amd5536udc.c 85 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469
  1. /*
  2. * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
  3. *
  4. * Copyright (C) 2005-2007 AMD (http://www.amd.com)
  5. * Author: Thomas Dahlmann
  6. *
  7. * This program is free software; you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation; either version 2 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program; if not, write to the Free Software
  19. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  20. */
  21. /*
  22. * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
  23. * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
  24. * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
  25. *
  26. * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
  27. * be used as host port) and UOC bits PAD_EN and APU are set (should be done
  28. * by BIOS init).
  29. *
  30. * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
  31. * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
  32. * can be used with gadget ether.
  33. */
  34. /* debug control */
  35. /* #define UDC_VERBOSE */
  36. /* Driver strings */
  37. #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
  38. #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
  39. /* system */
  40. #include <linux/module.h>
  41. #include <linux/pci.h>
  42. #include <linux/kernel.h>
  43. #include <linux/delay.h>
  44. #include <linux/ioport.h>
  45. #include <linux/sched.h>
  46. #include <linux/slab.h>
  47. #include <linux/errno.h>
  48. #include <linux/init.h>
  49. #include <linux/timer.h>
  50. #include <linux/list.h>
  51. #include <linux/interrupt.h>
  52. #include <linux/ioctl.h>
  53. #include <linux/fs.h>
  54. #include <linux/dmapool.h>
  55. #include <linux/moduleparam.h>
  56. #include <linux/device.h>
  57. #include <linux/io.h>
  58. #include <linux/irq.h>
  59. #include <asm/byteorder.h>
  60. #include <asm/system.h>
  61. #include <asm/unaligned.h>
  62. /* gadget stack */
  63. #include <linux/usb/ch9.h>
  64. #include <linux/usb/gadget.h>
  65. /* udc specific */
  66. #include "amd5536udc.h"
  67. static void udc_tasklet_disconnect(unsigned long);
  68. static void empty_req_queue(struct udc_ep *);
  69. static int udc_probe(struct udc *dev);
  70. static void udc_basic_init(struct udc *dev);
  71. static void udc_setup_endpoints(struct udc *dev);
  72. static void udc_soft_reset(struct udc *dev);
  73. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
  74. static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
  75. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
  76. static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
  77. unsigned long buf_len, gfp_t gfp_flags);
  78. static int udc_remote_wakeup(struct udc *dev);
  79. static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
  80. static void udc_pci_remove(struct pci_dev *pdev);
  81. /* description */
  82. static const char mod_desc[] = UDC_MOD_DESCRIPTION;
  83. static const char name[] = "amd5536udc";
  84. /* structure to hold endpoint function pointers */
  85. static const struct usb_ep_ops udc_ep_ops;
  86. /* received setup data */
  87. static union udc_setup_data setup_data;
  88. /* pointer to device object */
  89. static struct udc *udc;
  90. /* irq spin lock for soft reset */
  91. static DEFINE_SPINLOCK(udc_irq_spinlock);
  92. /* stall spin lock */
  93. static DEFINE_SPINLOCK(udc_stall_spinlock);
  94. /*
  95. * slave mode: pending bytes in rx fifo after nyet,
  96. * used if EPIN irq came but no req was available
  97. */
  98. static unsigned int udc_rxfifo_pending;
  99. /* count soft resets after suspend to avoid loop */
  100. static int soft_reset_occured;
  101. static int soft_reset_after_usbreset_occured;
  102. /* timer */
  103. static struct timer_list udc_timer;
  104. static int stop_timer;
  105. /* set_rde -- Is used to control enabling of RX DMA. Problem is
  106. * that UDC has only one bit (RDE) to enable/disable RX DMA for
  107. * all OUT endpoints. So we have to handle race conditions like
  108. * when OUT data reaches the fifo but no request was queued yet.
  109. * This cannot be solved by letting the RX DMA disabled until a
  110. * request gets queued because there may be other OUT packets
  111. * in the FIFO (important for not blocking control traffic).
  112. * The value of set_rde controls the correspondig timer.
  113. *
  114. * set_rde -1 == not used, means it is alloed to be set to 0 or 1
  115. * set_rde 0 == do not touch RDE, do no start the RDE timer
  116. * set_rde 1 == timer function will look whether FIFO has data
  117. * set_rde 2 == set by timer function to enable RX DMA on next call
  118. */
  119. static int set_rde = -1;
  120. static DECLARE_COMPLETION(on_exit);
  121. static struct timer_list udc_pollstall_timer;
  122. static int stop_pollstall_timer;
  123. static DECLARE_COMPLETION(on_pollstall_exit);
  124. /* tasklet for usb disconnect */
  125. static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
  126. (unsigned long) &udc);
  127. /* endpoint names used for print */
  128. static const char ep0_string[] = "ep0in";
  129. static const char *ep_string[] = {
  130. ep0_string,
  131. "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
  132. "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
  133. "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
  134. "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
  135. "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
  136. "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
  137. "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
  138. };
  139. /* DMA usage flag */
  140. static int use_dma = 1;
  141. /* packet per buffer dma */
  142. static int use_dma_ppb = 1;
  143. /* with per descr. update */
  144. static int use_dma_ppb_du;
  145. /* buffer fill mode */
  146. static int use_dma_bufferfill_mode;
  147. /* full speed only mode */
  148. static int use_fullspeed;
  149. /* tx buffer size for high speed */
  150. static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
  151. /* module parameters */
  152. module_param(use_dma, bool, S_IRUGO);
  153. MODULE_PARM_DESC(use_dma, "true for DMA");
  154. module_param(use_dma_ppb, bool, S_IRUGO);
  155. MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
  156. module_param(use_dma_ppb_du, bool, S_IRUGO);
  157. MODULE_PARM_DESC(use_dma_ppb_du,
  158. "true for DMA in packet per buffer mode with descriptor update");
  159. module_param(use_fullspeed, bool, S_IRUGO);
  160. MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
  161. /*---------------------------------------------------------------------------*/
  162. /* Prints UDC device registers and endpoint irq registers */
  163. static void print_regs(struct udc *dev)
  164. {
  165. DBG(dev, "------- Device registers -------\n");
  166. DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
  167. DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
  168. DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
  169. DBG(dev, "\n");
  170. DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
  171. DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
  172. DBG(dev, "\n");
  173. DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
  174. DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
  175. DBG(dev, "\n");
  176. DBG(dev, "USE DMA = %d\n", use_dma);
  177. if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
  178. DBG(dev, "DMA mode = PPBNDU (packet per buffer "
  179. "WITHOUT desc. update)\n");
  180. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
  181. } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
  182. DBG(dev, "DMA mode = PPBDU (packet per buffer "
  183. "WITH desc. update)\n");
  184. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
  185. }
  186. if (use_dma && use_dma_bufferfill_mode) {
  187. DBG(dev, "DMA mode = BF (buffer fill mode)\n");
  188. dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
  189. }
  190. if (!use_dma) {
  191. dev_info(&dev->pdev->dev, "FIFO mode\n");
  192. }
  193. DBG(dev, "-------------------------------------------------------\n");
  194. }
  195. /* Masks unused interrupts */
  196. static int udc_mask_unused_interrupts(struct udc *dev)
  197. {
  198. u32 tmp;
  199. /* mask all dev interrupts */
  200. tmp = AMD_BIT(UDC_DEVINT_SVC) |
  201. AMD_BIT(UDC_DEVINT_ENUM) |
  202. AMD_BIT(UDC_DEVINT_US) |
  203. AMD_BIT(UDC_DEVINT_UR) |
  204. AMD_BIT(UDC_DEVINT_ES) |
  205. AMD_BIT(UDC_DEVINT_SI) |
  206. AMD_BIT(UDC_DEVINT_SOF)|
  207. AMD_BIT(UDC_DEVINT_SC);
  208. writel(tmp, &dev->regs->irqmsk);
  209. /* mask all ep interrupts */
  210. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
  211. return 0;
  212. }
  213. /* Enables endpoint 0 interrupts */
  214. static int udc_enable_ep0_interrupts(struct udc *dev)
  215. {
  216. u32 tmp;
  217. DBG(dev, "udc_enable_ep0_interrupts()\n");
  218. /* read irq mask */
  219. tmp = readl(&dev->regs->ep_irqmsk);
  220. /* enable ep0 irq's */
  221. tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
  222. & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
  223. writel(tmp, &dev->regs->ep_irqmsk);
  224. return 0;
  225. }
  226. /* Enables device interrupts for SET_INTF and SET_CONFIG */
  227. static int udc_enable_dev_setup_interrupts(struct udc *dev)
  228. {
  229. u32 tmp;
  230. DBG(dev, "enable device interrupts for setup data\n");
  231. /* read irq mask */
  232. tmp = readl(&dev->regs->irqmsk);
  233. /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
  234. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
  235. & AMD_UNMASK_BIT(UDC_DEVINT_SC)
  236. & AMD_UNMASK_BIT(UDC_DEVINT_UR)
  237. & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
  238. & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
  239. writel(tmp, &dev->regs->irqmsk);
  240. return 0;
  241. }
  242. /* Calculates fifo start of endpoint based on preceeding endpoints */
  243. static int udc_set_txfifo_addr(struct udc_ep *ep)
  244. {
  245. struct udc *dev;
  246. u32 tmp;
  247. int i;
  248. if (!ep || !(ep->in))
  249. return -EINVAL;
  250. dev = ep->dev;
  251. ep->txfifo = dev->txfifo;
  252. /* traverse ep's */
  253. for (i = 0; i < ep->num; i++) {
  254. if (dev->ep[i].regs) {
  255. /* read fifo size */
  256. tmp = readl(&dev->ep[i].regs->bufin_framenum);
  257. tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
  258. ep->txfifo += tmp;
  259. }
  260. }
  261. return 0;
  262. }
  263. /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
  264. static u32 cnak_pending;
  265. static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
  266. {
  267. if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
  268. DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
  269. cnak_pending |= 1 << (num);
  270. ep->naking = 1;
  271. } else
  272. cnak_pending = cnak_pending & (~(1 << (num)));
  273. }
  274. /* Enables endpoint, is called by gadget driver */
  275. static int
  276. udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
  277. {
  278. struct udc_ep *ep;
  279. struct udc *dev;
  280. u32 tmp;
  281. unsigned long iflags;
  282. u8 udc_csr_epix;
  283. unsigned maxpacket;
  284. if (!usbep
  285. || usbep->name == ep0_string
  286. || !desc
  287. || desc->bDescriptorType != USB_DT_ENDPOINT)
  288. return -EINVAL;
  289. ep = container_of(usbep, struct udc_ep, ep);
  290. dev = ep->dev;
  291. DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
  292. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  293. return -ESHUTDOWN;
  294. spin_lock_irqsave(&dev->lock, iflags);
  295. ep->desc = desc;
  296. ep->halted = 0;
  297. /* set traffic type */
  298. tmp = readl(&dev->ep[ep->num].regs->ctl);
  299. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
  300. writel(tmp, &dev->ep[ep->num].regs->ctl);
  301. /* set max packet size */
  302. maxpacket = le16_to_cpu(desc->wMaxPacketSize);
  303. tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
  304. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
  305. ep->ep.maxpacket = maxpacket;
  306. writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
  307. /* IN ep */
  308. if (ep->in) {
  309. /* ep ix in UDC CSR register space */
  310. udc_csr_epix = ep->num;
  311. /* set buffer size (tx fifo entries) */
  312. tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
  313. /* double buffering: fifo size = 2 x max packet size */
  314. tmp = AMD_ADDBITS(
  315. tmp,
  316. maxpacket * UDC_EPIN_BUFF_SIZE_MULT
  317. / UDC_DWORD_BYTES,
  318. UDC_EPIN_BUFF_SIZE);
  319. writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
  320. /* calc. tx fifo base addr */
  321. udc_set_txfifo_addr(ep);
  322. /* flush fifo */
  323. tmp = readl(&ep->regs->ctl);
  324. tmp |= AMD_BIT(UDC_EPCTL_F);
  325. writel(tmp, &ep->regs->ctl);
  326. /* OUT ep */
  327. } else {
  328. /* ep ix in UDC CSR register space */
  329. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  330. /* set max packet size UDC CSR */
  331. tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  332. tmp = AMD_ADDBITS(tmp, maxpacket,
  333. UDC_CSR_NE_MAX_PKT);
  334. writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
  335. if (use_dma && !ep->in) {
  336. /* alloc and init BNA dummy request */
  337. ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
  338. ep->bna_occurred = 0;
  339. }
  340. if (ep->num != UDC_EP0OUT_IX)
  341. dev->data_ep_enabled = 1;
  342. }
  343. /* set ep values */
  344. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  345. /* max packet */
  346. tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
  347. /* ep number */
  348. tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
  349. /* ep direction */
  350. tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
  351. /* ep type */
  352. tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
  353. /* ep config */
  354. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
  355. /* ep interface */
  356. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
  357. /* ep alt */
  358. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
  359. /* write reg */
  360. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  361. /* enable ep irq */
  362. tmp = readl(&dev->regs->ep_irqmsk);
  363. tmp &= AMD_UNMASK_BIT(ep->num);
  364. writel(tmp, &dev->regs->ep_irqmsk);
  365. /*
  366. * clear NAK by writing CNAK
  367. * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
  368. */
  369. if (!use_dma || ep->in) {
  370. tmp = readl(&ep->regs->ctl);
  371. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  372. writel(tmp, &ep->regs->ctl);
  373. ep->naking = 0;
  374. UDC_QUEUE_CNAK(ep, ep->num);
  375. }
  376. tmp = desc->bEndpointAddress;
  377. DBG(dev, "%s enabled\n", usbep->name);
  378. spin_unlock_irqrestore(&dev->lock, iflags);
  379. return 0;
  380. }
  381. /* Resets endpoint */
  382. static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
  383. {
  384. u32 tmp;
  385. VDBG(ep->dev, "ep-%d reset\n", ep->num);
  386. ep->desc = NULL;
  387. ep->ep.ops = &udc_ep_ops;
  388. INIT_LIST_HEAD(&ep->queue);
  389. ep->ep.maxpacket = (u16) ~0;
  390. /* set NAK */
  391. tmp = readl(&ep->regs->ctl);
  392. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  393. writel(tmp, &ep->regs->ctl);
  394. ep->naking = 1;
  395. /* disable interrupt */
  396. tmp = readl(&regs->ep_irqmsk);
  397. tmp |= AMD_BIT(ep->num);
  398. writel(tmp, &regs->ep_irqmsk);
  399. if (ep->in) {
  400. /* unset P and IN bit of potential former DMA */
  401. tmp = readl(&ep->regs->ctl);
  402. tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
  403. writel(tmp, &ep->regs->ctl);
  404. tmp = readl(&ep->regs->sts);
  405. tmp |= AMD_BIT(UDC_EPSTS_IN);
  406. writel(tmp, &ep->regs->sts);
  407. /* flush the fifo */
  408. tmp = readl(&ep->regs->ctl);
  409. tmp |= AMD_BIT(UDC_EPCTL_F);
  410. writel(tmp, &ep->regs->ctl);
  411. }
  412. /* reset desc pointer */
  413. writel(0, &ep->regs->desptr);
  414. }
  415. /* Disables endpoint, is called by gadget driver */
  416. static int udc_ep_disable(struct usb_ep *usbep)
  417. {
  418. struct udc_ep *ep = NULL;
  419. unsigned long iflags;
  420. if (!usbep)
  421. return -EINVAL;
  422. ep = container_of(usbep, struct udc_ep, ep);
  423. if (usbep->name == ep0_string || !ep->desc)
  424. return -EINVAL;
  425. DBG(ep->dev, "Disable ep-%d\n", ep->num);
  426. spin_lock_irqsave(&ep->dev->lock, iflags);
  427. udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
  428. empty_req_queue(ep);
  429. ep_init(ep->dev->regs, ep);
  430. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  431. return 0;
  432. }
  433. /* Allocates request packet, called by gadget driver */
  434. static struct usb_request *
  435. udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
  436. {
  437. struct udc_request *req;
  438. struct udc_data_dma *dma_desc;
  439. struct udc_ep *ep;
  440. if (!usbep)
  441. return NULL;
  442. ep = container_of(usbep, struct udc_ep, ep);
  443. VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
  444. req = kzalloc(sizeof(struct udc_request), gfp);
  445. if (!req)
  446. return NULL;
  447. req->req.dma = DMA_DONT_USE;
  448. INIT_LIST_HEAD(&req->queue);
  449. if (ep->dma) {
  450. /* ep0 in requests are allocated from data pool here */
  451. dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
  452. &req->td_phys);
  453. if (!dma_desc) {
  454. kfree(req);
  455. return NULL;
  456. }
  457. VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
  458. "td_phys = %lx\n",
  459. req, dma_desc,
  460. (unsigned long)req->td_phys);
  461. /* prevent from using desc. - set HOST BUSY */
  462. dma_desc->status = AMD_ADDBITS(dma_desc->status,
  463. UDC_DMA_STP_STS_BS_HOST_BUSY,
  464. UDC_DMA_STP_STS_BS);
  465. dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
  466. req->td_data = dma_desc;
  467. req->td_data_last = NULL;
  468. req->chain_len = 1;
  469. }
  470. return &req->req;
  471. }
  472. /* Frees request packet, called by gadget driver */
  473. static void
  474. udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
  475. {
  476. struct udc_ep *ep;
  477. struct udc_request *req;
  478. if (!usbep || !usbreq)
  479. return;
  480. ep = container_of(usbep, struct udc_ep, ep);
  481. req = container_of(usbreq, struct udc_request, req);
  482. VDBG(ep->dev, "free_req req=%p\n", req);
  483. BUG_ON(!list_empty(&req->queue));
  484. if (req->td_data) {
  485. VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
  486. /* free dma chain if created */
  487. if (req->chain_len > 1) {
  488. udc_free_dma_chain(ep->dev, req);
  489. }
  490. pci_pool_free(ep->dev->data_requests, req->td_data,
  491. req->td_phys);
  492. }
  493. kfree(req);
  494. }
  495. /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
  496. static void udc_init_bna_dummy(struct udc_request *req)
  497. {
  498. if (req) {
  499. /* set last bit */
  500. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  501. /* set next pointer to itself */
  502. req->td_data->next = req->td_phys;
  503. /* set HOST BUSY */
  504. req->td_data->status
  505. = AMD_ADDBITS(req->td_data->status,
  506. UDC_DMA_STP_STS_BS_DMA_DONE,
  507. UDC_DMA_STP_STS_BS);
  508. #ifdef UDC_VERBOSE
  509. pr_debug("bna desc = %p, sts = %08x\n",
  510. req->td_data, req->td_data->status);
  511. #endif
  512. }
  513. }
  514. /* Allocate BNA dummy descriptor */
  515. static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
  516. {
  517. struct udc_request *req = NULL;
  518. struct usb_request *_req = NULL;
  519. /* alloc the dummy request */
  520. _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
  521. if (_req) {
  522. req = container_of(_req, struct udc_request, req);
  523. ep->bna_dummy_req = req;
  524. udc_init_bna_dummy(req);
  525. }
  526. return req;
  527. }
  528. /* Write data to TX fifo for IN packets */
  529. static void
  530. udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
  531. {
  532. u8 *req_buf;
  533. u32 *buf;
  534. int i, j;
  535. unsigned bytes = 0;
  536. unsigned remaining = 0;
  537. if (!req || !ep)
  538. return;
  539. req_buf = req->buf + req->actual;
  540. prefetch(req_buf);
  541. remaining = req->length - req->actual;
  542. buf = (u32 *) req_buf;
  543. bytes = ep->ep.maxpacket;
  544. if (bytes > remaining)
  545. bytes = remaining;
  546. /* dwords first */
  547. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  548. writel(*(buf + i), ep->txfifo);
  549. }
  550. /* remaining bytes must be written by byte access */
  551. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  552. writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
  553. ep->txfifo);
  554. }
  555. /* dummy write confirm */
  556. writel(0, &ep->regs->confirm);
  557. }
  558. /* Read dwords from RX fifo for OUT transfers */
  559. static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
  560. {
  561. int i;
  562. VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
  563. for (i = 0; i < dwords; i++) {
  564. *(buf + i) = readl(dev->rxfifo);
  565. }
  566. return 0;
  567. }
  568. /* Read bytes from RX fifo for OUT transfers */
  569. static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
  570. {
  571. int i, j;
  572. u32 tmp;
  573. VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
  574. /* dwords first */
  575. for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
  576. *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
  577. }
  578. /* remaining bytes must be read by byte access */
  579. if (bytes % UDC_DWORD_BYTES) {
  580. tmp = readl(dev->rxfifo);
  581. for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
  582. *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
  583. tmp = tmp >> UDC_BITS_PER_BYTE;
  584. }
  585. }
  586. return 0;
  587. }
  588. /* Read data from RX fifo for OUT transfers */
  589. static int
  590. udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
  591. {
  592. u8 *buf;
  593. unsigned buf_space;
  594. unsigned bytes = 0;
  595. unsigned finished = 0;
  596. /* received number bytes */
  597. bytes = readl(&ep->regs->sts);
  598. bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
  599. buf_space = req->req.length - req->req.actual;
  600. buf = req->req.buf + req->req.actual;
  601. if (bytes > buf_space) {
  602. if ((buf_space % ep->ep.maxpacket) != 0) {
  603. DBG(ep->dev,
  604. "%s: rx %d bytes, rx-buf space = %d bytesn\n",
  605. ep->ep.name, bytes, buf_space);
  606. req->req.status = -EOVERFLOW;
  607. }
  608. bytes = buf_space;
  609. }
  610. req->req.actual += bytes;
  611. /* last packet ? */
  612. if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
  613. || ((req->req.actual == req->req.length) && !req->req.zero))
  614. finished = 1;
  615. /* read rx fifo bytes */
  616. VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
  617. udc_rxfifo_read_bytes(ep->dev, buf, bytes);
  618. return finished;
  619. }
  620. /* create/re-init a DMA descriptor or a DMA descriptor chain */
  621. static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
  622. {
  623. int retval = 0;
  624. u32 tmp;
  625. VDBG(ep->dev, "prep_dma\n");
  626. VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
  627. ep->num, req->td_data);
  628. /* set buffer pointer */
  629. req->td_data->bufptr = req->req.dma;
  630. /* set last bit */
  631. req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  632. /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
  633. if (use_dma_ppb) {
  634. retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
  635. if (retval != 0) {
  636. if (retval == -ENOMEM)
  637. DBG(ep->dev, "Out of DMA memory\n");
  638. return retval;
  639. }
  640. if (ep->in) {
  641. if (req->req.length == ep->ep.maxpacket) {
  642. /* write tx bytes */
  643. req->td_data->status =
  644. AMD_ADDBITS(req->td_data->status,
  645. ep->ep.maxpacket,
  646. UDC_DMA_IN_STS_TXBYTES);
  647. }
  648. }
  649. }
  650. if (ep->in) {
  651. VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
  652. "maxpacket=%d ep%d\n",
  653. use_dma_ppb, req->req.length,
  654. ep->ep.maxpacket, ep->num);
  655. /*
  656. * if bytes < max packet then tx bytes must
  657. * be written in packet per buffer mode
  658. */
  659. if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
  660. || ep->num == UDC_EP0OUT_IX
  661. || ep->num == UDC_EP0IN_IX) {
  662. /* write tx bytes */
  663. req->td_data->status =
  664. AMD_ADDBITS(req->td_data->status,
  665. req->req.length,
  666. UDC_DMA_IN_STS_TXBYTES);
  667. /* reset frame num */
  668. req->td_data->status =
  669. AMD_ADDBITS(req->td_data->status,
  670. 0,
  671. UDC_DMA_IN_STS_FRAMENUM);
  672. }
  673. /* set HOST BUSY */
  674. req->td_data->status =
  675. AMD_ADDBITS(req->td_data->status,
  676. UDC_DMA_STP_STS_BS_HOST_BUSY,
  677. UDC_DMA_STP_STS_BS);
  678. } else {
  679. VDBG(ep->dev, "OUT set host ready\n");
  680. /* set HOST READY */
  681. req->td_data->status =
  682. AMD_ADDBITS(req->td_data->status,
  683. UDC_DMA_STP_STS_BS_HOST_READY,
  684. UDC_DMA_STP_STS_BS);
  685. /* clear NAK by writing CNAK */
  686. if (ep->naking) {
  687. tmp = readl(&ep->regs->ctl);
  688. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  689. writel(tmp, &ep->regs->ctl);
  690. ep->naking = 0;
  691. UDC_QUEUE_CNAK(ep, ep->num);
  692. }
  693. }
  694. return retval;
  695. }
  696. /* Completes request packet ... caller MUST hold lock */
  697. static void
  698. complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
  699. __releases(ep->dev->lock)
  700. __acquires(ep->dev->lock)
  701. {
  702. struct udc *dev;
  703. unsigned halted;
  704. VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
  705. dev = ep->dev;
  706. /* unmap DMA */
  707. if (req->dma_mapping) {
  708. if (ep->in)
  709. pci_unmap_single(dev->pdev,
  710. req->req.dma,
  711. req->req.length,
  712. PCI_DMA_TODEVICE);
  713. else
  714. pci_unmap_single(dev->pdev,
  715. req->req.dma,
  716. req->req.length,
  717. PCI_DMA_FROMDEVICE);
  718. req->dma_mapping = 0;
  719. req->req.dma = DMA_DONT_USE;
  720. }
  721. halted = ep->halted;
  722. ep->halted = 1;
  723. /* set new status if pending */
  724. if (req->req.status == -EINPROGRESS)
  725. req->req.status = sts;
  726. /* remove from ep queue */
  727. list_del_init(&req->queue);
  728. VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
  729. &req->req, req->req.length, ep->ep.name, sts);
  730. spin_unlock(&dev->lock);
  731. req->req.complete(&ep->ep, &req->req);
  732. spin_lock(&dev->lock);
  733. ep->halted = halted;
  734. }
  735. /* frees pci pool descriptors of a DMA chain */
  736. static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
  737. {
  738. int ret_val = 0;
  739. struct udc_data_dma *td;
  740. struct udc_data_dma *td_last = NULL;
  741. unsigned int i;
  742. DBG(dev, "free chain req = %p\n", req);
  743. /* do not free first desc., will be done by free for request */
  744. td_last = req->td_data;
  745. td = phys_to_virt(td_last->next);
  746. for (i = 1; i < req->chain_len; i++) {
  747. pci_pool_free(dev->data_requests, td,
  748. (dma_addr_t) td_last->next);
  749. td_last = td;
  750. td = phys_to_virt(td_last->next);
  751. }
  752. return ret_val;
  753. }
  754. /* Iterates to the end of a DMA chain and returns last descriptor */
  755. static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
  756. {
  757. struct udc_data_dma *td;
  758. td = req->td_data;
  759. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  760. td = phys_to_virt(td->next);
  761. }
  762. return td;
  763. }
  764. /* Iterates to the end of a DMA chain and counts bytes received */
  765. static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
  766. {
  767. struct udc_data_dma *td;
  768. u32 count;
  769. td = req->td_data;
  770. /* received number bytes */
  771. count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
  772. while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
  773. td = phys_to_virt(td->next);
  774. /* received number bytes */
  775. if (td) {
  776. count += AMD_GETBITS(td->status,
  777. UDC_DMA_OUT_STS_RXBYTES);
  778. }
  779. }
  780. return count;
  781. }
  782. /* Creates or re-inits a DMA chain */
  783. static int udc_create_dma_chain(
  784. struct udc_ep *ep,
  785. struct udc_request *req,
  786. unsigned long buf_len, gfp_t gfp_flags
  787. )
  788. {
  789. unsigned long bytes = req->req.length;
  790. unsigned int i;
  791. dma_addr_t dma_addr;
  792. struct udc_data_dma *td = NULL;
  793. struct udc_data_dma *last = NULL;
  794. unsigned long txbytes;
  795. unsigned create_new_chain = 0;
  796. unsigned len;
  797. VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
  798. bytes, buf_len);
  799. dma_addr = DMA_DONT_USE;
  800. /* unset L bit in first desc for OUT */
  801. if (!ep->in) {
  802. req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
  803. }
  804. /* alloc only new desc's if not already available */
  805. len = req->req.length / ep->ep.maxpacket;
  806. if (req->req.length % ep->ep.maxpacket) {
  807. len++;
  808. }
  809. if (len > req->chain_len) {
  810. /* shorter chain already allocated before */
  811. if (req->chain_len > 1) {
  812. udc_free_dma_chain(ep->dev, req);
  813. }
  814. req->chain_len = len;
  815. create_new_chain = 1;
  816. }
  817. td = req->td_data;
  818. /* gen. required number of descriptors and buffers */
  819. for (i = buf_len; i < bytes; i += buf_len) {
  820. /* create or determine next desc. */
  821. if (create_new_chain) {
  822. td = pci_pool_alloc(ep->dev->data_requests,
  823. gfp_flags, &dma_addr);
  824. if (!td)
  825. return -ENOMEM;
  826. td->status = 0;
  827. } else if (i == buf_len) {
  828. /* first td */
  829. td = (struct udc_data_dma *) phys_to_virt(
  830. req->td_data->next);
  831. td->status = 0;
  832. } else {
  833. td = (struct udc_data_dma *) phys_to_virt(last->next);
  834. td->status = 0;
  835. }
  836. if (td)
  837. td->bufptr = req->req.dma + i; /* assign buffer */
  838. else
  839. break;
  840. /* short packet ? */
  841. if ((bytes - i) >= buf_len) {
  842. txbytes = buf_len;
  843. } else {
  844. /* short packet */
  845. txbytes = bytes - i;
  846. }
  847. /* link td and assign tx bytes */
  848. if (i == buf_len) {
  849. if (create_new_chain) {
  850. req->td_data->next = dma_addr;
  851. } else {
  852. /* req->td_data->next = virt_to_phys(td); */
  853. }
  854. /* write tx bytes */
  855. if (ep->in) {
  856. /* first desc */
  857. req->td_data->status =
  858. AMD_ADDBITS(req->td_data->status,
  859. ep->ep.maxpacket,
  860. UDC_DMA_IN_STS_TXBYTES);
  861. /* second desc */
  862. td->status = AMD_ADDBITS(td->status,
  863. txbytes,
  864. UDC_DMA_IN_STS_TXBYTES);
  865. }
  866. } else {
  867. if (create_new_chain) {
  868. last->next = dma_addr;
  869. } else {
  870. /* last->next = virt_to_phys(td); */
  871. }
  872. if (ep->in) {
  873. /* write tx bytes */
  874. td->status = AMD_ADDBITS(td->status,
  875. txbytes,
  876. UDC_DMA_IN_STS_TXBYTES);
  877. }
  878. }
  879. last = td;
  880. }
  881. /* set last bit */
  882. if (td) {
  883. td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
  884. /* last desc. points to itself */
  885. req->td_data_last = td;
  886. }
  887. return 0;
  888. }
  889. /* Enabling RX DMA */
  890. static void udc_set_rde(struct udc *dev)
  891. {
  892. u32 tmp;
  893. VDBG(dev, "udc_set_rde()\n");
  894. /* stop RDE timer */
  895. if (timer_pending(&udc_timer)) {
  896. set_rde = 0;
  897. mod_timer(&udc_timer, jiffies - 1);
  898. }
  899. /* set RDE */
  900. tmp = readl(&dev->regs->ctl);
  901. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  902. writel(tmp, &dev->regs->ctl);
  903. }
  904. /* Queues a request packet, called by gadget driver */
  905. static int
  906. udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
  907. {
  908. int retval = 0;
  909. u8 open_rxfifo = 0;
  910. unsigned long iflags;
  911. struct udc_ep *ep;
  912. struct udc_request *req;
  913. struct udc *dev;
  914. u32 tmp;
  915. /* check the inputs */
  916. req = container_of(usbreq, struct udc_request, req);
  917. if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
  918. || !list_empty(&req->queue))
  919. return -EINVAL;
  920. ep = container_of(usbep, struct udc_ep, ep);
  921. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  922. return -EINVAL;
  923. VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
  924. dev = ep->dev;
  925. if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
  926. return -ESHUTDOWN;
  927. /* map dma (usually done before) */
  928. if (ep->dma && usbreq->length != 0
  929. && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
  930. VDBG(dev, "DMA map req %p\n", req);
  931. if (ep->in)
  932. usbreq->dma = pci_map_single(dev->pdev,
  933. usbreq->buf,
  934. usbreq->length,
  935. PCI_DMA_TODEVICE);
  936. else
  937. usbreq->dma = pci_map_single(dev->pdev,
  938. usbreq->buf,
  939. usbreq->length,
  940. PCI_DMA_FROMDEVICE);
  941. req->dma_mapping = 1;
  942. }
  943. VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
  944. usbep->name, usbreq, usbreq->length,
  945. req->td_data, usbreq->buf);
  946. spin_lock_irqsave(&dev->lock, iflags);
  947. usbreq->actual = 0;
  948. usbreq->status = -EINPROGRESS;
  949. req->dma_done = 0;
  950. /* on empty queue just do first transfer */
  951. if (list_empty(&ep->queue)) {
  952. /* zlp */
  953. if (usbreq->length == 0) {
  954. /* IN zlp's are handled by hardware */
  955. complete_req(ep, req, 0);
  956. VDBG(dev, "%s: zlp\n", ep->ep.name);
  957. /*
  958. * if set_config or set_intf is waiting for ack by zlp
  959. * then set CSR_DONE
  960. */
  961. if (dev->set_cfg_not_acked) {
  962. tmp = readl(&dev->regs->ctl);
  963. tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
  964. writel(tmp, &dev->regs->ctl);
  965. dev->set_cfg_not_acked = 0;
  966. }
  967. /* setup command is ACK'ed now by zlp */
  968. if (dev->waiting_zlp_ack_ep0in) {
  969. /* clear NAK by writing CNAK in EP0_IN */
  970. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  971. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  972. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  973. dev->ep[UDC_EP0IN_IX].naking = 0;
  974. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
  975. UDC_EP0IN_IX);
  976. dev->waiting_zlp_ack_ep0in = 0;
  977. }
  978. goto finished;
  979. }
  980. if (ep->dma) {
  981. retval = prep_dma(ep, req, gfp);
  982. if (retval != 0)
  983. goto finished;
  984. /* write desc pointer to enable DMA */
  985. if (ep->in) {
  986. /* set HOST READY */
  987. req->td_data->status =
  988. AMD_ADDBITS(req->td_data->status,
  989. UDC_DMA_IN_STS_BS_HOST_READY,
  990. UDC_DMA_IN_STS_BS);
  991. }
  992. /* disabled rx dma while descriptor update */
  993. if (!ep->in) {
  994. /* stop RDE timer */
  995. if (timer_pending(&udc_timer)) {
  996. set_rde = 0;
  997. mod_timer(&udc_timer, jiffies - 1);
  998. }
  999. /* clear RDE */
  1000. tmp = readl(&dev->regs->ctl);
  1001. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1002. writel(tmp, &dev->regs->ctl);
  1003. open_rxfifo = 1;
  1004. /*
  1005. * if BNA occurred then let BNA dummy desc.
  1006. * point to current desc.
  1007. */
  1008. if (ep->bna_occurred) {
  1009. VDBG(dev, "copy to BNA dummy desc.\n");
  1010. memcpy(ep->bna_dummy_req->td_data,
  1011. req->td_data,
  1012. sizeof(struct udc_data_dma));
  1013. }
  1014. }
  1015. /* write desc pointer */
  1016. writel(req->td_phys, &ep->regs->desptr);
  1017. /* clear NAK by writing CNAK */
  1018. if (ep->naking) {
  1019. tmp = readl(&ep->regs->ctl);
  1020. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1021. writel(tmp, &ep->regs->ctl);
  1022. ep->naking = 0;
  1023. UDC_QUEUE_CNAK(ep, ep->num);
  1024. }
  1025. if (ep->in) {
  1026. /* enable ep irq */
  1027. tmp = readl(&dev->regs->ep_irqmsk);
  1028. tmp &= AMD_UNMASK_BIT(ep->num);
  1029. writel(tmp, &dev->regs->ep_irqmsk);
  1030. }
  1031. } else if (ep->in) {
  1032. /* enable ep irq */
  1033. tmp = readl(&dev->regs->ep_irqmsk);
  1034. tmp &= AMD_UNMASK_BIT(ep->num);
  1035. writel(tmp, &dev->regs->ep_irqmsk);
  1036. }
  1037. } else if (ep->dma) {
  1038. /*
  1039. * prep_dma not used for OUT ep's, this is not possible
  1040. * for PPB modes, because of chain creation reasons
  1041. */
  1042. if (ep->in) {
  1043. retval = prep_dma(ep, req, gfp);
  1044. if (retval != 0)
  1045. goto finished;
  1046. }
  1047. }
  1048. VDBG(dev, "list_add\n");
  1049. /* add request to ep queue */
  1050. if (req) {
  1051. list_add_tail(&req->queue, &ep->queue);
  1052. /* open rxfifo if out data queued */
  1053. if (open_rxfifo) {
  1054. /* enable DMA */
  1055. req->dma_going = 1;
  1056. udc_set_rde(dev);
  1057. if (ep->num != UDC_EP0OUT_IX)
  1058. dev->data_ep_queued = 1;
  1059. }
  1060. /* stop OUT naking */
  1061. if (!ep->in) {
  1062. if (!use_dma && udc_rxfifo_pending) {
  1063. DBG(dev, "udc_queue(): pending bytes in "
  1064. "rxfifo after nyet\n");
  1065. /*
  1066. * read pending bytes afer nyet:
  1067. * referring to isr
  1068. */
  1069. if (udc_rxfifo_read(ep, req)) {
  1070. /* finish */
  1071. complete_req(ep, req, 0);
  1072. }
  1073. udc_rxfifo_pending = 0;
  1074. }
  1075. }
  1076. }
  1077. finished:
  1078. spin_unlock_irqrestore(&dev->lock, iflags);
  1079. return retval;
  1080. }
  1081. /* Empty request queue of an endpoint; caller holds spinlock */
  1082. static void empty_req_queue(struct udc_ep *ep)
  1083. {
  1084. struct udc_request *req;
  1085. ep->halted = 1;
  1086. while (!list_empty(&ep->queue)) {
  1087. req = list_entry(ep->queue.next,
  1088. struct udc_request,
  1089. queue);
  1090. complete_req(ep, req, -ESHUTDOWN);
  1091. }
  1092. }
  1093. /* Dequeues a request packet, called by gadget driver */
  1094. static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
  1095. {
  1096. struct udc_ep *ep;
  1097. struct udc_request *req;
  1098. unsigned halted;
  1099. unsigned long iflags;
  1100. ep = container_of(usbep, struct udc_ep, ep);
  1101. if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
  1102. && ep->num != UDC_EP0OUT_IX)))
  1103. return -EINVAL;
  1104. req = container_of(usbreq, struct udc_request, req);
  1105. spin_lock_irqsave(&ep->dev->lock, iflags);
  1106. halted = ep->halted;
  1107. ep->halted = 1;
  1108. /* request in processing or next one */
  1109. if (ep->queue.next == &req->queue) {
  1110. if (ep->dma && req->dma_going) {
  1111. if (ep->in)
  1112. ep->cancel_transfer = 1;
  1113. else {
  1114. u32 tmp;
  1115. u32 dma_sts;
  1116. /* stop potential receive DMA */
  1117. tmp = readl(&udc->regs->ctl);
  1118. writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
  1119. &udc->regs->ctl);
  1120. /*
  1121. * Cancel transfer later in ISR
  1122. * if descriptor was touched.
  1123. */
  1124. dma_sts = AMD_GETBITS(req->td_data->status,
  1125. UDC_DMA_OUT_STS_BS);
  1126. if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
  1127. ep->cancel_transfer = 1;
  1128. else {
  1129. udc_init_bna_dummy(ep->req);
  1130. writel(ep->bna_dummy_req->td_phys,
  1131. &ep->regs->desptr);
  1132. }
  1133. writel(tmp, &udc->regs->ctl);
  1134. }
  1135. }
  1136. }
  1137. complete_req(ep, req, -ECONNRESET);
  1138. ep->halted = halted;
  1139. spin_unlock_irqrestore(&ep->dev->lock, iflags);
  1140. return 0;
  1141. }
  1142. /* Halt or clear halt of endpoint */
  1143. static int
  1144. udc_set_halt(struct usb_ep *usbep, int halt)
  1145. {
  1146. struct udc_ep *ep;
  1147. u32 tmp;
  1148. unsigned long iflags;
  1149. int retval = 0;
  1150. if (!usbep)
  1151. return -EINVAL;
  1152. pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
  1153. ep = container_of(usbep, struct udc_ep, ep);
  1154. if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
  1155. return -EINVAL;
  1156. if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
  1157. return -ESHUTDOWN;
  1158. spin_lock_irqsave(&udc_stall_spinlock, iflags);
  1159. /* halt or clear halt */
  1160. if (halt) {
  1161. if (ep->num == 0)
  1162. ep->dev->stall_ep0in = 1;
  1163. else {
  1164. /*
  1165. * set STALL
  1166. * rxfifo empty not taken into acount
  1167. */
  1168. tmp = readl(&ep->regs->ctl);
  1169. tmp |= AMD_BIT(UDC_EPCTL_S);
  1170. writel(tmp, &ep->regs->ctl);
  1171. ep->halted = 1;
  1172. /* setup poll timer */
  1173. if (!timer_pending(&udc_pollstall_timer)) {
  1174. udc_pollstall_timer.expires = jiffies +
  1175. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1176. / (1000 * 1000);
  1177. if (!stop_pollstall_timer) {
  1178. DBG(ep->dev, "start polltimer\n");
  1179. add_timer(&udc_pollstall_timer);
  1180. }
  1181. }
  1182. }
  1183. } else {
  1184. /* ep is halted by set_halt() before */
  1185. if (ep->halted) {
  1186. tmp = readl(&ep->regs->ctl);
  1187. /* clear stall bit */
  1188. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  1189. /* clear NAK by writing CNAK */
  1190. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1191. writel(tmp, &ep->regs->ctl);
  1192. ep->halted = 0;
  1193. UDC_QUEUE_CNAK(ep, ep->num);
  1194. }
  1195. }
  1196. spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
  1197. return retval;
  1198. }
  1199. /* gadget interface */
  1200. static const struct usb_ep_ops udc_ep_ops = {
  1201. .enable = udc_ep_enable,
  1202. .disable = udc_ep_disable,
  1203. .alloc_request = udc_alloc_request,
  1204. .free_request = udc_free_request,
  1205. .queue = udc_queue,
  1206. .dequeue = udc_dequeue,
  1207. .set_halt = udc_set_halt,
  1208. /* fifo ops not implemented */
  1209. };
  1210. /*-------------------------------------------------------------------------*/
  1211. /* Get frame counter (not implemented) */
  1212. static int udc_get_frame(struct usb_gadget *gadget)
  1213. {
  1214. return -EOPNOTSUPP;
  1215. }
  1216. /* Remote wakeup gadget interface */
  1217. static int udc_wakeup(struct usb_gadget *gadget)
  1218. {
  1219. struct udc *dev;
  1220. if (!gadget)
  1221. return -EINVAL;
  1222. dev = container_of(gadget, struct udc, gadget);
  1223. udc_remote_wakeup(dev);
  1224. return 0;
  1225. }
  1226. /* gadget operations */
  1227. static const struct usb_gadget_ops udc_ops = {
  1228. .wakeup = udc_wakeup,
  1229. .get_frame = udc_get_frame,
  1230. };
  1231. /* Setups endpoint parameters, adds endpoints to linked list */
  1232. static void make_ep_lists(struct udc *dev)
  1233. {
  1234. /* make gadget ep lists */
  1235. INIT_LIST_HEAD(&dev->gadget.ep_list);
  1236. list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
  1237. &dev->gadget.ep_list);
  1238. list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
  1239. &dev->gadget.ep_list);
  1240. list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
  1241. &dev->gadget.ep_list);
  1242. /* fifo config */
  1243. dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
  1244. if (dev->gadget.speed == USB_SPEED_FULL)
  1245. dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
  1246. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1247. dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
  1248. dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
  1249. }
  1250. /* init registers at driver load time */
  1251. static int startup_registers(struct udc *dev)
  1252. {
  1253. u32 tmp;
  1254. /* init controller by soft reset */
  1255. udc_soft_reset(dev);
  1256. /* mask not needed interrupts */
  1257. udc_mask_unused_interrupts(dev);
  1258. /* put into initial config */
  1259. udc_basic_init(dev);
  1260. /* link up all endpoints */
  1261. udc_setup_endpoints(dev);
  1262. /* program speed */
  1263. tmp = readl(&dev->regs->cfg);
  1264. if (use_fullspeed) {
  1265. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1266. } else {
  1267. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
  1268. }
  1269. writel(tmp, &dev->regs->cfg);
  1270. return 0;
  1271. }
  1272. /* Inits UDC context */
  1273. static void udc_basic_init(struct udc *dev)
  1274. {
  1275. u32 tmp;
  1276. DBG(dev, "udc_basic_init()\n");
  1277. dev->gadget.speed = USB_SPEED_UNKNOWN;
  1278. /* stop RDE timer */
  1279. if (timer_pending(&udc_timer)) {
  1280. set_rde = 0;
  1281. mod_timer(&udc_timer, jiffies - 1);
  1282. }
  1283. /* stop poll stall timer */
  1284. if (timer_pending(&udc_pollstall_timer)) {
  1285. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1286. }
  1287. /* disable DMA */
  1288. tmp = readl(&dev->regs->ctl);
  1289. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
  1290. tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
  1291. writel(tmp, &dev->regs->ctl);
  1292. /* enable dynamic CSR programming */
  1293. tmp = readl(&dev->regs->cfg);
  1294. tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
  1295. /* set self powered */
  1296. tmp |= AMD_BIT(UDC_DEVCFG_SP);
  1297. /* set remote wakeupable */
  1298. tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
  1299. writel(tmp, &dev->regs->cfg);
  1300. make_ep_lists(dev);
  1301. dev->data_ep_enabled = 0;
  1302. dev->data_ep_queued = 0;
  1303. }
  1304. /* Sets initial endpoint parameters */
  1305. static void udc_setup_endpoints(struct udc *dev)
  1306. {
  1307. struct udc_ep *ep;
  1308. u32 tmp;
  1309. u32 reg;
  1310. DBG(dev, "udc_setup_endpoints()\n");
  1311. /* read enum speed */
  1312. tmp = readl(&dev->regs->sts);
  1313. tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
  1314. if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
  1315. dev->gadget.speed = USB_SPEED_HIGH;
  1316. } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
  1317. dev->gadget.speed = USB_SPEED_FULL;
  1318. }
  1319. /* set basic ep parameters */
  1320. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1321. ep = &dev->ep[tmp];
  1322. ep->dev = dev;
  1323. ep->ep.name = ep_string[tmp];
  1324. ep->num = tmp;
  1325. /* txfifo size is calculated at enable time */
  1326. ep->txfifo = dev->txfifo;
  1327. /* fifo size */
  1328. if (tmp < UDC_EPIN_NUM) {
  1329. ep->fifo_depth = UDC_TXFIFO_SIZE;
  1330. ep->in = 1;
  1331. } else {
  1332. ep->fifo_depth = UDC_RXFIFO_SIZE;
  1333. ep->in = 0;
  1334. }
  1335. ep->regs = &dev->ep_regs[tmp];
  1336. /*
  1337. * ep will be reset only if ep was not enabled before to avoid
  1338. * disabling ep interrupts when ENUM interrupt occurs but ep is
  1339. * not enabled by gadget driver
  1340. */
  1341. if (!ep->desc) {
  1342. ep_init(dev->regs, ep);
  1343. }
  1344. if (use_dma) {
  1345. /*
  1346. * ep->dma is not really used, just to indicate that
  1347. * DMA is active: remove this
  1348. * dma regs = dev control regs
  1349. */
  1350. ep->dma = &dev->regs->ctl;
  1351. /* nak OUT endpoints until enable - not for ep0 */
  1352. if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
  1353. && tmp > UDC_EPIN_NUM) {
  1354. /* set NAK */
  1355. reg = readl(&dev->ep[tmp].regs->ctl);
  1356. reg |= AMD_BIT(UDC_EPCTL_SNAK);
  1357. writel(reg, &dev->ep[tmp].regs->ctl);
  1358. dev->ep[tmp].naking = 1;
  1359. }
  1360. }
  1361. }
  1362. /* EP0 max packet */
  1363. if (dev->gadget.speed == USB_SPEED_FULL) {
  1364. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
  1365. dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
  1366. UDC_FS_EP0OUT_MAX_PKT_SIZE;
  1367. } else if (dev->gadget.speed == USB_SPEED_HIGH) {
  1368. dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
  1369. dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
  1370. }
  1371. /*
  1372. * with suspend bug workaround, ep0 params for gadget driver
  1373. * are set at gadget driver bind() call
  1374. */
  1375. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  1376. dev->ep[UDC_EP0IN_IX].halted = 0;
  1377. INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
  1378. /* init cfg/alt/int */
  1379. dev->cur_config = 0;
  1380. dev->cur_intf = 0;
  1381. dev->cur_alt = 0;
  1382. }
  1383. /* Bringup after Connect event, initial bringup to be ready for ep0 events */
  1384. static void usb_connect(struct udc *dev)
  1385. {
  1386. dev_info(&dev->pdev->dev, "USB Connect\n");
  1387. dev->connected = 1;
  1388. /* put into initial config */
  1389. udc_basic_init(dev);
  1390. /* enable device setup interrupts */
  1391. udc_enable_dev_setup_interrupts(dev);
  1392. }
  1393. /*
  1394. * Calls gadget with disconnect event and resets the UDC and makes
  1395. * initial bringup to be ready for ep0 events
  1396. */
  1397. static void usb_disconnect(struct udc *dev)
  1398. {
  1399. dev_info(&dev->pdev->dev, "USB Disconnect\n");
  1400. dev->connected = 0;
  1401. /* mask interrupts */
  1402. udc_mask_unused_interrupts(dev);
  1403. /* REVISIT there doesn't seem to be a point to having this
  1404. * talk to a tasklet ... do it directly, we already hold
  1405. * the spinlock needed to process the disconnect.
  1406. */
  1407. tasklet_schedule(&disconnect_tasklet);
  1408. }
  1409. /* Tasklet for disconnect to be outside of interrupt context */
  1410. static void udc_tasklet_disconnect(unsigned long par)
  1411. {
  1412. struct udc *dev = (struct udc *)(*((struct udc **) par));
  1413. u32 tmp;
  1414. DBG(dev, "Tasklet disconnect\n");
  1415. spin_lock_irq(&dev->lock);
  1416. if (dev->driver) {
  1417. spin_unlock(&dev->lock);
  1418. dev->driver->disconnect(&dev->gadget);
  1419. spin_lock(&dev->lock);
  1420. /* empty queues */
  1421. for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
  1422. empty_req_queue(&dev->ep[tmp]);
  1423. }
  1424. }
  1425. /* disable ep0 */
  1426. ep_init(dev->regs,
  1427. &dev->ep[UDC_EP0IN_IX]);
  1428. if (!soft_reset_occured) {
  1429. /* init controller by soft reset */
  1430. udc_soft_reset(dev);
  1431. soft_reset_occured++;
  1432. }
  1433. /* re-enable dev interrupts */
  1434. udc_enable_dev_setup_interrupts(dev);
  1435. /* back to full speed ? */
  1436. if (use_fullspeed) {
  1437. tmp = readl(&dev->regs->cfg);
  1438. tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
  1439. writel(tmp, &dev->regs->cfg);
  1440. }
  1441. spin_unlock_irq(&dev->lock);
  1442. }
  1443. /* Reset the UDC core */
  1444. static void udc_soft_reset(struct udc *dev)
  1445. {
  1446. unsigned long flags;
  1447. DBG(dev, "Soft reset\n");
  1448. /*
  1449. * reset possible waiting interrupts, because int.
  1450. * status is lost after soft reset,
  1451. * ep int. status reset
  1452. */
  1453. writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
  1454. /* device int. status reset */
  1455. writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
  1456. spin_lock_irqsave(&udc_irq_spinlock, flags);
  1457. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  1458. readl(&dev->regs->cfg);
  1459. spin_unlock_irqrestore(&udc_irq_spinlock, flags);
  1460. }
  1461. /* RDE timer callback to set RDE bit */
  1462. static void udc_timer_function(unsigned long v)
  1463. {
  1464. u32 tmp;
  1465. spin_lock_irq(&udc_irq_spinlock);
  1466. if (set_rde > 0) {
  1467. /*
  1468. * open the fifo if fifo was filled on last timer call
  1469. * conditionally
  1470. */
  1471. if (set_rde > 1) {
  1472. /* set RDE to receive setup data */
  1473. tmp = readl(&udc->regs->ctl);
  1474. tmp |= AMD_BIT(UDC_DEVCTL_RDE);
  1475. writel(tmp, &udc->regs->ctl);
  1476. set_rde = -1;
  1477. } else if (readl(&udc->regs->sts)
  1478. & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1479. /*
  1480. * if fifo empty setup polling, do not just
  1481. * open the fifo
  1482. */
  1483. udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
  1484. if (!stop_timer) {
  1485. add_timer(&udc_timer);
  1486. }
  1487. } else {
  1488. /*
  1489. * fifo contains data now, setup timer for opening
  1490. * the fifo when timer expires to be able to receive
  1491. * setup packets, when data packets gets queued by
  1492. * gadget layer then timer will forced to expire with
  1493. * set_rde=0 (RDE is set in udc_queue())
  1494. */
  1495. set_rde++;
  1496. /* debug: lhadmot_timer_start = 221070 */
  1497. udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
  1498. if (!stop_timer) {
  1499. add_timer(&udc_timer);
  1500. }
  1501. }
  1502. } else
  1503. set_rde = -1; /* RDE was set by udc_queue() */
  1504. spin_unlock_irq(&udc_irq_spinlock);
  1505. if (stop_timer)
  1506. complete(&on_exit);
  1507. }
  1508. /* Handle halt state, used in stall poll timer */
  1509. static void udc_handle_halt_state(struct udc_ep *ep)
  1510. {
  1511. u32 tmp;
  1512. /* set stall as long not halted */
  1513. if (ep->halted == 1) {
  1514. tmp = readl(&ep->regs->ctl);
  1515. /* STALL cleared ? */
  1516. if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
  1517. /*
  1518. * FIXME: MSC spec requires that stall remains
  1519. * even on receivng of CLEAR_FEATURE HALT. So
  1520. * we would set STALL again here to be compliant.
  1521. * But with current mass storage drivers this does
  1522. * not work (would produce endless host retries).
  1523. * So we clear halt on CLEAR_FEATURE.
  1524. *
  1525. DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
  1526. tmp |= AMD_BIT(UDC_EPCTL_S);
  1527. writel(tmp, &ep->regs->ctl);*/
  1528. /* clear NAK by writing CNAK */
  1529. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1530. writel(tmp, &ep->regs->ctl);
  1531. ep->halted = 0;
  1532. UDC_QUEUE_CNAK(ep, ep->num);
  1533. }
  1534. }
  1535. }
  1536. /* Stall timer callback to poll S bit and set it again after */
  1537. static void udc_pollstall_timer_function(unsigned long v)
  1538. {
  1539. struct udc_ep *ep;
  1540. int halted = 0;
  1541. spin_lock_irq(&udc_stall_spinlock);
  1542. /*
  1543. * only one IN and OUT endpoints are handled
  1544. * IN poll stall
  1545. */
  1546. ep = &udc->ep[UDC_EPIN_IX];
  1547. udc_handle_halt_state(ep);
  1548. if (ep->halted)
  1549. halted = 1;
  1550. /* OUT poll stall */
  1551. ep = &udc->ep[UDC_EPOUT_IX];
  1552. udc_handle_halt_state(ep);
  1553. if (ep->halted)
  1554. halted = 1;
  1555. /* setup timer again when still halted */
  1556. if (!stop_pollstall_timer && halted) {
  1557. udc_pollstall_timer.expires = jiffies +
  1558. HZ * UDC_POLLSTALL_TIMER_USECONDS
  1559. / (1000 * 1000);
  1560. add_timer(&udc_pollstall_timer);
  1561. }
  1562. spin_unlock_irq(&udc_stall_spinlock);
  1563. if (stop_pollstall_timer)
  1564. complete(&on_pollstall_exit);
  1565. }
  1566. /* Inits endpoint 0 so that SETUP packets are processed */
  1567. static void activate_control_endpoints(struct udc *dev)
  1568. {
  1569. u32 tmp;
  1570. DBG(dev, "activate_control_endpoints\n");
  1571. /* flush fifo */
  1572. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1573. tmp |= AMD_BIT(UDC_EPCTL_F);
  1574. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1575. /* set ep0 directions */
  1576. dev->ep[UDC_EP0IN_IX].in = 1;
  1577. dev->ep[UDC_EP0OUT_IX].in = 0;
  1578. /* set buffer size (tx fifo entries) of EP0_IN */
  1579. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1580. if (dev->gadget.speed == USB_SPEED_FULL)
  1581. tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
  1582. UDC_EPIN_BUFF_SIZE);
  1583. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1584. tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
  1585. UDC_EPIN_BUFF_SIZE);
  1586. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
  1587. /* set max packet size of EP0_IN */
  1588. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1589. if (dev->gadget.speed == USB_SPEED_FULL)
  1590. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
  1591. UDC_EP_MAX_PKT_SIZE);
  1592. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1593. tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
  1594. UDC_EP_MAX_PKT_SIZE);
  1595. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
  1596. /* set max packet size of EP0_OUT */
  1597. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1598. if (dev->gadget.speed == USB_SPEED_FULL)
  1599. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1600. UDC_EP_MAX_PKT_SIZE);
  1601. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1602. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1603. UDC_EP_MAX_PKT_SIZE);
  1604. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
  1605. /* set max packet size of EP0 in UDC CSR */
  1606. tmp = readl(&dev->csr->ne[0]);
  1607. if (dev->gadget.speed == USB_SPEED_FULL)
  1608. tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
  1609. UDC_CSR_NE_MAX_PKT);
  1610. else if (dev->gadget.speed == USB_SPEED_HIGH)
  1611. tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
  1612. UDC_CSR_NE_MAX_PKT);
  1613. writel(tmp, &dev->csr->ne[0]);
  1614. if (use_dma) {
  1615. dev->ep[UDC_EP0OUT_IX].td->status |=
  1616. AMD_BIT(UDC_DMA_OUT_STS_L);
  1617. /* write dma desc address */
  1618. writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
  1619. &dev->ep[UDC_EP0OUT_IX].regs->subptr);
  1620. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  1621. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  1622. /* stop RDE timer */
  1623. if (timer_pending(&udc_timer)) {
  1624. set_rde = 0;
  1625. mod_timer(&udc_timer, jiffies - 1);
  1626. }
  1627. /* stop pollstall timer */
  1628. if (timer_pending(&udc_pollstall_timer)) {
  1629. mod_timer(&udc_pollstall_timer, jiffies - 1);
  1630. }
  1631. /* enable DMA */
  1632. tmp = readl(&dev->regs->ctl);
  1633. tmp |= AMD_BIT(UDC_DEVCTL_MODE)
  1634. | AMD_BIT(UDC_DEVCTL_RDE)
  1635. | AMD_BIT(UDC_DEVCTL_TDE);
  1636. if (use_dma_bufferfill_mode) {
  1637. tmp |= AMD_BIT(UDC_DEVCTL_BF);
  1638. } else if (use_dma_ppb_du) {
  1639. tmp |= AMD_BIT(UDC_DEVCTL_DU);
  1640. }
  1641. writel(tmp, &dev->regs->ctl);
  1642. }
  1643. /* clear NAK by writing CNAK for EP0IN */
  1644. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  1645. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1646. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  1647. dev->ep[UDC_EP0IN_IX].naking = 0;
  1648. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  1649. /* clear NAK by writing CNAK for EP0OUT */
  1650. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1651. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  1652. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1653. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1654. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  1655. }
  1656. /* Make endpoint 0 ready for control traffic */
  1657. static int setup_ep0(struct udc *dev)
  1658. {
  1659. activate_control_endpoints(dev);
  1660. /* enable ep0 interrupts */
  1661. udc_enable_ep0_interrupts(dev);
  1662. /* enable device setup interrupts */
  1663. udc_enable_dev_setup_interrupts(dev);
  1664. return 0;
  1665. }
  1666. /* Called by gadget driver to register itself */
  1667. int usb_gadget_probe_driver(struct usb_gadget_driver *driver,
  1668. int (*bind)(struct usb_gadget *))
  1669. {
  1670. struct udc *dev = udc;
  1671. int retval;
  1672. u32 tmp;
  1673. if (!driver || !bind || !driver->setup
  1674. || driver->speed != USB_SPEED_HIGH)
  1675. return -EINVAL;
  1676. if (!dev)
  1677. return -ENODEV;
  1678. if (dev->driver)
  1679. return -EBUSY;
  1680. driver->driver.bus = NULL;
  1681. dev->driver = driver;
  1682. dev->gadget.dev.driver = &driver->driver;
  1683. retval = bind(&dev->gadget);
  1684. /* Some gadget drivers use both ep0 directions.
  1685. * NOTE: to gadget driver, ep0 is just one endpoint...
  1686. */
  1687. dev->ep[UDC_EP0OUT_IX].ep.driver_data =
  1688. dev->ep[UDC_EP0IN_IX].ep.driver_data;
  1689. if (retval) {
  1690. DBG(dev, "binding to %s returning %d\n",
  1691. driver->driver.name, retval);
  1692. dev->driver = NULL;
  1693. dev->gadget.dev.driver = NULL;
  1694. return retval;
  1695. }
  1696. /* get ready for ep0 traffic */
  1697. setup_ep0(dev);
  1698. /* clear SD */
  1699. tmp = readl(&dev->regs->ctl);
  1700. tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
  1701. writel(tmp, &dev->regs->ctl);
  1702. usb_connect(dev);
  1703. return 0;
  1704. }
  1705. EXPORT_SYMBOL(usb_gadget_probe_driver);
  1706. /* shutdown requests and disconnect from gadget */
  1707. static void
  1708. shutdown(struct udc *dev, struct usb_gadget_driver *driver)
  1709. __releases(dev->lock)
  1710. __acquires(dev->lock)
  1711. {
  1712. int tmp;
  1713. if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
  1714. spin_unlock(&dev->lock);
  1715. driver->disconnect(&dev->gadget);
  1716. spin_lock(&dev->lock);
  1717. }
  1718. /* empty queues and init hardware */
  1719. udc_basic_init(dev);
  1720. for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
  1721. empty_req_queue(&dev->ep[tmp]);
  1722. udc_setup_endpoints(dev);
  1723. }
  1724. /* Called by gadget driver to unregister itself */
  1725. int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
  1726. {
  1727. struct udc *dev = udc;
  1728. unsigned long flags;
  1729. u32 tmp;
  1730. if (!dev)
  1731. return -ENODEV;
  1732. if (!driver || driver != dev->driver || !driver->unbind)
  1733. return -EINVAL;
  1734. spin_lock_irqsave(&dev->lock, flags);
  1735. udc_mask_unused_interrupts(dev);
  1736. shutdown(dev, driver);
  1737. spin_unlock_irqrestore(&dev->lock, flags);
  1738. driver->unbind(&dev->gadget);
  1739. dev->gadget.dev.driver = NULL;
  1740. dev->driver = NULL;
  1741. /* set SD */
  1742. tmp = readl(&dev->regs->ctl);
  1743. tmp |= AMD_BIT(UDC_DEVCTL_SD);
  1744. writel(tmp, &dev->regs->ctl);
  1745. DBG(dev, "%s: unregistered\n", driver->driver.name);
  1746. return 0;
  1747. }
  1748. EXPORT_SYMBOL(usb_gadget_unregister_driver);
  1749. /* Clear pending NAK bits */
  1750. static void udc_process_cnak_queue(struct udc *dev)
  1751. {
  1752. u32 tmp;
  1753. u32 reg;
  1754. /* check epin's */
  1755. DBG(dev, "CNAK pending queue processing\n");
  1756. for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
  1757. if (cnak_pending & (1 << tmp)) {
  1758. DBG(dev, "CNAK pending for ep%d\n", tmp);
  1759. /* clear NAK by writing CNAK */
  1760. reg = readl(&dev->ep[tmp].regs->ctl);
  1761. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1762. writel(reg, &dev->ep[tmp].regs->ctl);
  1763. dev->ep[tmp].naking = 0;
  1764. UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
  1765. }
  1766. }
  1767. /* ... and ep0out */
  1768. if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
  1769. DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
  1770. /* clear NAK by writing CNAK */
  1771. reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1772. reg |= AMD_BIT(UDC_EPCTL_CNAK);
  1773. writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  1774. dev->ep[UDC_EP0OUT_IX].naking = 0;
  1775. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
  1776. dev->ep[UDC_EP0OUT_IX].num);
  1777. }
  1778. }
  1779. /* Enabling RX DMA after setup packet */
  1780. static void udc_ep0_set_rde(struct udc *dev)
  1781. {
  1782. if (use_dma) {
  1783. /*
  1784. * only enable RXDMA when no data endpoint enabled
  1785. * or data is queued
  1786. */
  1787. if (!dev->data_ep_enabled || dev->data_ep_queued) {
  1788. udc_set_rde(dev);
  1789. } else {
  1790. /*
  1791. * setup timer for enabling RDE (to not enable
  1792. * RXFIFO DMA for data endpoints to early)
  1793. */
  1794. if (set_rde != 0 && !timer_pending(&udc_timer)) {
  1795. udc_timer.expires =
  1796. jiffies + HZ/UDC_RDE_TIMER_DIV;
  1797. set_rde = 1;
  1798. if (!stop_timer) {
  1799. add_timer(&udc_timer);
  1800. }
  1801. }
  1802. }
  1803. }
  1804. }
  1805. /* Interrupt handler for data OUT traffic */
  1806. static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
  1807. {
  1808. irqreturn_t ret_val = IRQ_NONE;
  1809. u32 tmp;
  1810. struct udc_ep *ep;
  1811. struct udc_request *req;
  1812. unsigned int count;
  1813. struct udc_data_dma *td = NULL;
  1814. unsigned dma_done;
  1815. VDBG(dev, "ep%d irq\n", ep_ix);
  1816. ep = &dev->ep[ep_ix];
  1817. tmp = readl(&ep->regs->sts);
  1818. if (use_dma) {
  1819. /* BNA event ? */
  1820. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  1821. DBG(dev, "BNA ep%dout occured - DESPTR = %x \n",
  1822. ep->num, readl(&ep->regs->desptr));
  1823. /* clear BNA */
  1824. writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
  1825. if (!ep->cancel_transfer)
  1826. ep->bna_occurred = 1;
  1827. else
  1828. ep->cancel_transfer = 0;
  1829. ret_val = IRQ_HANDLED;
  1830. goto finished;
  1831. }
  1832. }
  1833. /* HE event ? */
  1834. if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
  1835. dev_err(&dev->pdev->dev, "HE ep%dout occured\n", ep->num);
  1836. /* clear HE */
  1837. writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  1838. ret_val = IRQ_HANDLED;
  1839. goto finished;
  1840. }
  1841. if (!list_empty(&ep->queue)) {
  1842. /* next request */
  1843. req = list_entry(ep->queue.next,
  1844. struct udc_request, queue);
  1845. } else {
  1846. req = NULL;
  1847. udc_rxfifo_pending = 1;
  1848. }
  1849. VDBG(dev, "req = %p\n", req);
  1850. /* fifo mode */
  1851. if (!use_dma) {
  1852. /* read fifo */
  1853. if (req && udc_rxfifo_read(ep, req)) {
  1854. ret_val = IRQ_HANDLED;
  1855. /* finish */
  1856. complete_req(ep, req, 0);
  1857. /* next request */
  1858. if (!list_empty(&ep->queue) && !ep->halted) {
  1859. req = list_entry(ep->queue.next,
  1860. struct udc_request, queue);
  1861. } else
  1862. req = NULL;
  1863. }
  1864. /* DMA */
  1865. } else if (!ep->cancel_transfer && req != NULL) {
  1866. ret_val = IRQ_HANDLED;
  1867. /* check for DMA done */
  1868. if (!use_dma_ppb) {
  1869. dma_done = AMD_GETBITS(req->td_data->status,
  1870. UDC_DMA_OUT_STS_BS);
  1871. /* packet per buffer mode - rx bytes */
  1872. } else {
  1873. /*
  1874. * if BNA occurred then recover desc. from
  1875. * BNA dummy desc.
  1876. */
  1877. if (ep->bna_occurred) {
  1878. VDBG(dev, "Recover desc. from BNA dummy\n");
  1879. memcpy(req->td_data, ep->bna_dummy_req->td_data,
  1880. sizeof(struct udc_data_dma));
  1881. ep->bna_occurred = 0;
  1882. udc_init_bna_dummy(ep->req);
  1883. }
  1884. td = udc_get_last_dma_desc(req);
  1885. dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
  1886. }
  1887. if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
  1888. /* buffer fill mode - rx bytes */
  1889. if (!use_dma_ppb) {
  1890. /* received number bytes */
  1891. count = AMD_GETBITS(req->td_data->status,
  1892. UDC_DMA_OUT_STS_RXBYTES);
  1893. VDBG(dev, "rx bytes=%u\n", count);
  1894. /* packet per buffer mode - rx bytes */
  1895. } else {
  1896. VDBG(dev, "req->td_data=%p\n", req->td_data);
  1897. VDBG(dev, "last desc = %p\n", td);
  1898. /* received number bytes */
  1899. if (use_dma_ppb_du) {
  1900. /* every desc. counts bytes */
  1901. count = udc_get_ppbdu_rxbytes(req);
  1902. } else {
  1903. /* last desc. counts bytes */
  1904. count = AMD_GETBITS(td->status,
  1905. UDC_DMA_OUT_STS_RXBYTES);
  1906. if (!count && req->req.length
  1907. == UDC_DMA_MAXPACKET) {
  1908. /*
  1909. * on 64k packets the RXBYTES
  1910. * field is zero
  1911. */
  1912. count = UDC_DMA_MAXPACKET;
  1913. }
  1914. }
  1915. VDBG(dev, "last desc rx bytes=%u\n", count);
  1916. }
  1917. tmp = req->req.length - req->req.actual;
  1918. if (count > tmp) {
  1919. if ((tmp % ep->ep.maxpacket) != 0) {
  1920. DBG(dev, "%s: rx %db, space=%db\n",
  1921. ep->ep.name, count, tmp);
  1922. req->req.status = -EOVERFLOW;
  1923. }
  1924. count = tmp;
  1925. }
  1926. req->req.actual += count;
  1927. req->dma_going = 0;
  1928. /* complete request */
  1929. complete_req(ep, req, 0);
  1930. /* next request */
  1931. if (!list_empty(&ep->queue) && !ep->halted) {
  1932. req = list_entry(ep->queue.next,
  1933. struct udc_request,
  1934. queue);
  1935. /*
  1936. * DMA may be already started by udc_queue()
  1937. * called by gadget drivers completion
  1938. * routine. This happens when queue
  1939. * holds one request only.
  1940. */
  1941. if (req->dma_going == 0) {
  1942. /* next dma */
  1943. if (prep_dma(ep, req, GFP_ATOMIC) != 0)
  1944. goto finished;
  1945. /* write desc pointer */
  1946. writel(req->td_phys,
  1947. &ep->regs->desptr);
  1948. req->dma_going = 1;
  1949. /* enable DMA */
  1950. udc_set_rde(dev);
  1951. }
  1952. } else {
  1953. /*
  1954. * implant BNA dummy descriptor to allow
  1955. * RXFIFO opening by RDE
  1956. */
  1957. if (ep->bna_dummy_req) {
  1958. /* write desc pointer */
  1959. writel(ep->bna_dummy_req->td_phys,
  1960. &ep->regs->desptr);
  1961. ep->bna_occurred = 0;
  1962. }
  1963. /*
  1964. * schedule timer for setting RDE if queue
  1965. * remains empty to allow ep0 packets pass
  1966. * through
  1967. */
  1968. if (set_rde != 0
  1969. && !timer_pending(&udc_timer)) {
  1970. udc_timer.expires =
  1971. jiffies
  1972. + HZ*UDC_RDE_TIMER_SECONDS;
  1973. set_rde = 1;
  1974. if (!stop_timer) {
  1975. add_timer(&udc_timer);
  1976. }
  1977. }
  1978. if (ep->num != UDC_EP0OUT_IX)
  1979. dev->data_ep_queued = 0;
  1980. }
  1981. } else {
  1982. /*
  1983. * RX DMA must be reenabled for each desc in PPBDU mode
  1984. * and must be enabled for PPBNDU mode in case of BNA
  1985. */
  1986. udc_set_rde(dev);
  1987. }
  1988. } else if (ep->cancel_transfer) {
  1989. ret_val = IRQ_HANDLED;
  1990. ep->cancel_transfer = 0;
  1991. }
  1992. /* check pending CNAKS */
  1993. if (cnak_pending) {
  1994. /* CNAk processing when rxfifo empty only */
  1995. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  1996. udc_process_cnak_queue(dev);
  1997. }
  1998. }
  1999. /* clear OUT bits in ep status */
  2000. writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
  2001. finished:
  2002. return ret_val;
  2003. }
  2004. /* Interrupt handler for data IN traffic */
  2005. static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
  2006. {
  2007. irqreturn_t ret_val = IRQ_NONE;
  2008. u32 tmp;
  2009. u32 epsts;
  2010. struct udc_ep *ep;
  2011. struct udc_request *req;
  2012. struct udc_data_dma *td;
  2013. unsigned dma_done;
  2014. unsigned len;
  2015. ep = &dev->ep[ep_ix];
  2016. epsts = readl(&ep->regs->sts);
  2017. if (use_dma) {
  2018. /* BNA ? */
  2019. if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
  2020. dev_err(&dev->pdev->dev,
  2021. "BNA ep%din occured - DESPTR = %08lx \n",
  2022. ep->num,
  2023. (unsigned long) readl(&ep->regs->desptr));
  2024. /* clear BNA */
  2025. writel(epsts, &ep->regs->sts);
  2026. ret_val = IRQ_HANDLED;
  2027. goto finished;
  2028. }
  2029. }
  2030. /* HE event ? */
  2031. if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
  2032. dev_err(&dev->pdev->dev,
  2033. "HE ep%dn occured - DESPTR = %08lx \n",
  2034. ep->num, (unsigned long) readl(&ep->regs->desptr));
  2035. /* clear HE */
  2036. writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
  2037. ret_val = IRQ_HANDLED;
  2038. goto finished;
  2039. }
  2040. /* DMA completion */
  2041. if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
  2042. VDBG(dev, "TDC set- completion\n");
  2043. ret_val = IRQ_HANDLED;
  2044. if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
  2045. req = list_entry(ep->queue.next,
  2046. struct udc_request, queue);
  2047. /*
  2048. * length bytes transfered
  2049. * check dma done of last desc. in PPBDU mode
  2050. */
  2051. if (use_dma_ppb_du) {
  2052. td = udc_get_last_dma_desc(req);
  2053. if (td) {
  2054. dma_done =
  2055. AMD_GETBITS(td->status,
  2056. UDC_DMA_IN_STS_BS);
  2057. /* don't care DMA done */
  2058. req->req.actual = req->req.length;
  2059. }
  2060. } else {
  2061. /* assume all bytes transferred */
  2062. req->req.actual = req->req.length;
  2063. }
  2064. if (req->req.actual == req->req.length) {
  2065. /* complete req */
  2066. complete_req(ep, req, 0);
  2067. req->dma_going = 0;
  2068. /* further request available ? */
  2069. if (list_empty(&ep->queue)) {
  2070. /* disable interrupt */
  2071. tmp = readl(&dev->regs->ep_irqmsk);
  2072. tmp |= AMD_BIT(ep->num);
  2073. writel(tmp, &dev->regs->ep_irqmsk);
  2074. }
  2075. }
  2076. }
  2077. ep->cancel_transfer = 0;
  2078. }
  2079. /*
  2080. * status reg has IN bit set and TDC not set (if TDC was handled,
  2081. * IN must not be handled (UDC defect) ?
  2082. */
  2083. if ((epsts & AMD_BIT(UDC_EPSTS_IN))
  2084. && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
  2085. ret_val = IRQ_HANDLED;
  2086. if (!list_empty(&ep->queue)) {
  2087. /* next request */
  2088. req = list_entry(ep->queue.next,
  2089. struct udc_request, queue);
  2090. /* FIFO mode */
  2091. if (!use_dma) {
  2092. /* write fifo */
  2093. udc_txfifo_write(ep, &req->req);
  2094. len = req->req.length - req->req.actual;
  2095. if (len > ep->ep.maxpacket)
  2096. len = ep->ep.maxpacket;
  2097. req->req.actual += len;
  2098. if (req->req.actual == req->req.length
  2099. || (len != ep->ep.maxpacket)) {
  2100. /* complete req */
  2101. complete_req(ep, req, 0);
  2102. }
  2103. /* DMA */
  2104. } else if (req && !req->dma_going) {
  2105. VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
  2106. req, req->td_data);
  2107. if (req->td_data) {
  2108. req->dma_going = 1;
  2109. /*
  2110. * unset L bit of first desc.
  2111. * for chain
  2112. */
  2113. if (use_dma_ppb && req->req.length >
  2114. ep->ep.maxpacket) {
  2115. req->td_data->status &=
  2116. AMD_CLEAR_BIT(
  2117. UDC_DMA_IN_STS_L);
  2118. }
  2119. /* write desc pointer */
  2120. writel(req->td_phys, &ep->regs->desptr);
  2121. /* set HOST READY */
  2122. req->td_data->status =
  2123. AMD_ADDBITS(
  2124. req->td_data->status,
  2125. UDC_DMA_IN_STS_BS_HOST_READY,
  2126. UDC_DMA_IN_STS_BS);
  2127. /* set poll demand bit */
  2128. tmp = readl(&ep->regs->ctl);
  2129. tmp |= AMD_BIT(UDC_EPCTL_P);
  2130. writel(tmp, &ep->regs->ctl);
  2131. }
  2132. }
  2133. } else if (!use_dma && ep->in) {
  2134. /* disable interrupt */
  2135. tmp = readl(
  2136. &dev->regs->ep_irqmsk);
  2137. tmp |= AMD_BIT(ep->num);
  2138. writel(tmp,
  2139. &dev->regs->ep_irqmsk);
  2140. }
  2141. }
  2142. /* clear status bits */
  2143. writel(epsts, &ep->regs->sts);
  2144. finished:
  2145. return ret_val;
  2146. }
  2147. /* Interrupt handler for Control OUT traffic */
  2148. static irqreturn_t udc_control_out_isr(struct udc *dev)
  2149. __releases(dev->lock)
  2150. __acquires(dev->lock)
  2151. {
  2152. irqreturn_t ret_val = IRQ_NONE;
  2153. u32 tmp;
  2154. int setup_supported;
  2155. u32 count;
  2156. int set = 0;
  2157. struct udc_ep *ep;
  2158. struct udc_ep *ep_tmp;
  2159. ep = &dev->ep[UDC_EP0OUT_IX];
  2160. /* clear irq */
  2161. writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
  2162. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2163. /* check BNA and clear if set */
  2164. if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
  2165. VDBG(dev, "ep0: BNA set\n");
  2166. writel(AMD_BIT(UDC_EPSTS_BNA),
  2167. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2168. ep->bna_occurred = 1;
  2169. ret_val = IRQ_HANDLED;
  2170. goto finished;
  2171. }
  2172. /* type of data: SETUP or DATA 0 bytes */
  2173. tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
  2174. VDBG(dev, "data_typ = %x\n", tmp);
  2175. /* setup data */
  2176. if (tmp == UDC_EPSTS_OUT_SETUP) {
  2177. ret_val = IRQ_HANDLED;
  2178. ep->dev->stall_ep0in = 0;
  2179. dev->waiting_zlp_ack_ep0in = 0;
  2180. /* set NAK for EP0_IN */
  2181. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2182. tmp |= AMD_BIT(UDC_EPCTL_SNAK);
  2183. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2184. dev->ep[UDC_EP0IN_IX].naking = 1;
  2185. /* get setup data */
  2186. if (use_dma) {
  2187. /* clear OUT bits in ep status */
  2188. writel(UDC_EPSTS_OUT_CLEAR,
  2189. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2190. setup_data.data[0] =
  2191. dev->ep[UDC_EP0OUT_IX].td_stp->data12;
  2192. setup_data.data[1] =
  2193. dev->ep[UDC_EP0OUT_IX].td_stp->data34;
  2194. /* set HOST READY */
  2195. dev->ep[UDC_EP0OUT_IX].td_stp->status =
  2196. UDC_DMA_STP_STS_BS_HOST_READY;
  2197. } else {
  2198. /* read fifo */
  2199. udc_rxfifo_read_dwords(dev, setup_data.data, 2);
  2200. }
  2201. /* determine direction of control data */
  2202. if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
  2203. dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
  2204. /* enable RDE */
  2205. udc_ep0_set_rde(dev);
  2206. set = 0;
  2207. } else {
  2208. dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
  2209. /*
  2210. * implant BNA dummy descriptor to allow RXFIFO opening
  2211. * by RDE
  2212. */
  2213. if (ep->bna_dummy_req) {
  2214. /* write desc pointer */
  2215. writel(ep->bna_dummy_req->td_phys,
  2216. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2217. ep->bna_occurred = 0;
  2218. }
  2219. set = 1;
  2220. dev->ep[UDC_EP0OUT_IX].naking = 1;
  2221. /*
  2222. * setup timer for enabling RDE (to not enable
  2223. * RXFIFO DMA for data to early)
  2224. */
  2225. set_rde = 1;
  2226. if (!timer_pending(&udc_timer)) {
  2227. udc_timer.expires = jiffies +
  2228. HZ/UDC_RDE_TIMER_DIV;
  2229. if (!stop_timer) {
  2230. add_timer(&udc_timer);
  2231. }
  2232. }
  2233. }
  2234. /*
  2235. * mass storage reset must be processed here because
  2236. * next packet may be a CLEAR_FEATURE HALT which would not
  2237. * clear the stall bit when no STALL handshake was received
  2238. * before (autostall can cause this)
  2239. */
  2240. if (setup_data.data[0] == UDC_MSCRES_DWORD0
  2241. && setup_data.data[1] == UDC_MSCRES_DWORD1) {
  2242. DBG(dev, "MSC Reset\n");
  2243. /*
  2244. * clear stall bits
  2245. * only one IN and OUT endpoints are handled
  2246. */
  2247. ep_tmp = &udc->ep[UDC_EPIN_IX];
  2248. udc_set_halt(&ep_tmp->ep, 0);
  2249. ep_tmp = &udc->ep[UDC_EPOUT_IX];
  2250. udc_set_halt(&ep_tmp->ep, 0);
  2251. }
  2252. /* call gadget with setup data received */
  2253. spin_unlock(&dev->lock);
  2254. setup_supported = dev->driver->setup(&dev->gadget,
  2255. &setup_data.request);
  2256. spin_lock(&dev->lock);
  2257. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2258. /* ep0 in returns data (not zlp) on IN phase */
  2259. if (setup_supported >= 0 && setup_supported <
  2260. UDC_EP0IN_MAXPACKET) {
  2261. /* clear NAK by writing CNAK in EP0_IN */
  2262. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2263. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2264. dev->ep[UDC_EP0IN_IX].naking = 0;
  2265. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
  2266. /* if unsupported request then stall */
  2267. } else if (setup_supported < 0) {
  2268. tmp |= AMD_BIT(UDC_EPCTL_S);
  2269. writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2270. } else
  2271. dev->waiting_zlp_ack_ep0in = 1;
  2272. /* clear NAK by writing CNAK in EP0_OUT */
  2273. if (!set) {
  2274. tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2275. tmp |= AMD_BIT(UDC_EPCTL_CNAK);
  2276. writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
  2277. dev->ep[UDC_EP0OUT_IX].naking = 0;
  2278. UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
  2279. }
  2280. if (!use_dma) {
  2281. /* clear OUT bits in ep status */
  2282. writel(UDC_EPSTS_OUT_CLEAR,
  2283. &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2284. }
  2285. /* data packet 0 bytes */
  2286. } else if (tmp == UDC_EPSTS_OUT_DATA) {
  2287. /* clear OUT bits in ep status */
  2288. writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
  2289. /* get setup data: only 0 packet */
  2290. if (use_dma) {
  2291. /* no req if 0 packet, just reactivate */
  2292. if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
  2293. VDBG(dev, "ZLP\n");
  2294. /* set HOST READY */
  2295. dev->ep[UDC_EP0OUT_IX].td->status =
  2296. AMD_ADDBITS(
  2297. dev->ep[UDC_EP0OUT_IX].td->status,
  2298. UDC_DMA_OUT_STS_BS_HOST_READY,
  2299. UDC_DMA_OUT_STS_BS);
  2300. /* enable RDE */
  2301. udc_ep0_set_rde(dev);
  2302. ret_val = IRQ_HANDLED;
  2303. } else {
  2304. /* control write */
  2305. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2306. /* re-program desc. pointer for possible ZLPs */
  2307. writel(dev->ep[UDC_EP0OUT_IX].td_phys,
  2308. &dev->ep[UDC_EP0OUT_IX].regs->desptr);
  2309. /* enable RDE */
  2310. udc_ep0_set_rde(dev);
  2311. }
  2312. } else {
  2313. /* received number bytes */
  2314. count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
  2315. count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
  2316. /* out data for fifo mode not working */
  2317. count = 0;
  2318. /* 0 packet or real data ? */
  2319. if (count != 0) {
  2320. ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
  2321. } else {
  2322. /* dummy read confirm */
  2323. readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
  2324. ret_val = IRQ_HANDLED;
  2325. }
  2326. }
  2327. }
  2328. /* check pending CNAKS */
  2329. if (cnak_pending) {
  2330. /* CNAk processing when rxfifo empty only */
  2331. if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
  2332. udc_process_cnak_queue(dev);
  2333. }
  2334. }
  2335. finished:
  2336. return ret_val;
  2337. }
  2338. /* Interrupt handler for Control IN traffic */
  2339. static irqreturn_t udc_control_in_isr(struct udc *dev)
  2340. {
  2341. irqreturn_t ret_val = IRQ_NONE;
  2342. u32 tmp;
  2343. struct udc_ep *ep;
  2344. struct udc_request *req;
  2345. unsigned len;
  2346. ep = &dev->ep[UDC_EP0IN_IX];
  2347. /* clear irq */
  2348. writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
  2349. tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
  2350. /* DMA completion */
  2351. if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
  2352. VDBG(dev, "isr: TDC clear \n");
  2353. ret_val = IRQ_HANDLED;
  2354. /* clear TDC bit */
  2355. writel(AMD_BIT(UDC_EPSTS_TDC),
  2356. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2357. /* status reg has IN bit set ? */
  2358. } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
  2359. ret_val = IRQ_HANDLED;
  2360. if (ep->dma) {
  2361. /* clear IN bit */
  2362. writel(AMD_BIT(UDC_EPSTS_IN),
  2363. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2364. }
  2365. if (dev->stall_ep0in) {
  2366. DBG(dev, "stall ep0in\n");
  2367. /* halt ep0in */
  2368. tmp = readl(&ep->regs->ctl);
  2369. tmp |= AMD_BIT(UDC_EPCTL_S);
  2370. writel(tmp, &ep->regs->ctl);
  2371. } else {
  2372. if (!list_empty(&ep->queue)) {
  2373. /* next request */
  2374. req = list_entry(ep->queue.next,
  2375. struct udc_request, queue);
  2376. if (ep->dma) {
  2377. /* write desc pointer */
  2378. writel(req->td_phys, &ep->regs->desptr);
  2379. /* set HOST READY */
  2380. req->td_data->status =
  2381. AMD_ADDBITS(
  2382. req->td_data->status,
  2383. UDC_DMA_STP_STS_BS_HOST_READY,
  2384. UDC_DMA_STP_STS_BS);
  2385. /* set poll demand bit */
  2386. tmp =
  2387. readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
  2388. tmp |= AMD_BIT(UDC_EPCTL_P);
  2389. writel(tmp,
  2390. &dev->ep[UDC_EP0IN_IX].regs->ctl);
  2391. /* all bytes will be transferred */
  2392. req->req.actual = req->req.length;
  2393. /* complete req */
  2394. complete_req(ep, req, 0);
  2395. } else {
  2396. /* write fifo */
  2397. udc_txfifo_write(ep, &req->req);
  2398. /* lengh bytes transfered */
  2399. len = req->req.length - req->req.actual;
  2400. if (len > ep->ep.maxpacket)
  2401. len = ep->ep.maxpacket;
  2402. req->req.actual += len;
  2403. if (req->req.actual == req->req.length
  2404. || (len != ep->ep.maxpacket)) {
  2405. /* complete req */
  2406. complete_req(ep, req, 0);
  2407. }
  2408. }
  2409. }
  2410. }
  2411. ep->halted = 0;
  2412. dev->stall_ep0in = 0;
  2413. if (!ep->dma) {
  2414. /* clear IN bit */
  2415. writel(AMD_BIT(UDC_EPSTS_IN),
  2416. &dev->ep[UDC_EP0IN_IX].regs->sts);
  2417. }
  2418. }
  2419. return ret_val;
  2420. }
  2421. /* Interrupt handler for global device events */
  2422. static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
  2423. __releases(dev->lock)
  2424. __acquires(dev->lock)
  2425. {
  2426. irqreturn_t ret_val = IRQ_NONE;
  2427. u32 tmp;
  2428. u32 cfg;
  2429. struct udc_ep *ep;
  2430. u16 i;
  2431. u8 udc_csr_epix;
  2432. /* SET_CONFIG irq ? */
  2433. if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
  2434. ret_val = IRQ_HANDLED;
  2435. /* read config value */
  2436. tmp = readl(&dev->regs->sts);
  2437. cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
  2438. DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
  2439. dev->cur_config = cfg;
  2440. dev->set_cfg_not_acked = 1;
  2441. /* make usb request for gadget driver */
  2442. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2443. setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
  2444. setup_data.request.wValue = cpu_to_le16(dev->cur_config);
  2445. /* programm the NE registers */
  2446. for (i = 0; i < UDC_EP_NUM; i++) {
  2447. ep = &dev->ep[i];
  2448. if (ep->in) {
  2449. /* ep ix in UDC CSR register space */
  2450. udc_csr_epix = ep->num;
  2451. /* OUT ep */
  2452. } else {
  2453. /* ep ix in UDC CSR register space */
  2454. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2455. }
  2456. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2457. /* ep cfg */
  2458. tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
  2459. UDC_CSR_NE_CFG);
  2460. /* write reg */
  2461. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2462. /* clear stall bits */
  2463. ep->halted = 0;
  2464. tmp = readl(&ep->regs->ctl);
  2465. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2466. writel(tmp, &ep->regs->ctl);
  2467. }
  2468. /* call gadget zero with setup data received */
  2469. spin_unlock(&dev->lock);
  2470. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2471. spin_lock(&dev->lock);
  2472. } /* SET_INTERFACE ? */
  2473. if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
  2474. ret_val = IRQ_HANDLED;
  2475. dev->set_cfg_not_acked = 1;
  2476. /* read interface and alt setting values */
  2477. tmp = readl(&dev->regs->sts);
  2478. dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
  2479. dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
  2480. /* make usb request for gadget driver */
  2481. memset(&setup_data, 0 , sizeof(union udc_setup_data));
  2482. setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
  2483. setup_data.request.bRequestType = USB_RECIP_INTERFACE;
  2484. setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
  2485. setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
  2486. DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
  2487. dev->cur_alt, dev->cur_intf);
  2488. /* programm the NE registers */
  2489. for (i = 0; i < UDC_EP_NUM; i++) {
  2490. ep = &dev->ep[i];
  2491. if (ep->in) {
  2492. /* ep ix in UDC CSR register space */
  2493. udc_csr_epix = ep->num;
  2494. /* OUT ep */
  2495. } else {
  2496. /* ep ix in UDC CSR register space */
  2497. udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
  2498. }
  2499. /* UDC CSR reg */
  2500. /* set ep values */
  2501. tmp = readl(&dev->csr->ne[udc_csr_epix]);
  2502. /* ep interface */
  2503. tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
  2504. UDC_CSR_NE_INTF);
  2505. /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
  2506. /* ep alt */
  2507. tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
  2508. UDC_CSR_NE_ALT);
  2509. /* write reg */
  2510. writel(tmp, &dev->csr->ne[udc_csr_epix]);
  2511. /* clear stall bits */
  2512. ep->halted = 0;
  2513. tmp = readl(&ep->regs->ctl);
  2514. tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
  2515. writel(tmp, &ep->regs->ctl);
  2516. }
  2517. /* call gadget zero with setup data received */
  2518. spin_unlock(&dev->lock);
  2519. tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
  2520. spin_lock(&dev->lock);
  2521. } /* USB reset */
  2522. if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
  2523. DBG(dev, "USB Reset interrupt\n");
  2524. ret_val = IRQ_HANDLED;
  2525. /* allow soft reset when suspend occurs */
  2526. soft_reset_occured = 0;
  2527. dev->waiting_zlp_ack_ep0in = 0;
  2528. dev->set_cfg_not_acked = 0;
  2529. /* mask not needed interrupts */
  2530. udc_mask_unused_interrupts(dev);
  2531. /* call gadget to resume and reset configs etc. */
  2532. spin_unlock(&dev->lock);
  2533. if (dev->sys_suspended && dev->driver->resume) {
  2534. dev->driver->resume(&dev->gadget);
  2535. dev->sys_suspended = 0;
  2536. }
  2537. dev->driver->disconnect(&dev->gadget);
  2538. spin_lock(&dev->lock);
  2539. /* disable ep0 to empty req queue */
  2540. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2541. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2542. /* soft reset when rxfifo not empty */
  2543. tmp = readl(&dev->regs->sts);
  2544. if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
  2545. && !soft_reset_after_usbreset_occured) {
  2546. udc_soft_reset(dev);
  2547. soft_reset_after_usbreset_occured++;
  2548. }
  2549. /*
  2550. * DMA reset to kill potential old DMA hw hang,
  2551. * POLL bit is already reset by ep_init() through
  2552. * disconnect()
  2553. */
  2554. DBG(dev, "DMA machine reset\n");
  2555. tmp = readl(&dev->regs->cfg);
  2556. writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
  2557. writel(tmp, &dev->regs->cfg);
  2558. /* put into initial config */
  2559. udc_basic_init(dev);
  2560. /* enable device setup interrupts */
  2561. udc_enable_dev_setup_interrupts(dev);
  2562. /* enable suspend interrupt */
  2563. tmp = readl(&dev->regs->irqmsk);
  2564. tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
  2565. writel(tmp, &dev->regs->irqmsk);
  2566. } /* USB suspend */
  2567. if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
  2568. DBG(dev, "USB Suspend interrupt\n");
  2569. ret_val = IRQ_HANDLED;
  2570. if (dev->driver->suspend) {
  2571. spin_unlock(&dev->lock);
  2572. dev->sys_suspended = 1;
  2573. dev->driver->suspend(&dev->gadget);
  2574. spin_lock(&dev->lock);
  2575. }
  2576. } /* new speed ? */
  2577. if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
  2578. DBG(dev, "ENUM interrupt\n");
  2579. ret_val = IRQ_HANDLED;
  2580. soft_reset_after_usbreset_occured = 0;
  2581. /* disable ep0 to empty req queue */
  2582. empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
  2583. ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
  2584. /* link up all endpoints */
  2585. udc_setup_endpoints(dev);
  2586. if (dev->gadget.speed == USB_SPEED_HIGH) {
  2587. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2588. "high");
  2589. } else if (dev->gadget.speed == USB_SPEED_FULL) {
  2590. dev_info(&dev->pdev->dev, "Connect: speed = %s\n",
  2591. "full");
  2592. }
  2593. /* init ep 0 */
  2594. activate_control_endpoints(dev);
  2595. /* enable ep0 interrupts */
  2596. udc_enable_ep0_interrupts(dev);
  2597. }
  2598. /* session valid change interrupt */
  2599. if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
  2600. DBG(dev, "USB SVC interrupt\n");
  2601. ret_val = IRQ_HANDLED;
  2602. /* check that session is not valid to detect disconnect */
  2603. tmp = readl(&dev->regs->sts);
  2604. if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
  2605. /* disable suspend interrupt */
  2606. tmp = readl(&dev->regs->irqmsk);
  2607. tmp |= AMD_BIT(UDC_DEVINT_US);
  2608. writel(tmp, &dev->regs->irqmsk);
  2609. DBG(dev, "USB Disconnect (session valid low)\n");
  2610. /* cleanup on disconnect */
  2611. usb_disconnect(udc);
  2612. }
  2613. }
  2614. return ret_val;
  2615. }
  2616. /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
  2617. static irqreturn_t udc_irq(int irq, void *pdev)
  2618. {
  2619. struct udc *dev = pdev;
  2620. u32 reg;
  2621. u16 i;
  2622. u32 ep_irq;
  2623. irqreturn_t ret_val = IRQ_NONE;
  2624. spin_lock(&dev->lock);
  2625. /* check for ep irq */
  2626. reg = readl(&dev->regs->ep_irqsts);
  2627. if (reg) {
  2628. if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
  2629. ret_val |= udc_control_out_isr(dev);
  2630. if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
  2631. ret_val |= udc_control_in_isr(dev);
  2632. /*
  2633. * data endpoint
  2634. * iterate ep's
  2635. */
  2636. for (i = 1; i < UDC_EP_NUM; i++) {
  2637. ep_irq = 1 << i;
  2638. if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
  2639. continue;
  2640. /* clear irq status */
  2641. writel(ep_irq, &dev->regs->ep_irqsts);
  2642. /* irq for out ep ? */
  2643. if (i > UDC_EPIN_NUM)
  2644. ret_val |= udc_data_out_isr(dev, i);
  2645. else
  2646. ret_val |= udc_data_in_isr(dev, i);
  2647. }
  2648. }
  2649. /* check for dev irq */
  2650. reg = readl(&dev->regs->irqsts);
  2651. if (reg) {
  2652. /* clear irq */
  2653. writel(reg, &dev->regs->irqsts);
  2654. ret_val |= udc_dev_isr(dev, reg);
  2655. }
  2656. spin_unlock(&dev->lock);
  2657. return ret_val;
  2658. }
  2659. /* Tears down device */
  2660. static void gadget_release(struct device *pdev)
  2661. {
  2662. struct amd5536udc *dev = dev_get_drvdata(pdev);
  2663. kfree(dev);
  2664. }
  2665. /* Cleanup on device remove */
  2666. static void udc_remove(struct udc *dev)
  2667. {
  2668. /* remove timer */
  2669. stop_timer++;
  2670. if (timer_pending(&udc_timer))
  2671. wait_for_completion(&on_exit);
  2672. if (udc_timer.data)
  2673. del_timer_sync(&udc_timer);
  2674. /* remove pollstall timer */
  2675. stop_pollstall_timer++;
  2676. if (timer_pending(&udc_pollstall_timer))
  2677. wait_for_completion(&on_pollstall_exit);
  2678. if (udc_pollstall_timer.data)
  2679. del_timer_sync(&udc_pollstall_timer);
  2680. udc = NULL;
  2681. }
  2682. /* Reset all pci context */
  2683. static void udc_pci_remove(struct pci_dev *pdev)
  2684. {
  2685. struct udc *dev;
  2686. dev = pci_get_drvdata(pdev);
  2687. /* gadget driver must not be registered */
  2688. BUG_ON(dev->driver != NULL);
  2689. /* dma pool cleanup */
  2690. if (dev->data_requests)
  2691. pci_pool_destroy(dev->data_requests);
  2692. if (dev->stp_requests) {
  2693. /* cleanup DMA desc's for ep0in */
  2694. pci_pool_free(dev->stp_requests,
  2695. dev->ep[UDC_EP0OUT_IX].td_stp,
  2696. dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2697. pci_pool_free(dev->stp_requests,
  2698. dev->ep[UDC_EP0OUT_IX].td,
  2699. dev->ep[UDC_EP0OUT_IX].td_phys);
  2700. pci_pool_destroy(dev->stp_requests);
  2701. }
  2702. /* reset controller */
  2703. writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
  2704. if (dev->irq_registered)
  2705. free_irq(pdev->irq, dev);
  2706. if (dev->regs)
  2707. iounmap(dev->regs);
  2708. if (dev->mem_region)
  2709. release_mem_region(pci_resource_start(pdev, 0),
  2710. pci_resource_len(pdev, 0));
  2711. if (dev->active)
  2712. pci_disable_device(pdev);
  2713. device_unregister(&dev->gadget.dev);
  2714. pci_set_drvdata(pdev, NULL);
  2715. udc_remove(dev);
  2716. }
  2717. /* create dma pools on init */
  2718. static int init_dma_pools(struct udc *dev)
  2719. {
  2720. struct udc_stp_dma *td_stp;
  2721. struct udc_data_dma *td_data;
  2722. int retval;
  2723. /* consistent DMA mode setting ? */
  2724. if (use_dma_ppb) {
  2725. use_dma_bufferfill_mode = 0;
  2726. } else {
  2727. use_dma_ppb_du = 0;
  2728. use_dma_bufferfill_mode = 1;
  2729. }
  2730. /* DMA setup */
  2731. dev->data_requests = dma_pool_create("data_requests", NULL,
  2732. sizeof(struct udc_data_dma), 0, 0);
  2733. if (!dev->data_requests) {
  2734. DBG(dev, "can't get request data pool\n");
  2735. retval = -ENOMEM;
  2736. goto finished;
  2737. }
  2738. /* EP0 in dma regs = dev control regs */
  2739. dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
  2740. /* dma desc for setup data */
  2741. dev->stp_requests = dma_pool_create("setup requests", NULL,
  2742. sizeof(struct udc_stp_dma), 0, 0);
  2743. if (!dev->stp_requests) {
  2744. DBG(dev, "can't get stp request pool\n");
  2745. retval = -ENOMEM;
  2746. goto finished;
  2747. }
  2748. /* setup */
  2749. td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2750. &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
  2751. if (td_stp == NULL) {
  2752. retval = -ENOMEM;
  2753. goto finished;
  2754. }
  2755. dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
  2756. /* data: 0 packets !? */
  2757. td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
  2758. &dev->ep[UDC_EP0OUT_IX].td_phys);
  2759. if (td_data == NULL) {
  2760. retval = -ENOMEM;
  2761. goto finished;
  2762. }
  2763. dev->ep[UDC_EP0OUT_IX].td = td_data;
  2764. return 0;
  2765. finished:
  2766. return retval;
  2767. }
  2768. /* Called by pci bus driver to init pci context */
  2769. static int udc_pci_probe(
  2770. struct pci_dev *pdev,
  2771. const struct pci_device_id *id
  2772. )
  2773. {
  2774. struct udc *dev;
  2775. unsigned long resource;
  2776. unsigned long len;
  2777. int retval = 0;
  2778. /* one udc only */
  2779. if (udc) {
  2780. dev_dbg(&pdev->dev, "already probed\n");
  2781. return -EBUSY;
  2782. }
  2783. /* init */
  2784. dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
  2785. if (!dev) {
  2786. retval = -ENOMEM;
  2787. goto finished;
  2788. }
  2789. /* pci setup */
  2790. if (pci_enable_device(pdev) < 0) {
  2791. kfree(dev);
  2792. dev = NULL;
  2793. retval = -ENODEV;
  2794. goto finished;
  2795. }
  2796. dev->active = 1;
  2797. /* PCI resource allocation */
  2798. resource = pci_resource_start(pdev, 0);
  2799. len = pci_resource_len(pdev, 0);
  2800. if (!request_mem_region(resource, len, name)) {
  2801. dev_dbg(&pdev->dev, "pci device used already\n");
  2802. kfree(dev);
  2803. dev = NULL;
  2804. retval = -EBUSY;
  2805. goto finished;
  2806. }
  2807. dev->mem_region = 1;
  2808. dev->virt_addr = ioremap_nocache(resource, len);
  2809. if (dev->virt_addr == NULL) {
  2810. dev_dbg(&pdev->dev, "start address cannot be mapped\n");
  2811. kfree(dev);
  2812. dev = NULL;
  2813. retval = -EFAULT;
  2814. goto finished;
  2815. }
  2816. if (!pdev->irq) {
  2817. dev_err(&dev->pdev->dev, "irq not set\n");
  2818. kfree(dev);
  2819. dev = NULL;
  2820. retval = -ENODEV;
  2821. goto finished;
  2822. }
  2823. spin_lock_init(&dev->lock);
  2824. /* udc csr registers base */
  2825. dev->csr = dev->virt_addr + UDC_CSR_ADDR;
  2826. /* dev registers base */
  2827. dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
  2828. /* ep registers base */
  2829. dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
  2830. /* fifo's base */
  2831. dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
  2832. dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
  2833. if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
  2834. dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
  2835. kfree(dev);
  2836. dev = NULL;
  2837. retval = -EBUSY;
  2838. goto finished;
  2839. }
  2840. dev->irq_registered = 1;
  2841. pci_set_drvdata(pdev, dev);
  2842. /* chip revision for Hs AMD5536 */
  2843. dev->chiprev = pdev->revision;
  2844. pci_set_master(pdev);
  2845. pci_try_set_mwi(pdev);
  2846. /* init dma pools */
  2847. if (use_dma) {
  2848. retval = init_dma_pools(dev);
  2849. if (retval != 0)
  2850. goto finished;
  2851. }
  2852. dev->phys_addr = resource;
  2853. dev->irq = pdev->irq;
  2854. dev->pdev = pdev;
  2855. dev->gadget.dev.parent = &pdev->dev;
  2856. dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
  2857. /* general probing */
  2858. if (udc_probe(dev) == 0)
  2859. return 0;
  2860. finished:
  2861. if (dev)
  2862. udc_pci_remove(pdev);
  2863. return retval;
  2864. }
  2865. /* general probe */
  2866. static int udc_probe(struct udc *dev)
  2867. {
  2868. char tmp[128];
  2869. u32 reg;
  2870. int retval;
  2871. /* mark timer as not initialized */
  2872. udc_timer.data = 0;
  2873. udc_pollstall_timer.data = 0;
  2874. /* device struct setup */
  2875. dev->gadget.ops = &udc_ops;
  2876. dev_set_name(&dev->gadget.dev, "gadget");
  2877. dev->gadget.dev.release = gadget_release;
  2878. dev->gadget.name = name;
  2879. dev->gadget.is_dualspeed = 1;
  2880. /* init registers, interrupts, ... */
  2881. startup_registers(dev);
  2882. dev_info(&dev->pdev->dev, "%s\n", mod_desc);
  2883. snprintf(tmp, sizeof tmp, "%d", dev->irq);
  2884. dev_info(&dev->pdev->dev,
  2885. "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
  2886. tmp, dev->phys_addr, dev->chiprev,
  2887. (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
  2888. strcpy(tmp, UDC_DRIVER_VERSION_STRING);
  2889. if (dev->chiprev == UDC_HSA0_REV) {
  2890. dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
  2891. retval = -ENODEV;
  2892. goto finished;
  2893. }
  2894. dev_info(&dev->pdev->dev,
  2895. "driver version: %s(for Geode5536 B1)\n", tmp);
  2896. udc = dev;
  2897. retval = device_register(&dev->gadget.dev);
  2898. if (retval) {
  2899. put_device(&dev->gadget.dev);
  2900. goto finished;
  2901. }
  2902. /* timer init */
  2903. init_timer(&udc_timer);
  2904. udc_timer.function = udc_timer_function;
  2905. udc_timer.data = 1;
  2906. /* timer pollstall init */
  2907. init_timer(&udc_pollstall_timer);
  2908. udc_pollstall_timer.function = udc_pollstall_timer_function;
  2909. udc_pollstall_timer.data = 1;
  2910. /* set SD */
  2911. reg = readl(&dev->regs->ctl);
  2912. reg |= AMD_BIT(UDC_DEVCTL_SD);
  2913. writel(reg, &dev->regs->ctl);
  2914. /* print dev register info */
  2915. print_regs(dev);
  2916. return 0;
  2917. finished:
  2918. return retval;
  2919. }
  2920. /* Initiates a remote wakeup */
  2921. static int udc_remote_wakeup(struct udc *dev)
  2922. {
  2923. unsigned long flags;
  2924. u32 tmp;
  2925. DBG(dev, "UDC initiates remote wakeup\n");
  2926. spin_lock_irqsave(&dev->lock, flags);
  2927. tmp = readl(&dev->regs->ctl);
  2928. tmp |= AMD_BIT(UDC_DEVCTL_RES);
  2929. writel(tmp, &dev->regs->ctl);
  2930. tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
  2931. writel(tmp, &dev->regs->ctl);
  2932. spin_unlock_irqrestore(&dev->lock, flags);
  2933. return 0;
  2934. }
  2935. /* PCI device parameters */
  2936. static const struct pci_device_id pci_id[] = {
  2937. {
  2938. PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
  2939. .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
  2940. .class_mask = 0xffffffff,
  2941. },
  2942. {},
  2943. };
  2944. MODULE_DEVICE_TABLE(pci, pci_id);
  2945. /* PCI functions */
  2946. static struct pci_driver udc_pci_driver = {
  2947. .name = (char *) name,
  2948. .id_table = pci_id,
  2949. .probe = udc_pci_probe,
  2950. .remove = udc_pci_remove,
  2951. };
  2952. /* Inits driver */
  2953. static int __init init(void)
  2954. {
  2955. return pci_register_driver(&udc_pci_driver);
  2956. }
  2957. module_init(init);
  2958. /* Cleans driver */
  2959. static void __exit cleanup(void)
  2960. {
  2961. pci_unregister_driver(&udc_pci_driver);
  2962. }
  2963. module_exit(cleanup);
  2964. MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
  2965. MODULE_AUTHOR("Thomas Dahlmann");
  2966. MODULE_LICENSE("GPL");