debugfs.h>
  21. #include <linux/seq_file.h>
  22. #include <linux/delay.h>
  23. #include <linux/io.h>
  24. #include <linux/slab.h>
  25. #include <linux/clk.h>
  26. #include <linux/usb/ch9.h>
  27. #include <linux/usb/gadget.h>
  28. #include <mach/map.h>
  29. #include <plat/regs-usb-hsotg-phy.h>
  30. #include <plat/regs-usb-hsotg.h>
  31. #include <mach/regs-sys.h>
  32. #include <plat/udc-hs.h>
  33. #include <plat/cpu.h>
  34. #define DMA_ADDR_INVALID (~((dma_addr_t)0))
  35. /* EP0_MPS_LIMIT
  36. *
  37. * Unfortunately there seems to be a limit of the amount of data that can
  38. * be transfered by IN transactions on EP0. This is either 127 bytes or 3
  39. * packets (which practially means 1 packet and 63 bytes of data) when the
  40. * MPS is set to 64.
  41. *
  42. * This means if we are wanting to move >127 bytes of data, we need to
  43. * split the transactions up, but just doing one packet at a time does
  44. * not work (this may be an implicit DATA0 PID on first packet of the
  45. * transaction) and doing 2 packets is outside the controller's limits.
  46. *
  47. * If we try to lower the MPS size for EP0, then no transfers work properly
  48. * for EP0, and the system will fail basic enumeration. As no cause for this
  49. * has currently been found, we cannot support any large IN transfers for
  50. * EP0.
  51. */
  52. #define EP0_MPS_LIMIT 64
  53. struct s3c_hsotg;
  54. struct s3c_hsotg_req;
  55. /**
  56. * struct s3c_hsotg_ep - driver endpoint definition.
  57. * @ep: The gadget layer representation of the endpoint.
  58. * @name: The driver generated name for the endpoint.
  59. * @queue: Queue of requests for this endpoint.
  60. * @parent: Reference back to the parent device structure.
  61. * @req: The current request that the endpoint is processing. This is
  62. * used to indicate an request has been loaded onto the endpoint
  63. * and has yet to be completed (maybe due to data move, or simply
  64. * awaiting an ack from the core all the data has been completed).
  65. * @debugfs: File entry for debugfs file for this endpoint.
  66. * @lock: State lock to protect contents of endpoint.
  67. * @dir_in: Set to true if this endpoint is of the IN direction, which
  68. * means that it is sending data to the Host.
  69. * @index: The index for the endpoint registers.
  70. * @name: The name array passed to the USB core.
  71. * @halted: Set if the endpoint has been halted.
  72. * @periodic: Set if this is a periodic ep, such as Interrupt
  73. * @sent_zlp: Set if we've sent a zero-length packet.
  74. * @total_data: The total number of data bytes done.
  75. * @fifo_size: The size of the FIFO (for periodic IN endpoints)
  76. * @fifo_load: The amount of data loaded into the FIFO (periodic IN)
  77. * @last_load: The offset of data for the last start of request.
  78. * @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
  79. *
  80. * This is the driver's state for each registered enpoint, allowing it
  81. * to keep track of transactions that need doing. Each endpoint has a
  82. * lock to protect the state, to try and avoid using an overall lock
  83. * for the host controller as much as possible.
  84. *
  85. * For periodic IN endpoints, we have fifo_size and fifo_load to try
  86. * and keep track of the amount of data in the periodic FIFO for each
  87. * of these as we don't have a status register that tells us how much
  88. * is in each of them. (note, this may actually be useless information
  89. * as in shared-fifo mode periodic in acts like a single-frame packet
  90. * buffer than a fifo)
  91. */
  92. struct s3c_hsotg_ep {
  93. struct usb_ep ep;
  94. struct list_head queue;
  95. struct s3c_hsotg *parent;
  96. struct s3c_hsotg_req *req;
  97. struct dentry *debugfs;
  98. spinlock_t lock;
  99. unsigned long total_data;
  100. unsigned int size_loaded;
  101. unsigned int last_load;
  102. unsigned int fifo_load;
  103. unsigned short fifo_size;
  104. unsigned char dir_in;
  105. unsigned char index;
  106. unsigned int halted:1;
  107. unsigned int periodic:1;
  108. unsigned int sent_zlp:1;
  109. char name[10];
  110. };
  111. #define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
  112. /**
  113. * struct s3c_hsotg - driver state.
  114. * @dev: The parent device supplied to the probe function
  115. * @driver: USB gadget driver
  116. * @plat: The platform specific configuration data.
  117. * @regs: The memory area mapped for accessing registers.
  118. * @regs_res: The resource that was allocated when claiming register space.
  119. * @irq: The IRQ number we are using
  120. * @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
  121. * @debug_root: root directrory for debugfs.
  122. * @debug_file: main status file for debugfs.
  123. * @debug_fifo: FIFO status file for debugfs.
  124. * @ep0_reply: Request used for ep0 reply.
  125. * @ep0_buff: Buffer for EP0 reply data, if needed.
  126. * @ctrl_buff: Buffer for EP0 control requests.
  127. * @ctrl_req: Request for EP0 control packets.
  128. * @eps: The endpoints being supplied to the gadget framework
  129. */
  130. struct s3c_hsotg {
  131. struct device *dev;
  132. struct usb_gadget_driver *driver;
  133. struct s3c_hsotg_plat *plat;
  134. void __iomem *regs;
  135. struct resource *regs_res;
  136. int irq;
  137. struct clk *clk;
  138. unsigned int dedicated_fifos:1;
  139. struct dentry *debug_root;
  140. struct dentry *debug_file;
  141. struct dentry *debug_fifo;
  142. struct usb_request *ep0_reply;
  143. struct usb_request *ctrl_req;
  144. u8 ep0_buff[8];
  145. u8 ctrl_buff[8];
  146. struct usb_gadget gadget;
  147. struct s3c_hsotg_ep eps[];
  148. };
  149. /**
  150. * struct s3c_hsotg_req - data transfer request
  151. * @req: The USB gadget request
  152. * @queue: The list of requests for the endpoint this is queued for.
  153. * @in_progress: Has already had size/packets written to core
  154. * @mapped: DMA buffer for this request has been mapped via dma_map_single().
  155. */
  156. struct s3c_hsotg_req {
  157. struct usb_request req;
  158. struct list_head queue;
  159. unsigned char in_progress;
  160. unsigned char mapped;
  161. };
  162. /* conversion functions */
  163. static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
  164. {
  165. return container_of(req, struct s3c_hsotg_req, req);
  166. }
  167. static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
  168. {
  169. return container_of(ep, struct s3c_hsotg_ep, ep);
  170. }
  171. static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
  172. {
  173. return container_of(gadget, struct s3c_hsotg, gadget);
  174. }
  175. static inline void __orr32(void __iomem *ptr, u32 val)
  176. {
  177. writel(readl(ptr) | val, ptr);
  178. }
  179. static inline void __bic32(void __iomem *ptr, u32 val)
  180. {
  181. writel(readl(ptr) & ~val, ptr);
  182. }
  183. /* forward decleration of functions */
  184. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
  185. /**
  186. * using_dma - return the DMA status of the driver.
  187. * @hsotg: The driver state.
  188. *
  189. * Return true if we're using DMA.
  190. *
  191. * Currently, we have the DMA support code worked into everywhere
  192. * that needs it, but the AMBA DMA implementation in the hardware can
  193. * only DMA from 32bit aligned addresses. This means that gadgets such
  194. * as the CDC Ethernet cannot work as they often pass packets which are
  195. * not 32bit aligned.
  196. *
  197. * Unfortunately the choice to use DMA or not is global to the controller
  198. * and seems to be only settable when the controller is being put through
  199. * a core reset. This means we either need to fix the gadgets to take
  200. * account of DMA alignment, or add bounce buffers (yuerk).
  201. *
  202. * Until this issue is sorted out, we always return 'false'.
  203. */
  204. static inline bool using_dma(struct s3c_hsotg *hsotg)
  205. {
  206. return false; /* support is not complete */
  207. }
  208. /**
  209. * s3c_hsotg_en_gsint - enable one or more of the general interrupt
  210. * @hsotg: The device state
  211. * @ints: A bitmask of the interrupts to enable
  212. */
  213. static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
  214. {
  215. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  216. u32 new_gsintmsk;
  217. new_gsintmsk = gsintmsk | ints;
  218. if (new_gsintmsk != gsintmsk) {
  219. dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
  220. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  221. }
  222. }
  223. /**
  224. * s3c_hsotg_disable_gsint - disable one or more of the general interrupt
  225. * @hsotg: The device state
  226. * @ints: A bitmask of the interrupts to enable
  227. */
  228. static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
  229. {
  230. u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
  231. u32 new_gsintmsk;
  232. new_gsintmsk = gsintmsk & ~ints;
  233. if (new_gsintmsk != gsintmsk)
  234. writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
  235. }
  236. /**
  237. * s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
  238. * @hsotg: The device state
  239. * @ep: The endpoint index
  240. * @dir_in: True if direction is in.
  241. * @en: The enable value, true to enable
  242. *
  243. * Set or clear the mask for an individual endpoint's interrupt
  244. * request.
  245. */
  246. static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
  247. unsigned int ep, unsigned int dir_in,
  248. unsigned int en)
  249. {
  250. unsigned long flags;
  251. u32 bit = 1 << ep;
  252. u32 daint;
  253. if (!dir_in)
  254. bit <<= 16;
  255. local_irq_save(flags);
  256. daint = readl(hsotg->regs + S3C_DAINTMSK);
  257. if (en)
  258. daint |= bit;
  259. else
  260. daint &= ~bit;
  261. writel(daint, hsotg->regs + S3C_DAINTMSK);
  262. local_irq_restore(flags);
  263. }
  264. /**
  265. * s3c_hsotg_init_fifo - initialise non-periodic FIFOs
  266. * @hsotg: The device instance.
  267. */
  268. static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
  269. {
  270. unsigned int ep;
  271. unsigned int addr;
  272. unsigned int size;
  273. int timeout;
  274. u32 val;
  275. /* the ryu 2.6.24 release ahs
  276. writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
  277. writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
  278. S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
  279. hsotg->regs + S3C_GNPTXFSIZ);
  280. */
  281. /* set FIFO sizes to 2048/1024 */
  282. writel(2048, hsotg->regs + S3C_GRXFSIZ);
  283. writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
  284. S3C_GNPTXFSIZ_NPTxFDep(1024),
  285. hsotg->regs + S3C_GNPTXFSIZ);
  286. /* arange all the rest of the TX FIFOs, as some versions of this
  287. * block have overlapping default addresses. This also ensures
  288. * that if the settings have been changed, then they are set to
  289. * known values. */
  290. /* start at the end of the GNPTXFSIZ, rounded up */
  291. addr = 2048 + 1024;
  292. size = 768;
  293. /* currently we allocate TX FIFOs for all possible endpoints,
  294. * and assume that they are all the same size. */
  295. for (ep = 0; ep <= 15; ep++) {
  296. val = addr;
  297. val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
  298. addr += size;
  299. writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
  300. }
  301. /* according to p428 of the design guide, we need to ensure that
  302. * all fifos are flushed before continuing */
  303. writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
  304. S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
  305. /* wait until the fifos are both flushed */
  306. timeout = 100;
  307. while (1) {
  308. val = readl(hsotg->regs + S3C_GRSTCTL);
  309. if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
  310. break;
  311. if (--timeout == 0) {
  312. dev_err(hsotg->dev,
  313. "%s: timeout flushing fifos (GRSTCTL=%08x)\n",
  314. __func__, val);
  315. }
  316. udelay(1);
  317. }
  318. dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
  319. }
  320. /**
  321. * @ep: USB endpoint to allocate request for.
  322. * @flags: Allocation flags
  323. *
  324. * Allocate a new USB request structure appropriate for the specified endpoint
  325. */
  326. static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
  327. gfp_t flags)
  328. {
  329. struct s3c_hsotg_req *req;
  330. req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
  331. if (!req)
  332. return NULL;
  333. INIT_LIST_HEAD(&req->queue);
  334. req->req.dma = DMA_ADDR_INVALID;
  335. return &req->req;
  336. }
  337. /**
  338. * is_ep_periodic - return true if the endpoint is in periodic mode.
  339. * @hs_ep: The endpoint to query.
  340. *
  341. * Returns true if the endpoint is in periodic mode, meaning it is being
  342. * used for an Interrupt or ISO transfer.
  343. */
  344. static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
  345. {
  346. return hs_ep->periodic;
  347. }
  348. /**
  349. * s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
  350. * @hsotg: The device state.
  351. * @hs_ep: The endpoint for the request
  352. * @hs_req: The request being processed.
  353. *
  354. * This is the reverse of s3c_hsotg_map_dma(), called for the completion
  355. * of a request to ensure the buffer is ready for access by the caller.
  356. */
  357. static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
  358. struct s3c_hsotg_ep *hs_ep,
  359. struct s3c_hsotg_req *hs_req)
  360. {
  361. struct usb_request *req = &hs_req->req;
  362. enum dma_data_direction dir;
  363. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  364. /* ignore this if we're not moving any data */
  365. if (hs_req->req.length == 0)
  366. return;
  367. if (hs_req->mapped) {
  368. /* we mapped this, so unmap and remove the dma */
  369. dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
  370. req->dma = DMA_ADDR_INVALID;
  371. hs_req->mapped = 0;
  372. } else {
  373. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  374. }
  375. }
  376. /**
  377. * s3c_hsotg_write_fifo - write packet Data to the TxFIFO
  378. * @hsotg: The controller state.
  379. * @hs_ep: The endpoint we're going to write for.
  380. * @hs_req: The request to write data for.
  381. *
  382. * This is called when the TxFIFO has some space in it to hold a new
  383. * transmission and we have something to give it. The actual setup of
  384. * the data size is done elsewhere, so all we have to do is to actually
  385. * write the data.
  386. *
  387. * The return value is zero if there is more space (or nothing was done)
  388. * otherwise -ENOSPC is returned if the FIFO space was used up.
  389. *
  390. * This routine is only needed for PIO
  391. */
  392. static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
  393. struct s3c_hsotg_ep *hs_ep,
  394. struct s3c_hsotg_req *hs_req)
  395. {
  396. bool periodic = is_ep_periodic(hs_ep);
  397. u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
  398. int buf_pos = hs_req->req.actual;
  399. int to_write = hs_ep->size_loaded;
  400. void *data;
  401. int can_write;
  402. int pkt_round;
  403. to_write -= (buf_pos - hs_ep->last_load);
  404. /* if there's nothing to write, get out early */
  405. if (to_write == 0)
  406. return 0;
  407. if (periodic && !hsotg->dedicated_fifos) {
  408. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  409. int size_left;
  410. int size_done;
  411. /* work out how much data was loaded so we can calculate
  412. * how much data is left in the fifo. */
  413. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  414. /* if shared fifo, we cannot write anything until the
  415. * previous data has been completely sent.
  416. */
  417. if (hs_ep->fifo_load != 0) {
  418. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  419. return -ENOSPC;
  420. }
  421. dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
  422. __func__, size_left,
  423. hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
  424. /* how much of the data has moved */
  425. size_done = hs_ep->size_loaded - size_left;
  426. /* how much data is left in the fifo */
  427. can_write = hs_ep->fifo_load - size_done;
  428. dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
  429. __func__, can_write);
  430. can_write = hs_ep->fifo_size - can_write;
  431. dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
  432. __func__, can_write);
  433. if (can_write <= 0) {
  434. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  435. return -ENOSPC;
  436. }
  437. } else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
  438. can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
  439. can_write &= 0xffff;
  440. can_write *= 4;
  441. } else {
  442. if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
  443. dev_dbg(hsotg->dev,
  444. "%s: no queue slots available (0x%08x)\n",
  445. __func__, gnptxsts);
  446. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  447. return -ENOSPC;
  448. }
  449. can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
  450. can_write *= 4; /* fifo size is in 32bit quantities. */
  451. }
  452. dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
  453. __func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
  454. /* limit to 512 bytes of data, it seems at least on the non-periodic
  455. * FIFO, requests of >512 cause the endpoint to get stuck with a
  456. * fragment of the end of the transfer in it.
  457. */
  458. if (can_write > 512)
  459. can_write = 512;
  460. /* limit the write to one max-packet size worth of data, but allow
  461. * the transfer to return that it did not run out of fifo space
  462. * doing it. */
  463. if (to_write > hs_ep->ep.maxpacket) {
  464. to_write = hs_ep->ep.maxpacket;
  465. s3c_hsotg_en_gsint(hsotg,
  466. periodic ? S3C_GINTSTS_PTxFEmp :
  467. S3C_GINTSTS_NPTxFEmp);
  468. }
  469. /* see if we can write data */
  470. if (to_write > can_write) {
  471. to_write = can_write;
  472. pkt_round = to_write % hs_ep->ep.maxpacket;
  473. /* Not sure, but we probably shouldn't be writing partial
  474. * packets into the FIFO, so round the write down to an
  475. * exact number of packets.
  476. *
  477. * Note, we do not currently check to see if we can ever
  478. * write a full packet or not to the FIFO.
  479. */
  480. if (pkt_round)
  481. to_write -= pkt_round;
  482. /* enable correct FIFO interrupt to alert us when there
  483. * is more room left. */
  484. s3c_hsotg_en_gsint(hsotg,
  485. periodic ? S3C_GINTSTS_PTxFEmp :
  486. S3C_GINTSTS_NPTxFEmp);
  487. }
  488. dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
  489. to_write, hs_req->req.length, can_write, buf_pos);
  490. if (to_write <= 0)
  491. return -ENOSPC;
  492. hs_req->req.actual = buf_pos + to_write;
  493. hs_ep->total_data += to_write;
  494. if (periodic)
  495. hs_ep->fifo_load += to_write;
  496. to_write = DIV_ROUND_UP(to_write, 4);
  497. data = hs_req->req.buf + buf_pos;
  498. writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
  499. return (to_write >= can_write) ? -ENOSPC : 0;
  500. }
  501. /**
  502. * get_ep_limit - get the maximum data legnth for this endpoint
  503. * @hs_ep: The endpoint
  504. *
  505. * Return the maximum data that can be queued in one go on a given endpoint
  506. * so that transfers that are too long can be split.
  507. */
  508. static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
  509. {
  510. int index = hs_ep->index;
  511. unsigned maxsize;
  512. unsigned maxpkt;
  513. if (index != 0) {
  514. maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
  515. maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
  516. } else {
  517. maxsize = 64+64;
  518. if (hs_ep->dir_in) {
  519. maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
  520. } else {
  521. maxpkt = 2;
  522. }
  523. }
  524. /* we made the constant loading easier above by using +1 */
  525. maxpkt--;
  526. maxsize--;
  527. /* constrain by packet count if maxpkts*pktsize is greater
  528. * than the length register size. */
  529. if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
  530. maxsize = maxpkt * hs_ep->ep.maxpacket;
  531. return maxsize;
  532. }
  533. /**
  534. * s3c_hsotg_start_req - start a USB request from an endpoint's queue
  535. * @hsotg: The controller state.
  536. * @hs_ep: The endpoint to process a request for
  537. * @hs_req: The request to start.
  538. * @continuing: True if we are doing more for the current request.
  539. *
  540. * Start the given request running by setting the endpoint registers
  541. * appropriately, and writing any data to the FIFOs.
  542. */
  543. static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
  544. struct s3c_hsotg_ep *hs_ep,
  545. struct s3c_hsotg_req *hs_req,
  546. bool continuing)
  547. {
  548. struct usb_request *ureq = &hs_req->req;
  549. int index = hs_ep->index;
  550. int dir_in = hs_ep->dir_in;
  551. u32 epctrl_reg;
  552. u32 epsize_reg;
  553. u32 epsize;
  554. u32 ctrl;
  555. unsigned length;
  556. unsigned packets;
  557. unsigned maxreq;
  558. if (index != 0) {
  559. if (hs_ep->req && !continuing) {
  560. dev_err(hsotg->dev, "%s: active request\n", __func__);
  561. WARN_ON(1);
  562. return;
  563. } else if (hs_ep->req != hs_req && continuing) {
  564. dev_err(hsotg->dev,
  565. "%s: continue different req\n", __func__);
  566. WARN_ON(1);
  567. return;
  568. }
  569. }
  570. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  571. epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
  572. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
  573. __func__, readl(hsotg->regs + epctrl_reg), index,
  574. hs_ep->dir_in ? "in" : "out");
  575. length = ureq->length - ureq->actual;
  576. if (0)
  577. dev_dbg(hsotg->dev,
  578. "REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
  579. ureq->buf, length, ureq->dma,
  580. ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
  581. maxreq = get_ep_limit(hs_ep);
  582. if (length > maxreq) {
  583. int round = maxreq % hs_ep->ep.maxpacket;
  584. dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
  585. __func__, length, maxreq, round);
  586. /* round down to multiple of packets */
  587. if (round)
  588. maxreq -= round;
  589. length = maxreq;
  590. }
  591. if (length)
  592. packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
  593. else
  594. packets = 1; /* send one packet if length is zero. */
  595. if (dir_in && index != 0)
  596. epsize = S3C_DxEPTSIZ_MC(1);
  597. else
  598. epsize = 0;
  599. if (index != 0 && ureq->zero) {
  600. /* test for the packets being exactly right for the
  601. * transfer */
  602. if (length == (packets * hs_ep->ep.maxpacket))
  603. packets++;
  604. }
  605. epsize |= S3C_DxEPTSIZ_PktCnt(packets);
  606. epsize |= S3C_DxEPTSIZ_XferSize(length);
  607. dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
  608. __func__, packets, length, ureq->length, epsize, epsize_reg);
  609. /* store the request as the current one we're doing */
  610. hs_ep->req = hs_req;
  611. /* write size / packets */
  612. writel(epsize, hsotg->regs + epsize_reg);
  613. ctrl = readl(hsotg->regs + epctrl_reg);
  614. if (ctrl & S3C_DxEPCTL_Stall) {
  615. dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
  616. /* not sure what we can do here, if it is EP0 then we should
  617. * get this cleared once the endpoint has transmitted the
  618. * STALL packet, otherwise it needs to be cleared by the
  619. * host.
  620. */
  621. }
  622. if (using_dma(hsotg)) {
  623. unsigned int dma_reg;
  624. /* write DMA address to control register, buffer already
  625. * synced by s3c_hsotg_ep_queue(). */
  626. dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
  627. writel(ureq->dma, hsotg->regs + dma_reg);
  628. dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
  629. __func__, ureq->dma, dma_reg);
  630. }
  631. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  632. ctrl |= S3C_DxEPCTL_USBActEp;
  633. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  634. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  635. writel(ctrl, hsotg->regs + epctrl_reg);
  636. /* set these, it seems that DMA support increments past the end
  637. * of the packet buffer so we need to calculate the length from
  638. * this information. */
  639. hs_ep->size_loaded = length;
  640. hs_ep->last_load = ureq->actual;
  641. if (dir_in && !using_dma(hsotg)) {
  642. /* set these anyway, we may need them for non-periodic in */
  643. hs_ep->fifo_load = 0;
  644. s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  645. }
  646. /* clear the INTknTXFEmpMsk when we start request, more as a aide
  647. * to debugging to see what is going on. */
  648. if (dir_in)
  649. writel(S3C_DIEPMSK_INTknTXFEmpMsk,
  650. hsotg->regs + S3C_DIEPINT(index));
  651. /* Note, trying to clear the NAK here causes problems with transmit
  652. * on the S3C6400 ending up with the TXFIFO becomming full. */
  653. /* check ep is enabled */
  654. if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
  655. dev_warn(hsotg->dev,
  656. "ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
  657. index, readl(hsotg->regs + epctrl_reg));
  658. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
  659. __func__, readl(hsotg->regs + epctrl_reg));
  660. }
  661. /**
  662. * s3c_hsotg_map_dma - map the DMA memory being used for the request
  663. * @hsotg: The device state.
  664. * @hs_ep: The endpoint the request is on.
  665. * @req: The request being processed.
  666. *
  667. * We've been asked to queue a request, so ensure that the memory buffer
  668. * is correctly setup for DMA. If we've been passed an extant DMA address
  669. * then ensure the buffer has been synced to memory. If our buffer has no
  670. * DMA memory, then we map the memory and mark our request to allow us to
  671. * cleanup on completion.
  672. */
  673. static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
  674. struct s3c_hsotg_ep *hs_ep,
  675. struct usb_request *req)
  676. {
  677. enum dma_data_direction dir;
  678. struct s3c_hsotg_req *hs_req = our_req(req);
  679. dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
  680. /* if the length is zero, ignore the DMA data */
  681. if (hs_req->req.length == 0)
  682. return 0;
  683. if (req->dma == DMA_ADDR_INVALID) {
  684. dma_addr_t dma;
  685. dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
  686. if (unlikely(dma_mapping_error(hsotg->dev, dma)))
  687. goto dma_error;
  688. if (dma & 3) {
  689. dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
  690. __func__);
  691. dma_unmap_single(hsotg->dev, dma, req->length, dir);
  692. return -EINVAL;
  693. }
  694. hs_req->mapped = 1;
  695. req->dma = dma;
  696. } else {
  697. dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
  698. hs_req->mapped = 0;
  699. }
  700. return 0;
  701. dma_error:
  702. dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
  703. __func__, req->buf, req->length);
  704. return -EIO;
  705. }
  706. static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
  707. gfp_t gfp_flags)
  708. {
  709. struct s3c_hsotg_req *hs_req = our_req(req);
  710. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  711. struct s3c_hsotg *hs = hs_ep->parent;
  712. unsigned long irqflags;
  713. bool first;
  714. dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
  715. ep->name, req, req->length, req->buf, req->no_interrupt,
  716. req->zero, req->short_not_ok);
  717. /* initialise status of the request */
  718. INIT_LIST_HEAD(&hs_req->queue);
  719. req->actual = 0;
  720. req->status = -EINPROGRESS;
  721. /* if we're using DMA, sync the buffers as necessary */
  722. if (using_dma(hs)) {
  723. int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
  724. if (ret)
  725. return ret;
  726. }
  727. spin_lock_irqsave(&hs_ep->lock, irqflags);
  728. first = list_empty(&hs_ep->queue);
  729. list_add_tail(&hs_req->queue, &hs_ep->queue);
  730. if (first)
  731. s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
  732. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  733. return 0;
  734. }
  735. static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
  736. struct usb_request *req)
  737. {
  738. struct s3c_hsotg_req *hs_req = our_req(req);
  739. kfree(hs_req);
  740. }
  741. /**
  742. * s3c_hsotg_complete_oursetup - setup completion callback
  743. * @ep: The endpoint the request was on.
  744. * @req: The request completed.
  745. *
  746. * Called on completion of any requests the driver itself
  747. * submitted that need cleaning up.
  748. */
  749. static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
  750. struct usb_request *req)
  751. {
  752. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  753. struct s3c_hsotg *hsotg = hs_ep->parent;
  754. dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
  755. s3c_hsotg_ep_free_request(ep, req);
  756. }
  757. /**
  758. * ep_from_windex - convert control wIndex value to endpoint
  759. * @hsotg: The driver state.
  760. * @windex: The control request wIndex field (in host order).
  761. *
  762. * Convert the given wIndex into a pointer to an driver endpoint
  763. * structure, or return NULL if it is not a valid endpoint.
  764. */
  765. static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
  766. u32 windex)
  767. {
  768. struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
  769. int dir = (windex & USB_DIR_IN) ? 1 : 0;
  770. int idx = windex & 0x7F;
  771. if (windex >= 0x100)
  772. return NULL;
  773. if (idx > S3C_HSOTG_EPS)
  774. return NULL;
  775. if (idx && ep->dir_in != dir)
  776. return NULL;
  777. return ep;
  778. }
  779. /**
  780. * s3c_hsotg_send_reply - send reply to control request
  781. * @hsotg: The device state
  782. * @ep: Endpoint 0
  783. * @buff: Buffer for request
  784. * @length: Length of reply.
  785. *
  786. * Create a request and queue it on the given endpoint. This is useful as
  787. * an internal method of sending replies to certain control requests, etc.
  788. */
  789. static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
  790. struct s3c_hsotg_ep *ep,
  791. void *buff,
  792. int length)
  793. {
  794. struct usb_request *req;
  795. int ret;
  796. dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
  797. req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
  798. hsotg->ep0_reply = req;
  799. if (!req) {
  800. dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
  801. return -ENOMEM;
  802. }
  803. req->buf = hsotg->ep0_buff;
  804. req->length = length;
  805. req->zero = 1; /* always do zero-length final transfer */
  806. req->complete = s3c_hsotg_complete_oursetup;
  807. if (length)
  808. memcpy(req->buf, buff, length);
  809. else
  810. ep->sent_zlp = 1;
  811. ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
  812. if (ret) {
  813. dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
  814. return ret;
  815. }
  816. return 0;
  817. }
  818. /**
  819. * s3c_hsotg_process_req_status - process request GET_STATUS
  820. * @hsotg: The device state
  821. * @ctrl: USB control request
  822. */
  823. static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
  824. struct usb_ctrlrequest *ctrl)
  825. {
  826. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  827. struct s3c_hsotg_ep *ep;
  828. __le16 reply;
  829. int ret;
  830. dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
  831. if (!ep0->dir_in) {
  832. dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
  833. return -EINVAL;
  834. }
  835. switch (ctrl->bRequestType & USB_RECIP_MASK) {
  836. case USB_RECIP_DEVICE:
  837. reply = cpu_to_le16(0); /* bit 0 => self powered,
  838. * bit 1 => remote wakeup */
  839. break;
  840. case USB_RECIP_INTERFACE:
  841. /* currently, the data result should be zero */
  842. reply = cpu_to_le16(0);
  843. break;
  844. case USB_RECIP_ENDPOINT:
  845. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  846. if (!ep)
  847. return -ENOENT;
  848. reply = cpu_to_le16(ep->halted ? 1 : 0);
  849. break;
  850. default:
  851. return 0;
  852. }
  853. if (le16_to_cpu(ctrl->wLength) != 2)
  854. return -EINVAL;
  855. ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
  856. if (ret) {
  857. dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
  858. return ret;
  859. }
  860. return 1;
  861. }
  862. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
  863. /**
  864. * s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
  865. * @hsotg: The device state
  866. * @ctrl: USB control request
  867. */
  868. static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
  869. struct usb_ctrlrequest *ctrl)
  870. {
  871. bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
  872. struct s3c_hsotg_ep *ep;
  873. dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
  874. __func__, set ? "SET" : "CLEAR");
  875. if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
  876. ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
  877. if (!ep) {
  878. dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
  879. __func__, le16_to_cpu(ctrl->wIndex));
  880. return -ENOENT;
  881. }
  882. switch (le16_to_cpu(ctrl->wValue)) {
  883. case USB_ENDPOINT_HALT:
  884. s3c_hsotg_ep_sethalt(&ep->ep, set);
  885. break;
  886. default:
  887. return -ENOENT;
  888. }
  889. } else
  890. return -ENOENT; /* currently only deal with endpoint */
  891. return 1;
  892. }
  893. /**
  894. * s3c_hsotg_process_control - process a control request
  895. * @hsotg: The device state
  896. * @ctrl: The control request received
  897. *
  898. * The controller has received the SETUP phase of a control request, and
  899. * needs to work out what to do next (and whether to pass it on to the
  900. * gadget driver).
  901. */
  902. static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
  903. struct usb_ctrlrequest *ctrl)
  904. {
  905. struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
  906. int ret = 0;
  907. u32 dcfg;
  908. ep0->sent_zlp = 0;
  909. dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
  910. ctrl->bRequest, ctrl->bRequestType,
  911. ctrl->wValue, ctrl->wLength);
  912. /* record the direction of the request, for later use when enquing
  913. * packets onto EP0. */
  914. ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
  915. dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
  916. /* if we've no data with this request, then the last part of the
  917. * transaction is going to implicitly be IN. */
  918. if (ctrl->wLength == 0)
  919. ep0->dir_in = 1;
  920. if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
  921. switch (ctrl->bRequest) {
  922. case USB_REQ_SET_ADDRESS:
  923. dcfg = readl(hsotg->regs + S3C_DCFG);
  924. dcfg &= ~S3C_DCFG_DevAddr_MASK;
  925. dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
  926. writel(dcfg, hsotg->regs + S3C_DCFG);
  927. dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
  928. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  929. return;
  930. case USB_REQ_GET_STATUS:
  931. ret = s3c_hsotg_process_req_status(hsotg, ctrl);
  932. break;
  933. case USB_REQ_CLEAR_FEATURE:
  934. case USB_REQ_SET_FEATURE:
  935. ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
  936. break;
  937. }
  938. }
  939. /* as a fallback, try delivering it to the driver to deal with */
  940. if (ret == 0 && hsotg->driver) {
  941. ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
  942. if (ret < 0)
  943. dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
  944. }
  945. if (ret > 0) {
  946. if (!ep0->dir_in) {
  947. /* need to generate zlp in reply or take data */
  948. /* todo - deal with any data we might be sent? */
  949. ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
  950. }
  951. }
  952. /* the request is either unhandlable, or is not formatted correctly
  953. * so respond with a STALL for the status stage to indicate failure.
  954. */
  955. if (ret < 0) {
  956. u32 reg;
  957. u32 ctrl;
  958. dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
  959. reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
  960. /* S3C_DxEPCTL_Stall will be cleared by EP once it has
  961. * taken effect, so no need to clear later. */
  962. ctrl = readl(hsotg->regs + reg);
  963. ctrl |= S3C_DxEPCTL_Stall;
  964. ctrl |= S3C_DxEPCTL_CNAK;
  965. writel(ctrl, hsotg->regs + reg);
  966. dev_dbg(hsotg->dev,
  967. "writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
  968. ctrl, reg, readl(hsotg->regs + reg));
  969. /* don't belive we need to anything more to get the EP
  970. * to reply with a STALL packet */
  971. }
  972. }
  973. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
  974. /**
  975. * s3c_hsotg_complete_setup - completion of a setup transfer
  976. * @ep: The endpoint the request was on.
  977. * @req: The request completed.
  978. *
  979. * Called on completion of any requests the driver itself submitted for
  980. * EP0 setup packets
  981. */
  982. static void s3c_hsotg_complete_setup(struct usb_ep *ep,
  983. struct usb_request *req)
  984. {
  985. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  986. struct s3c_hsotg *hsotg = hs_ep->parent;
  987. if (req->status < 0) {
  988. dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
  989. return;
  990. }
  991. if (req->actual == 0)
  992. s3c_hsotg_enqueue_setup(hsotg);
  993. else
  994. s3c_hsotg_process_control(hsotg, req->buf);
  995. }
  996. /**
  997. * s3c_hsotg_enqueue_setup - start a request for EP0 packets
  998. * @hsotg: The device state.
  999. *
  1000. * Enqueue a request on EP0 if necessary to received any SETUP packets
  1001. * received from the host.
  1002. */
  1003. static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
  1004. {
  1005. struct usb_request *req = hsotg->ctrl_req;
  1006. struct s3c_hsotg_req *hs_req = our_req(req);
  1007. int ret;
  1008. dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
  1009. req->zero = 0;
  1010. req->length = 8;
  1011. req->buf = hsotg->ctrl_buff;
  1012. req->complete = s3c_hsotg_complete_setup;
  1013. if (!list_empty(&hs_req->queue)) {
  1014. dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
  1015. return;
  1016. }
  1017. hsotg->eps[0].dir_in = 0;
  1018. ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
  1019. if (ret < 0) {
  1020. dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
  1021. /* Don't think there's much we can do other than watch the
  1022. * driver fail. */
  1023. }
  1024. }
  1025. /**
  1026. * get_ep_head - return the first request on the endpoint
  1027. * @hs_ep: The controller endpoint to get
  1028. *
  1029. * Get the first request on the endpoint.
  1030. */
  1031. static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
  1032. {
  1033. if (list_empty(&hs_ep->queue))
  1034. return NULL;
  1035. return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
  1036. }
  1037. /**
  1038. * s3c_hsotg_complete_request - complete a request given to us
  1039. * @hsotg: The device state.
  1040. * @hs_ep: The endpoint the request was on.
  1041. * @hs_req: The request to complete.
  1042. * @result: The result code (0 => Ok, otherwise errno)
  1043. *
  1044. * The given request has finished, so call the necessary completion
  1045. * if it has one and then look to see if we can start a new request
  1046. * on the endpoint.
  1047. *
  1048. * Note, expects the ep to already be locked as appropriate.
  1049. */
  1050. static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
  1051. struct s3c_hsotg_ep *hs_ep,
  1052. struct s3c_hsotg_req *hs_req,
  1053. int result)
  1054. {
  1055. bool restart;
  1056. if (!hs_req) {
  1057. dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
  1058. return;
  1059. }
  1060. dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
  1061. hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
  1062. /* only replace the status if we've not already set an error
  1063. * from a previous transaction */
  1064. if (hs_req->req.status == -EINPROGRESS)
  1065. hs_req->req.status = result;
  1066. hs_ep->req = NULL;
  1067. list_del_init(&hs_req->queue);
  1068. if (using_dma(hsotg))
  1069. s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
  1070. /* call the complete request with the locks off, just in case the
  1071. * request tries to queue more work for this endpoint. */
  1072. if (hs_req->req.complete) {
  1073. spin_unlock(&hs_ep->lock);
  1074. hs_req->req.complete(&hs_ep->ep, &hs_req->req);
  1075. spin_lock(&hs_ep->lock);
  1076. }
  1077. /* Look to see if there is anything else to do. Note, the completion
  1078. * of the previous request may have caused a new request to be started
  1079. * so be careful when doing this. */
  1080. if (!hs_ep->req && result >= 0) {
  1081. restart = !list_empty(&hs_ep->queue);
  1082. if (restart) {
  1083. hs_req = get_ep_head(hs_ep);
  1084. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
  1085. }
  1086. }
  1087. }
  1088. /**
  1089. * s3c_hsotg_complete_request_lock - complete a request given to us (locked)
  1090. * @hsotg: The device state.
  1091. * @hs_ep: The endpoint the request was on.
  1092. * @hs_req: The request to complete.
  1093. * @result: The result code (0 => Ok, otherwise errno)
  1094. *
  1095. * See s3c_hsotg_complete_request(), but called with the endpoint's
  1096. * lock held.
  1097. */
  1098. static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
  1099. struct s3c_hsotg_ep *hs_ep,
  1100. struct s3c_hsotg_req *hs_req,
  1101. int result)
  1102. {
  1103. unsigned long flags;
  1104. spin_lock_irqsave(&hs_ep->lock, flags);
  1105. s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
  1106. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1107. }
  1108. /**
  1109. * s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
  1110. * @hsotg: The device state.
  1111. * @ep_idx: The endpoint index for the data
  1112. * @size: The size of data in the fifo, in bytes
  1113. *
  1114. * The FIFO status shows there is data to read from the FIFO for a given
  1115. * endpoint, so sort out whether we need to read the data into a request
  1116. * that has been made for that endpoint.
  1117. */
  1118. static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
  1119. {
  1120. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
  1121. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1122. void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
  1123. int to_read;
  1124. int max_req;
  1125. int read_ptr;
  1126. if (!hs_req) {
  1127. u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
  1128. int ptr;
  1129. dev_warn(hsotg->dev,
  1130. "%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
  1131. __func__, size, ep_idx, epctl);
  1132. /* dump the data from the FIFO, we've nothing we can do */
  1133. for (ptr = 0; ptr < size; ptr += 4)
  1134. (void)readl(fifo);
  1135. return;
  1136. }
  1137. spin_lock(&hs_ep->lock);
  1138. to_read = size;
  1139. read_ptr = hs_req->req.actual;
  1140. max_req = hs_req->req.length - read_ptr;
  1141. dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
  1142. __func__, to_read, max_req, read_ptr, hs_req->req.length);
  1143. if (to_read > max_req) {
  1144. /* more data appeared than we where willing
  1145. * to deal with in this request.
  1146. */
  1147. /* currently we don't deal this */
  1148. WARN_ON_ONCE(1);
  1149. }
  1150. hs_ep->total_data += to_read;
  1151. hs_req->req.actual += to_read;
  1152. to_read = DIV_ROUND_UP(to_read, 4);
  1153. /* note, we might over-write the buffer end by 3 bytes depending on
  1154. * alignment of the data. */
  1155. readsl(fifo, hs_req->req.buf + read_ptr, to_read);
  1156. spin_unlock(&hs_ep->lock);
  1157. }
  1158. /**
  1159. * s3c_hsotg_send_zlp - send zero-length packet on control endpoint
  1160. * @hsotg: The device instance
  1161. * @req: The request currently on this endpoint
  1162. *
  1163. * Generate a zero-length IN packet request for terminating a SETUP
  1164. * transaction.
  1165. *
  1166. * Note, since we don't write any data to the TxFIFO, then it is
  1167. * currently belived that we do not need to wait for any space in
  1168. * the TxFIFO.
  1169. */
  1170. static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
  1171. struct s3c_hsotg_req *req)
  1172. {
  1173. u32 ctrl;
  1174. if (!req) {
  1175. dev_warn(hsotg->dev, "%s: no request?\n", __func__);
  1176. return;
  1177. }
  1178. if (req->req.length == 0) {
  1179. hsotg->eps[0].sent_zlp = 1;
  1180. s3c_hsotg_enqueue_setup(hsotg);
  1181. return;
  1182. }
  1183. hsotg->eps[0].dir_in = 1;
  1184. hsotg->eps[0].sent_zlp = 1;
  1185. dev_dbg(hsotg->dev, "sending zero-length packet\n");
  1186. /* issue a zero-sized packet to terminate this */
  1187. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  1188. S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
  1189. ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
  1190. ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
  1191. ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
  1192. ctrl |= S3C_DxEPCTL_USBActEp;
  1193. writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
  1194. }
  1195. /**
  1196. * s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
  1197. * @hsotg: The device instance
  1198. * @epnum: The endpoint received from
  1199. * @was_setup: Set if processing a SetupDone event.
  1200. *
  1201. * The RXFIFO has delivered an OutDone event, which means that the data
  1202. * transfer for an OUT endpoint has been completed, either by a short
  1203. * packet or by the finish of a transfer.
  1204. */
  1205. static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
  1206. int epnum, bool was_setup)
  1207. {
  1208. u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
  1209. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
  1210. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1211. struct usb_request *req = &hs_req->req;
  1212. unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1213. int result = 0;
  1214. if (!hs_req) {
  1215. dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
  1216. return;
  1217. }
  1218. if (using_dma(hsotg)) {
  1219. unsigned size_done;
  1220. /* Calculate the size of the transfer by checking how much
  1221. * is left in the endpoint size register and then working it
  1222. * out from the amount we loaded for the transfer.
  1223. *
  1224. * We need to do this as DMA pointers are always 32bit aligned
  1225. * so may overshoot/undershoot the transfer.
  1226. */
  1227. size_done = hs_ep->size_loaded - size_left;
  1228. size_done += hs_ep->last_load;
  1229. req->actual = size_done;
  1230. }
  1231. /* if there is more request to do, schedule new transfer */
  1232. if (req->actual < req->length && size_left == 0) {
  1233. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1234. return;
  1235. }
  1236. if (req->actual < req->length && req->short_not_ok) {
  1237. dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
  1238. __func__, req->actual, req->length);
  1239. /* todo - what should we return here? there's no one else
  1240. * even bothering to check the status. */
  1241. }
  1242. if (epnum == 0) {
  1243. if (!was_setup && req->complete != s3c_hsotg_complete_setup)
  1244. s3c_hsotg_send_zlp(hsotg, hs_req);
  1245. }
  1246. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
  1247. }
  1248. /**
  1249. * s3c_hsotg_read_frameno - read current frame number
  1250. * @hsotg: The device instance
  1251. *
  1252. * Return the current frame number
  1253. */
  1254. static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
  1255. {
  1256. u32 dsts;
  1257. dsts = readl(hsotg->regs + S3C_DSTS);
  1258. dsts &= S3C_DSTS_SOFFN_MASK;
  1259. dsts >>= S3C_DSTS_SOFFN_SHIFT;
  1260. return dsts;
  1261. }
  1262. /**
  1263. * s3c_hsotg_handle_rx - RX FIFO has data
  1264. * @hsotg: The device instance
  1265. *
  1266. * The IRQ handler has detected that the RX FIFO has some data in it
  1267. * that requires processing, so find out what is in there and do the
  1268. * appropriate read.
  1269. *
  1270. * The RXFIFO is a true FIFO, the packets comming out are still in packet
  1271. * chunks, so if you have x packets received on an endpoint you'll get x
  1272. * FIFO events delivered, each with a packet's worth of data in it.
  1273. *
  1274. * When using DMA, we should not be processing events from the RXFIFO
  1275. * as the actual data should be sent to the memory directly and we turn
  1276. * on the completion interrupts to get notifications of transfer completion.
  1277. */
  1278. static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
  1279. {
  1280. u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
  1281. u32 epnum, status, size;
  1282. WARN_ON(using_dma(hsotg));
  1283. epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
  1284. status = grxstsr & S3C_GRXSTS_PktSts_MASK;
  1285. size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
  1286. size >>= S3C_GRXSTS_ByteCnt_SHIFT;
  1287. if (1)
  1288. dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
  1289. __func__, grxstsr, size, epnum);
  1290. #define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
  1291. switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
  1292. case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
  1293. dev_dbg(hsotg->dev, "GlobalOutNAK\n");
  1294. break;
  1295. case __status(S3C_GRXSTS_PktSts_OutDone):
  1296. dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
  1297. s3c_hsotg_read_frameno(hsotg));
  1298. if (!using_dma(hsotg))
  1299. s3c_hsotg_handle_outdone(hsotg, epnum, false);
  1300. break;
  1301. case __status(S3C_GRXSTS_PktSts_SetupDone):
  1302. dev_dbg(hsotg->dev,
  1303. "SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1304. s3c_hsotg_read_frameno(hsotg),
  1305. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1306. s3c_hsotg_handle_outdone(hsotg, epnum, true);
  1307. break;
  1308. case __status(S3C_GRXSTS_PktSts_OutRX):
  1309. s3c_hsotg_rx_data(hsotg, epnum, size);
  1310. break;
  1311. case __status(S3C_GRXSTS_PktSts_SetupRX):
  1312. dev_dbg(hsotg->dev,
  1313. "SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
  1314. s3c_hsotg_read_frameno(hsotg),
  1315. readl(hsotg->regs + S3C_DOEPCTL(0)));
  1316. s3c_hsotg_rx_data(hsotg, epnum, size);
  1317. break;
  1318. default:
  1319. dev_warn(hsotg->dev, "%s: unknown status %08x\n",
  1320. __func__, grxstsr);
  1321. s3c_hsotg_dump(hsotg);
  1322. break;
  1323. }
  1324. }
  1325. /**
  1326. * s3c_hsotg_ep0_mps - turn max packet size into register setting
  1327. * @mps: The maximum packet size in bytes.
  1328. */
  1329. static u32 s3c_hsotg_ep0_mps(unsigned int mps)
  1330. {
  1331. switch (mps) {
  1332. case 64:
  1333. return S3C_D0EPCTL_MPS_64;
  1334. case 32:
  1335. return S3C_D0EPCTL_MPS_32;
  1336. case 16:
  1337. return S3C_D0EPCTL_MPS_16;
  1338. case 8:
  1339. return S3C_D0EPCTL_MPS_8;
  1340. }
  1341. /* bad max packet size, warn and return invalid result */
  1342. WARN_ON(1);
  1343. return (u32)-1;
  1344. }
  1345. /**
  1346. * s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
  1347. * @hsotg: The driver state.
  1348. * @ep: The index number of the endpoint
  1349. * @mps: The maximum packet size in bytes
  1350. *
  1351. * Configure the maximum packet size for the given endpoint, updating
  1352. * the hardware control registers to reflect this.
  1353. */
  1354. static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
  1355. unsigned int ep, unsigned int mps)
  1356. {
  1357. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
  1358. void __iomem *regs = hsotg->regs;
  1359. u32 mpsval;
  1360. u32 reg;
  1361. if (ep == 0) {
  1362. /* EP0 is a special case */
  1363. mpsval = s3c_hsotg_ep0_mps(mps);
  1364. if (mpsval > 3)
  1365. goto bad_mps;
  1366. } else {
  1367. if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
  1368. goto bad_mps;
  1369. mpsval = mps;
  1370. }
  1371. hs_ep->ep.maxpacket = mps;
  1372. /* update both the in and out endpoint controldir_ registers, even
  1373. * if one of the directions may not be in use. */
  1374. reg = readl(regs + S3C_DIEPCTL(ep));
  1375. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1376. reg |= mpsval;
  1377. writel(reg, regs + S3C_DIEPCTL(ep));
  1378. reg = readl(regs + S3C_DOEPCTL(ep));
  1379. reg &= ~S3C_DxEPCTL_MPS_MASK;
  1380. reg |= mpsval;
  1381. writel(reg, regs + S3C_DOEPCTL(ep));
  1382. return;
  1383. bad_mps:
  1384. dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
  1385. }
  1386. /**
  1387. * s3c_hsotg_trytx - check to see if anything needs transmitting
  1388. * @hsotg: The driver state
  1389. * @hs_ep: The driver endpoint to check.
  1390. *
  1391. * Check to see if there is a request that has data to send, and if so
  1392. * make an attempt to write data into the FIFO.
  1393. */
  1394. static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
  1395. struct s3c_hsotg_ep *hs_ep)
  1396. {
  1397. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1398. if (!hs_ep->dir_in || !hs_req)
  1399. return 0;
  1400. if (hs_req->req.actual < hs_req->req.length) {
  1401. dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
  1402. hs_ep->index);
  1403. return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
  1404. }
  1405. return 0;
  1406. }
  1407. /**
  1408. * s3c_hsotg_complete_in - complete IN transfer
  1409. * @hsotg: The device state.
  1410. * @hs_ep: The endpoint that has just completed.
  1411. *
  1412. * An IN transfer has been completed, update the transfer's state and then
  1413. * call the relevant completion routines.
  1414. */
  1415. static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
  1416. struct s3c_hsotg_ep *hs_ep)
  1417. {
  1418. struct s3c_hsotg_req *hs_req = hs_ep->req;
  1419. u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
  1420. int size_left, size_done;
  1421. if (!hs_req) {
  1422. dev_dbg(hsotg->dev, "XferCompl but no req\n");
  1423. return;
  1424. }
  1425. /* Calculate the size of the transfer by checking how much is left
  1426. * in the endpoint size register and then working it out from
  1427. * the amount we loaded for the transfer.
  1428. *
  1429. * We do this even for DMA, as the transfer may have incremented
  1430. * past the end of the buffer (DMA transfers are always 32bit
  1431. * aligned).
  1432. */
  1433. size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
  1434. size_done = hs_ep->size_loaded - size_left;
  1435. size_done += hs_ep->last_load;
  1436. if (hs_req->req.actual != size_done)
  1437. dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
  1438. __func__, hs_req->req.actual, size_done);
  1439. hs_req->req.actual = size_done;
  1440. /* if we did all of the transfer, and there is more data left
  1441. * around, then try restarting the rest of the request */
  1442. if (!size_left && hs_req->req.actual < hs_req->req.length) {
  1443. dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
  1444. s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
  1445. } else
  1446. s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
  1447. }
  1448. /**
  1449. * s3c_hsotg_epint - handle an in/out endpoint interrupt
  1450. * @hsotg: The driver state
  1451. * @idx: The index for the endpoint (0..15)
  1452. * @dir_in: Set if this is an IN endpoint
  1453. *
  1454. * Process and clear any interrupt pending for an individual endpoint
  1455. */
  1456. static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
  1457. int dir_in)
  1458. {
  1459. struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
  1460. u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
  1461. u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
  1462. u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
  1463. u32 ints;
  1464. u32 clear = 0;
  1465. ints = readl(hsotg->regs + epint_reg);
  1466. dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
  1467. __func__, idx, dir_in ? "in" : "out", ints);
  1468. if (ints & S3C_DxEPINT_XferCompl) {
  1469. dev_dbg(hsotg->dev,
  1470. "%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
  1471. __func__, readl(hsotg->regs + epctl_reg),
  1472. readl(hsotg->regs + epsiz_reg));
  1473. /* we get OutDone from the FIFO, so we only need to look
  1474. * at completing IN requests here */
  1475. if (dir_in) {
  1476. s3c_hsotg_complete_in(hsotg, hs_ep);
  1477. if (idx == 0 && !hs_ep->req)
  1478. s3c_hsotg_enqueue_setup(hsotg);
  1479. } else if (using_dma(hsotg)) {
  1480. /* We're using DMA, we need to fire an OutDone here
  1481. * as we ignore the RXFIFO. */
  1482. s3c_hsotg_handle_outdone(hsotg, idx, false);
  1483. }
  1484. clear |= S3C_DxEPINT_XferCompl;
  1485. }
  1486. if (ints & S3C_DxEPINT_EPDisbld) {
  1487. dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
  1488. clear |= S3C_DxEPINT_EPDisbld;
  1489. }
  1490. if (ints & S3C_DxEPINT_AHBErr) {
  1491. dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
  1492. clear |= S3C_DxEPINT_AHBErr;
  1493. }
  1494. if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
  1495. dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
  1496. if (using_dma(hsotg) && idx == 0) {
  1497. /* this is the notification we've received a
  1498. * setup packet. In non-DMA mode we'd get this
  1499. * from the RXFIFO, instead we need to process
  1500. * the setup here. */
  1501. if (dir_in)
  1502. WARN_ON_ONCE(1);
  1503. else
  1504. s3c_hsotg_handle_outdone(hsotg, 0, true);
  1505. }
  1506. clear |= S3C_DxEPINT_Setup;
  1507. }
  1508. if (ints & S3C_DxEPINT_Back2BackSetup) {
  1509. dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
  1510. clear |= S3C_DxEPINT_Back2BackSetup;
  1511. }
  1512. if (dir_in) {
  1513. /* not sure if this is important, but we'll clear it anyway
  1514. */
  1515. if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
  1516. dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
  1517. __func__, idx);
  1518. clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
  1519. }
  1520. /* this probably means something bad is happening */
  1521. if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
  1522. dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
  1523. __func__, idx);
  1524. clear |= S3C_DIEPMSK_INTknEPMisMsk;
  1525. }
  1526. /* FIFO has space or is empty (see GAHBCFG) */
  1527. if (hsotg->dedicated_fifos &&
  1528. ints & S3C_DIEPMSK_TxFIFOEmpty) {
  1529. dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
  1530. __func__, idx);
  1531. s3c_hsotg_trytx(hsotg, hs_ep);
  1532. clear |= S3C_DIEPMSK_TxFIFOEmpty;
  1533. }
  1534. }
  1535. writel(clear, hsotg->regs + epint_reg);
  1536. }
  1537. /**
  1538. * s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
  1539. * @hsotg: The device state.
  1540. *
  1541. * Handle updating the device settings after the enumeration phase has
  1542. * been completed.
  1543. */
  1544. static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
  1545. {
  1546. u32 dsts = readl(hsotg->regs + S3C_DSTS);
  1547. int ep0_mps = 0, ep_mps;
  1548. /* This should signal the finish of the enumeration phase
  1549. * of the USB handshaking, so we should now know what rate
  1550. * we connected at. */
  1551. dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
  1552. /* note, since we're limited by the size of transfer on EP0, and
  1553. * it seems IN transfers must be a even number of packets we do
  1554. * not advertise a 64byte MPS on EP0. */
  1555. /* catch both EnumSpd_FS and EnumSpd_FS48 */
  1556. switch (dsts & S3C_DSTS_EnumSpd_MASK) {
  1557. case S3C_DSTS_EnumSpd_FS:
  1558. case S3C_DSTS_EnumSpd_FS48:
  1559. hsotg->gadget.speed = USB_SPEED_FULL;
  1560. dev_info(hsotg->dev, "new device is full-speed\n");
  1561. ep0_mps = EP0_MPS_LIMIT;
  1562. ep_mps = 64;
  1563. break;
  1564. case S3C_DSTS_EnumSpd_HS:
  1565. dev_info(hsotg->dev, "new device is high-speed\n");
  1566. hsotg->gadget.speed = USB_SPEED_HIGH;
  1567. ep0_mps = EP0_MPS_LIMIT;
  1568. ep_mps = 512;
  1569. break;
  1570. case S3C_DSTS_EnumSpd_LS:
  1571. hsotg->gadget.speed = USB_SPEED_LOW;
  1572. dev_info(hsotg->dev, "new device is low-speed\n");
  1573. /* note, we don't actually support LS in this driver at the
  1574. * moment, and the documentation seems to imply that it isn't
  1575. * supported by the PHYs on some of the devices.
  1576. */
  1577. break;
  1578. }
  1579. /* we should now know the maximum packet size for an
  1580. * endpoint, so set the endpoints to a default value. */
  1581. if (ep0_mps) {
  1582. int i;
  1583. s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
  1584. for (i = 1; i < S3C_HSOTG_EPS; i++)
  1585. s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
  1586. }
  1587. /* ensure after enumeration our EP0 is active */
  1588. s3c_hsotg_enqueue_setup(hsotg);
  1589. dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  1590. readl(hsotg->regs + S3C_DIEPCTL0),
  1591. readl(hsotg->regs + S3C_DOEPCTL0));
  1592. }
  1593. /**
  1594. * kill_all_requests - remove all requests from the endpoint's queue
  1595. * @hsotg: The device state.
  1596. * @ep: The endpoint the requests may be on.
  1597. * @result: The result code to use.
  1598. * @force: Force removal of any current requests
  1599. *
  1600. * Go through the requests on the given endpoint and mark them
  1601. * completed with the given result code.
  1602. */
  1603. static void kill_all_requests(struct s3c_hsotg *hsotg,
  1604. struct s3c_hsotg_ep *ep,
  1605. int result, bool force)
  1606. {
  1607. struct s3c_hsotg_req *req, *treq;
  1608. unsigned long flags;
  1609. spin_lock_irqsave(&ep->lock, flags);
  1610. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1611. /* currently, we can't do much about an already
  1612. * running request on an in endpoint */
  1613. if (ep->req == req && ep->dir_in && !force)
  1614. continue;
  1615. s3c_hsotg_complete_request(hsotg, ep, req,
  1616. result);
  1617. }
  1618. spin_unlock_irqrestore(&ep->lock, flags);
  1619. }
  1620. #define call_gadget(_hs, _entry) \
  1621. if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
  1622. (_hs)->driver && (_hs)->driver->_entry) \
  1623. (_hs)->driver->_entry(&(_hs)->gadget);
  1624. /**
  1625. * s3c_hsotg_disconnect_irq - disconnect irq service
  1626. * @hsotg: The device state.
  1627. *
  1628. * A disconnect IRQ has been received, meaning that the host has
  1629. * lost contact with the bus. Remove all current transactions
  1630. * and signal the gadget driver that this has happened.
  1631. */
  1632. static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
  1633. {
  1634. unsigned ep;
  1635. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  1636. kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
  1637. call_gadget(hsotg, disconnect);
  1638. }
  1639. /**
  1640. * s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
  1641. * @hsotg: The device state:
  1642. * @periodic: True if this is a periodic FIFO interrupt
  1643. */
  1644. static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
  1645. {
  1646. struct s3c_hsotg_ep *ep;
  1647. int epno, ret;
  1648. /* look through for any more data to transmit */
  1649. for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
  1650. ep = &hsotg->eps[epno];
  1651. if (!ep->dir_in)
  1652. continue;
  1653. if ((periodic && !ep->periodic) ||
  1654. (!periodic && ep->periodic))
  1655. continue;
  1656. ret = s3c_hsotg_trytx(hsotg, ep);
  1657. if (ret < 0)
  1658. break;
  1659. }
  1660. }
  1661. static struct s3c_hsotg *our_hsotg;
  1662. /* IRQ flags which will trigger a retry around the IRQ loop */
  1663. #define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
  1664. S3C_GINTSTS_PTxFEmp | \
  1665. S3C_GINTSTS_RxFLvl)
  1666. /**
  1667. * s3c_hsotg_irq - handle device interrupt
  1668. * @irq: The IRQ number triggered
  1669. * @pw: The pw value when registered the handler.
  1670. */
  1671. static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
  1672. {
  1673. struct s3c_hsotg *hsotg = pw;
  1674. int retry_count = 8;
  1675. u32 gintsts;
  1676. u32 gintmsk;
  1677. irq_retry:
  1678. gintsts = readl(hsotg->regs + S3C_GINTSTS);
  1679. gintmsk = readl(hsotg->regs + S3C_GINTMSK);
  1680. dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
  1681. __func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
  1682. gintsts &= gintmsk;
  1683. if (gintsts & S3C_GINTSTS_OTGInt) {
  1684. u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
  1685. dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
  1686. writel(otgint, hsotg->regs + S3C_GOTGINT);
  1687. writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
  1688. }
  1689. if (gintsts & S3C_GINTSTS_DisconnInt) {
  1690. dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
  1691. writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
  1692. s3c_hsotg_disconnect_irq(hsotg);
  1693. }
  1694. if (gintsts & S3C_GINTSTS_SessReqInt) {
  1695. dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
  1696. writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
  1697. }
  1698. if (gintsts & S3C_GINTSTS_EnumDone) {
  1699. s3c_hsotg_irq_enumdone(hsotg);
  1700. writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
  1701. }
  1702. if (gintsts & S3C_GINTSTS_ConIDStsChng) {
  1703. dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
  1704. readl(hsotg->regs + S3C_DSTS),
  1705. readl(hsotg->regs + S3C_GOTGCTL));
  1706. writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
  1707. }
  1708. if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
  1709. u32 daint = readl(hsotg->regs + S3C_DAINT);
  1710. u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
  1711. u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
  1712. int ep;
  1713. dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
  1714. for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
  1715. if (daint_out & 1)
  1716. s3c_hsotg_epint(hsotg, ep, 0);
  1717. }
  1718. for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
  1719. if (daint_in & 1)
  1720. s3c_hsotg_epint(hsotg, ep, 1);
  1721. }
  1722. writel(daint, hsotg->regs + S3C_DAINT);
  1723. writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
  1724. hsotg->regs + S3C_GINTSTS);
  1725. }
  1726. if (gintsts & S3C_GINTSTS_USBRst) {
  1727. dev_info(hsotg->dev, "%s: USBRst\n", __func__);
  1728. dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
  1729. readl(hsotg->regs + S3C_GNPTXSTS));
  1730. kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
  1731. /* it seems after a reset we can end up with a situation
  1732. * where the TXFIFO still has data in it... the docs
  1733. * suggest resetting all the fifos, so use the init_fifo
  1734. * code to relayout and flush the fifos.
  1735. */
  1736. s3c_hsotg_init_fifo(hsotg);
  1737. s3c_hsotg_enqueue_setup(hsotg);
  1738. writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
  1739. }
  1740. /* check both FIFOs */
  1741. if (gintsts & S3C_GINTSTS_NPTxFEmp) {
  1742. dev_dbg(hsotg->dev, "NPTxFEmp\n");
  1743. /* Disable the interrupt to stop it happening again
  1744. * unless one of these endpoint routines decides that
  1745. * it needs re-enabling */
  1746. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
  1747. s3c_hsotg_irq_fifoempty(hsotg, false);
  1748. writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
  1749. }
  1750. if (gintsts & S3C_GINTSTS_PTxFEmp) {
  1751. dev_dbg(hsotg->dev, "PTxFEmp\n");
  1752. /* See note in S3C_GINTSTS_NPTxFEmp */
  1753. s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
  1754. s3c_hsotg_irq_fifoempty(hsotg, true);
  1755. writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
  1756. }
  1757. if (gintsts & S3C_GINTSTS_RxFLvl) {
  1758. /* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
  1759. * we need to retry s3c_hsotg_handle_rx if this is still
  1760. * set. */
  1761. s3c_hsotg_handle_rx(hsotg);
  1762. writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
  1763. }
  1764. if (gintsts & S3C_GINTSTS_ModeMis) {
  1765. dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
  1766. writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
  1767. }
  1768. if (gintsts & S3C_GINTSTS_USBSusp) {
  1769. dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
  1770. writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
  1771. call_gadget(hsotg, suspend);
  1772. }
  1773. if (gintsts & S3C_GINTSTS_WkUpInt) {
  1774. dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
  1775. writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
  1776. call_gadget(hsotg, resume);
  1777. }
  1778. if (gintsts & S3C_GINTSTS_ErlySusp) {
  1779. dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
  1780. writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
  1781. }
  1782. /* these next two seem to crop-up occasionally causing the core
  1783. * to shutdown the USB transfer, so try clearing them and logging
  1784. * the occurence. */
  1785. if (gintsts & S3C_GINTSTS_GOUTNakEff) {
  1786. dev_info(hsotg->dev, "GOUTNakEff triggered\n");
  1787. s3c_hsotg_dump(hsotg);
  1788. writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
  1789. writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
  1790. }
  1791. if (gintsts & S3C_GINTSTS_GINNakEff) {
  1792. dev_info(hsotg->dev, "GINNakEff triggered\n");
  1793. s3c_hsotg_dump(hsotg);
  1794. writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
  1795. writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
  1796. }
  1797. /* if we've had fifo events, we should try and go around the
  1798. * loop again to see if there's any point in returning yet. */
  1799. if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
  1800. goto irq_retry;
  1801. return IRQ_HANDLED;
  1802. }
  1803. /**
  1804. * s3c_hsotg_ep_enable - enable the given endpoint
  1805. * @ep: The USB endpint to configure
  1806. * @desc: The USB endpoint descriptor to configure with.
  1807. *
  1808. * This is called from the USB gadget code's usb_ep_enable().
  1809. */
  1810. static int s3c_hsotg_ep_enable(struct usb_ep *ep,
  1811. const struct usb_endpoint_descriptor *desc)
  1812. {
  1813. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1814. struct s3c_hsotg *hsotg = hs_ep->parent;
  1815. unsigned long flags;
  1816. int index = hs_ep->index;
  1817. u32 epctrl_reg;
  1818. u32 epctrl;
  1819. u32 mps;
  1820. int dir_in;
  1821. int ret = 0;
  1822. dev_dbg(hsotg->dev,
  1823. "%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
  1824. __func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
  1825. desc->wMaxPacketSize, desc->bInterval);
  1826. /* not to be called for EP0 */
  1827. WARN_ON(index == 0);
  1828. dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
  1829. if (dir_in != hs_ep->dir_in) {
  1830. dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
  1831. return -EINVAL;
  1832. }
  1833. mps = le16_to_cpu(desc->wMaxPacketSize);
  1834. /* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
  1835. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1836. epctrl = readl(hsotg->regs + epctrl_reg);
  1837. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
  1838. __func__, epctrl, epctrl_reg);
  1839. spin_lock_irqsave(&hs_ep->lock, flags);
  1840. epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
  1841. epctrl |= S3C_DxEPCTL_MPS(mps);
  1842. /* mark the endpoint as active, otherwise the core may ignore
  1843. * transactions entirely for this endpoint */
  1844. epctrl |= S3C_DxEPCTL_USBActEp;
  1845. /* set the NAK status on the endpoint, otherwise we might try and
  1846. * do something with data that we've yet got a request to process
  1847. * since the RXFIFO will take data for an endpoint even if the
  1848. * size register hasn't been set.
  1849. */
  1850. epctrl |= S3C_DxEPCTL_SNAK;
  1851. /* update the endpoint state */
  1852. hs_ep->ep.maxpacket = mps;
  1853. /* default, set to non-periodic */
  1854. hs_ep->periodic = 0;
  1855. switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
  1856. case USB_ENDPOINT_XFER_ISOC:
  1857. dev_err(hsotg->dev, "no current ISOC support\n");
  1858. ret = -EINVAL;
  1859. goto out;
  1860. case USB_ENDPOINT_XFER_BULK:
  1861. epctrl |= S3C_DxEPCTL_EPType_Bulk;
  1862. break;
  1863. case USB_ENDPOINT_XFER_INT:
  1864. if (dir_in) {
  1865. /* Allocate our TxFNum by simply using the index
  1866. * of the endpoint for the moment. We could do
  1867. * something better if the host indicates how
  1868. * many FIFOs we are expecting to use. */
  1869. hs_ep->periodic = 1;
  1870. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1871. }
  1872. epctrl |= S3C_DxEPCTL_EPType_Intterupt;
  1873. break;
  1874. case USB_ENDPOINT_XFER_CONTROL:
  1875. epctrl |= S3C_DxEPCTL_EPType_Control;
  1876. break;
  1877. }
  1878. /* if the hardware has dedicated fifos, we must give each IN EP
  1879. * a unique tx-fifo even if it is non-periodic.
  1880. */
  1881. if (dir_in && hsotg->dedicated_fifos)
  1882. epctrl |= S3C_DxEPCTL_TxFNum(index);
  1883. /* for non control endpoints, set PID to D0 */
  1884. if (index)
  1885. epctrl |= S3C_DxEPCTL_SetD0PID;
  1886. dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
  1887. __func__, epctrl);
  1888. writel(epctrl, hsotg->regs + epctrl_reg);
  1889. dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
  1890. __func__, readl(hsotg->regs + epctrl_reg));
  1891. /* enable the endpoint interrupt */
  1892. s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
  1893. out:
  1894. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1895. return ret;
  1896. }
  1897. static int s3c_hsotg_ep_disable(struct usb_ep *ep)
  1898. {
  1899. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1900. struct s3c_hsotg *hsotg = hs_ep->parent;
  1901. int dir_in = hs_ep->dir_in;
  1902. int index = hs_ep->index;
  1903. unsigned long flags;
  1904. u32 epctrl_reg;
  1905. u32 ctrl;
  1906. dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
  1907. if (ep == &hsotg->eps[0].ep) {
  1908. dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
  1909. return -EINVAL;
  1910. }
  1911. epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
  1912. /* terminate all requests with shutdown */
  1913. kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
  1914. spin_lock_irqsave(&hs_ep->lock, flags);
  1915. ctrl = readl(hsotg->regs + epctrl_reg);
  1916. ctrl &= ~S3C_DxEPCTL_EPEna;
  1917. ctrl &= ~S3C_DxEPCTL_USBActEp;
  1918. ctrl |= S3C_DxEPCTL_SNAK;
  1919. dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
  1920. writel(ctrl, hsotg->regs + epctrl_reg);
  1921. /* disable endpoint interrupts */
  1922. s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
  1923. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1924. return 0;
  1925. }
  1926. /**
  1927. * on_list - check request is on the given endpoint
  1928. * @ep: The endpoint to check.
  1929. * @test: The request to test if it is on the endpoint.
  1930. */
  1931. static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
  1932. {
  1933. struct s3c_hsotg_req *req, *treq;
  1934. list_for_each_entry_safe(req, treq, &ep->queue, queue) {
  1935. if (req == test)
  1936. return true;
  1937. }
  1938. return false;
  1939. }
  1940. static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
  1941. {
  1942. struct s3c_hsotg_req *hs_req = our_req(req);
  1943. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1944. struct s3c_hsotg *hs = hs_ep->parent;
  1945. unsigned long flags;
  1946. dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
  1947. if (hs_req == hs_ep->req) {
  1948. dev_dbg(hs->dev, "%s: already in progress\n", __func__);
  1949. return -EINPROGRESS;
  1950. }
  1951. spin_lock_irqsave(&hs_ep->lock, flags);
  1952. if (!on_list(hs_ep, hs_req)) {
  1953. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1954. return -EINVAL;
  1955. }
  1956. s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
  1957. spin_unlock_irqrestore(&hs_ep->lock, flags);
  1958. return 0;
  1959. }
  1960. static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
  1961. {
  1962. struct s3c_hsotg_ep *hs_ep = our_ep(ep);
  1963. struct s3c_hsotg *hs = hs_ep->parent;
  1964. int index = hs_ep->index;
  1965. unsigned long irqflags;
  1966. u32 epreg;
  1967. u32 epctl;
  1968. dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
  1969. spin_lock_irqsave(&hs_ep->lock, irqflags);
  1970. /* write both IN and OUT control registers */
  1971. epreg = S3C_DIEPCTL(index);
  1972. epctl = readl(hs->regs + epreg);
  1973. if (value)
  1974. epctl |= S3C_DxEPCTL_Stall;
  1975. else
  1976. epctl &= ~S3C_DxEPCTL_Stall;
  1977. writel(epctl, hs->regs + epreg);
  1978. epreg = S3C_DOEPCTL(index);
  1979. epctl = readl(hs->regs + epreg);
  1980. if (value)
  1981. epctl |= S3C_DxEPCTL_Stall;
  1982. else
  1983. epctl &= ~S3C_DxEPCTL_Stall;
  1984. writel(epctl, hs->regs + epreg);
  1985. spin_unlock_irqrestore(&hs_ep->lock, irqflags);
  1986. return 0;
  1987. }
  1988. static struct usb_ep_ops s3c_hsotg_ep_ops = {
  1989. .enable = s3c_hsotg_ep_enable,
  1990. .disable = s3c_hsotg_ep_disable,
  1991. .alloc_request = s3c_hsotg_ep_alloc_request,
  1992. .free_request = s3c_hsotg_ep_free_request,
  1993. .queue = s3c_hsotg_ep_queue,
  1994. .dequeue = s3c_hsotg_ep_dequeue,
  1995. .set_halt = s3c_hsotg_ep_sethalt,
  1996. /* note, don't belive we have any call for the fifo routines */
  1997. };
  1998. /**
  1999. * s3c_hsotg_corereset - issue softreset to the core
  2000. * @hsotg: The device state
  2001. *
  2002. * Issue a soft reset to the core, and await the core finishing it.
  2003. */
  2004. static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
  2005. {
  2006. int timeout;
  2007. u32 grstctl;
  2008. dev_dbg(hsotg->dev, "resetting core\n");
  2009. /* issue soft reset */
  2010. writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
  2011. timeout = 1000;
  2012. do {
  2013. grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  2014. } while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
  2015. if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
  2016. dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
  2017. return -EINVAL;
  2018. }
  2019. timeout = 1000;
  2020. while (1) {
  2021. u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
  2022. if (timeout-- < 0) {
  2023. dev_info(hsotg->dev,
  2024. "%s: reset failed, GRSTCTL=%08x\n",
  2025. __func__, grstctl);
  2026. return -ETIMEDOUT;
  2027. }
  2028. if (grstctl & S3C_GRSTCTL_CSftRst)
  2029. continue;
  2030. if (!(grstctl & S3C_GRSTCTL_AHBIdle))
  2031. continue;
  2032. break; /* reset done */
  2033. }
  2034. dev_dbg(hsotg->dev, "reset successful\n");
  2035. return 0;
  2036. }
  2037. int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
  2038. int (*bind)(struct usb_gadget *))
  2039. {
  2040. struct s3c_hsotg *hsotg = our_hsotg;
  2041. int ret;
  2042. if (!hsotg) {
  2043. printk(KERN_ERR "%s: called with no device\n", __func__);
  2044. return -ENODEV;
  2045. }
  2046. if (!driver) {
  2047. dev_err(hsotg->dev, "%s: no driver\n", __func__);
  2048. return -EINVAL;
  2049. }
  2050. if (driver->speed != USB_SPEED_HIGH &&
  2051. driver->speed != USB_SPEED_FULL) {
  2052. dev_err(hsotg->dev, "%s: bad speed\n", __func__);
  2053. }
  2054. if (!bind || !driver->setup) {
  2055. dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
  2056. return -EINVAL;
  2057. }
  2058. WARN_ON(hsotg->driver);
  2059. driver->driver.bus = NULL;
  2060. hsotg->driver = driver;
  2061. hsotg->gadget.dev.driver = &driver->driver;
  2062. hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
  2063. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2064. ret = device_add(&hsotg->gadget.dev);
  2065. if (ret) {
  2066. dev_err(hsotg->dev, "failed to register gadget device\n");
  2067. goto err;
  2068. }
  2069. ret = bind(&hsotg->gadget);
  2070. if (ret) {
  2071. dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
  2072. hsotg->gadget.dev.driver = NULL;
  2073. hsotg->driver = NULL;
  2074. goto err;
  2075. }
  2076. /* we must now enable ep0 ready for host detection and then
  2077. * set configuration. */
  2078. s3c_hsotg_corereset(hsotg);
  2079. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2080. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
  2081. (0x5 << 10), hsotg->regs + S3C_GUSBCFG);
  2082. /* looks like soft-reset changes state of FIFOs */
  2083. s3c_hsotg_init_fifo(hsotg);
  2084. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2085. writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
  2086. writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
  2087. S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
  2088. S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
  2089. S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
  2090. S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
  2091. S3C_GINTSTS_ErlySusp,
  2092. hsotg->regs + S3C_GINTMSK);
  2093. if (using_dma(hsotg))
  2094. writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
  2095. S3C_GAHBCFG_HBstLen_Incr4,
  2096. hsotg->regs + S3C_GAHBCFG);
  2097. else
  2098. writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
  2099. /* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
  2100. * up being flooded with interrupts if the host is polling the
  2101. * endpoint to try and read data. */
  2102. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2103. S3C_DIEPMSK_INTknEPMisMsk |
  2104. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
  2105. ((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
  2106. hsotg->regs + S3C_DIEPMSK);
  2107. /* don't need XferCompl, we get that from RXFIFO in slave mode. In
  2108. * DMA mode we may need this. */
  2109. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2110. S3C_DOEPMSK_EPDisbldMsk |
  2111. (using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
  2112. S3C_DIEPMSK_TimeOUTMsk) : 0),
  2113. hsotg->regs + S3C_DOEPMSK);
  2114. writel(0, hsotg->regs + S3C_DAINTMSK);
  2115. dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2116. readl(hsotg->regs + S3C_DIEPCTL0),
  2117. readl(hsotg->regs + S3C_DOEPCTL0));
  2118. /* enable in and out endpoint interrupts */
  2119. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
  2120. /* Enable the RXFIFO when in slave mode, as this is how we collect
  2121. * the data. In DMA mode, we get events from the FIFO but also
  2122. * things we cannot process, so do not use it. */
  2123. if (!using_dma(hsotg))
  2124. s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
  2125. /* Enable interrupts for EP0 in and out */
  2126. s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
  2127. s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
  2128. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2129. udelay(10); /* see openiboot */
  2130. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
  2131. dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
  2132. /* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
  2133. writing to the EPCTL register.. */
  2134. /* set to read 1 8byte packet */
  2135. writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
  2136. S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
  2137. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2138. S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
  2139. S3C_DxEPCTL_USBActEp,
  2140. hsotg->regs + S3C_DOEPCTL0);
  2141. /* enable, but don't activate EP0in */
  2142. writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
  2143. S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
  2144. s3c_hsotg_enqueue_setup(hsotg);
  2145. dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
  2146. readl(hsotg->regs + S3C_DIEPCTL0),
  2147. readl(hsotg->regs + S3C_DOEPCTL0));
  2148. /* clear global NAKs */
  2149. writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
  2150. hsotg->regs + S3C_DCTL);
  2151. /* must be at-least 3ms to allow bus to see disconnect */
  2152. msleep(3);
  2153. /* remove the soft-disconnect and let's go */
  2154. __bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2155. /* report to the user, and return */
  2156. dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
  2157. return 0;
  2158. err:
  2159. hsotg->driver = NULL;
  2160. hsotg->gadget.dev.driver = NULL;
  2161. return ret;
  2162. }
  2163. EXPORT_SYMBOL(usb_gadget_probe_driver);
  2164. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  2165. {
  2166. struct s3c_hsotg *hsotg = our_hsotg;
  2167. int ep;
  2168. if (!hsotg)
  2169. return -ENODEV;
  2170. if (!driver || driver != hsotg->driver || !driver->unbind)
  2171. return -EINVAL;
  2172. /* all endpoints should be shutdown */
  2173. for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
  2174. s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
  2175. call_gadget(hsotg, disconnect);
  2176. driver->unbind(&hsotg->gadget);
  2177. hsotg->driver = NULL;
  2178. hsotg->gadget.speed = USB_SPEED_UNKNOWN;
  2179. device_del(&hsotg->gadget.dev);
  2180. dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
  2181. driver->driver.name);
  2182. return 0;
  2183. }
  2184. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  2185. static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
  2186. {
  2187. return s3c_hsotg_read_frameno(to_hsotg(gadget));
  2188. }
  2189. static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
  2190. .get_frame = s3c_hsotg_gadget_getframe,
  2191. };
  2192. /**
  2193. * s3c_hsotg_initep - initialise a single endpoint
  2194. * @hsotg: The device state.
  2195. * @hs_ep: The endpoint to be initialised.
  2196. * @epnum: The endpoint number
  2197. *
  2198. * Initialise the given endpoint (as part of the probe and device state
  2199. * creation) to give to the gadget driver. Setup the endpoint name, any
  2200. * direction information and other state that may be required.
  2201. */
  2202. static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
  2203. struct s3c_hsotg_ep *hs_ep,
  2204. int epnum)
  2205. {
  2206. u32 ptxfifo;
  2207. char *dir;
  2208. if (epnum == 0)
  2209. dir = "";
  2210. else if ((epnum % 2) == 0) {
  2211. dir = "out";
  2212. } else {
  2213. dir = "in";
  2214. hs_ep->dir_in = 1;
  2215. }
  2216. hs_ep->index = epnum;
  2217. snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
  2218. INIT_LIST_HEAD(&hs_ep->queue);
  2219. INIT_LIST_HEAD(&hs_ep->ep.ep_list);
  2220. spin_lock_init(&hs_ep->lock);
  2221. /* add to the list of endpoints known by the gadget driver */
  2222. if (epnum)
  2223. list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
  2224. hs_ep->parent = hsotg;
  2225. hs_ep->ep.name = hs_ep->name;
  2226. hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
  2227. hs_ep->ep.ops = &s3c_hsotg_ep_ops;
  2228. /* Read the FIFO size for the Periodic TX FIFO, even if we're
  2229. * an OUT endpoint, we may as well do this if in future the
  2230. * code is changed to make each endpoint's direction changeable.
  2231. */
  2232. ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
  2233. hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
  2234. /* if we're using dma, we need to set the next-endpoint pointer
  2235. * to be something valid.
  2236. */
  2237. if (using_dma(hsotg)) {
  2238. u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
  2239. writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
  2240. writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
  2241. }
  2242. }
  2243. /**
  2244. * s3c_hsotg_otgreset - reset the OtG phy block
  2245. * @hsotg: The host state.
  2246. *
  2247. * Power up the phy, set the basic configuration and start the PHY.
  2248. */
  2249. static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
  2250. {
  2251. struct clk *xusbxti;
  2252. u32 pwr, osc;
  2253. pwr = readl(S3C_PHYPWR);
  2254. pwr &= ~0x19;
  2255. writel(pwr, S3C_PHYPWR);
  2256. mdelay(1);
  2257. osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
  2258. xusbxti = clk_get(hsotg->dev, "xusbxti");
  2259. if (xusbxti && !IS_ERR(xusbxti)) {
  2260. switch (clk_get_rate(xusbxti)) {
  2261. case 12*MHZ:
  2262. osc |= S3C_PHYCLK_CLKSEL_12M;
  2263. break;
  2264. case 24*MHZ:
  2265. osc |= S3C_PHYCLK_CLKSEL_24M;
  2266. break;
  2267. default:
  2268. case 48*MHZ:
  2269. /* default reference clock */
  2270. break;
  2271. }
  2272. clk_put(xusbxti);
  2273. }
  2274. writel(osc | 0x10, S3C_PHYCLK);
  2275. /* issue a full set of resets to the otg and core */
  2276. writel(S3C_RSTCON_PHY, S3C_RSTCON);
  2277. udelay(20); /* at-least 10uS */
  2278. writel(0, S3C_RSTCON);
  2279. }
  2280. static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
  2281. {
  2282. u32 cfg4;
  2283. /* unmask subset of endpoint interrupts */
  2284. writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
  2285. S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
  2286. hsotg->regs + S3C_DIEPMSK);
  2287. writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
  2288. S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
  2289. hsotg->regs + S3C_DOEPMSK);
  2290. writel(0, hsotg->regs + S3C_DAINTMSK);
  2291. /* Be in disconnected state until gadget is registered */
  2292. __orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
  2293. if (0) {
  2294. /* post global nak until we're ready */
  2295. writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
  2296. hsotg->regs + S3C_DCTL);
  2297. }
  2298. /* setup fifos */
  2299. dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2300. readl(hsotg->regs + S3C_GRXFSIZ),
  2301. readl(hsotg->regs + S3C_GNPTXFSIZ));
  2302. s3c_hsotg_init_fifo(hsotg);
  2303. /* set the PLL on, remove the HNP/SRP and set the PHY */
  2304. writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
  2305. hsotg->regs + S3C_GUSBCFG);
  2306. writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
  2307. hsotg->regs + S3C_GAHBCFG);
  2308. /* check hardware configuration */
  2309. cfg4 = readl(hsotg->regs + 0x50);
  2310. hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
  2311. dev_info(hsotg->dev, "%s fifos\n",
  2312. hsotg->dedicated_fifos ? "dedicated" : "shared");
  2313. }
  2314. static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
  2315. {
  2316. struct device *dev = hsotg->dev;
  2317. void __iomem *regs = hsotg->regs;
  2318. u32 val;
  2319. int idx;
  2320. dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
  2321. readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
  2322. readl(regs + S3C_DIEPMSK));
  2323. dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
  2324. readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
  2325. dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
  2326. readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
  2327. /* show periodic fifo settings */
  2328. for (idx = 1; idx <= 15; idx++) {
  2329. val = readl(regs + S3C_DPTXFSIZn(idx));
  2330. dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
  2331. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2332. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2333. }
  2334. for (idx = 0; idx < 15; idx++) {
  2335. dev_info(dev,
  2336. "ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
  2337. readl(regs + S3C_DIEPCTL(idx)),
  2338. readl(regs + S3C_DIEPTSIZ(idx)),
  2339. readl(regs + S3C_DIEPDMA(idx)));
  2340. val = readl(regs + S3C_DOEPCTL(idx));
  2341. dev_info(dev,
  2342. "ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
  2343. idx, readl(regs + S3C_DOEPCTL(idx)),
  2344. readl(regs + S3C_DOEPTSIZ(idx)),
  2345. readl(regs + S3C_DOEPDMA(idx)));
  2346. }
  2347. dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
  2348. readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
  2349. }
  2350. /**
  2351. * state_show - debugfs: show overall driver and device state.
  2352. * @seq: The seq file to write to.
  2353. * @v: Unused parameter.
  2354. *
  2355. * This debugfs entry shows the overall state of the hardware and
  2356. * some general information about each of the endpoints available
  2357. * to the system.
  2358. */
  2359. static int state_show(struct seq_file *seq, void *v)
  2360. {
  2361. struct s3c_hsotg *hsotg = seq->private;
  2362. void __iomem *regs = hsotg->regs;
  2363. int idx;
  2364. seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
  2365. readl(regs + S3C_DCFG),
  2366. readl(regs + S3C_DCTL),
  2367. readl(regs + S3C_DSTS));
  2368. seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
  2369. readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
  2370. seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
  2371. readl(regs + S3C_GINTMSK),
  2372. readl(regs + S3C_GINTSTS));
  2373. seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
  2374. readl(regs + S3C_DAINTMSK),
  2375. readl(regs + S3C_DAINT));
  2376. seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
  2377. readl(regs + S3C_GNPTXSTS),
  2378. readl(regs + S3C_GRXSTSR));
  2379. seq_printf(seq, "\nEndpoint status:\n");
  2380. for (idx = 0; idx < 15; idx++) {
  2381. u32 in, out;
  2382. in = readl(regs + S3C_DIEPCTL(idx));
  2383. out = readl(regs + S3C_DOEPCTL(idx));
  2384. seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
  2385. idx, in, out);
  2386. in = readl(regs + S3C_DIEPTSIZ(idx));
  2387. out = readl(regs + S3C_DOEPTSIZ(idx));
  2388. seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
  2389. in, out);
  2390. seq_printf(seq, "\n");
  2391. }
  2392. return 0;
  2393. }
  2394. static int state_open(struct inode *inode, struct file *file)
  2395. {
  2396. return single_open(file, state_show, inode->i_private);
  2397. }
  2398. static const struct file_operations state_fops = {
  2399. .owner = THIS_MODULE,
  2400. .open = state_open,
  2401. .read = seq_read,
  2402. .llseek = seq_lseek,
  2403. .release = single_release,
  2404. };
  2405. /**
  2406. * fifo_show - debugfs: show the fifo information
  2407. * @seq: The seq_file to write data to.
  2408. * @v: Unused parameter.
  2409. *
  2410. * Show the FIFO information for the overall fifo and all the
  2411. * periodic transmission FIFOs.
  2412. */
  2413. static int fifo_show(struct seq_file *seq, void *v)
  2414. {
  2415. struct s3c_hsotg *hsotg = seq->private;
  2416. void __iomem *regs = hsotg->regs;
  2417. u32 val;
  2418. int idx;
  2419. seq_printf(seq, "Non-periodic FIFOs:\n");
  2420. seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
  2421. val = readl(regs + S3C_GNPTXFSIZ);
  2422. seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
  2423. val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
  2424. val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
  2425. seq_printf(seq, "\nPeriodic TXFIFOs:\n");
  2426. for (idx = 1; idx <= 15; idx++) {
  2427. val = readl(regs + S3C_DPTXFSIZn(idx));
  2428. seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
  2429. val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
  2430. val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
  2431. }
  2432. return 0;
  2433. }
  2434. static int fifo_open(struct inode *inode, struct file *file)
  2435. {
  2436. return single_open(file, fifo_show, inode->i_private);
  2437. }
  2438. static const struct file_operations fifo_fops = {
  2439. .owner = THIS_MODULE,
  2440. .open = fifo_open,
  2441. .read = seq_read,
  2442. .llseek = seq_lseek,
  2443. .release = single_release,
  2444. };
  2445. static const char *decode_direction(int is_in)
  2446. {
  2447. return is_in ? "in" : "out";
  2448. }
  2449. /**
  2450. * ep_show - debugfs: show the state of an endpoint.
  2451. * @seq: The seq_file to write data to.
  2452. * @v: Unused parameter.
  2453. *
  2454. * This debugfs entry shows the state of the given endpoint (one is
  2455. * registered for each available).
  2456. */
  2457. static int ep_show(struct seq_file *seq, void *v)
  2458. {
  2459. struct s3c_hsotg_ep *ep = seq->private;
  2460. struct s3c_hsotg *hsotg = ep->parent;
  2461. struct s3c_hsotg_req *req;
  2462. void __iomem *regs = hsotg->regs;
  2463. int index = ep->index;
  2464. int show_limit = 15;
  2465. unsigned long flags;
  2466. seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
  2467. ep->index, ep->ep.name, decode_direction(ep->dir_in));
  2468. /* first show the register state */
  2469. seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
  2470. readl(regs + S3C_DIEPCTL(index)),
  2471. readl(regs + S3C_DOEPCTL(index)));
  2472. seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
  2473. readl(regs + S3C_DIEPDMA(index)),
  2474. readl(regs + S3C_DOEPDMA(index)));
  2475. seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
  2476. readl(regs + S3C_DIEPINT(index)),
  2477. readl(regs + S3C_DOEPINT(index)));
  2478. seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
  2479. readl(regs + S3C_DIEPTSIZ(index)),
  2480. readl(regs + S3C_DOEPTSIZ(index)));
  2481. seq_printf(seq, "\n");
  2482. seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
  2483. seq_printf(seq, "total_data=%ld\n", ep->total_data);
  2484. seq_printf(seq, "request list (%p,%p):\n",
  2485. ep->queue.next, ep->queue.prev);
  2486. spin_lock_irqsave(&ep->lock, flags);
  2487. list_for_each_entry(req, &ep->queue, queue) {
  2488. if (--show_limit < 0) {
  2489. seq_printf(seq, "not showing more requests...\n");
  2490. break;
  2491. }
  2492. seq_printf(seq, "%c req %p: %d bytes @%p, ",
  2493. req == ep->req ? '*' : ' ',
  2494. req, req->req.length, req->req.buf);
  2495. seq_printf(seq, "%d done, res %d\n",
  2496. req->req.actual, req->req.status);
  2497. }
  2498. spin_unlock_irqrestore(&ep->lock, flags);
  2499. return 0;
  2500. }
  2501. static int ep_open(struct inode *inode, struct file *file)
  2502. {
  2503. return single_open(file, ep_show, inode->i_private);
  2504. }
  2505. static const struct file_operations ep_fops = {
  2506. .owner = THIS_MODULE,
  2507. .open = ep_open,
  2508. .read = seq_read,
  2509. .llseek = seq_lseek,
  2510. .release = single_release,
  2511. };
  2512. /**
  2513. * s3c_hsotg_create_debug - create debugfs directory and files
  2514. * @hsotg: The driver state
  2515. *
  2516. * Create the debugfs files to allow the user to get information
  2517. * about the state of the system. The directory name is created
  2518. * with the same name as the device itself, in case we end up
  2519. * with multiple blocks in future systems.
  2520. */
  2521. static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
  2522. {
  2523. struct dentry *root;
  2524. unsigned epidx;
  2525. root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
  2526. hsotg->debug_root = root;
  2527. if (IS_ERR(root)) {
  2528. dev_err(hsotg->dev, "cannot create debug root\n");
  2529. return;
  2530. }
  2531. /* create general state file */
  2532. hsotg->debug_file = debugfs_create_file("state", 0444, root,
  2533. hsotg, &state_fops);
  2534. if (IS_ERR(hsotg->debug_file))
  2535. dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
  2536. hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
  2537. hsotg, &fifo_fops);
  2538. if (IS_ERR(hsotg->debug_fifo))
  2539. dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
  2540. /* create one file for each endpoint */
  2541. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2542. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2543. ep->debugfs = debugfs_create_file(ep->name, 0444,
  2544. root, ep, &ep_fops);
  2545. if (IS_ERR(ep->debugfs))
  2546. dev_err(hsotg->dev, "failed to create %s debug file\n",
  2547. ep->name);
  2548. }
  2549. }
  2550. /**
  2551. * s3c_hsotg_delete_debug - cleanup debugfs entries
  2552. * @hsotg: The driver state
  2553. *
  2554. * Cleanup (remove) the debugfs files for use on module exit.
  2555. */
  2556. static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
  2557. {
  2558. unsigned epidx;
  2559. for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
  2560. struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
  2561. debugfs_remove(ep->debugfs);
  2562. }
  2563. debugfs_remove(hsotg->debug_file);
  2564. debugfs_remove(hsotg->debug_fifo);
  2565. debugfs_remove(hsotg->debug_root);
  2566. }
  2567. /**
  2568. * s3c_hsotg_gate - set the hardware gate for the block
  2569. * @pdev: The device we bound to
  2570. * @on: On or off.
  2571. *
  2572. * Set the hardware gate setting into the block. If we end up on
  2573. * something other than an S3C64XX, then we might need to change this
  2574. * to using a platform data callback, or some other mechanism.
  2575. */
  2576. static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
  2577. {
  2578. unsigned long flags;
  2579. u32 others;
  2580. local_irq_save(flags);
  2581. others = __raw_readl(S3C64XX_OTHERS);
  2582. if (on)
  2583. others |= S3C64XX_OTHERS_USBMASK;
  2584. else
  2585. others &= ~S3C64XX_OTHERS_USBMASK;
  2586. __raw_writel(others, S3C64XX_OTHERS);
  2587. local_irq_restore(flags);
  2588. }
  2589. static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
  2590. static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
  2591. {
  2592. struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
  2593. struct device *dev = &pdev->dev;
  2594. struct s3c_hsotg *hsotg;
  2595. struct resource *res;
  2596. int epnum;
  2597. int ret;
  2598. if (!plat)
  2599. plat = &s3c_hsotg_default_pdata;
  2600. hsotg = kzalloc(sizeof(struct s3c_hsotg) +
  2601. sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
  2602. GFP_KERNEL);
  2603. if (!hsotg) {
  2604. dev_err(dev, "cannot get memory\n");
  2605. return -ENOMEM;
  2606. }
  2607. hsotg->dev = dev;
  2608. hsotg->plat = plat;
  2609. hsotg->clk = clk_get(&pdev->dev, "otg");
  2610. if (IS_ERR(hsotg->clk)) {
  2611. dev_err(dev, "cannot get otg clock\n");
  2612. ret = -EINVAL;
  2613. goto err_mem;
  2614. }
  2615. platform_set_drvdata(pdev, hsotg);
  2616. res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  2617. if (!res) {
  2618. dev_err(dev, "cannot find register resource 0\n");
  2619. ret = -EINVAL;
  2620. goto err_clk;
  2621. }
  2622. hsotg->regs_res = request_mem_region(res->start, resource_size(res),
  2623. dev_name(dev));
  2624. if (!hsotg->regs_res) {
  2625. dev_err(dev, "cannot reserve registers\n");
  2626. ret = -ENOENT;
  2627. goto err_clk;
  2628. }
  2629. hsotg->regs = ioremap(res->start, resource_size(res));
  2630. if (!hsotg->regs) {
  2631. dev_err(dev, "cannot map registers\n");
  2632. ret = -ENXIO;
  2633. goto err_regs_res;
  2634. }
  2635. ret = platform_get_irq(pdev, 0);
  2636. if (ret < 0) {
  2637. dev_err(dev, "cannot find IRQ\n");
  2638. goto err_regs;
  2639. }
  2640. hsotg->irq = ret;
  2641. ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
  2642. if (ret < 0) {
  2643. dev_err(dev, "cannot claim IRQ\n");
  2644. goto err_regs;
  2645. }
  2646. dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
  2647. device_initialize(&hsotg->gadget.dev);
  2648. dev_set_name(&hsotg->gadget.dev, "gadget");
  2649. hsotg->gadget.is_dualspeed = 1;
  2650. hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
  2651. hsotg->gadget.name = dev_name(dev);
  2652. hsotg->gadget.dev.parent = dev;
  2653. hsotg->gadget.dev.dma_mask = dev->dma_mask;
  2654. /* setup endpoint information */
  2655. INIT_LIST_HEAD(&hsotg->gadget.ep_list);
  2656. hsotg->gadget.ep0 = &hsotg->eps[0].ep;
  2657. /* allocate EP0 request */
  2658. hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
  2659. GFP_KERNEL);
  2660. if (!hsotg->ctrl_req) {
  2661. dev_err(dev, "failed to allocate ctrl req\n");
  2662. goto err_regs;
  2663. }
  2664. /* reset the system */
  2665. clk_enable(hsotg->clk);
  2666. s3c_hsotg_gate(pdev, true);
  2667. s3c_hsotg_otgreset(hsotg);
  2668. s3c_hsotg_corereset(hsotg);
  2669. s3c_hsotg_init(hsotg);
  2670. /* initialise the endpoints now the core has been initialised */
  2671. for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
  2672. s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
  2673. s3c_hsotg_create_debug(hsotg);
  2674. s3c_hsotg_dump(hsotg);
  2675. our_hsotg = hsotg;
  2676. return 0;
  2677. err_regs:
  2678. iounmap(hsotg->regs);
  2679. err_regs_res:
  2680. release_resource(hsotg->regs_res);
  2681. kfree(hsotg->regs_res);
  2682. err_clk:
  2683. clk_put(hsotg->clk);
  2684. err_mem:
  2685. kfree(hsotg);
  2686. return ret;
  2687. }
  2688. static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
  2689. {
  2690. struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
  2691. s3c_hsotg_delete_debug(hsotg);
  2692. usb_gadget_unregister_driver(hsotg->driver);
  2693. free_irq(hsotg->irq, hsotg);
  2694. iounmap(hsotg->regs);
  2695. release_resource(hsotg->regs_res);
  2696. kfree(hsotg->regs_res);
  2697. s3c_hsotg_gate(pdev, false);
  2698. clk_disable(hsotg->clk);
  2699. clk_put(hsotg->clk);
  2700. kfree(hsotg);
  2701. return 0;
  2702. }
  2703. #if 1
  2704. #define s3c_hsotg_suspend NULL
  2705. #define s3c_hsotg_resume NULL
  2706. #endif
  2707. static struct platform_driver s3c_hsotg_driver = {
  2708. .driver = {
  2709. .name = "s3c-hsotg",
  2710. .owner = THIS_MODULE,
  2711. },
  2712. .probe = s3c_hsotg_probe,
  2713. .remove = __devexit_p(s3c_hsotg_remove),
  2714. .suspend = s3c_hsotg_suspend,
  2715. .resume = s3c_hsotg_resume,
  2716. };
  2717. static int __init s3c_hsotg_modinit(void)
  2718. {
  2719. return platform_driver_register(&s3c_hsotg_driver);
  2720. }
  2721. static void __exit s3c_hsotg_modexit(void)
  2722. {
  2723. platform_driver_unregister(&s3c_hsotg_driver);
  2724. }
  2725. module_init(s3c_hsotg_modinit);
  2726. module_exit(s3c_hsotg_modexit);
  2727. MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
  2728. MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
  2729. MODULE_LICENSE("GPL");
  2730. MODULE_ALIAS("platform:s3c-hsotg");