pch_udc.c 81 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947
  1. /*
  2. * Copyright (C) 2010 OKI SEMICONDUCTOR CO., LTD.
  3. *
  4. * This program is free software; you can redistribute it and/or modify
  5. * it under the terms of the GNU General Public License as published by
  6. * the Free Software Foundation; version 2 of the License.
  7. *
  8. * This program is distributed in the hope that it will be useful,
  9. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. * GNU General Public License for more details.
  12. *
  13. * You should have received a copy of the GNU General Public License
  14. * along with this program; if not, write to the Free Software
  15. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA.
  16. */
  17. #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  18. #include <linux/kernel.h>
  19. #include <linux/module.h>
  20. #include <linux/pci.h>
  21. #include <linux/delay.h>
  22. #include <linux/errno.h>
  23. #include <linux/list.h>
  24. #include <linux/interrupt.h>
  25. #include <linux/usb/ch9.h>
  26. #include <linux/usb/gadget.h>
  27. /* Address offset of Registers */
  28. #define UDC_EP_REG_SHIFT 0x20 /* Offset to next EP */
  29. #define UDC_EPCTL_ADDR 0x00 /* Endpoint control */
  30. #define UDC_EPSTS_ADDR 0x04 /* Endpoint status */
  31. #define UDC_BUFIN_FRAMENUM_ADDR 0x08 /* buffer size in / frame number out */
  32. #define UDC_BUFOUT_MAXPKT_ADDR 0x0C /* buffer size out / maxpkt in */
  33. #define UDC_SUBPTR_ADDR 0x10 /* setup buffer pointer */
  34. #define UDC_DESPTR_ADDR 0x14 /* Data descriptor pointer */
  35. #define UDC_CONFIRM_ADDR 0x18 /* Write/Read confirmation */
  36. #define UDC_DEVCFG_ADDR 0x400 /* Device configuration */
  37. #define UDC_DEVCTL_ADDR 0x404 /* Device control */
  38. #define UDC_DEVSTS_ADDR 0x408 /* Device status */
  39. #define UDC_DEVIRQSTS_ADDR 0x40C /* Device irq status */
  40. #define UDC_DEVIRQMSK_ADDR 0x410 /* Device irq mask */
  41. #define UDC_EPIRQSTS_ADDR 0x414 /* Endpoint irq status */
  42. #define UDC_EPIRQMSK_ADDR 0x418 /* Endpoint irq mask */
  43. #define UDC_DEVLPM_ADDR 0x41C /* LPM control / status */
  44. #define UDC_CSR_BUSY_ADDR 0x4f0 /* UDC_CSR_BUSY Status register */
  45. #define UDC_SRST_ADDR 0x4fc /* SOFT RESET register */
  46. #define UDC_CSR_ADDR 0x500 /* USB_DEVICE endpoint register */
  47. /* Endpoint control register */
  48. /* Bit position */
  49. #define UDC_EPCTL_MRXFLUSH (1 << 12)
  50. #define UDC_EPCTL_RRDY (1 << 9)
  51. #define UDC_EPCTL_CNAK (1 << 8)
  52. #define UDC_EPCTL_SNAK (1 << 7)
  53. #define UDC_EPCTL_NAK (1 << 6)
  54. #define UDC_EPCTL_P (1 << 3)
  55. #define UDC_EPCTL_F (1 << 1)
  56. #define UDC_EPCTL_S (1 << 0)
  57. #define UDC_EPCTL_ET_SHIFT 4
  58. /* Mask patern */
  59. #define UDC_EPCTL_ET_MASK 0x00000030
  60. /* Value for ET field */
  61. #define UDC_EPCTL_ET_CONTROL 0
  62. #define UDC_EPCTL_ET_ISO 1
  63. #define UDC_EPCTL_ET_BULK 2
  64. #define UDC_EPCTL_ET_INTERRUPT 3
  65. /* Endpoint status register */
  66. /* Bit position */
  67. #define UDC_EPSTS_XFERDONE (1 << 27)
  68. #define UDC_EPSTS_RSS (1 << 26)
  69. #define UDC_EPSTS_RCS (1 << 25)
  70. #define UDC_EPSTS_TXEMPTY (1 << 24)
  71. #define UDC_EPSTS_TDC (1 << 10)
  72. #define UDC_EPSTS_HE (1 << 9)
  73. #define UDC_EPSTS_MRXFIFO_EMP (1 << 8)
  74. #define UDC_EPSTS_BNA (1 << 7)
  75. #define UDC_EPSTS_IN (1 << 6)
  76. #define UDC_EPSTS_OUT_SHIFT 4
  77. /* Mask patern */
  78. #define UDC_EPSTS_OUT_MASK 0x00000030
  79. #define UDC_EPSTS_ALL_CLR_MASK 0x1F0006F0
  80. /* Value for OUT field */
  81. #define UDC_EPSTS_OUT_SETUP 2
  82. #define UDC_EPSTS_OUT_DATA 1
  83. /* Device configuration register */
  84. /* Bit position */
  85. #define UDC_DEVCFG_CSR_PRG (1 << 17)
  86. #define UDC_DEVCFG_SP (1 << 3)
  87. /* SPD Valee */
  88. #define UDC_DEVCFG_SPD_HS 0x0
  89. #define UDC_DEVCFG_SPD_FS 0x1
  90. #define UDC_DEVCFG_SPD_LS 0x2
  91. /* Device control register */
  92. /* Bit position */
  93. #define UDC_DEVCTL_THLEN_SHIFT 24
  94. #define UDC_DEVCTL_BRLEN_SHIFT 16
  95. #define UDC_DEVCTL_CSR_DONE (1 << 13)
  96. #define UDC_DEVCTL_SD (1 << 10)
  97. #define UDC_DEVCTL_MODE (1 << 9)
  98. #define UDC_DEVCTL_BREN (1 << 8)
  99. #define UDC_DEVCTL_THE (1 << 7)
  100. #define UDC_DEVCTL_DU (1 << 4)
  101. #define UDC_DEVCTL_TDE (1 << 3)
  102. #define UDC_DEVCTL_RDE (1 << 2)
  103. #define UDC_DEVCTL_RES (1 << 0)
  104. /* Device status register */
  105. /* Bit position */
  106. #define UDC_DEVSTS_TS_SHIFT 18
  107. #define UDC_DEVSTS_ENUM_SPEED_SHIFT 13
  108. #define UDC_DEVSTS_ALT_SHIFT 8
  109. #define UDC_DEVSTS_INTF_SHIFT 4
  110. #define UDC_DEVSTS_CFG_SHIFT 0
  111. /* Mask patern */
  112. #define UDC_DEVSTS_TS_MASK 0xfffc0000
  113. #define UDC_DEVSTS_ENUM_SPEED_MASK 0x00006000
  114. #define UDC_DEVSTS_ALT_MASK 0x00000f00
  115. #define UDC_DEVSTS_INTF_MASK 0x000000f0
  116. #define UDC_DEVSTS_CFG_MASK 0x0000000f
  117. /* value for maximum speed for SPEED field */
  118. #define UDC_DEVSTS_ENUM_SPEED_FULL 1
  119. #define UDC_DEVSTS_ENUM_SPEED_HIGH 0
  120. #define UDC_DEVSTS_ENUM_SPEED_LOW 2
  121. #define UDC_DEVSTS_ENUM_SPEED_FULLX 3
  122. /* Device irq register */
  123. /* Bit position */
  124. #define UDC_DEVINT_RWKP (1 << 7)
  125. #define UDC_DEVINT_ENUM (1 << 6)
  126. #define UDC_DEVINT_SOF (1 << 5)
  127. #define UDC_DEVINT_US (1 << 4)
  128. #define UDC_DEVINT_UR (1 << 3)
  129. #define UDC_DEVINT_ES (1 << 2)
  130. #define UDC_DEVINT_SI (1 << 1)
  131. #define UDC_DEVINT_SC (1 << 0)
  132. /* Mask patern */
  133. #define UDC_DEVINT_MSK 0x7f
  134. /* Endpoint irq register */
  135. /* Bit position */
  136. #define UDC_EPINT_IN_SHIFT 0
  137. #define UDC_EPINT_OUT_SHIFT 16
  138. #define UDC_EPINT_IN_EP0 (1 << 0)
  139. #define UDC_EPINT_OUT_EP0 (1 << 16)
  140. /* Mask patern */
  141. #define UDC_EPINT_MSK_DISABLE_ALL 0xffffffff
  142. /* UDC_CSR_BUSY Status register */
  143. /* Bit position */
  144. #define UDC_CSR_BUSY (1 << 0)
  145. /* SOFT RESET register */
  146. /* Bit position */
  147. #define UDC_PSRST (1 << 1)
  148. #define UDC_SRST (1 << 0)
  149. /* USB_DEVICE endpoint register */
  150. /* Bit position */
  151. #define UDC_CSR_NE_NUM_SHIFT 0
  152. #define UDC_CSR_NE_DIR_SHIFT 4
  153. #define UDC_CSR_NE_TYPE_SHIFT 5
  154. #define UDC_CSR_NE_CFG_SHIFT 7
  155. #define UDC_CSR_NE_INTF_SHIFT 11
  156. #define UDC_CSR_NE_ALT_SHIFT 15
  157. #define UDC_CSR_NE_MAX_PKT_SHIFT 19
  158. /* Mask patern */
  159. #define UDC_CSR_NE_NUM_MASK 0x0000000f
  160. #define UDC_CSR_NE_DIR_MASK 0x00000010
  161. #define UDC_CSR_NE_TYPE_MASK 0x00000060
  162. #define UDC_CSR_NE_CFG_MASK 0x00000780
  163. #define UDC_CSR_NE_INTF_MASK 0x00007800
  164. #define UDC_CSR_NE_ALT_MASK 0x00078000
  165. #define UDC_CSR_NE_MAX_PKT_MASK 0x3ff80000
  166. #define PCH_UDC_CSR(ep) (UDC_CSR_ADDR + ep*4)
  167. #define PCH_UDC_EPINT(in, num)\
  168. (1 << (num + (in ? UDC_EPINT_IN_SHIFT : UDC_EPINT_OUT_SHIFT)))
  169. /* Index of endpoint */
  170. #define UDC_EP0IN_IDX 0
  171. #define UDC_EP0OUT_IDX 1
  172. #define UDC_EPIN_IDX(ep) (ep * 2)
  173. #define UDC_EPOUT_IDX(ep) (ep * 2 + 1)
  174. #define PCH_UDC_EP0 0
  175. #define PCH_UDC_EP1 1
  176. #define PCH_UDC_EP2 2
  177. #define PCH_UDC_EP3 3
  178. /* Number of endpoint */
  179. #define PCH_UDC_EP_NUM 32 /* Total number of EPs (16 IN,16 OUT) */
  180. #define PCH_UDC_USED_EP_NUM 4 /* EP number of EP's really used */
  181. /* Length Value */
  182. #define PCH_UDC_BRLEN 0x0F /* Burst length */
  183. #define PCH_UDC_THLEN 0x1F /* Threshold length */
  184. /* Value of EP Buffer Size */
  185. #define UDC_EP0IN_BUFF_SIZE 64
  186. #define UDC_EPIN_BUFF_SIZE 512
  187. #define UDC_EP0OUT_BUFF_SIZE 64
  188. #define UDC_EPOUT_BUFF_SIZE 512
  189. /* Value of EP maximum packet size */
  190. #define UDC_EP0IN_MAX_PKT_SIZE 64
  191. #define UDC_EP0OUT_MAX_PKT_SIZE 64
  192. #define UDC_BULK_MAX_PKT_SIZE 512
  193. /* DMA */
  194. #define DMA_DIR_RX 1 /* DMA for data receive */
  195. #define DMA_DIR_TX 2 /* DMA for data transmit */
  196. #define DMA_ADDR_INVALID (~(dma_addr_t)0)
  197. #define UDC_DMA_MAXPACKET 65536 /* maximum packet size for DMA */
  198. /**
  199. * struct pch_udc_data_dma_desc - Structure to hold DMA descriptor information
  200. * for data
  201. * @status: Status quadlet
  202. * @reserved: Reserved
  203. * @dataptr: Buffer descriptor
  204. * @next: Next descriptor
  205. */
  206. struct pch_udc_data_dma_desc {
  207. u32 status;
  208. u32 reserved;
  209. u32 dataptr;
  210. u32 next;
  211. };
  212. /**
  213. * struct pch_udc_stp_dma_desc - Structure to hold DMA descriptor information
  214. * for control data
  215. * @status: Status
  216. * @reserved: Reserved
  217. * @data12: First setup word
  218. * @data34: Second setup word
  219. */
  220. struct pch_udc_stp_dma_desc {
  221. u32 status;
  222. u32 reserved;
  223. struct usb_ctrlrequest request;
  224. } __attribute((packed));
  225. /* DMA status definitions */
  226. /* Buffer status */
  227. #define PCH_UDC_BUFF_STS 0xC0000000
  228. #define PCH_UDC_BS_HST_RDY 0x00000000
  229. #define PCH_UDC_BS_DMA_BSY 0x40000000
  230. #define PCH_UDC_BS_DMA_DONE 0x80000000
  231. #define PCH_UDC_BS_HST_BSY 0xC0000000
  232. /* Rx/Tx Status */
  233. #define PCH_UDC_RXTX_STS 0x30000000
  234. #define PCH_UDC_RTS_SUCC 0x00000000
  235. #define PCH_UDC_RTS_DESERR 0x10000000
  236. #define PCH_UDC_RTS_BUFERR 0x30000000
  237. /* Last Descriptor Indication */
  238. #define PCH_UDC_DMA_LAST 0x08000000
  239. /* Number of Rx/Tx Bytes Mask */
  240. #define PCH_UDC_RXTX_BYTES 0x0000ffff
  241. /**
  242. * struct pch_udc_cfg_data - Structure to hold current configuration
  243. * and interface information
  244. * @cur_cfg: current configuration in use
  245. * @cur_intf: current interface in use
  246. * @cur_alt: current alt interface in use
  247. */
  248. struct pch_udc_cfg_data {
  249. u16 cur_cfg;
  250. u16 cur_intf;
  251. u16 cur_alt;
  252. };
  253. /**
  254. * struct pch_udc_ep - Structure holding a PCH USB device Endpoint information
  255. * @ep: embedded ep request
  256. * @td_stp_phys: for setup request
  257. * @td_data_phys: for data request
  258. * @td_stp: for setup request
  259. * @td_data: for data request
  260. * @dev: reference to device struct
  261. * @offset_addr: offset address of ep register
  262. * @desc: for this ep
  263. * @queue: queue for requests
  264. * @num: endpoint number
  265. * @in: endpoint is IN
  266. * @halted: endpoint halted?
  267. * @epsts: Endpoint status
  268. */
  269. struct pch_udc_ep {
  270. struct usb_ep ep;
  271. dma_addr_t td_stp_phys;
  272. dma_addr_t td_data_phys;
  273. struct pch_udc_stp_dma_desc *td_stp;
  274. struct pch_udc_data_dma_desc *td_data;
  275. struct pch_udc_dev *dev;
  276. unsigned long offset_addr;
  277. const struct usb_endpoint_descriptor *desc;
  278. struct list_head queue;
  279. unsigned num:5,
  280. in:1,
  281. halted:1;
  282. unsigned long epsts;
  283. };
  284. /**
  285. * struct pch_udc_dev - Structure holding complete information
  286. * of the PCH USB device
  287. * @gadget: gadget driver data
  288. * @driver: reference to gadget driver bound
  289. * @pdev: reference to the PCI device
  290. * @ep: array of endpoints
  291. * @lock: protects all state
  292. * @active: enabled the PCI device
  293. * @stall: stall requested
  294. * @prot_stall: protcol stall requested
  295. * @irq_registered: irq registered with system
  296. * @mem_region: device memory mapped
  297. * @registered: driver regsitered with system
  298. * @suspended: driver in suspended state
  299. * @connected: gadget driver associated
  300. * @set_cfg_not_acked: pending acknowledgement 4 setup
  301. * @waiting_zlp_ack: pending acknowledgement 4 ZLP
  302. * @data_requests: DMA pool for data requests
  303. * @stp_requests: DMA pool for setup requests
  304. * @dma_addr: DMA pool for received
  305. * @ep0out_buf: Buffer for DMA
  306. * @setup_data: Received setup data
  307. * @phys_addr: of device memory
  308. * @base_addr: for mapped device memory
  309. * @irq: IRQ line for the device
  310. * @cfg_data: current cfg, intf, and alt in use
  311. */
  312. struct pch_udc_dev {
  313. struct usb_gadget gadget;
  314. struct usb_gadget_driver *driver;
  315. struct pci_dev *pdev;
  316. struct pch_udc_ep ep[PCH_UDC_EP_NUM];
  317. spinlock_t lock; /* protects all state */
  318. unsigned active:1,
  319. stall:1,
  320. prot_stall:1,
  321. irq_registered:1,
  322. mem_region:1,
  323. registered:1,
  324. suspended:1,
  325. connected:1,
  326. set_cfg_not_acked:1,
  327. waiting_zlp_ack:1;
  328. struct pci_pool *data_requests;
  329. struct pci_pool *stp_requests;
  330. dma_addr_t dma_addr;
  331. unsigned long ep0out_buf[64];
  332. struct usb_ctrlrequest setup_data;
  333. unsigned long phys_addr;
  334. void __iomem *base_addr;
  335. unsigned irq;
  336. struct pch_udc_cfg_data cfg_data;
  337. };
  338. #define PCH_UDC_PCI_BAR 1
  339. #define PCI_DEVICE_ID_INTEL_EG20T_UDC 0x8808
  340. static const char ep0_string[] = "ep0in";
  341. static DEFINE_SPINLOCK(udc_stall_spinlock); /* stall spin lock */
  342. struct pch_udc_dev *pch_udc; /* pointer to device object */
  343. static int speed_fs;
  344. module_param_named(speed_fs, speed_fs, bool, S_IRUGO);
  345. MODULE_PARM_DESC(speed_fs, "true for Full speed operation");
  346. /**
  347. * struct pch_udc_request - Structure holding a PCH USB device request packet
  348. * @req: embedded ep request
  349. * @td_data_phys: phys. address
  350. * @td_data: first dma desc. of chain
  351. * @td_data_last: last dma desc. of chain
  352. * @queue: associated queue
  353. * @dma_going: DMA in progress for request
  354. * @dma_mapped: DMA memory mapped for request
  355. * @dma_done: DMA completed for request
  356. * @chain_len: chain length
  357. */
  358. struct pch_udc_request {
  359. struct usb_request req;
  360. dma_addr_t td_data_phys;
  361. struct pch_udc_data_dma_desc *td_data;
  362. struct pch_udc_data_dma_desc *td_data_last;
  363. struct list_head queue;
  364. unsigned dma_going:1,
  365. dma_mapped:1,
  366. dma_done:1;
  367. unsigned chain_len;
  368. };
  369. static inline u32 pch_udc_readl(struct pch_udc_dev *dev, unsigned long reg)
  370. {
  371. return ioread32(dev->base_addr + reg);
  372. }
  373. static inline void pch_udc_writel(struct pch_udc_dev *dev,
  374. unsigned long val, unsigned long reg)
  375. {
  376. iowrite32(val, dev->base_addr + reg);
  377. }
  378. static inline void pch_udc_bit_set(struct pch_udc_dev *dev,
  379. unsigned long reg,
  380. unsigned long bitmask)
  381. {
  382. pch_udc_writel(dev, pch_udc_readl(dev, reg) | bitmask, reg);
  383. }
  384. static inline void pch_udc_bit_clr(struct pch_udc_dev *dev,
  385. unsigned long reg,
  386. unsigned long bitmask)
  387. {
  388. pch_udc_writel(dev, pch_udc_readl(dev, reg) & ~(bitmask), reg);
  389. }
  390. static inline u32 pch_udc_ep_readl(struct pch_udc_ep *ep, unsigned long reg)
  391. {
  392. return ioread32(ep->dev->base_addr + ep->offset_addr + reg);
  393. }
  394. static inline void pch_udc_ep_writel(struct pch_udc_ep *ep,
  395. unsigned long val, unsigned long reg)
  396. {
  397. iowrite32(val, ep->dev->base_addr + ep->offset_addr + reg);
  398. }
  399. static inline void pch_udc_ep_bit_set(struct pch_udc_ep *ep,
  400. unsigned long reg,
  401. unsigned long bitmask)
  402. {
  403. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) | bitmask, reg);
  404. }
  405. static inline void pch_udc_ep_bit_clr(struct pch_udc_ep *ep,
  406. unsigned long reg,
  407. unsigned long bitmask)
  408. {
  409. pch_udc_ep_writel(ep, pch_udc_ep_readl(ep, reg) & ~(bitmask), reg);
  410. }
  411. /**
  412. * pch_udc_csr_busy() - Wait till idle.
  413. * @dev: Reference to pch_udc_dev structure
  414. */
  415. static void pch_udc_csr_busy(struct pch_udc_dev *dev)
  416. {
  417. unsigned int count = 200;
  418. /* Wait till idle */
  419. while ((pch_udc_readl(dev, UDC_CSR_BUSY_ADDR) & UDC_CSR_BUSY)
  420. && --count)
  421. cpu_relax();
  422. if (!count)
  423. dev_err(&dev->pdev->dev, "%s: wait error\n", __func__);
  424. }
  425. /**
  426. * pch_udc_write_csr() - Write the command and status registers.
  427. * @dev: Reference to pch_udc_dev structure
  428. * @val: value to be written to CSR register
  429. * @addr: address of CSR register
  430. */
  431. static void pch_udc_write_csr(struct pch_udc_dev *dev, unsigned long val,
  432. unsigned int ep)
  433. {
  434. unsigned long reg = PCH_UDC_CSR(ep);
  435. pch_udc_csr_busy(dev); /* Wait till idle */
  436. pch_udc_writel(dev, val, reg);
  437. pch_udc_csr_busy(dev); /* Wait till idle */
  438. }
  439. /**
  440. * pch_udc_read_csr() - Read the command and status registers.
  441. * @dev: Reference to pch_udc_dev structure
  442. * @addr: address of CSR register
  443. *
  444. * Return codes: content of CSR register
  445. */
  446. static u32 pch_udc_read_csr(struct pch_udc_dev *dev, unsigned int ep)
  447. {
  448. unsigned long reg = PCH_UDC_CSR(ep);
  449. pch_udc_csr_busy(dev); /* Wait till idle */
  450. pch_udc_readl(dev, reg); /* Dummy read */
  451. pch_udc_csr_busy(dev); /* Wait till idle */
  452. return pch_udc_readl(dev, reg);
  453. }
  454. /**
  455. * pch_udc_rmt_wakeup() - Initiate for remote wakeup
  456. * @dev: Reference to pch_udc_dev structure
  457. */
  458. static inline void pch_udc_rmt_wakeup(struct pch_udc_dev *dev)
  459. {
  460. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  461. mdelay(1);
  462. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  463. }
  464. /**
  465. * pch_udc_get_frame() - Get the current frame from device status register
  466. * @dev: Reference to pch_udc_dev structure
  467. * Retern current frame
  468. */
  469. static inline int pch_udc_get_frame(struct pch_udc_dev *dev)
  470. {
  471. u32 frame = pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  472. return (frame & UDC_DEVSTS_TS_MASK) >> UDC_DEVSTS_TS_SHIFT;
  473. }
  474. /**
  475. * pch_udc_clear_selfpowered() - Clear the self power control
  476. * @dev: Reference to pch_udc_regs structure
  477. */
  478. static inline void pch_udc_clear_selfpowered(struct pch_udc_dev *dev)
  479. {
  480. pch_udc_bit_clr(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  481. }
  482. /**
  483. * pch_udc_set_selfpowered() - Set the self power control
  484. * @dev: Reference to pch_udc_regs structure
  485. */
  486. static inline void pch_udc_set_selfpowered(struct pch_udc_dev *dev)
  487. {
  488. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_SP);
  489. }
  490. /**
  491. * pch_udc_set_disconnect() - Set the disconnect status.
  492. * @dev: Reference to pch_udc_regs structure
  493. */
  494. static inline void pch_udc_set_disconnect(struct pch_udc_dev *dev)
  495. {
  496. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  497. }
  498. /**
  499. * pch_udc_clear_disconnect() - Clear the disconnect status.
  500. * @dev: Reference to pch_udc_regs structure
  501. */
  502. static void pch_udc_clear_disconnect(struct pch_udc_dev *dev)
  503. {
  504. /* Clear the disconnect */
  505. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  506. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_SD);
  507. mdelay(1);
  508. /* Resume USB signalling */
  509. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RES);
  510. }
  511. /**
  512. * pch_udc_vbus_session() - set or clearr the disconnect status.
  513. * @dev: Reference to pch_udc_regs structure
  514. * @is_active: Parameter specifying the action
  515. * 0: indicating VBUS power is ending
  516. * !0: indicating VBUS power is starting
  517. */
  518. static inline void pch_udc_vbus_session(struct pch_udc_dev *dev,
  519. int is_active)
  520. {
  521. if (is_active)
  522. pch_udc_clear_disconnect(dev);
  523. else
  524. pch_udc_set_disconnect(dev);
  525. }
  526. /**
  527. * pch_udc_ep_set_stall() - Set the stall of endpoint
  528. * @ep: Reference to structure of type pch_udc_ep_regs
  529. */
  530. static void pch_udc_ep_set_stall(struct pch_udc_ep *ep)
  531. {
  532. if (ep->in) {
  533. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  534. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  535. } else {
  536. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  537. }
  538. }
  539. /**
  540. * pch_udc_ep_clear_stall() - Clear the stall of endpoint
  541. * @ep: Reference to structure of type pch_udc_ep_regs
  542. */
  543. static inline void pch_udc_ep_clear_stall(struct pch_udc_ep *ep)
  544. {
  545. /* Clear the stall */
  546. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_S);
  547. /* Clear NAK by writing CNAK */
  548. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  549. }
  550. /**
  551. * pch_udc_ep_set_trfr_type() - Set the transfer type of endpoint
  552. * @ep: Reference to structure of type pch_udc_ep_regs
  553. * @type: Type of endpoint
  554. */
  555. static inline void pch_udc_ep_set_trfr_type(struct pch_udc_ep *ep,
  556. u8 type)
  557. {
  558. pch_udc_ep_writel(ep, ((type << UDC_EPCTL_ET_SHIFT) &
  559. UDC_EPCTL_ET_MASK), UDC_EPCTL_ADDR);
  560. }
  561. /**
  562. * pch_udc_ep_set_bufsz() - Set the maximum packet size for the endpoint
  563. * @ep: Reference to structure of type pch_udc_ep_regs
  564. * @buf_size: The buffer size
  565. */
  566. static void pch_udc_ep_set_bufsz(struct pch_udc_ep *ep,
  567. u32 buf_size, u32 ep_in)
  568. {
  569. u32 data;
  570. if (ep_in) {
  571. data = pch_udc_ep_readl(ep, UDC_BUFIN_FRAMENUM_ADDR);
  572. data = (data & 0xffff0000) | (buf_size & 0xffff);
  573. pch_udc_ep_writel(ep, data, UDC_BUFIN_FRAMENUM_ADDR);
  574. } else {
  575. data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  576. data = (buf_size << 16) | (data & 0xffff);
  577. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  578. }
  579. }
  580. /**
  581. * pch_udc_ep_set_maxpkt() - Set the Max packet size for the endpoint
  582. * @ep: Reference to structure of type pch_udc_ep_regs
  583. * @pkt_size: The packet size
  584. */
  585. static void pch_udc_ep_set_maxpkt(struct pch_udc_ep *ep, u32 pkt_size)
  586. {
  587. u32 data = pch_udc_ep_readl(ep, UDC_BUFOUT_MAXPKT_ADDR);
  588. data = (data & 0xffff0000) | (pkt_size & 0xffff);
  589. pch_udc_ep_writel(ep, data, UDC_BUFOUT_MAXPKT_ADDR);
  590. }
  591. /**
  592. * pch_udc_ep_set_subptr() - Set the Setup buffer pointer for the endpoint
  593. * @ep: Reference to structure of type pch_udc_ep_regs
  594. * @addr: Address of the register
  595. */
  596. static inline void pch_udc_ep_set_subptr(struct pch_udc_ep *ep, u32 addr)
  597. {
  598. pch_udc_ep_writel(ep, addr, UDC_SUBPTR_ADDR);
  599. }
  600. /**
  601. * pch_udc_ep_set_ddptr() - Set the Data descriptor pointer for the endpoint
  602. * @ep: Reference to structure of type pch_udc_ep_regs
  603. * @addr: Address of the register
  604. */
  605. static inline void pch_udc_ep_set_ddptr(struct pch_udc_ep *ep, u32 addr)
  606. {
  607. pch_udc_ep_writel(ep, addr, UDC_DESPTR_ADDR);
  608. }
  609. /**
  610. * pch_udc_ep_set_pd() - Set the poll demand bit for the endpoint
  611. * @ep: Reference to structure of type pch_udc_ep_regs
  612. */
  613. static inline void pch_udc_ep_set_pd(struct pch_udc_ep *ep)
  614. {
  615. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_P);
  616. }
  617. /**
  618. * pch_udc_ep_set_rrdy() - Set the receive ready bit for the endpoint
  619. * @ep: Reference to structure of type pch_udc_ep_regs
  620. */
  621. static inline void pch_udc_ep_set_rrdy(struct pch_udc_ep *ep)
  622. {
  623. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  624. }
  625. /**
  626. * pch_udc_ep_clear_rrdy() - Clear the receive ready bit for the endpoint
  627. * @ep: Reference to structure of type pch_udc_ep_regs
  628. */
  629. static inline void pch_udc_ep_clear_rrdy(struct pch_udc_ep *ep)
  630. {
  631. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_RRDY);
  632. }
  633. /**
  634. * pch_udc_set_dma() - Set the 'TDE' or RDE bit of device control
  635. * register depending on the direction specified
  636. * @dev: Reference to structure of type pch_udc_regs
  637. * @dir: whether Tx or Rx
  638. * DMA_DIR_RX: Receive
  639. * DMA_DIR_TX: Transmit
  640. */
  641. static inline void pch_udc_set_dma(struct pch_udc_dev *dev, int dir)
  642. {
  643. if (dir == DMA_DIR_RX)
  644. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  645. else if (dir == DMA_DIR_TX)
  646. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  647. }
  648. /**
  649. * pch_udc_clear_dma() - Clear the 'TDE' or RDE bit of device control
  650. * register depending on the direction specified
  651. * @dev: Reference to structure of type pch_udc_regs
  652. * @dir: Whether Tx or Rx
  653. * DMA_DIR_RX: Receive
  654. * DMA_DIR_TX: Transmit
  655. */
  656. static inline void pch_udc_clear_dma(struct pch_udc_dev *dev, int dir)
  657. {
  658. if (dir == DMA_DIR_RX)
  659. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_RDE);
  660. else if (dir == DMA_DIR_TX)
  661. pch_udc_bit_clr(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_TDE);
  662. }
  663. /**
  664. * pch_udc_set_csr_done() - Set the device control register
  665. * CSR done field (bit 13)
  666. * @dev: reference to structure of type pch_udc_regs
  667. */
  668. static inline void pch_udc_set_csr_done(struct pch_udc_dev *dev)
  669. {
  670. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR, UDC_DEVCTL_CSR_DONE);
  671. }
  672. /**
  673. * pch_udc_disable_interrupts() - Disables the specified interrupts
  674. * @dev: Reference to structure of type pch_udc_regs
  675. * @mask: Mask to disable interrupts
  676. */
  677. static inline void pch_udc_disable_interrupts(struct pch_udc_dev *dev,
  678. u32 mask)
  679. {
  680. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, mask);
  681. }
  682. /**
  683. * pch_udc_enable_interrupts() - Enable the specified interrupts
  684. * @dev: Reference to structure of type pch_udc_regs
  685. * @mask: Mask to enable interrupts
  686. */
  687. static inline void pch_udc_enable_interrupts(struct pch_udc_dev *dev,
  688. u32 mask)
  689. {
  690. pch_udc_bit_clr(dev, UDC_DEVIRQMSK_ADDR, mask);
  691. }
  692. /**
  693. * pch_udc_disable_ep_interrupts() - Disable endpoint interrupts
  694. * @dev: Reference to structure of type pch_udc_regs
  695. * @mask: Mask to disable interrupts
  696. */
  697. static inline void pch_udc_disable_ep_interrupts(struct pch_udc_dev *dev,
  698. u32 mask)
  699. {
  700. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, mask);
  701. }
  702. /**
  703. * pch_udc_enable_ep_interrupts() - Enable endpoint interrupts
  704. * @dev: Reference to structure of type pch_udc_regs
  705. * @mask: Mask to enable interrupts
  706. */
  707. static inline void pch_udc_enable_ep_interrupts(struct pch_udc_dev *dev,
  708. u32 mask)
  709. {
  710. pch_udc_bit_clr(dev, UDC_EPIRQMSK_ADDR, mask);
  711. }
  712. /**
  713. * pch_udc_read_device_interrupts() - Read the device interrupts
  714. * @dev: Reference to structure of type pch_udc_regs
  715. * Retern The device interrupts
  716. */
  717. static inline u32 pch_udc_read_device_interrupts(struct pch_udc_dev *dev)
  718. {
  719. return pch_udc_readl(dev, UDC_DEVIRQSTS_ADDR);
  720. }
  721. /**
  722. * pch_udc_write_device_interrupts() - Write device interrupts
  723. * @dev: Reference to structure of type pch_udc_regs
  724. * @val: The value to be written to interrupt register
  725. */
  726. static inline void pch_udc_write_device_interrupts(struct pch_udc_dev *dev,
  727. u32 val)
  728. {
  729. pch_udc_writel(dev, val, UDC_DEVIRQSTS_ADDR);
  730. }
  731. /**
  732. * pch_udc_read_ep_interrupts() - Read the endpoint interrupts
  733. * @dev: Reference to structure of type pch_udc_regs
  734. * Retern The endpoint interrupt
  735. */
  736. static inline u32 pch_udc_read_ep_interrupts(struct pch_udc_dev *dev)
  737. {
  738. return pch_udc_readl(dev, UDC_EPIRQSTS_ADDR);
  739. }
  740. /**
  741. * pch_udc_write_ep_interrupts() - Clear endpoint interupts
  742. * @dev: Reference to structure of type pch_udc_regs
  743. * @val: The value to be written to interrupt register
  744. */
  745. static inline void pch_udc_write_ep_interrupts(struct pch_udc_dev *dev,
  746. u32 val)
  747. {
  748. pch_udc_writel(dev, val, UDC_EPIRQSTS_ADDR);
  749. }
  750. /**
  751. * pch_udc_read_device_status() - Read the device status
  752. * @dev: Reference to structure of type pch_udc_regs
  753. * Retern The device status
  754. */
  755. static inline u32 pch_udc_read_device_status(struct pch_udc_dev *dev)
  756. {
  757. return pch_udc_readl(dev, UDC_DEVSTS_ADDR);
  758. }
  759. /**
  760. * pch_udc_read_ep_control() - Read the endpoint control
  761. * @ep: Reference to structure of type pch_udc_ep_regs
  762. * Retern The endpoint control register value
  763. */
  764. static inline u32 pch_udc_read_ep_control(struct pch_udc_ep *ep)
  765. {
  766. return pch_udc_ep_readl(ep, UDC_EPCTL_ADDR);
  767. }
  768. /**
  769. * pch_udc_clear_ep_control() - Clear the endpoint control register
  770. * @ep: Reference to structure of type pch_udc_ep_regs
  771. * Retern The endpoint control register value
  772. */
  773. static inline void pch_udc_clear_ep_control(struct pch_udc_ep *ep)
  774. {
  775. return pch_udc_ep_writel(ep, 0, UDC_EPCTL_ADDR);
  776. }
  777. /**
  778. * pch_udc_read_ep_status() - Read the endpoint status
  779. * @ep: Reference to structure of type pch_udc_ep_regs
  780. * Retern The endpoint status
  781. */
  782. static inline u32 pch_udc_read_ep_status(struct pch_udc_ep *ep)
  783. {
  784. return pch_udc_ep_readl(ep, UDC_EPSTS_ADDR);
  785. }
  786. /**
  787. * pch_udc_clear_ep_status() - Clear the endpoint status
  788. * @ep: Reference to structure of type pch_udc_ep_regs
  789. * @stat: Endpoint status
  790. */
  791. static inline void pch_udc_clear_ep_status(struct pch_udc_ep *ep,
  792. u32 stat)
  793. {
  794. return pch_udc_ep_writel(ep, stat, UDC_EPSTS_ADDR);
  795. }
  796. /**
  797. * pch_udc_ep_set_nak() - Set the bit 7 (SNAK field)
  798. * of the endpoint control register
  799. * @ep: Reference to structure of type pch_udc_ep_regs
  800. */
  801. static inline void pch_udc_ep_set_nak(struct pch_udc_ep *ep)
  802. {
  803. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_SNAK);
  804. }
  805. /**
  806. * pch_udc_ep_clear_nak() - Set the bit 8 (CNAK field)
  807. * of the endpoint control register
  808. * @ep: reference to structure of type pch_udc_ep_regs
  809. */
  810. static void pch_udc_ep_clear_nak(struct pch_udc_ep *ep)
  811. {
  812. unsigned int loopcnt = 0;
  813. struct pch_udc_dev *dev = ep->dev;
  814. if (!(pch_udc_ep_readl(ep, UDC_EPCTL_ADDR) & UDC_EPCTL_NAK))
  815. return;
  816. if (!ep->in) {
  817. loopcnt = 10000;
  818. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  819. --loopcnt)
  820. udelay(5);
  821. if (!loopcnt)
  822. dev_err(&dev->pdev->dev, "%s: RxFIFO not Empty\n",
  823. __func__);
  824. }
  825. loopcnt = 10000;
  826. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_NAK) && --loopcnt) {
  827. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_CNAK);
  828. udelay(5);
  829. }
  830. if (!loopcnt)
  831. dev_err(&dev->pdev->dev, "%s: Clear NAK not set for ep%d%s\n",
  832. __func__, ep->num, (ep->in ? "in" : "out"));
  833. }
  834. /**
  835. * pch_udc_ep_fifo_flush() - Flush the endpoint fifo
  836. * @ep: reference to structure of type pch_udc_ep_regs
  837. * @dir: direction of endpoint
  838. * 0: endpoint is OUT
  839. * !0: endpoint is IN
  840. */
  841. static void pch_udc_ep_fifo_flush(struct pch_udc_ep *ep, int dir)
  842. {
  843. unsigned int loopcnt = 0;
  844. struct pch_udc_dev *dev = ep->dev;
  845. if (dir) { /* IN ep */
  846. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_F);
  847. return;
  848. }
  849. if (pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP)
  850. return;
  851. pch_udc_ep_bit_set(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH);
  852. /* Wait for RxFIFO Empty */
  853. loopcnt = 10000;
  854. while (!(pch_udc_read_ep_status(ep) & UDC_EPSTS_MRXFIFO_EMP) &&
  855. --loopcnt)
  856. udelay(5);
  857. if (!loopcnt)
  858. dev_err(&dev->pdev->dev, "RxFIFO not Empty\n");
  859. pch_udc_ep_bit_clr(ep, UDC_EPCTL_ADDR, UDC_EPCTL_MRXFLUSH);
  860. }
  861. /**
  862. * pch_udc_ep_enable() - This api enables endpoint
  863. * @regs: Reference to structure pch_udc_ep_regs
  864. * @desc: endpoint descriptor
  865. */
  866. static void pch_udc_ep_enable(struct pch_udc_ep *ep,
  867. struct pch_udc_cfg_data *cfg,
  868. const struct usb_endpoint_descriptor *desc)
  869. {
  870. u32 val = 0;
  871. u32 buff_size = 0;
  872. pch_udc_ep_set_trfr_type(ep, desc->bmAttributes);
  873. if (ep->in)
  874. buff_size = UDC_EPIN_BUFF_SIZE;
  875. else
  876. buff_size = UDC_EPOUT_BUFF_SIZE;
  877. pch_udc_ep_set_bufsz(ep, buff_size, ep->in);
  878. pch_udc_ep_set_maxpkt(ep, le16_to_cpu(desc->wMaxPacketSize));
  879. pch_udc_ep_set_nak(ep);
  880. pch_udc_ep_fifo_flush(ep, ep->in);
  881. /* Configure the endpoint */
  882. val = ep->num << UDC_CSR_NE_NUM_SHIFT | ep->in << UDC_CSR_NE_DIR_SHIFT |
  883. ((desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) <<
  884. UDC_CSR_NE_TYPE_SHIFT) |
  885. (cfg->cur_cfg << UDC_CSR_NE_CFG_SHIFT) |
  886. (cfg->cur_intf << UDC_CSR_NE_INTF_SHIFT) |
  887. (cfg->cur_alt << UDC_CSR_NE_ALT_SHIFT) |
  888. le16_to_cpu(desc->wMaxPacketSize) << UDC_CSR_NE_MAX_PKT_SHIFT;
  889. if (ep->in)
  890. pch_udc_write_csr(ep->dev, val, UDC_EPIN_IDX(ep->num));
  891. else
  892. pch_udc_write_csr(ep->dev, val, UDC_EPOUT_IDX(ep->num));
  893. }
  894. /**
  895. * pch_udc_ep_disable() - This api disables endpoint
  896. * @regs: Reference to structure pch_udc_ep_regs
  897. */
  898. static void pch_udc_ep_disable(struct pch_udc_ep *ep)
  899. {
  900. if (ep->in) {
  901. /* flush the fifo */
  902. pch_udc_ep_writel(ep, UDC_EPCTL_F, UDC_EPCTL_ADDR);
  903. /* set NAK */
  904. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  905. pch_udc_ep_bit_set(ep, UDC_EPSTS_ADDR, UDC_EPSTS_IN);
  906. } else {
  907. /* set NAK */
  908. pch_udc_ep_writel(ep, UDC_EPCTL_SNAK, UDC_EPCTL_ADDR);
  909. }
  910. /* reset desc pointer */
  911. pch_udc_ep_writel(ep, 0, UDC_DESPTR_ADDR);
  912. }
  913. /**
  914. * pch_udc_wait_ep_stall() - Wait EP stall.
  915. * @dev: Reference to pch_udc_dev structure
  916. */
  917. static void pch_udc_wait_ep_stall(struct pch_udc_ep *ep)
  918. {
  919. unsigned int count = 10000;
  920. /* Wait till idle */
  921. while ((pch_udc_read_ep_control(ep) & UDC_EPCTL_S) && --count)
  922. udelay(5);
  923. if (!count)
  924. dev_err(&ep->dev->pdev->dev, "%s: wait error\n", __func__);
  925. }
  926. /**
  927. * pch_udc_init() - This API initializes usb device controller
  928. * @dev: Rreference to pch_udc_regs structure
  929. */
  930. static void pch_udc_init(struct pch_udc_dev *dev)
  931. {
  932. if (NULL == dev) {
  933. pr_err("%s: Invalid address\n", __func__);
  934. return;
  935. }
  936. /* Soft Reset and Reset PHY */
  937. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  938. pch_udc_writel(dev, UDC_SRST | UDC_PSRST, UDC_SRST_ADDR);
  939. mdelay(1);
  940. pch_udc_writel(dev, UDC_SRST, UDC_SRST_ADDR);
  941. pch_udc_writel(dev, 0x00, UDC_SRST_ADDR);
  942. mdelay(1);
  943. /* mask and clear all device interrupts */
  944. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  945. pch_udc_bit_set(dev, UDC_DEVIRQSTS_ADDR, UDC_DEVINT_MSK);
  946. /* mask and clear all ep interrupts */
  947. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  948. pch_udc_bit_set(dev, UDC_EPIRQSTS_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  949. /* enable dynamic CSR programmingi, self powered and device speed */
  950. if (speed_fs)
  951. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  952. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_FS);
  953. else /* defaul high speed */
  954. pch_udc_bit_set(dev, UDC_DEVCFG_ADDR, UDC_DEVCFG_CSR_PRG |
  955. UDC_DEVCFG_SP | UDC_DEVCFG_SPD_HS);
  956. pch_udc_bit_set(dev, UDC_DEVCTL_ADDR,
  957. (PCH_UDC_THLEN << UDC_DEVCTL_THLEN_SHIFT) |
  958. (PCH_UDC_BRLEN << UDC_DEVCTL_BRLEN_SHIFT) |
  959. UDC_DEVCTL_MODE | UDC_DEVCTL_BREN |
  960. UDC_DEVCTL_THE);
  961. }
  962. /**
  963. * pch_udc_exit() - This API exit usb device controller
  964. * @dev: Reference to pch_udc_regs structure
  965. */
  966. static void pch_udc_exit(struct pch_udc_dev *dev)
  967. {
  968. /* mask all device interrupts */
  969. pch_udc_bit_set(dev, UDC_DEVIRQMSK_ADDR, UDC_DEVINT_MSK);
  970. /* mask all ep interrupts */
  971. pch_udc_bit_set(dev, UDC_EPIRQMSK_ADDR, UDC_EPINT_MSK_DISABLE_ALL);
  972. /* put device in disconnected state */
  973. pch_udc_set_disconnect(dev);
  974. }
  975. /**
  976. * pch_udc_pcd_get_frame() - This API is invoked to get the current frame number
  977. * @gadget: Reference to the gadget driver
  978. *
  979. * Return codes:
  980. * 0: Success
  981. * -EINVAL: If the gadget passed is NULL
  982. */
  983. static int pch_udc_pcd_get_frame(struct usb_gadget *gadget)
  984. {
  985. struct pch_udc_dev *dev;
  986. if (!gadget)
  987. return -EINVAL;
  988. dev = container_of(gadget, struct pch_udc_dev, gadget);
  989. return pch_udc_get_frame(dev);
  990. }
  991. /**
  992. * pch_udc_pcd_wakeup() - This API is invoked to initiate a remote wakeup
  993. * @gadget: Reference to the gadget driver
  994. *
  995. * Return codes:
  996. * 0: Success
  997. * -EINVAL: If the gadget passed is NULL
  998. */
  999. static int pch_udc_pcd_wakeup(struct usb_gadget *gadget)
  1000. {
  1001. struct pch_udc_dev *dev;
  1002. unsigned long flags;
  1003. if (!gadget)
  1004. return -EINVAL;
  1005. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1006. spin_lock_irqsave(&dev->lock, flags);
  1007. pch_udc_rmt_wakeup(dev);
  1008. spin_unlock_irqrestore(&dev->lock, flags);
  1009. return 0;
  1010. }
  1011. /**
  1012. * pch_udc_pcd_selfpowered() - This API is invoked to specify whether the device
  1013. * is self powered or not
  1014. * @gadget: Reference to the gadget driver
  1015. * @value: Specifies self powered or not
  1016. *
  1017. * Return codes:
  1018. * 0: Success
  1019. * -EINVAL: If the gadget passed is NULL
  1020. */
  1021. static int pch_udc_pcd_selfpowered(struct usb_gadget *gadget, int value)
  1022. {
  1023. struct pch_udc_dev *dev;
  1024. if (!gadget)
  1025. return -EINVAL;
  1026. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1027. if (value)
  1028. pch_udc_set_selfpowered(dev);
  1029. else
  1030. pch_udc_clear_selfpowered(dev);
  1031. return 0;
  1032. }
  1033. /**
  1034. * pch_udc_pcd_pullup() - This API is invoked to make the device
  1035. * visible/invisible to the host
  1036. * @gadget: Reference to the gadget driver
  1037. * @is_on: Specifies whether the pull up is made active or inactive
  1038. *
  1039. * Return codes:
  1040. * 0: Success
  1041. * -EINVAL: If the gadget passed is NULL
  1042. */
  1043. static int pch_udc_pcd_pullup(struct usb_gadget *gadget, int is_on)
  1044. {
  1045. struct pch_udc_dev *dev;
  1046. if (!gadget)
  1047. return -EINVAL;
  1048. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1049. pch_udc_vbus_session(dev, is_on);
  1050. return 0;
  1051. }
  1052. /**
  1053. * pch_udc_pcd_vbus_session() - This API is used by a driver for an external
  1054. * transceiver (or GPIO) that
  1055. * detects a VBUS power session starting/ending
  1056. * @gadget: Reference to the gadget driver
  1057. * @is_active: specifies whether the session is starting or ending
  1058. *
  1059. * Return codes:
  1060. * 0: Success
  1061. * -EINVAL: If the gadget passed is NULL
  1062. */
  1063. static int pch_udc_pcd_vbus_session(struct usb_gadget *gadget, int is_active)
  1064. {
  1065. struct pch_udc_dev *dev;
  1066. if (!gadget)
  1067. return -EINVAL;
  1068. dev = container_of(gadget, struct pch_udc_dev, gadget);
  1069. pch_udc_vbus_session(dev, is_active);
  1070. return 0;
  1071. }
  1072. /**
  1073. * pch_udc_pcd_vbus_draw() - This API is used by gadget drivers during
  1074. * SET_CONFIGURATION calls to
  1075. * specify how much power the device can consume
  1076. * @gadget: Reference to the gadget driver
  1077. * @mA: specifies the current limit in 2mA unit
  1078. *
  1079. * Return codes:
  1080. * -EINVAL: If the gadget passed is NULL
  1081. * -EOPNOTSUPP:
  1082. */
  1083. static int pch_udc_pcd_vbus_draw(struct usb_gadget *gadget, unsigned int mA)
  1084. {
  1085. return -EOPNOTSUPP;
  1086. }
  1087. static const struct usb_gadget_ops pch_udc_ops = {
  1088. .get_frame = pch_udc_pcd_get_frame,
  1089. .wakeup = pch_udc_pcd_wakeup,
  1090. .set_selfpowered = pch_udc_pcd_selfpowered,
  1091. .pullup = pch_udc_pcd_pullup,
  1092. .vbus_session = pch_udc_pcd_vbus_session,
  1093. .vbus_draw = pch_udc_pcd_vbus_draw,
  1094. };
  1095. /**
  1096. * complete_req() - This API is invoked from the driver when processing
  1097. * of a request is complete
  1098. * @ep: Reference to the endpoint structure
  1099. * @req: Reference to the request structure
  1100. * @status: Indicates the success/failure of completion
  1101. */
  1102. static void complete_req(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1103. int status)
  1104. {
  1105. struct pch_udc_dev *dev;
  1106. unsigned halted = ep->halted;
  1107. list_del_init(&req->queue);
  1108. /* set new status if pending */
  1109. if (req->req.status == -EINPROGRESS)
  1110. req->req.status = status;
  1111. else
  1112. status = req->req.status;
  1113. dev = ep->dev;
  1114. if (req->dma_mapped) {
  1115. if (ep->in)
  1116. pci_unmap_single(dev->pdev, req->req.dma,
  1117. req->req.length, PCI_DMA_TODEVICE);
  1118. else
  1119. pci_unmap_single(dev->pdev, req->req.dma,
  1120. req->req.length, PCI_DMA_FROMDEVICE);
  1121. req->dma_mapped = 0;
  1122. req->req.dma = DMA_ADDR_INVALID;
  1123. }
  1124. ep->halted = 1;
  1125. spin_unlock(&dev->lock);
  1126. if (!ep->in)
  1127. pch_udc_ep_clear_rrdy(ep);
  1128. req->req.complete(&ep->ep, &req->req);
  1129. spin_lock(&dev->lock);
  1130. ep->halted = halted;
  1131. }
  1132. /**
  1133. * empty_req_queue() - This API empties the request queue of an endpoint
  1134. * @ep: Reference to the endpoint structure
  1135. */
  1136. static void empty_req_queue(struct pch_udc_ep *ep)
  1137. {
  1138. struct pch_udc_request *req;
  1139. ep->halted = 1;
  1140. while (!list_empty(&ep->queue)) {
  1141. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1142. complete_req(ep, req, -ESHUTDOWN); /* Remove from list */
  1143. }
  1144. }
  1145. /**
  1146. * pch_udc_free_dma_chain() - This function frees the DMA chain created
  1147. * for the request
  1148. * @dev Reference to the driver structure
  1149. * @req Reference to the request to be freed
  1150. *
  1151. * Return codes:
  1152. * 0: Success
  1153. */
  1154. static void pch_udc_free_dma_chain(struct pch_udc_dev *dev,
  1155. struct pch_udc_request *req)
  1156. {
  1157. struct pch_udc_data_dma_desc *td = req->td_data;
  1158. unsigned i = req->chain_len;
  1159. for (; i > 1; --i) {
  1160. dma_addr_t addr = (dma_addr_t)td->next;
  1161. /* do not free first desc., will be done by free for request */
  1162. td = phys_to_virt(addr);
  1163. pci_pool_free(dev->data_requests, td, addr);
  1164. }
  1165. }
  1166. /**
  1167. * pch_udc_create_dma_chain() - This function creates or reinitializes
  1168. * a DMA chain
  1169. * @ep: Reference to the endpoint structure
  1170. * @req: Reference to the request
  1171. * @buf_len: The buffer length
  1172. * @gfp_flags: Flags to be used while mapping the data buffer
  1173. *
  1174. * Return codes:
  1175. * 0: success,
  1176. * -ENOMEM: pci_pool_alloc invocation fails
  1177. */
  1178. static int pch_udc_create_dma_chain(struct pch_udc_ep *ep,
  1179. struct pch_udc_request *req,
  1180. unsigned long buf_len,
  1181. gfp_t gfp_flags)
  1182. {
  1183. struct pch_udc_data_dma_desc *td = req->td_data, *last;
  1184. unsigned long bytes = req->req.length, i = 0;
  1185. dma_addr_t dma_addr;
  1186. unsigned len = 1;
  1187. if (req->chain_len > 1)
  1188. pch_udc_free_dma_chain(ep->dev, req);
  1189. for (; ; bytes -= buf_len, ++len) {
  1190. if (ep->in)
  1191. td->status = PCH_UDC_BS_HST_BSY | min(buf_len, bytes);
  1192. else
  1193. td->status = PCH_UDC_BS_HST_BSY;
  1194. if (bytes <= buf_len)
  1195. break;
  1196. last = td;
  1197. td = pci_pool_alloc(ep->dev->data_requests, gfp_flags,
  1198. &dma_addr);
  1199. if (!td)
  1200. goto nomem;
  1201. i += buf_len;
  1202. td->dataptr = req->req.dma + i;
  1203. last->next = dma_addr;
  1204. }
  1205. req->td_data_last = td;
  1206. td->status |= PCH_UDC_DMA_LAST;
  1207. td->next = req->td_data_phys;
  1208. req->chain_len = len;
  1209. return 0;
  1210. nomem:
  1211. if (len > 1) {
  1212. req->chain_len = len;
  1213. pch_udc_free_dma_chain(ep->dev, req);
  1214. }
  1215. req->chain_len = 1;
  1216. return -ENOMEM;
  1217. }
  1218. /**
  1219. * prepare_dma() - This function creates and initializes the DMA chain
  1220. * for the request
  1221. * @ep: Reference to the endpoint structure
  1222. * @req: Reference to the request
  1223. * @gfp: Flag to be used while mapping the data buffer
  1224. *
  1225. * Return codes:
  1226. * 0: Success
  1227. * Other 0: linux error number on failure
  1228. */
  1229. static int prepare_dma(struct pch_udc_ep *ep, struct pch_udc_request *req,
  1230. gfp_t gfp)
  1231. {
  1232. int retval;
  1233. req->td_data->dataptr = req->req.dma;
  1234. req->td_data->status |= PCH_UDC_DMA_LAST;
  1235. /* Allocate and create a DMA chain */
  1236. retval = pch_udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  1237. if (retval) {
  1238. pr_err("%s: could not create DMA chain: %d\n",
  1239. __func__, retval);
  1240. return retval;
  1241. }
  1242. if (!ep->in)
  1243. return 0;
  1244. if (req->req.length <= ep->ep.maxpacket)
  1245. req->td_data->status = PCH_UDC_DMA_LAST | PCH_UDC_BS_HST_BSY |
  1246. req->req.length;
  1247. /* if bytes < max packet then tx bytes must
  1248. * be written in packet per buffer mode
  1249. */
  1250. if ((req->req.length < ep->ep.maxpacket) || !ep->num)
  1251. req->td_data->status = (req->td_data->status &
  1252. ~PCH_UDC_RXTX_BYTES) | req->req.length;
  1253. req->td_data->status = (req->td_data->status &
  1254. ~PCH_UDC_BUFF_STS) | PCH_UDC_BS_HST_BSY;
  1255. return 0;
  1256. }
  1257. /**
  1258. * process_zlp() - This function process zero length packets
  1259. * from the gadget driver
  1260. * @ep: Reference to the endpoint structure
  1261. * @req: Reference to the request
  1262. */
  1263. static void process_zlp(struct pch_udc_ep *ep, struct pch_udc_request *req)
  1264. {
  1265. struct pch_udc_dev *dev = ep->dev;
  1266. /* IN zlp's are handled by hardware */
  1267. complete_req(ep, req, 0);
  1268. /* if set_config or set_intf is waiting for ack by zlp
  1269. * then set CSR_DONE
  1270. */
  1271. if (dev->set_cfg_not_acked) {
  1272. pch_udc_set_csr_done(dev);
  1273. dev->set_cfg_not_acked = 0;
  1274. }
  1275. /* setup command is ACK'ed now by zlp */
  1276. if (!dev->stall && dev->waiting_zlp_ack) {
  1277. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1278. dev->waiting_zlp_ack = 0;
  1279. }
  1280. }
  1281. /**
  1282. * pch_udc_start_rxrequest() - This function starts the receive requirement.
  1283. * @ep: Reference to the endpoint structure
  1284. * @req: Reference to the request structure
  1285. */
  1286. static void pch_udc_start_rxrequest(struct pch_udc_ep *ep,
  1287. struct pch_udc_request *req)
  1288. {
  1289. struct pch_udc_data_dma_desc *td_data;
  1290. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1291. td_data = req->td_data;
  1292. ep->td_data = req->td_data;
  1293. /* Set the status bits for all descriptors */
  1294. while (1) {
  1295. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1296. PCH_UDC_BS_HST_RDY;
  1297. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1298. break;
  1299. td_data = phys_to_virt(td_data->next);
  1300. }
  1301. /* Write the descriptor pointer */
  1302. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1303. req->dma_going = 1;
  1304. pch_udc_enable_ep_interrupts(ep->dev, UDC_EPINT_OUT_EP0 << ep->num);
  1305. pch_udc_set_dma(ep->dev, DMA_DIR_RX);
  1306. pch_udc_ep_clear_nak(ep);
  1307. pch_udc_ep_set_rrdy(ep);
  1308. }
  1309. /**
  1310. * pch_udc_pcd_ep_enable() - This API enables the endpoint. It is called
  1311. * from gadget driver
  1312. * @usbep: Reference to the USB endpoint structure
  1313. * @desc: Reference to the USB endpoint descriptor structure
  1314. *
  1315. * Return codes:
  1316. * 0: Success
  1317. * -EINVAL:
  1318. * -ESHUTDOWN:
  1319. */
  1320. static int pch_udc_pcd_ep_enable(struct usb_ep *usbep,
  1321. const struct usb_endpoint_descriptor *desc)
  1322. {
  1323. struct pch_udc_ep *ep;
  1324. struct pch_udc_dev *dev;
  1325. unsigned long iflags;
  1326. if (!usbep || (usbep->name == ep0_string) || !desc ||
  1327. (desc->bDescriptorType != USB_DT_ENDPOINT) || !desc->wMaxPacketSize)
  1328. return -EINVAL;
  1329. ep = container_of(usbep, struct pch_udc_ep, ep);
  1330. dev = ep->dev;
  1331. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1332. return -ESHUTDOWN;
  1333. spin_lock_irqsave(&dev->lock, iflags);
  1334. ep->desc = desc;
  1335. ep->halted = 0;
  1336. pch_udc_ep_enable(ep, &ep->dev->cfg_data, desc);
  1337. ep->ep.maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  1338. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1339. spin_unlock_irqrestore(&dev->lock, iflags);
  1340. return 0;
  1341. }
  1342. /**
  1343. * pch_udc_pcd_ep_disable() - This API disables endpoint and is called
  1344. * from gadget driver
  1345. * @usbep Reference to the USB endpoint structure
  1346. *
  1347. * Return codes:
  1348. * 0: Success
  1349. * -EINVAL:
  1350. */
  1351. static int pch_udc_pcd_ep_disable(struct usb_ep *usbep)
  1352. {
  1353. struct pch_udc_ep *ep;
  1354. struct pch_udc_dev *dev;
  1355. unsigned long iflags;
  1356. if (!usbep)
  1357. return -EINVAL;
  1358. ep = container_of(usbep, struct pch_udc_ep, ep);
  1359. dev = ep->dev;
  1360. if ((usbep->name == ep0_string) || !ep->desc)
  1361. return -EINVAL;
  1362. spin_lock_irqsave(&ep->dev->lock, iflags);
  1363. empty_req_queue(ep);
  1364. ep->halted = 1;
  1365. pch_udc_ep_disable(ep);
  1366. pch_udc_disable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1367. ep->desc = NULL;
  1368. INIT_LIST_HEAD(&ep->queue);
  1369. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1370. return 0;
  1371. }
  1372. /**
  1373. * pch_udc_alloc_request() - This function allocates request structure.
  1374. * It is called by gadget driver
  1375. * @usbep: Reference to the USB endpoint structure
  1376. * @gfp: Flag to be used while allocating memory
  1377. *
  1378. * Return codes:
  1379. * NULL: Failure
  1380. * Allocated address: Success
  1381. */
  1382. static struct usb_request *pch_udc_alloc_request(struct usb_ep *usbep,
  1383. gfp_t gfp)
  1384. {
  1385. struct pch_udc_request *req;
  1386. struct pch_udc_ep *ep;
  1387. struct pch_udc_data_dma_desc *dma_desc;
  1388. struct pch_udc_dev *dev;
  1389. if (!usbep)
  1390. return NULL;
  1391. ep = container_of(usbep, struct pch_udc_ep, ep);
  1392. dev = ep->dev;
  1393. req = kzalloc(sizeof *req, gfp);
  1394. if (!req)
  1395. return NULL;
  1396. req->req.dma = DMA_ADDR_INVALID;
  1397. INIT_LIST_HEAD(&req->queue);
  1398. if (!ep->dev->dma_addr)
  1399. return &req->req;
  1400. /* ep0 in requests are allocated from data pool here */
  1401. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  1402. &req->td_data_phys);
  1403. if (NULL == dma_desc) {
  1404. kfree(req);
  1405. return NULL;
  1406. }
  1407. /* prevent from using desc. - set HOST BUSY */
  1408. dma_desc->status |= PCH_UDC_BS_HST_BSY;
  1409. dma_desc->dataptr = __constant_cpu_to_le32(DMA_ADDR_INVALID);
  1410. req->td_data = dma_desc;
  1411. req->td_data_last = dma_desc;
  1412. req->chain_len = 1;
  1413. return &req->req;
  1414. }
  1415. /**
  1416. * pch_udc_free_request() - This function frees request structure.
  1417. * It is called by gadget driver
  1418. * @usbep: Reference to the USB endpoint structure
  1419. * @usbreq: Reference to the USB request
  1420. */
  1421. static void pch_udc_free_request(struct usb_ep *usbep,
  1422. struct usb_request *usbreq)
  1423. {
  1424. struct pch_udc_ep *ep;
  1425. struct pch_udc_request *req;
  1426. struct pch_udc_dev *dev;
  1427. if (!usbep || !usbreq)
  1428. return;
  1429. ep = container_of(usbep, struct pch_udc_ep, ep);
  1430. req = container_of(usbreq, struct pch_udc_request, req);
  1431. dev = ep->dev;
  1432. if (!list_empty(&req->queue))
  1433. dev_err(&dev->pdev->dev, "%s: %s req=0x%p queue not empty\n",
  1434. __func__, usbep->name, req);
  1435. if (req->td_data != NULL) {
  1436. if (req->chain_len > 1)
  1437. pch_udc_free_dma_chain(ep->dev, req);
  1438. pci_pool_free(ep->dev->data_requests, req->td_data,
  1439. req->td_data_phys);
  1440. }
  1441. kfree(req);
  1442. }
  1443. /**
  1444. * pch_udc_pcd_queue() - This function queues a request packet. It is called
  1445. * by gadget driver
  1446. * @usbep: Reference to the USB endpoint structure
  1447. * @usbreq: Reference to the USB request
  1448. * @gfp: Flag to be used while mapping the data buffer
  1449. *
  1450. * Return codes:
  1451. * 0: Success
  1452. * linux error number: Failure
  1453. */
  1454. static int pch_udc_pcd_queue(struct usb_ep *usbep, struct usb_request *usbreq,
  1455. gfp_t gfp)
  1456. {
  1457. int retval = 0;
  1458. struct pch_udc_ep *ep;
  1459. struct pch_udc_dev *dev;
  1460. struct pch_udc_request *req;
  1461. unsigned long iflags;
  1462. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf)
  1463. return -EINVAL;
  1464. ep = container_of(usbep, struct pch_udc_ep, ep);
  1465. dev = ep->dev;
  1466. if (!ep->desc && ep->num)
  1467. return -EINVAL;
  1468. req = container_of(usbreq, struct pch_udc_request, req);
  1469. if (!list_empty(&req->queue))
  1470. return -EINVAL;
  1471. if (!dev->driver || (dev->gadget.speed == USB_SPEED_UNKNOWN))
  1472. return -ESHUTDOWN;
  1473. spin_lock_irqsave(&ep->dev->lock, iflags);
  1474. /* map the buffer for dma */
  1475. if (usbreq->length &&
  1476. ((usbreq->dma == DMA_ADDR_INVALID) || !usbreq->dma)) {
  1477. if (ep->in)
  1478. usbreq->dma = pci_map_single(dev->pdev, usbreq->buf,
  1479. usbreq->length, PCI_DMA_TODEVICE);
  1480. else
  1481. usbreq->dma = pci_map_single(dev->pdev, usbreq->buf,
  1482. usbreq->length, PCI_DMA_FROMDEVICE);
  1483. req->dma_mapped = 1;
  1484. }
  1485. if (usbreq->length > 0) {
  1486. retval = prepare_dma(ep, req, gfp);
  1487. if (retval)
  1488. goto probe_end;
  1489. }
  1490. usbreq->actual = 0;
  1491. usbreq->status = -EINPROGRESS;
  1492. req->dma_done = 0;
  1493. if (list_empty(&ep->queue) && !ep->halted) {
  1494. /* no pending transfer, so start this req */
  1495. if (!usbreq->length) {
  1496. process_zlp(ep, req);
  1497. retval = 0;
  1498. goto probe_end;
  1499. }
  1500. if (!ep->in) {
  1501. pch_udc_start_rxrequest(ep, req);
  1502. } else {
  1503. /*
  1504. * For IN trfr the descriptors will be programmed and
  1505. * P bit will be set when
  1506. * we get an IN token
  1507. */
  1508. pch_udc_wait_ep_stall(ep);
  1509. pch_udc_ep_clear_nak(ep);
  1510. pch_udc_enable_ep_interrupts(ep->dev, (1 << ep->num));
  1511. pch_udc_set_dma(dev, DMA_DIR_TX);
  1512. }
  1513. }
  1514. /* Now add this request to the ep's pending requests */
  1515. if (req != NULL)
  1516. list_add_tail(&req->queue, &ep->queue);
  1517. probe_end:
  1518. spin_unlock_irqrestore(&dev->lock, iflags);
  1519. return retval;
  1520. }
  1521. /**
  1522. * pch_udc_pcd_dequeue() - This function de-queues a request packet.
  1523. * It is called by gadget driver
  1524. * @usbep: Reference to the USB endpoint structure
  1525. * @usbreq: Reference to the USB request
  1526. *
  1527. * Return codes:
  1528. * 0: Success
  1529. * linux error number: Failure
  1530. */
  1531. static int pch_udc_pcd_dequeue(struct usb_ep *usbep,
  1532. struct usb_request *usbreq)
  1533. {
  1534. struct pch_udc_ep *ep;
  1535. struct pch_udc_request *req;
  1536. struct pch_udc_dev *dev;
  1537. unsigned long flags;
  1538. int ret = -EINVAL;
  1539. ep = container_of(usbep, struct pch_udc_ep, ep);
  1540. dev = ep->dev;
  1541. if (!usbep || !usbreq || (!ep->desc && ep->num))
  1542. return ret;
  1543. req = container_of(usbreq, struct pch_udc_request, req);
  1544. spin_lock_irqsave(&ep->dev->lock, flags);
  1545. /* make sure it's still queued on this endpoint */
  1546. list_for_each_entry(req, &ep->queue, queue) {
  1547. if (&req->req == usbreq) {
  1548. pch_udc_ep_set_nak(ep);
  1549. if (!list_empty(&req->queue))
  1550. complete_req(ep, req, -ECONNRESET);
  1551. ret = 0;
  1552. break;
  1553. }
  1554. }
  1555. spin_unlock_irqrestore(&ep->dev->lock, flags);
  1556. return ret;
  1557. }
  1558. /**
  1559. * pch_udc_pcd_set_halt() - This function Sets or clear the endpoint halt
  1560. * feature
  1561. * @usbep: Reference to the USB endpoint structure
  1562. * @halt: Specifies whether to set or clear the feature
  1563. *
  1564. * Return codes:
  1565. * 0: Success
  1566. * linux error number: Failure
  1567. */
  1568. static int pch_udc_pcd_set_halt(struct usb_ep *usbep, int halt)
  1569. {
  1570. struct pch_udc_ep *ep;
  1571. struct pch_udc_dev *dev;
  1572. unsigned long iflags;
  1573. int ret;
  1574. if (!usbep)
  1575. return -EINVAL;
  1576. ep = container_of(usbep, struct pch_udc_ep, ep);
  1577. dev = ep->dev;
  1578. if (!ep->desc && !ep->num)
  1579. return -EINVAL;
  1580. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1581. return -ESHUTDOWN;
  1582. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1583. if (list_empty(&ep->queue)) {
  1584. if (halt) {
  1585. if (ep->num == PCH_UDC_EP0)
  1586. ep->dev->stall = 1;
  1587. pch_udc_ep_set_stall(ep);
  1588. pch_udc_enable_ep_interrupts(ep->dev,
  1589. PCH_UDC_EPINT(ep->in,
  1590. ep->num));
  1591. } else {
  1592. pch_udc_ep_clear_stall(ep);
  1593. }
  1594. ret = 0;
  1595. } else {
  1596. ret = -EAGAIN;
  1597. }
  1598. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1599. return ret;
  1600. }
  1601. /**
  1602. * pch_udc_pcd_set_wedge() - This function Sets or clear the endpoint
  1603. * halt feature
  1604. * @usbep: Reference to the USB endpoint structure
  1605. * @halt: Specifies whether to set or clear the feature
  1606. *
  1607. * Return codes:
  1608. * 0: Success
  1609. * linux error number: Failure
  1610. */
  1611. static int pch_udc_pcd_set_wedge(struct usb_ep *usbep)
  1612. {
  1613. struct pch_udc_ep *ep;
  1614. struct pch_udc_dev *dev;
  1615. unsigned long iflags;
  1616. int ret;
  1617. if (!usbep)
  1618. return -EINVAL;
  1619. ep = container_of(usbep, struct pch_udc_ep, ep);
  1620. dev = ep->dev;
  1621. if (!ep->desc && !ep->num)
  1622. return -EINVAL;
  1623. if (!ep->dev->driver || (ep->dev->gadget.speed == USB_SPEED_UNKNOWN))
  1624. return -ESHUTDOWN;
  1625. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1626. if (!list_empty(&ep->queue)) {
  1627. ret = -EAGAIN;
  1628. } else {
  1629. if (ep->num == PCH_UDC_EP0)
  1630. ep->dev->stall = 1;
  1631. pch_udc_ep_set_stall(ep);
  1632. pch_udc_enable_ep_interrupts(ep->dev,
  1633. PCH_UDC_EPINT(ep->in, ep->num));
  1634. ep->dev->prot_stall = 1;
  1635. ret = 0;
  1636. }
  1637. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1638. return ret;
  1639. }
  1640. /**
  1641. * pch_udc_pcd_fifo_flush() - This function Flush the FIFO of specified endpoint
  1642. * @usbep: Reference to the USB endpoint structure
  1643. */
  1644. static void pch_udc_pcd_fifo_flush(struct usb_ep *usbep)
  1645. {
  1646. struct pch_udc_ep *ep;
  1647. if (!usbep)
  1648. return;
  1649. ep = container_of(usbep, struct pch_udc_ep, ep);
  1650. if (ep->desc || !ep->num)
  1651. pch_udc_ep_fifo_flush(ep, ep->in);
  1652. }
  1653. static const struct usb_ep_ops pch_udc_ep_ops = {
  1654. .enable = pch_udc_pcd_ep_enable,
  1655. .disable = pch_udc_pcd_ep_disable,
  1656. .alloc_request = pch_udc_alloc_request,
  1657. .free_request = pch_udc_free_request,
  1658. .queue = pch_udc_pcd_queue,
  1659. .dequeue = pch_udc_pcd_dequeue,
  1660. .set_halt = pch_udc_pcd_set_halt,
  1661. .set_wedge = pch_udc_pcd_set_wedge,
  1662. .fifo_status = NULL,
  1663. .fifo_flush = pch_udc_pcd_fifo_flush,
  1664. };
  1665. /**
  1666. * pch_udc_init_setup_buff() - This function initializes the SETUP buffer
  1667. * @td_stp: Reference to the SETP buffer structure
  1668. */
  1669. static void pch_udc_init_setup_buff(struct pch_udc_stp_dma_desc *td_stp)
  1670. {
  1671. static u32 pky_marker;
  1672. if (!td_stp)
  1673. return;
  1674. td_stp->reserved = ++pky_marker;
  1675. memset(&td_stp->request, 0xFF, sizeof td_stp->request);
  1676. td_stp->status = PCH_UDC_BS_HST_RDY;
  1677. }
  1678. /**
  1679. * pch_udc_start_next_txrequest() - This function starts
  1680. * the next transmission requirement
  1681. * @ep: Reference to the endpoint structure
  1682. */
  1683. static void pch_udc_start_next_txrequest(struct pch_udc_ep *ep)
  1684. {
  1685. struct pch_udc_request *req;
  1686. struct pch_udc_data_dma_desc *td_data;
  1687. if (pch_udc_read_ep_control(ep) & UDC_EPCTL_P)
  1688. return;
  1689. if (list_empty(&ep->queue))
  1690. return;
  1691. /* next request */
  1692. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1693. if (req->dma_going)
  1694. return;
  1695. if (!req->td_data)
  1696. return;
  1697. pch_udc_wait_ep_stall(ep);
  1698. req->dma_going = 1;
  1699. pch_udc_ep_set_ddptr(ep, 0);
  1700. td_data = req->td_data;
  1701. while (1) {
  1702. td_data->status = (td_data->status & ~PCH_UDC_BUFF_STS) |
  1703. PCH_UDC_BS_HST_RDY;
  1704. if ((td_data->status & PCH_UDC_DMA_LAST) == PCH_UDC_DMA_LAST)
  1705. break;
  1706. td_data = phys_to_virt(td_data->next);
  1707. }
  1708. pch_udc_ep_set_ddptr(ep, req->td_data_phys);
  1709. pch_udc_set_dma(ep->dev, DMA_DIR_TX);
  1710. pch_udc_ep_set_pd(ep);
  1711. pch_udc_enable_ep_interrupts(ep->dev, PCH_UDC_EPINT(ep->in, ep->num));
  1712. pch_udc_ep_clear_nak(ep);
  1713. }
  1714. /**
  1715. * pch_udc_complete_transfer() - This function completes a transfer
  1716. * @ep: Reference to the endpoint structure
  1717. */
  1718. static void pch_udc_complete_transfer(struct pch_udc_ep *ep)
  1719. {
  1720. struct pch_udc_request *req;
  1721. struct pch_udc_dev *dev = ep->dev;
  1722. if (list_empty(&ep->queue))
  1723. return;
  1724. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1725. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1726. PCH_UDC_BS_DMA_DONE)
  1727. return;
  1728. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1729. PCH_UDC_RTS_SUCC) {
  1730. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1731. "epstatus=0x%08x\n",
  1732. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1733. (int)(ep->epsts));
  1734. return;
  1735. }
  1736. req->req.actual = req->req.length;
  1737. req->td_data_last->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1738. req->td_data->status = PCH_UDC_BS_HST_BSY | PCH_UDC_DMA_LAST;
  1739. complete_req(ep, req, 0);
  1740. req->dma_going = 0;
  1741. if (!list_empty(&ep->queue)) {
  1742. pch_udc_wait_ep_stall(ep);
  1743. pch_udc_ep_clear_nak(ep);
  1744. pch_udc_enable_ep_interrupts(ep->dev,
  1745. PCH_UDC_EPINT(ep->in, ep->num));
  1746. } else {
  1747. pch_udc_disable_ep_interrupts(ep->dev,
  1748. PCH_UDC_EPINT(ep->in, ep->num));
  1749. }
  1750. }
  1751. /**
  1752. * pch_udc_complete_receiver() - This function completes a receiver
  1753. * @ep: Reference to the endpoint structure
  1754. */
  1755. static void pch_udc_complete_receiver(struct pch_udc_ep *ep)
  1756. {
  1757. struct pch_udc_request *req;
  1758. struct pch_udc_dev *dev = ep->dev;
  1759. unsigned int count;
  1760. if (list_empty(&ep->queue))
  1761. return;
  1762. /* next request */
  1763. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1764. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1765. PCH_UDC_BS_DMA_DONE)
  1766. return;
  1767. pch_udc_clear_dma(ep->dev, DMA_DIR_RX);
  1768. if ((req->td_data_last->status & PCH_UDC_RXTX_STS) !=
  1769. PCH_UDC_RTS_SUCC) {
  1770. dev_err(&dev->pdev->dev, "Invalid RXTX status (0x%08x) "
  1771. "epstatus=0x%08x\n",
  1772. (req->td_data_last->status & PCH_UDC_RXTX_STS),
  1773. (int)(ep->epsts));
  1774. return;
  1775. }
  1776. count = req->td_data_last->status & PCH_UDC_RXTX_BYTES;
  1777. /* on 64k packets the RXBYTES field is zero */
  1778. if (!count && (req->req.length == UDC_DMA_MAXPACKET))
  1779. count = UDC_DMA_MAXPACKET;
  1780. req->td_data->status |= PCH_UDC_DMA_LAST;
  1781. req->td_data_last->status |= PCH_UDC_BS_HST_BSY;
  1782. req->dma_going = 0;
  1783. req->req.actual = count;
  1784. complete_req(ep, req, 0);
  1785. /* If there is a new/failed requests try that now */
  1786. if (!list_empty(&ep->queue)) {
  1787. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  1788. pch_udc_start_rxrequest(ep, req);
  1789. }
  1790. }
  1791. /**
  1792. * pch_udc_svc_data_in() - This function process endpoint interrupts
  1793. * for IN endpoints
  1794. * @dev: Reference to the device structure
  1795. * @ep_num: Endpoint that generated the interrupt
  1796. */
  1797. static void pch_udc_svc_data_in(struct pch_udc_dev *dev, int ep_num)
  1798. {
  1799. u32 epsts;
  1800. struct pch_udc_ep *ep;
  1801. ep = &dev->ep[2*ep_num];
  1802. epsts = ep->epsts;
  1803. ep->epsts = 0;
  1804. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1805. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1806. UDC_EPSTS_RSS | UDC_EPSTS_XFERDONE)))
  1807. return;
  1808. if ((epsts & UDC_EPSTS_BNA))
  1809. return;
  1810. if (epsts & UDC_EPSTS_HE)
  1811. return;
  1812. if (epsts & UDC_EPSTS_RSS) {
  1813. pch_udc_ep_set_stall(ep);
  1814. pch_udc_enable_ep_interrupts(ep->dev,
  1815. PCH_UDC_EPINT(ep->in, ep->num));
  1816. }
  1817. if (epsts & UDC_EPSTS_RCS) {
  1818. if (!dev->prot_stall) {
  1819. pch_udc_ep_clear_stall(ep);
  1820. } else {
  1821. pch_udc_ep_set_stall(ep);
  1822. pch_udc_enable_ep_interrupts(ep->dev,
  1823. PCH_UDC_EPINT(ep->in, ep->num));
  1824. }
  1825. }
  1826. if (epsts & UDC_EPSTS_TDC)
  1827. pch_udc_complete_transfer(ep);
  1828. /* On IN interrupt, provide data if we have any */
  1829. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_RSS) &&
  1830. !(epsts & UDC_EPSTS_TDC) && !(epsts & UDC_EPSTS_TXEMPTY))
  1831. pch_udc_start_next_txrequest(ep);
  1832. }
  1833. /**
  1834. * pch_udc_svc_data_out() - Handles interrupts from OUT endpoint
  1835. * @dev: Reference to the device structure
  1836. * @ep_num: Endpoint that generated the interrupt
  1837. */
  1838. static void pch_udc_svc_data_out(struct pch_udc_dev *dev, int ep_num)
  1839. {
  1840. u32 epsts;
  1841. struct pch_udc_ep *ep;
  1842. struct pch_udc_request *req = NULL;
  1843. ep = &dev->ep[2*ep_num + 1];
  1844. epsts = ep->epsts;
  1845. ep->epsts = 0;
  1846. if ((epsts & UDC_EPSTS_BNA) && (!list_empty(&ep->queue))) {
  1847. /* next request */
  1848. req = list_entry(ep->queue.next, struct pch_udc_request,
  1849. queue);
  1850. if ((req->td_data_last->status & PCH_UDC_BUFF_STS) !=
  1851. PCH_UDC_BS_DMA_DONE) {
  1852. if (!req->dma_going)
  1853. pch_udc_start_rxrequest(ep, req);
  1854. return;
  1855. }
  1856. }
  1857. if (epsts & UDC_EPSTS_HE)
  1858. return;
  1859. if (epsts & UDC_EPSTS_RSS)
  1860. pch_udc_ep_set_stall(ep);
  1861. pch_udc_enable_ep_interrupts(ep->dev,
  1862. PCH_UDC_EPINT(ep->in, ep->num));
  1863. if (epsts & UDC_EPSTS_RCS) {
  1864. if (!dev->prot_stall) {
  1865. pch_udc_ep_clear_stall(ep);
  1866. } else {
  1867. pch_udc_ep_set_stall(ep);
  1868. pch_udc_enable_ep_interrupts(ep->dev,
  1869. PCH_UDC_EPINT(ep->in, ep->num));
  1870. }
  1871. }
  1872. if (((epsts & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1873. UDC_EPSTS_OUT_DATA) {
  1874. if (ep->dev->prot_stall == 1) {
  1875. pch_udc_ep_set_stall(ep);
  1876. pch_udc_enable_ep_interrupts(ep->dev,
  1877. PCH_UDC_EPINT(ep->in, ep->num));
  1878. } else {
  1879. pch_udc_complete_receiver(ep);
  1880. }
  1881. }
  1882. if (list_empty(&ep->queue))
  1883. pch_udc_set_dma(dev, DMA_DIR_RX);
  1884. }
  1885. /**
  1886. * pch_udc_svc_control_in() - Handle Control IN endpoint interrupts
  1887. * @dev: Reference to the device structure
  1888. */
  1889. static void pch_udc_svc_control_in(struct pch_udc_dev *dev)
  1890. {
  1891. u32 epsts;
  1892. struct pch_udc_ep *ep;
  1893. ep = &dev->ep[UDC_EP0IN_IDX];
  1894. epsts = ep->epsts;
  1895. ep->epsts = 0;
  1896. if (!(epsts & (UDC_EPSTS_IN | UDC_EPSTS_BNA | UDC_EPSTS_HE |
  1897. UDC_EPSTS_TDC | UDC_EPSTS_RCS | UDC_EPSTS_TXEMPTY |
  1898. UDC_EPSTS_XFERDONE)))
  1899. return;
  1900. if ((epsts & UDC_EPSTS_BNA))
  1901. return;
  1902. if (epsts & UDC_EPSTS_HE)
  1903. return;
  1904. if ((epsts & UDC_EPSTS_TDC) && (!dev->stall))
  1905. pch_udc_complete_transfer(ep);
  1906. /* On IN interrupt, provide data if we have any */
  1907. if ((epsts & UDC_EPSTS_IN) && !(epsts & UDC_EPSTS_TDC) &&
  1908. !(epsts & UDC_EPSTS_TXEMPTY))
  1909. pch_udc_start_next_txrequest(ep);
  1910. }
  1911. /**
  1912. * pch_udc_svc_control_out() - Routine that handle Control
  1913. * OUT endpoint interrupts
  1914. * @dev: Reference to the device structure
  1915. */
  1916. static void pch_udc_svc_control_out(struct pch_udc_dev *dev)
  1917. {
  1918. u32 stat;
  1919. int setup_supported;
  1920. struct pch_udc_ep *ep;
  1921. ep = &dev->ep[UDC_EP0OUT_IDX];
  1922. stat = ep->epsts;
  1923. ep->epsts = 0;
  1924. /* If setup data */
  1925. if (((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1926. UDC_EPSTS_OUT_SETUP) {
  1927. dev->stall = 0;
  1928. dev->ep[UDC_EP0IN_IDX].halted = 0;
  1929. dev->ep[UDC_EP0OUT_IDX].halted = 0;
  1930. /* In data not ready */
  1931. pch_udc_ep_set_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1932. dev->setup_data = ep->td_stp->request;
  1933. pch_udc_init_setup_buff(ep->td_stp);
  1934. pch_udc_clear_dma(dev, DMA_DIR_TX);
  1935. pch_udc_ep_fifo_flush(&(dev->ep[UDC_EP0IN_IDX]),
  1936. dev->ep[UDC_EP0IN_IDX].in);
  1937. if ((dev->setup_data.bRequestType & USB_DIR_IN))
  1938. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  1939. else /* OUT */
  1940. dev->gadget.ep0 = &ep->ep;
  1941. spin_unlock(&dev->lock);
  1942. /* If Mass storage Reset */
  1943. if ((dev->setup_data.bRequestType == 0x21) &&
  1944. (dev->setup_data.bRequest == 0xFF))
  1945. dev->prot_stall = 0;
  1946. /* call gadget with setup data received */
  1947. setup_supported = dev->driver->setup(&dev->gadget,
  1948. &dev->setup_data);
  1949. spin_lock(&dev->lock);
  1950. /* ep0 in returns data on IN phase */
  1951. if (setup_supported >= 0 && setup_supported <
  1952. UDC_EP0IN_MAX_PKT_SIZE) {
  1953. pch_udc_ep_clear_nak(&(dev->ep[UDC_EP0IN_IDX]));
  1954. /* Gadget would have queued a request when
  1955. * we called the setup */
  1956. pch_udc_set_dma(dev, DMA_DIR_RX);
  1957. pch_udc_ep_clear_nak(ep);
  1958. } else if (setup_supported < 0) {
  1959. /* if unsupported request, then stall */
  1960. pch_udc_ep_set_stall(&(dev->ep[UDC_EP0IN_IDX]));
  1961. pch_udc_enable_ep_interrupts(ep->dev,
  1962. PCH_UDC_EPINT(ep->in, ep->num));
  1963. dev->stall = 0;
  1964. pch_udc_set_dma(dev, DMA_DIR_RX);
  1965. } else {
  1966. dev->waiting_zlp_ack = 1;
  1967. }
  1968. } else if ((((stat & UDC_EPSTS_OUT_MASK) >> UDC_EPSTS_OUT_SHIFT) ==
  1969. UDC_EPSTS_OUT_DATA) && !dev->stall) {
  1970. if (list_empty(&ep->queue)) {
  1971. dev_err(&dev->pdev->dev, "%s: No request\n", __func__);
  1972. ep->td_data->status = (ep->td_data->status &
  1973. ~PCH_UDC_BUFF_STS) |
  1974. PCH_UDC_BS_HST_RDY;
  1975. pch_udc_set_dma(dev, DMA_DIR_RX);
  1976. } else {
  1977. /* control write */
  1978. /* next function will pickuo an clear the status */
  1979. ep->epsts = stat;
  1980. pch_udc_svc_data_out(dev, 0);
  1981. /* re-program desc. pointer for possible ZLPs */
  1982. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  1983. pch_udc_set_dma(dev, DMA_DIR_RX);
  1984. }
  1985. }
  1986. pch_udc_ep_set_rrdy(ep);
  1987. }
  1988. /**
  1989. * pch_udc_postsvc_epinters() - This function enables end point interrupts
  1990. * and clears NAK status
  1991. * @dev: Reference to the device structure
  1992. * @ep_num: End point number
  1993. */
  1994. static void pch_udc_postsvc_epinters(struct pch_udc_dev *dev, int ep_num)
  1995. {
  1996. struct pch_udc_ep *ep;
  1997. struct pch_udc_request *req;
  1998. ep = &dev->ep[2*ep_num];
  1999. if (!list_empty(&ep->queue)) {
  2000. req = list_entry(ep->queue.next, struct pch_udc_request, queue);
  2001. pch_udc_enable_ep_interrupts(ep->dev,
  2002. PCH_UDC_EPINT(ep->in, ep->num));
  2003. pch_udc_ep_clear_nak(ep);
  2004. }
  2005. }
  2006. /**
  2007. * pch_udc_read_all_epstatus() - This function read all endpoint status
  2008. * @dev: Reference to the device structure
  2009. * @ep_intr: Status of endpoint interrupt
  2010. */
  2011. static void pch_udc_read_all_epstatus(struct pch_udc_dev *dev, u32 ep_intr)
  2012. {
  2013. int i;
  2014. struct pch_udc_ep *ep;
  2015. for (i = 0; i < PCH_UDC_USED_EP_NUM; i++) {
  2016. /* IN */
  2017. if (ep_intr & (0x1 << i)) {
  2018. ep = &dev->ep[2*i];
  2019. ep->epsts = pch_udc_read_ep_status(ep);
  2020. pch_udc_clear_ep_status(ep, ep->epsts);
  2021. }
  2022. /* OUT */
  2023. if (ep_intr & (0x10000 << i)) {
  2024. ep = &dev->ep[2*i+1];
  2025. ep->epsts = pch_udc_read_ep_status(ep);
  2026. pch_udc_clear_ep_status(ep, ep->epsts);
  2027. }
  2028. }
  2029. }
  2030. /**
  2031. * pch_udc_activate_control_ep() - This function enables the control endpoints
  2032. * for traffic after a reset
  2033. * @dev: Reference to the device structure
  2034. */
  2035. static void pch_udc_activate_control_ep(struct pch_udc_dev *dev)
  2036. {
  2037. struct pch_udc_ep *ep;
  2038. u32 val;
  2039. /* Setup the IN endpoint */
  2040. ep = &dev->ep[UDC_EP0IN_IDX];
  2041. pch_udc_clear_ep_control(ep);
  2042. pch_udc_ep_fifo_flush(ep, ep->in);
  2043. pch_udc_ep_set_bufsz(ep, UDC_EP0IN_BUFF_SIZE, ep->in);
  2044. pch_udc_ep_set_maxpkt(ep, UDC_EP0IN_MAX_PKT_SIZE);
  2045. /* Initialize the IN EP Descriptor */
  2046. ep->td_data = NULL;
  2047. ep->td_stp = NULL;
  2048. ep->td_data_phys = 0;
  2049. ep->td_stp_phys = 0;
  2050. /* Setup the OUT endpoint */
  2051. ep = &dev->ep[UDC_EP0OUT_IDX];
  2052. pch_udc_clear_ep_control(ep);
  2053. pch_udc_ep_fifo_flush(ep, ep->in);
  2054. pch_udc_ep_set_bufsz(ep, UDC_EP0OUT_BUFF_SIZE, ep->in);
  2055. pch_udc_ep_set_maxpkt(ep, UDC_EP0OUT_MAX_PKT_SIZE);
  2056. val = UDC_EP0OUT_MAX_PKT_SIZE << UDC_CSR_NE_MAX_PKT_SHIFT;
  2057. pch_udc_write_csr(ep->dev, val, UDC_EP0OUT_IDX);
  2058. /* Initialize the SETUP buffer */
  2059. pch_udc_init_setup_buff(ep->td_stp);
  2060. /* Write the pointer address of dma descriptor */
  2061. pch_udc_ep_set_subptr(ep, ep->td_stp_phys);
  2062. /* Write the pointer address of Setup descriptor */
  2063. pch_udc_ep_set_ddptr(ep, ep->td_data_phys);
  2064. /* Initialize the dma descriptor */
  2065. ep->td_data->status = PCH_UDC_DMA_LAST;
  2066. ep->td_data->dataptr = dev->dma_addr;
  2067. ep->td_data->next = ep->td_data_phys;
  2068. pch_udc_ep_clear_nak(ep);
  2069. }
  2070. /**
  2071. * pch_udc_svc_ur_interrupt() - This function handles a USB reset interrupt
  2072. * @dev: Reference to driver structure
  2073. */
  2074. static void pch_udc_svc_ur_interrupt(struct pch_udc_dev *dev)
  2075. {
  2076. struct pch_udc_ep *ep;
  2077. int i;
  2078. pch_udc_clear_dma(dev, DMA_DIR_TX);
  2079. pch_udc_clear_dma(dev, DMA_DIR_RX);
  2080. /* Mask all endpoint interrupts */
  2081. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2082. /* clear all endpoint interrupts */
  2083. pch_udc_write_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2084. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2085. ep = &dev->ep[i];
  2086. pch_udc_clear_ep_status(ep, UDC_EPSTS_ALL_CLR_MASK);
  2087. pch_udc_clear_ep_control(ep);
  2088. pch_udc_ep_set_ddptr(ep, 0);
  2089. pch_udc_write_csr(ep->dev, 0x00, i);
  2090. }
  2091. dev->stall = 0;
  2092. dev->prot_stall = 0;
  2093. dev->waiting_zlp_ack = 0;
  2094. dev->set_cfg_not_acked = 0;
  2095. /* disable ep to empty req queue. Skip the control EP's */
  2096. for (i = 0; i < (PCH_UDC_USED_EP_NUM*2); i++) {
  2097. ep = &dev->ep[i];
  2098. pch_udc_ep_set_nak(ep);
  2099. pch_udc_ep_fifo_flush(ep, ep->in);
  2100. /* Complete request queue */
  2101. empty_req_queue(ep);
  2102. }
  2103. if (dev->driver && dev->driver->disconnect)
  2104. dev->driver->disconnect(&dev->gadget);
  2105. }
  2106. /**
  2107. * pch_udc_svc_enum_interrupt() - This function handles a USB speed enumeration
  2108. * done interrupt
  2109. * @dev: Reference to driver structure
  2110. */
  2111. static void pch_udc_svc_enum_interrupt(struct pch_udc_dev *dev)
  2112. {
  2113. u32 dev_stat, dev_speed;
  2114. u32 speed = USB_SPEED_FULL;
  2115. dev_stat = pch_udc_read_device_status(dev);
  2116. dev_speed = (dev_stat & UDC_DEVSTS_ENUM_SPEED_MASK) >>
  2117. UDC_DEVSTS_ENUM_SPEED_SHIFT;
  2118. switch (dev_speed) {
  2119. case UDC_DEVSTS_ENUM_SPEED_HIGH:
  2120. speed = USB_SPEED_HIGH;
  2121. break;
  2122. case UDC_DEVSTS_ENUM_SPEED_FULL:
  2123. speed = USB_SPEED_FULL;
  2124. break;
  2125. case UDC_DEVSTS_ENUM_SPEED_LOW:
  2126. speed = USB_SPEED_LOW;
  2127. break;
  2128. default:
  2129. BUG();
  2130. }
  2131. dev->gadget.speed = speed;
  2132. pch_udc_activate_control_ep(dev);
  2133. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 | UDC_EPINT_OUT_EP0);
  2134. pch_udc_set_dma(dev, DMA_DIR_TX);
  2135. pch_udc_set_dma(dev, DMA_DIR_RX);
  2136. pch_udc_ep_set_rrdy(&(dev->ep[UDC_EP0OUT_IDX]));
  2137. }
  2138. /**
  2139. * pch_udc_svc_intf_interrupt() - This function handles a set interface
  2140. * interrupt
  2141. * @dev: Reference to driver structure
  2142. */
  2143. static void pch_udc_svc_intf_interrupt(struct pch_udc_dev *dev)
  2144. {
  2145. u32 reg, dev_stat = 0;
  2146. int i, ret;
  2147. dev_stat = pch_udc_read_device_status(dev);
  2148. dev->cfg_data.cur_intf = (dev_stat & UDC_DEVSTS_INTF_MASK) >>
  2149. UDC_DEVSTS_INTF_SHIFT;
  2150. dev->cfg_data.cur_alt = (dev_stat & UDC_DEVSTS_ALT_MASK) >>
  2151. UDC_DEVSTS_ALT_SHIFT;
  2152. dev->set_cfg_not_acked = 1;
  2153. /* Construct the usb request for gadget driver and inform it */
  2154. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2155. dev->setup_data.bRequest = USB_REQ_SET_INTERFACE;
  2156. dev->setup_data.bRequestType = USB_RECIP_INTERFACE;
  2157. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_alt);
  2158. dev->setup_data.wIndex = cpu_to_le16(dev->cfg_data.cur_intf);
  2159. /* programm the Endpoint Cfg registers */
  2160. /* Only one end point cfg register */
  2161. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2162. reg = (reg & ~UDC_CSR_NE_INTF_MASK) |
  2163. (dev->cfg_data.cur_intf << UDC_CSR_NE_INTF_SHIFT);
  2164. reg = (reg & ~UDC_CSR_NE_ALT_MASK) |
  2165. (dev->cfg_data.cur_alt << UDC_CSR_NE_ALT_SHIFT);
  2166. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2167. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2168. /* clear stall bits */
  2169. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2170. dev->ep[i].halted = 0;
  2171. }
  2172. dev->stall = 0;
  2173. spin_unlock(&dev->lock);
  2174. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2175. spin_lock(&dev->lock);
  2176. }
  2177. /**
  2178. * pch_udc_svc_cfg_interrupt() - This function handles a set configuration
  2179. * interrupt
  2180. * @dev: Reference to driver structure
  2181. */
  2182. static void pch_udc_svc_cfg_interrupt(struct pch_udc_dev *dev)
  2183. {
  2184. int i, ret;
  2185. u32 reg, dev_stat = 0;
  2186. dev_stat = pch_udc_read_device_status(dev);
  2187. dev->set_cfg_not_acked = 1;
  2188. dev->cfg_data.cur_cfg = (dev_stat & UDC_DEVSTS_CFG_MASK) >>
  2189. UDC_DEVSTS_CFG_SHIFT;
  2190. /* make usb request for gadget driver */
  2191. memset(&dev->setup_data, 0 , sizeof dev->setup_data);
  2192. dev->setup_data.bRequest = USB_REQ_SET_CONFIGURATION;
  2193. dev->setup_data.wValue = cpu_to_le16(dev->cfg_data.cur_cfg);
  2194. /* program the NE registers */
  2195. /* Only one end point cfg register */
  2196. reg = pch_udc_read_csr(dev, UDC_EP0OUT_IDX);
  2197. reg = (reg & ~UDC_CSR_NE_CFG_MASK) |
  2198. (dev->cfg_data.cur_cfg << UDC_CSR_NE_CFG_SHIFT);
  2199. pch_udc_write_csr(dev, reg, UDC_EP0OUT_IDX);
  2200. for (i = 0; i < PCH_UDC_USED_EP_NUM * 2; i++) {
  2201. /* clear stall bits */
  2202. pch_udc_ep_clear_stall(&(dev->ep[i]));
  2203. dev->ep[i].halted = 0;
  2204. }
  2205. dev->stall = 0;
  2206. /* call gadget zero with setup data received */
  2207. spin_unlock(&dev->lock);
  2208. ret = dev->driver->setup(&dev->gadget, &dev->setup_data);
  2209. spin_lock(&dev->lock);
  2210. }
  2211. /**
  2212. * pch_udc_dev_isr() - This function services device interrupts
  2213. * by invoking appropriate routines.
  2214. * @dev: Reference to the device structure
  2215. * @dev_intr: The Device interrupt status.
  2216. */
  2217. static void pch_udc_dev_isr(struct pch_udc_dev *dev, u32 dev_intr)
  2218. {
  2219. /* USB Reset Interrupt */
  2220. if (dev_intr & UDC_DEVINT_UR)
  2221. pch_udc_svc_ur_interrupt(dev);
  2222. /* Enumeration Done Interrupt */
  2223. if (dev_intr & UDC_DEVINT_ENUM)
  2224. pch_udc_svc_enum_interrupt(dev);
  2225. /* Set Interface Interrupt */
  2226. if (dev_intr & UDC_DEVINT_SI)
  2227. pch_udc_svc_intf_interrupt(dev);
  2228. /* Set Config Interrupt */
  2229. if (dev_intr & UDC_DEVINT_SC)
  2230. pch_udc_svc_cfg_interrupt(dev);
  2231. /* USB Suspend interrupt */
  2232. if (dev_intr & UDC_DEVINT_US)
  2233. dev_dbg(&dev->pdev->dev, "USB_SUSPEND\n");
  2234. /* Clear the SOF interrupt, if enabled */
  2235. if (dev_intr & UDC_DEVINT_SOF)
  2236. dev_dbg(&dev->pdev->dev, "SOF\n");
  2237. /* ES interrupt, IDLE > 3ms on the USB */
  2238. if (dev_intr & UDC_DEVINT_ES)
  2239. dev_dbg(&dev->pdev->dev, "ES\n");
  2240. /* RWKP interrupt */
  2241. if (dev_intr & UDC_DEVINT_RWKP)
  2242. dev_dbg(&dev->pdev->dev, "RWKP\n");
  2243. }
  2244. /**
  2245. * pch_udc_isr() - This function handles interrupts from the PCH USB Device
  2246. * @irq: Interrupt request number
  2247. * @dev: Reference to the device structure
  2248. */
  2249. static irqreturn_t pch_udc_isr(int irq, void *pdev)
  2250. {
  2251. struct pch_udc_dev *dev = (struct pch_udc_dev *) pdev;
  2252. u32 dev_intr, ep_intr;
  2253. int i;
  2254. dev_intr = pch_udc_read_device_interrupts(dev);
  2255. ep_intr = pch_udc_read_ep_interrupts(dev);
  2256. if (dev_intr)
  2257. /* Clear device interrupts */
  2258. pch_udc_write_device_interrupts(dev, dev_intr);
  2259. if (ep_intr)
  2260. /* Clear ep interrupts */
  2261. pch_udc_write_ep_interrupts(dev, ep_intr);
  2262. if (!dev_intr && !ep_intr)
  2263. return IRQ_NONE;
  2264. spin_lock(&dev->lock);
  2265. if (dev_intr)
  2266. pch_udc_dev_isr(dev, dev_intr);
  2267. if (ep_intr) {
  2268. pch_udc_read_all_epstatus(dev, ep_intr);
  2269. /* Process Control In interrupts, if present */
  2270. if (ep_intr & UDC_EPINT_IN_EP0) {
  2271. pch_udc_svc_control_in(dev);
  2272. pch_udc_postsvc_epinters(dev, 0);
  2273. }
  2274. /* Process Control Out interrupts, if present */
  2275. if (ep_intr & UDC_EPINT_OUT_EP0)
  2276. pch_udc_svc_control_out(dev);
  2277. /* Process data in end point interrupts */
  2278. for (i = 1; i < PCH_UDC_USED_EP_NUM; i++) {
  2279. if (ep_intr & (1 << i)) {
  2280. pch_udc_svc_data_in(dev, i);
  2281. pch_udc_postsvc_epinters(dev, i);
  2282. }
  2283. }
  2284. /* Process data out end point interrupts */
  2285. for (i = UDC_EPINT_OUT_SHIFT + 1; i < (UDC_EPINT_OUT_SHIFT +
  2286. PCH_UDC_USED_EP_NUM); i++)
  2287. if (ep_intr & (1 << i))
  2288. pch_udc_svc_data_out(dev, i -
  2289. UDC_EPINT_OUT_SHIFT);
  2290. }
  2291. spin_unlock(&dev->lock);
  2292. return IRQ_HANDLED;
  2293. }
  2294. /**
  2295. * pch_udc_setup_ep0() - This function enables control endpoint for traffic
  2296. * @dev: Reference to the device structure
  2297. */
  2298. static void pch_udc_setup_ep0(struct pch_udc_dev *dev)
  2299. {
  2300. /* enable ep0 interrupts */
  2301. pch_udc_enable_ep_interrupts(dev, UDC_EPINT_IN_EP0 |
  2302. UDC_EPINT_OUT_EP0);
  2303. /* enable device interrupts */
  2304. pch_udc_enable_interrupts(dev, UDC_DEVINT_UR | UDC_DEVINT_US |
  2305. UDC_DEVINT_ES | UDC_DEVINT_ENUM |
  2306. UDC_DEVINT_SI | UDC_DEVINT_SC);
  2307. }
  2308. /**
  2309. * gadget_release() - Free the gadget driver private data
  2310. * @pdev reference to struct pci_dev
  2311. */
  2312. static void gadget_release(struct device *pdev)
  2313. {
  2314. struct pch_udc_dev *dev = dev_get_drvdata(pdev);
  2315. kfree(dev);
  2316. }
  2317. /**
  2318. * pch_udc_pcd_reinit() - This API initializes the endpoint structures
  2319. * @dev: Reference to the driver structure
  2320. */
  2321. static void pch_udc_pcd_reinit(struct pch_udc_dev *dev)
  2322. {
  2323. const char *const ep_string[] = {
  2324. ep0_string, "ep0out", "ep1in", "ep1out", "ep2in", "ep2out",
  2325. "ep3in", "ep3out", "ep4in", "ep4out", "ep5in", "ep5out",
  2326. "ep6in", "ep6out", "ep7in", "ep7out", "ep8in", "ep8out",
  2327. "ep9in", "ep9out", "ep10in", "ep10out", "ep11in", "ep11out",
  2328. "ep12in", "ep12out", "ep13in", "ep13out", "ep14in", "ep14out",
  2329. "ep15in", "ep15out",
  2330. };
  2331. int i;
  2332. dev->gadget.speed = USB_SPEED_UNKNOWN;
  2333. INIT_LIST_HEAD(&dev->gadget.ep_list);
  2334. /* Initialize the endpoints structures */
  2335. memset(dev->ep, 0, sizeof dev->ep);
  2336. for (i = 0; i < PCH_UDC_EP_NUM; i++) {
  2337. struct pch_udc_ep *ep = &dev->ep[i];
  2338. ep->dev = dev;
  2339. ep->halted = 1;
  2340. ep->num = i / 2;
  2341. ep->in = ~i & 1;
  2342. ep->ep.name = ep_string[i];
  2343. ep->ep.ops = &pch_udc_ep_ops;
  2344. if (ep->in)
  2345. ep->offset_addr = ep->num * UDC_EP_REG_SHIFT;
  2346. else
  2347. ep->offset_addr = (UDC_EPINT_OUT_SHIFT + ep->num) *
  2348. UDC_EP_REG_SHIFT;
  2349. /* need to set ep->ep.maxpacket and set Default Configuration?*/
  2350. ep->ep.maxpacket = UDC_BULK_MAX_PKT_SIZE;
  2351. list_add_tail(&ep->ep.ep_list, &dev->gadget.ep_list);
  2352. INIT_LIST_HEAD(&ep->queue);
  2353. }
  2354. dev->ep[UDC_EP0IN_IDX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  2355. dev->ep[UDC_EP0OUT_IDX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  2356. dev->dma_addr = pci_map_single(dev->pdev, dev->ep0out_buf, 256,
  2357. PCI_DMA_FROMDEVICE);
  2358. /* remove ep0 in and out from the list. They have own pointer */
  2359. list_del_init(&dev->ep[UDC_EP0IN_IDX].ep.ep_list);
  2360. list_del_init(&dev->ep[UDC_EP0OUT_IDX].ep.ep_list);
  2361. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IDX].ep;
  2362. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  2363. }
  2364. /**
  2365. * pch_udc_pcd_init() - This API initializes the driver structure
  2366. * @dev: Reference to the driver structure
  2367. *
  2368. * Return codes:
  2369. * 0: Success
  2370. */
  2371. static int pch_udc_pcd_init(struct pch_udc_dev *dev)
  2372. {
  2373. pch_udc_init(dev);
  2374. pch_udc_pcd_reinit(dev);
  2375. return 0;
  2376. }
  2377. /**
  2378. * init_dma_pools() - create dma pools during initialization
  2379. * @pdev: reference to struct pci_dev
  2380. */
  2381. static int init_dma_pools(struct pch_udc_dev *dev)
  2382. {
  2383. struct pch_udc_stp_dma_desc *td_stp;
  2384. struct pch_udc_data_dma_desc *td_data;
  2385. /* DMA setup */
  2386. dev->data_requests = pci_pool_create("data_requests", dev->pdev,
  2387. sizeof(struct pch_udc_data_dma_desc), 0, 0);
  2388. if (!dev->data_requests) {
  2389. dev_err(&dev->pdev->dev, "%s: can't get request data pool\n",
  2390. __func__);
  2391. return -ENOMEM;
  2392. }
  2393. /* dma desc for setup data */
  2394. dev->stp_requests = pci_pool_create("setup requests", dev->pdev,
  2395. sizeof(struct pch_udc_stp_dma_desc), 0, 0);
  2396. if (!dev->stp_requests) {
  2397. dev_err(&dev->pdev->dev, "%s: can't get setup request pool\n",
  2398. __func__);
  2399. return -ENOMEM;
  2400. }
  2401. /* setup */
  2402. td_stp = pci_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2403. &dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2404. if (!td_stp) {
  2405. dev_err(&dev->pdev->dev,
  2406. "%s: can't allocate setup dma descriptor\n", __func__);
  2407. return -ENOMEM;
  2408. }
  2409. dev->ep[UDC_EP0OUT_IDX].td_stp = td_stp;
  2410. /* data: 0 packets !? */
  2411. td_data = pci_pool_alloc(dev->data_requests, GFP_KERNEL,
  2412. &dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2413. if (!td_data) {
  2414. dev_err(&dev->pdev->dev,
  2415. "%s: can't allocate data dma descriptor\n", __func__);
  2416. return -ENOMEM;
  2417. }
  2418. dev->ep[UDC_EP0OUT_IDX].td_data = td_data;
  2419. dev->ep[UDC_EP0IN_IDX].td_stp = NULL;
  2420. dev->ep[UDC_EP0IN_IDX].td_stp_phys = 0;
  2421. dev->ep[UDC_EP0IN_IDX].td_data = NULL;
  2422. dev->ep[UDC_EP0IN_IDX].td_data_phys = 0;
  2423. return 0;
  2424. }
  2425. int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
  2426. int (*bind)(struct usb_gadget *))
  2427. {
  2428. struct pch_udc_dev *dev = pch_udc;
  2429. int retval;
  2430. if (!driver || (driver->speed == USB_SPEED_UNKNOWN) || !bind ||
  2431. !driver->setup || !driver->unbind || !driver->disconnect) {
  2432. dev_err(&dev->pdev->dev,
  2433. "%s: invalid driver parameter\n", __func__);
  2434. return -EINVAL;
  2435. }
  2436. if (!dev)
  2437. return -ENODEV;
  2438. if (dev->driver) {
  2439. dev_err(&dev->pdev->dev, "%s: already bound\n", __func__);
  2440. return -EBUSY;
  2441. }
  2442. driver->driver.bus = NULL;
  2443. dev->driver = driver;
  2444. dev->gadget.dev.driver = &driver->driver;
  2445. /* Invoke the bind routine of the gadget driver */
  2446. retval = bind(&dev->gadget);
  2447. if (retval) {
  2448. dev_err(&dev->pdev->dev, "%s: binding to %s returning %d\n",
  2449. __func__, driver->driver.name, retval);
  2450. dev->driver = NULL;
  2451. dev->gadget.dev.driver = NULL;
  2452. return retval;
  2453. }
  2454. /* get ready for ep0 traffic */
  2455. pch_udc_setup_ep0(dev);
  2456. /* clear SD */
  2457. pch_udc_clear_disconnect(dev);
  2458. dev->connected = 1;
  2459. return 0;
  2460. }
  2461. EXPORT_SYMBOL(usb_gadget_probe_driver);
  2462. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  2463. {
  2464. struct pch_udc_dev *dev = pch_udc;
  2465. if (!dev)
  2466. return -ENODEV;
  2467. if (!driver || (driver != dev->driver)) {
  2468. dev_err(&dev->pdev->dev,
  2469. "%s: invalid driver parameter\n", __func__);
  2470. return -EINVAL;
  2471. }
  2472. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2473. /* Assues that there are no pending requets with this driver */
  2474. driver->unbind(&dev->gadget);
  2475. dev->gadget.dev.driver = NULL;
  2476. dev->driver = NULL;
  2477. dev->connected = 0;
  2478. /* set SD */
  2479. pch_udc_set_disconnect(dev);
  2480. return 0;
  2481. }
  2482. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  2483. static void pch_udc_shutdown(struct pci_dev *pdev)
  2484. {
  2485. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2486. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2487. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2488. /* disable the pullup so the host will think we're gone */
  2489. pch_udc_set_disconnect(dev);
  2490. }
  2491. static void pch_udc_remove(struct pci_dev *pdev)
  2492. {
  2493. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2494. /* gadget driver must not be registered */
  2495. if (dev->driver)
  2496. dev_err(&pdev->dev,
  2497. "%s: gadget driver still bound!!!\n", __func__);
  2498. /* dma pool cleanup */
  2499. if (dev->data_requests)
  2500. pci_pool_destroy(dev->data_requests);
  2501. if (dev->stp_requests) {
  2502. /* cleanup DMA desc's for ep0in */
  2503. if (dev->ep[UDC_EP0OUT_IDX].td_stp) {
  2504. pci_pool_free(dev->stp_requests,
  2505. dev->ep[UDC_EP0OUT_IDX].td_stp,
  2506. dev->ep[UDC_EP0OUT_IDX].td_stp_phys);
  2507. }
  2508. if (dev->ep[UDC_EP0OUT_IDX].td_data) {
  2509. pci_pool_free(dev->stp_requests,
  2510. dev->ep[UDC_EP0OUT_IDX].td_data,
  2511. dev->ep[UDC_EP0OUT_IDX].td_data_phys);
  2512. }
  2513. pci_pool_destroy(dev->stp_requests);
  2514. }
  2515. pch_udc_exit(dev);
  2516. if (dev->irq_registered)
  2517. free_irq(pdev->irq, dev);
  2518. if (dev->base_addr)
  2519. iounmap(dev->base_addr);
  2520. if (dev->mem_region)
  2521. release_mem_region(dev->phys_addr,
  2522. pci_resource_len(pdev, PCH_UDC_PCI_BAR));
  2523. if (dev->active)
  2524. pci_disable_device(pdev);
  2525. if (dev->registered)
  2526. device_unregister(&dev->gadget.dev);
  2527. kfree(dev);
  2528. pci_set_drvdata(pdev, NULL);
  2529. }
  2530. #ifdef CONFIG_PM
  2531. static int pch_udc_suspend(struct pci_dev *pdev, pm_message_t state)
  2532. {
  2533. struct pch_udc_dev *dev = pci_get_drvdata(pdev);
  2534. pch_udc_disable_interrupts(dev, UDC_DEVINT_MSK);
  2535. pch_udc_disable_ep_interrupts(dev, UDC_EPINT_MSK_DISABLE_ALL);
  2536. pci_disable_device(pdev);
  2537. pci_enable_wake(pdev, PCI_D3hot, 0);
  2538. if (pci_save_state(pdev)) {
  2539. dev_err(&pdev->dev,
  2540. "%s: could not save PCI config state\n", __func__);
  2541. return -ENOMEM;
  2542. }
  2543. pci_set_power_state(pdev, pci_choose_state(pdev, state));
  2544. return 0;
  2545. }
  2546. static int pch_udc_resume(struct pci_dev *pdev)
  2547. {
  2548. int ret;
  2549. pci_set_power_state(pdev, PCI_D0);
  2550. ret = pci_restore_state(pdev);
  2551. if (ret) {
  2552. dev_err(&pdev->dev, "%s: pci_restore_state failed\n", __func__);
  2553. return ret;
  2554. }
  2555. ret = pci_enable_device(pdev);
  2556. if (ret) {
  2557. dev_err(&pdev->dev, "%s: pci_enable_device failed\n", __func__);
  2558. return ret;
  2559. }
  2560. pci_enable_wake(pdev, PCI_D3hot, 0);
  2561. return 0;
  2562. }
  2563. #else
  2564. #define pch_udc_suspend NULL
  2565. #define pch_udc_resume NULL
  2566. #endif /* CONFIG_PM */
  2567. static int pch_udc_probe(struct pci_dev *pdev,
  2568. const struct pci_device_id *id)
  2569. {
  2570. unsigned long resource;
  2571. unsigned long len;
  2572. int retval;
  2573. struct pch_udc_dev *dev;
  2574. /* one udc only */
  2575. if (pch_udc) {
  2576. pr_err("%s: already probed\n", __func__);
  2577. return -EBUSY;
  2578. }
  2579. /* init */
  2580. dev = kzalloc(sizeof *dev, GFP_KERNEL);
  2581. if (!dev) {
  2582. pr_err("%s: no memory for device structure\n", __func__);
  2583. return -ENOMEM;
  2584. }
  2585. /* pci setup */
  2586. if (pci_enable_device(pdev) < 0) {
  2587. kfree(dev);
  2588. pr_err("%s: pci_enable_device failed\n", __func__);
  2589. return -ENODEV;
  2590. }
  2591. dev->active = 1;
  2592. pci_set_drvdata(pdev, dev);
  2593. /* PCI resource allocation */
  2594. resource = pci_resource_start(pdev, 1);
  2595. len = pci_resource_len(pdev, 1);
  2596. if (!request_mem_region(resource, len, KBUILD_MODNAME)) {
  2597. dev_err(&pdev->dev, "%s: pci device used already\n", __func__);
  2598. retval = -EBUSY;
  2599. goto finished;
  2600. }
  2601. dev->phys_addr = resource;
  2602. dev->mem_region = 1;
  2603. dev->base_addr = ioremap_nocache(resource, len);
  2604. if (!dev->base_addr) {
  2605. pr_err("%s: device memory cannot be mapped\n", __func__);
  2606. retval = -ENOMEM;
  2607. goto finished;
  2608. }
  2609. if (!pdev->irq) {
  2610. dev_err(&pdev->dev, "%s: irq not set\n", __func__);
  2611. retval = -ENODEV;
  2612. goto finished;
  2613. }
  2614. pch_udc = dev;
  2615. /* initialize the hardware */
  2616. if (pch_udc_pcd_init(dev))
  2617. goto finished;
  2618. if (request_irq(pdev->irq, pch_udc_isr, IRQF_SHARED, KBUILD_MODNAME,
  2619. dev)) {
  2620. dev_err(&pdev->dev, "%s: request_irq(%d) fail\n", __func__,
  2621. pdev->irq);
  2622. retval = -ENODEV;
  2623. goto finished;
  2624. }
  2625. dev->irq = pdev->irq;
  2626. dev->irq_registered = 1;
  2627. pci_set_master(pdev);
  2628. pci_try_set_mwi(pdev);
  2629. /* device struct setup */
  2630. spin_lock_init(&dev->lock);
  2631. dev->pdev = pdev;
  2632. dev->gadget.ops = &pch_udc_ops;
  2633. retval = init_dma_pools(dev);
  2634. if (retval)
  2635. goto finished;
  2636. dev_set_name(&dev->gadget.dev, "gadget");
  2637. dev->gadget.dev.parent = &pdev->dev;
  2638. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2639. dev->gadget.dev.release = gadget_release;
  2640. dev->gadget.name = KBUILD_MODNAME;
  2641. dev->gadget.is_dualspeed = 1;
  2642. retval = device_register(&dev->gadget.dev);
  2643. if (retval)
  2644. goto finished;
  2645. dev->registered = 1;
  2646. /* Put the device in disconnected state till a driver is bound */
  2647. pch_udc_set_disconnect(dev);
  2648. return 0;
  2649. finished:
  2650. pch_udc_remove(pdev);
  2651. return retval;
  2652. }
  2653. static DEFINE_PCI_DEVICE_TABLE(pch_udc_pcidev_id) = {
  2654. {
  2655. PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_EG20T_UDC),
  2656. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2657. .class_mask = 0xffffffff,
  2658. },
  2659. { 0 },
  2660. };
  2661. MODULE_DEVICE_TABLE(pci, pch_udc_pcidev_id);
  2662. static struct pci_driver pch_udc_driver = {
  2663. .name = KBUILD_MODNAME,
  2664. .id_table = pch_udc_pcidev_id,
  2665. .probe = pch_udc_probe,
  2666. .remove = pch_udc_remove,
  2667. .suspend = pch_udc_suspend,
  2668. .resume = pch_udc_resume,
  2669. .shutdown = pch_udc_shutdown,
  2670. };
  2671. static int __init pch_udc_pci_init(void)
  2672. {
  2673. return pci_register_driver(&pch_udc_driver);
  2674. }
  2675. module_init(pch_udc_pci_init);
  2676. static void __exit pch_udc_pci_exit(void)
  2677. {
  2678. pci_unregister_driver(&pch_udc_driver);
  2679. }
  2680. module_exit(pch_udc_pci_exit);
  2681. MODULE_DESCRIPTION("Intel EG20T USB Device Controller");
  2682. MODULE_AUTHOR("OKI SEMICONDUCTOR, <toshiharu-linux@dsn.okisemi.com>");
  2683. MODULE_LICENSE("GPL");