dw_spi.c 23 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006
  1. /*
  2. * dw_spi.c - Designware SPI core controller driver (refer pxa2xx_spi.c)
  3. *
  4. * Copyright (c) 2009, Intel Corporation.
  5. *
  6. * This program is free software; you can redistribute it and/or modify it
  7. * under the terms and conditions of the GNU General Public License,
  8. * version 2, as published by the Free Software Foundation.
  9. *
  10. * This program is distributed in the hope it will be useful, but WITHOUT
  11. * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
  13. * more details.
  14. *
  15. * You should have received a copy of the GNU General Public License along with
  16. * this program; if not, write to the Free Software Foundation, Inc.,
  17. * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18. */
  19. #include <linux/dma-mapping.h>
  20. #include <linux/interrupt.h>
  21. #include <linux/highmem.h>
  22. #include <linux/delay.h>
  23. #include <linux/slab.h>
  24. #include <linux/spi/dw_spi.h>
  25. #include <linux/spi/spi.h>
  26. #ifdef CONFIG_DEBUG_FS
  27. #include <linux/debugfs.h>
  28. #endif
  29. #define START_STATE ((void *)0)
  30. #define RUNNING_STATE ((void *)1)
  31. #define DONE_STATE ((void *)2)
  32. #define ERROR_STATE ((void *)-1)
  33. #define QUEUE_RUNNING 0
  34. #define QUEUE_STOPPED 1
  35. #define MRST_SPI_DEASSERT 0
  36. #define MRST_SPI_ASSERT 1
  37. /* Slave spi_dev related */
  38. struct chip_data {
  39. u16 cr0;
  40. u8 cs; /* chip select pin */
  41. u8 n_bytes; /* current is a 1/2/4 byte op */
  42. u8 tmode; /* TR/TO/RO/EEPROM */
  43. u8 type; /* SPI/SSP/MicroWire */
  44. u8 poll_mode; /* 1 means use poll mode */
  45. u32 dma_width;
  46. u32 rx_threshold;
  47. u32 tx_threshold;
  48. u8 enable_dma;
  49. u8 bits_per_word;
  50. u16 clk_div; /* baud rate divider */
  51. u32 speed_hz; /* baud rate */
  52. int (*write)(struct dw_spi *dws);
  53. int (*read)(struct dw_spi *dws);
  54. void (*cs_control)(u32 command);
  55. };
  56. #ifdef CONFIG_DEBUG_FS
  57. static int spi_show_regs_open(struct inode *inode, struct file *file)
  58. {
  59. file->private_data = inode->i_private;
  60. return 0;
  61. }
  62. #define SPI_REGS_BUFSIZE 1024
  63. static ssize_t spi_show_regs(struct file *file, char __user *user_buf,
  64. size_t count, loff_t *ppos)
  65. {
  66. struct dw_spi *dws;
  67. char *buf;
  68. u32 len = 0;
  69. ssize_t ret;
  70. dws = file->private_data;
  71. buf = kzalloc(SPI_REGS_BUFSIZE, GFP_KERNEL);
  72. if (!buf)
  73. return 0;
  74. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  75. "MRST SPI0 registers:\n");
  76. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  77. "=================================\n");
  78. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  79. "CTRL0: \t\t0x%08x\n", dw_readl(dws, ctrl0));
  80. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  81. "CTRL1: \t\t0x%08x\n", dw_readl(dws, ctrl1));
  82. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  83. "SSIENR: \t0x%08x\n", dw_readl(dws, ssienr));
  84. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  85. "SER: \t\t0x%08x\n", dw_readl(dws, ser));
  86. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  87. "BAUDR: \t\t0x%08x\n", dw_readl(dws, baudr));
  88. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  89. "TXFTLR: \t0x%08x\n", dw_readl(dws, txfltr));
  90. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  91. "RXFTLR: \t0x%08x\n", dw_readl(dws, rxfltr));
  92. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  93. "TXFLR: \t\t0x%08x\n", dw_readl(dws, txflr));
  94. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  95. "RXFLR: \t\t0x%08x\n", dw_readl(dws, rxflr));
  96. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  97. "SR: \t\t0x%08x\n", dw_readl(dws, sr));
  98. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  99. "IMR: \t\t0x%08x\n", dw_readl(dws, imr));
  100. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  101. "ISR: \t\t0x%08x\n", dw_readl(dws, isr));
  102. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  103. "DMACR: \t\t0x%08x\n", dw_readl(dws, dmacr));
  104. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  105. "DMATDLR: \t0x%08x\n", dw_readl(dws, dmatdlr));
  106. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  107. "DMARDLR: \t0x%08x\n", dw_readl(dws, dmardlr));
  108. len += snprintf(buf + len, SPI_REGS_BUFSIZE - len,
  109. "=================================\n");
  110. ret = simple_read_from_buffer(user_buf, count, ppos, buf, len);
  111. kfree(buf);
  112. return ret;
  113. }
  114. static const struct file_operations mrst_spi_regs_ops = {
  115. .owner = THIS_MODULE,
  116. .open = spi_show_regs_open,
  117. .read = spi_show_regs,
  118. .llseek = default_llseek,
  119. };
  120. static int mrst_spi_debugfs_init(struct dw_spi *dws)
  121. {
  122. dws->debugfs = debugfs_create_dir("mrst_spi", NULL);
  123. if (!dws->debugfs)
  124. return -ENOMEM;
  125. debugfs_create_file("registers", S_IFREG | S_IRUGO,
  126. dws->debugfs, (void *)dws, &mrst_spi_regs_ops);
  127. return 0;
  128. }
  129. static void mrst_spi_debugfs_remove(struct dw_spi *dws)
  130. {
  131. if (dws->debugfs)
  132. debugfs_remove_recursive(dws->debugfs);
  133. }
  134. #else
  135. static inline int mrst_spi_debugfs_init(struct dw_spi *dws)
  136. {
  137. return 0;
  138. }
  139. static inline void mrst_spi_debugfs_remove(struct dw_spi *dws)
  140. {
  141. }
  142. #endif /* CONFIG_DEBUG_FS */
  143. static void wait_till_not_busy(struct dw_spi *dws)
  144. {
  145. unsigned long end = jiffies + 1 + usecs_to_jiffies(5000);
  146. while (time_before(jiffies, end)) {
  147. if (!(dw_readw(dws, sr) & SR_BUSY))
  148. return;
  149. cpu_relax();
  150. }
  151. dev_err(&dws->master->dev,
  152. "DW SPI: Status keeps busy for 5000us after a read/write!\n");
  153. }
  154. static void flush(struct dw_spi *dws)
  155. {
  156. while (dw_readw(dws, sr) & SR_RF_NOT_EMPT) {
  157. dw_readw(dws, dr);
  158. cpu_relax();
  159. }
  160. wait_till_not_busy(dws);
  161. }
  162. static int null_writer(struct dw_spi *dws)
  163. {
  164. u8 n_bytes = dws->n_bytes;
  165. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  166. || (dws->tx == dws->tx_end))
  167. return 0;
  168. dw_writew(dws, dr, 0);
  169. dws->tx += n_bytes;
  170. wait_till_not_busy(dws);
  171. return 1;
  172. }
  173. static int null_reader(struct dw_spi *dws)
  174. {
  175. u8 n_bytes = dws->n_bytes;
  176. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  177. && (dws->rx < dws->rx_end)) {
  178. dw_readw(dws, dr);
  179. dws->rx += n_bytes;
  180. }
  181. wait_till_not_busy(dws);
  182. return dws->rx == dws->rx_end;
  183. }
  184. static int u8_writer(struct dw_spi *dws)
  185. {
  186. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  187. || (dws->tx == dws->tx_end))
  188. return 0;
  189. dw_writew(dws, dr, *(u8 *)(dws->tx));
  190. ++dws->tx;
  191. wait_till_not_busy(dws);
  192. return 1;
  193. }
  194. static int u8_reader(struct dw_spi *dws)
  195. {
  196. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  197. && (dws->rx < dws->rx_end)) {
  198. *(u8 *)(dws->rx) = dw_readw(dws, dr);
  199. ++dws->rx;
  200. }
  201. wait_till_not_busy(dws);
  202. return dws->rx == dws->rx_end;
  203. }
  204. static int u16_writer(struct dw_spi *dws)
  205. {
  206. if (!(dw_readw(dws, sr) & SR_TF_NOT_FULL)
  207. || (dws->tx == dws->tx_end))
  208. return 0;
  209. dw_writew(dws, dr, *(u16 *)(dws->tx));
  210. dws->tx += 2;
  211. wait_till_not_busy(dws);
  212. return 1;
  213. }
  214. static int u16_reader(struct dw_spi *dws)
  215. {
  216. u16 temp;
  217. while ((dw_readw(dws, sr) & SR_RF_NOT_EMPT)
  218. && (dws->rx < dws->rx_end)) {
  219. temp = dw_readw(dws, dr);
  220. *(u16 *)(dws->rx) = temp;
  221. dws->rx += 2;
  222. }
  223. wait_till_not_busy(dws);
  224. return dws->rx == dws->rx_end;
  225. }
  226. static void *next_transfer(struct dw_spi *dws)
  227. {
  228. struct spi_message *msg = dws->cur_msg;
  229. struct spi_transfer *trans = dws->cur_transfer;
  230. /* Move to next transfer */
  231. if (trans->transfer_list.next != &msg->transfers) {
  232. dws->cur_transfer =
  233. list_entry(trans->transfer_list.next,
  234. struct spi_transfer,
  235. transfer_list);
  236. return RUNNING_STATE;
  237. } else
  238. return DONE_STATE;
  239. }
  240. /*
  241. * Note: first step is the protocol driver prepares
  242. * a dma-capable memory, and this func just need translate
  243. * the virt addr to physical
  244. */
  245. static int map_dma_buffers(struct dw_spi *dws)
  246. {
  247. if (!dws->cur_msg->is_dma_mapped
  248. || !dws->dma_inited
  249. || !dws->cur_chip->enable_dma
  250. || !dws->dma_ops)
  251. return 0;
  252. if (dws->cur_transfer->tx_dma)
  253. dws->tx_dma = dws->cur_transfer->tx_dma;
  254. if (dws->cur_transfer->rx_dma)
  255. dws->rx_dma = dws->cur_transfer->rx_dma;
  256. return 1;
  257. }
  258. /* Caller already set message->status; dma and pio irqs are blocked */
  259. static void giveback(struct dw_spi *dws)
  260. {
  261. struct spi_transfer *last_transfer;
  262. unsigned long flags;
  263. struct spi_message *msg;
  264. spin_lock_irqsave(&dws->lock, flags);
  265. msg = dws->cur_msg;
  266. dws->cur_msg = NULL;
  267. dws->cur_transfer = NULL;
  268. dws->prev_chip = dws->cur_chip;
  269. dws->cur_chip = NULL;
  270. dws->dma_mapped = 0;
  271. queue_work(dws->workqueue, &dws->pump_messages);
  272. spin_unlock_irqrestore(&dws->lock, flags);
  273. last_transfer = list_entry(msg->transfers.prev,
  274. struct spi_transfer,
  275. transfer_list);
  276. if (!last_transfer->cs_change && dws->cs_control)
  277. dws->cs_control(MRST_SPI_DEASSERT);
  278. msg->state = NULL;
  279. if (msg->complete)
  280. msg->complete(msg->context);
  281. }
  282. static void int_error_stop(struct dw_spi *dws, const char *msg)
  283. {
  284. /* Stop and reset hw */
  285. flush(dws);
  286. spi_enable_chip(dws, 0);
  287. dev_err(&dws->master->dev, "%s\n", msg);
  288. dws->cur_msg->state = ERROR_STATE;
  289. tasklet_schedule(&dws->pump_transfers);
  290. }
  291. void dw_spi_xfer_done(struct dw_spi *dws)
  292. {
  293. /* Update total byte transfered return count actual bytes read */
  294. dws->cur_msg->actual_length += dws->len;
  295. /* Move to next transfer */
  296. dws->cur_msg->state = next_transfer(dws);
  297. /* Handle end of message */
  298. if (dws->cur_msg->state == DONE_STATE) {
  299. dws->cur_msg->status = 0;
  300. giveback(dws);
  301. } else
  302. tasklet_schedule(&dws->pump_transfers);
  303. }
  304. EXPORT_SYMBOL_GPL(dw_spi_xfer_done);
  305. static irqreturn_t interrupt_transfer(struct dw_spi *dws)
  306. {
  307. u16 irq_status, irq_mask = 0x3f;
  308. u32 int_level = dws->fifo_len / 2;
  309. u32 left;
  310. irq_status = dw_readw(dws, isr) & irq_mask;
  311. /* Error handling */
  312. if (irq_status & (SPI_INT_TXOI | SPI_INT_RXOI | SPI_INT_RXUI)) {
  313. dw_readw(dws, txoicr);
  314. dw_readw(dws, rxoicr);
  315. dw_readw(dws, rxuicr);
  316. int_error_stop(dws, "interrupt_transfer: fifo overrun");
  317. return IRQ_HANDLED;
  318. }
  319. if (irq_status & SPI_INT_TXEI) {
  320. spi_mask_intr(dws, SPI_INT_TXEI);
  321. left = (dws->tx_end - dws->tx) / dws->n_bytes;
  322. left = (left > int_level) ? int_level : left;
  323. while (left--)
  324. dws->write(dws);
  325. dws->read(dws);
  326. /* Re-enable the IRQ if there is still data left to tx */
  327. if (dws->tx_end > dws->tx)
  328. spi_umask_intr(dws, SPI_INT_TXEI);
  329. else
  330. dw_spi_xfer_done(dws);
  331. }
  332. return IRQ_HANDLED;
  333. }
  334. static irqreturn_t dw_spi_irq(int irq, void *dev_id)
  335. {
  336. struct dw_spi *dws = dev_id;
  337. u16 irq_status, irq_mask = 0x3f;
  338. irq_status = dw_readw(dws, isr) & irq_mask;
  339. if (!irq_status)
  340. return IRQ_NONE;
  341. if (!dws->cur_msg) {
  342. spi_mask_intr(dws, SPI_INT_TXEI);
  343. /* Never fail */
  344. return IRQ_HANDLED;
  345. }
  346. return dws->transfer_handler(dws);
  347. }
  348. /* Must be called inside pump_transfers() */
  349. static void poll_transfer(struct dw_spi *dws)
  350. {
  351. while (dws->write(dws))
  352. dws->read(dws);
  353. /*
  354. * There is a possibility that the last word of a transaction
  355. * will be lost if data is not ready. Re-read to solve this issue.
  356. */
  357. dws->read(dws);
  358. dw_spi_xfer_done(dws);
  359. }
  360. static void pump_transfers(unsigned long data)
  361. {
  362. struct dw_spi *dws = (struct dw_spi *)data;
  363. struct spi_message *message = NULL;
  364. struct spi_transfer *transfer = NULL;
  365. struct spi_transfer *previous = NULL;
  366. struct spi_device *spi = NULL;
  367. struct chip_data *chip = NULL;
  368. u8 bits = 0;
  369. u8 imask = 0;
  370. u8 cs_change = 0;
  371. u16 txint_level = 0;
  372. u16 clk_div = 0;
  373. u32 speed = 0;
  374. u32 cr0 = 0;
  375. /* Get current state information */
  376. message = dws->cur_msg;
  377. transfer = dws->cur_transfer;
  378. chip = dws->cur_chip;
  379. spi = message->spi;
  380. if (unlikely(!chip->clk_div))
  381. chip->clk_div = dws->max_freq / chip->speed_hz;
  382. if (message->state == ERROR_STATE) {
  383. message->status = -EIO;
  384. goto early_exit;
  385. }
  386. /* Handle end of message */
  387. if (message->state == DONE_STATE) {
  388. message->status = 0;
  389. goto early_exit;
  390. }
  391. /* Delay if requested at end of transfer*/
  392. if (message->state == RUNNING_STATE) {
  393. previous = list_entry(transfer->transfer_list.prev,
  394. struct spi_transfer,
  395. transfer_list);
  396. if (previous->delay_usecs)
  397. udelay(previous->delay_usecs);
  398. }
  399. dws->n_bytes = chip->n_bytes;
  400. dws->dma_width = chip->dma_width;
  401. dws->cs_control = chip->cs_control;
  402. dws->rx_dma = transfer->rx_dma;
  403. dws->tx_dma = transfer->tx_dma;
  404. dws->tx = (void *)transfer->tx_buf;
  405. dws->tx_end = dws->tx + transfer->len;
  406. dws->rx = transfer->rx_buf;
  407. dws->rx_end = dws->rx + transfer->len;
  408. dws->write = dws->tx ? chip->write : null_writer;
  409. dws->read = dws->rx ? chip->read : null_reader;
  410. dws->cs_change = transfer->cs_change;
  411. dws->len = dws->cur_transfer->len;
  412. if (chip != dws->prev_chip)
  413. cs_change = 1;
  414. cr0 = chip->cr0;
  415. /* Handle per transfer options for bpw and speed */
  416. if (transfer->speed_hz) {
  417. speed = chip->speed_hz;
  418. if (transfer->speed_hz != speed) {
  419. speed = transfer->speed_hz;
  420. if (speed > dws->max_freq) {
  421. printk(KERN_ERR "MRST SPI0: unsupported"
  422. "freq: %dHz\n", speed);
  423. message->status = -EIO;
  424. goto early_exit;
  425. }
  426. /* clk_div doesn't support odd number */
  427. clk_div = dws->max_freq / speed;
  428. clk_div = (clk_div + 1) & 0xfffe;
  429. chip->speed_hz = speed;
  430. chip->clk_div = clk_div;
  431. }
  432. }
  433. if (transfer->bits_per_word) {
  434. bits = transfer->bits_per_word;
  435. switch (bits) {
  436. case 8:
  437. dws->n_bytes = 1;
  438. dws->dma_width = 1;
  439. dws->read = (dws->read != null_reader) ?
  440. u8_reader : null_reader;
  441. dws->write = (dws->write != null_writer) ?
  442. u8_writer : null_writer;
  443. break;
  444. case 16:
  445. dws->n_bytes = 2;
  446. dws->dma_width = 2;
  447. dws->read = (dws->read != null_reader) ?
  448. u16_reader : null_reader;
  449. dws->write = (dws->write != null_writer) ?
  450. u16_writer : null_writer;
  451. break;
  452. default:
  453. printk(KERN_ERR "MRST SPI0: unsupported bits:"
  454. "%db\n", bits);
  455. message->status = -EIO;
  456. goto early_exit;
  457. }
  458. cr0 = (bits - 1)
  459. | (chip->type << SPI_FRF_OFFSET)
  460. | (spi->mode << SPI_MODE_OFFSET)
  461. | (chip->tmode << SPI_TMOD_OFFSET);
  462. }
  463. message->state = RUNNING_STATE;
  464. /*
  465. * Adjust transfer mode if necessary. Requires platform dependent
  466. * chipselect mechanism.
  467. */
  468. if (dws->cs_control) {
  469. if (dws->rx && dws->tx)
  470. chip->tmode = SPI_TMOD_TR;
  471. else if (dws->rx)
  472. chip->tmode = SPI_TMOD_RO;
  473. else
  474. chip->tmode = SPI_TMOD_TO;
  475. cr0 &= ~SPI_TMOD_MASK;
  476. cr0 |= (chip->tmode << SPI_TMOD_OFFSET);
  477. }
  478. /* Check if current transfer is a DMA transaction */
  479. dws->dma_mapped = map_dma_buffers(dws);
  480. /*
  481. * Interrupt mode
  482. * we only need set the TXEI IRQ, as TX/RX always happen syncronizely
  483. */
  484. if (!dws->dma_mapped && !chip->poll_mode) {
  485. int templen = dws->len / dws->n_bytes;
  486. txint_level = dws->fifo_len / 2;
  487. txint_level = (templen > txint_level) ? txint_level : templen;
  488. imask |= SPI_INT_TXEI;
  489. dws->transfer_handler = interrupt_transfer;
  490. }
  491. /*
  492. * Reprogram registers only if
  493. * 1. chip select changes
  494. * 2. clk_div is changed
  495. * 3. control value changes
  496. */
  497. if (dw_readw(dws, ctrl0) != cr0 || cs_change || clk_div || imask) {
  498. spi_enable_chip(dws, 0);
  499. if (dw_readw(dws, ctrl0) != cr0)
  500. dw_writew(dws, ctrl0, cr0);
  501. spi_set_clk(dws, clk_div ? clk_div : chip->clk_div);
  502. spi_chip_sel(dws, spi->chip_select);
  503. /* Set the interrupt mask, for poll mode just disable all int */
  504. spi_mask_intr(dws, 0xff);
  505. if (imask)
  506. spi_umask_intr(dws, imask);
  507. if (txint_level)
  508. dw_writew(dws, txfltr, txint_level);
  509. spi_enable_chip(dws, 1);
  510. if (cs_change)
  511. dws->prev_chip = chip;
  512. }
  513. if (dws->dma_mapped)
  514. dws->dma_ops->dma_transfer(dws, cs_change);
  515. if (chip->poll_mode)
  516. poll_transfer(dws);
  517. return;
  518. early_exit:
  519. giveback(dws);
  520. return;
  521. }
  522. static void pump_messages(struct work_struct *work)
  523. {
  524. struct dw_spi *dws =
  525. container_of(work, struct dw_spi, pump_messages);
  526. unsigned long flags;
  527. /* Lock queue and check for queue work */
  528. spin_lock_irqsave(&dws->lock, flags);
  529. if (list_empty(&dws->queue) || dws->run == QUEUE_STOPPED) {
  530. dws->busy = 0;
  531. spin_unlock_irqrestore(&dws->lock, flags);
  532. return;
  533. }
  534. /* Make sure we are not already running a message */
  535. if (dws->cur_msg) {
  536. spin_unlock_irqrestore(&dws->lock, flags);
  537. return;
  538. }
  539. /* Extract head of queue */
  540. dws->cur_msg = list_entry(dws->queue.next, struct spi_message, queue);
  541. list_del_init(&dws->cur_msg->queue);
  542. /* Initial message state*/
  543. dws->cur_msg->state = START_STATE;
  544. dws->cur_transfer = list_entry(dws->cur_msg->transfers.next,
  545. struct spi_transfer,
  546. transfer_list);
  547. dws->cur_chip = spi_get_ctldata(dws->cur_msg->spi);
  548. /* Mark as busy and launch transfers */
  549. tasklet_schedule(&dws->pump_transfers);
  550. dws->busy = 1;
  551. spin_unlock_irqrestore(&dws->lock, flags);
  552. }
  553. /* spi_device use this to queue in their spi_msg */
  554. static int dw_spi_transfer(struct spi_device *spi, struct spi_message *msg)
  555. {
  556. struct dw_spi *dws = spi_master_get_devdata(spi->master);
  557. unsigned long flags;
  558. spin_lock_irqsave(&dws->lock, flags);
  559. if (dws->run == QUEUE_STOPPED) {
  560. spin_unlock_irqrestore(&dws->lock, flags);
  561. return -ESHUTDOWN;
  562. }
  563. msg->actual_length = 0;
  564. msg->status = -EINPROGRESS;
  565. msg->state = START_STATE;
  566. list_add_tail(&msg->queue, &dws->queue);
  567. if (dws->run == QUEUE_RUNNING && !dws->busy) {
  568. if (dws->cur_transfer || dws->cur_msg)
  569. queue_work(dws->workqueue,
  570. &dws->pump_messages);
  571. else {
  572. /* If no other data transaction in air, just go */
  573. spin_unlock_irqrestore(&dws->lock, flags);
  574. pump_messages(&dws->pump_messages);
  575. return 0;
  576. }
  577. }
  578. spin_unlock_irqrestore(&dws->lock, flags);
  579. return 0;
  580. }
  581. /* This may be called twice for each spi dev */
  582. static int dw_spi_setup(struct spi_device *spi)
  583. {
  584. struct dw_spi_chip *chip_info = NULL;
  585. struct chip_data *chip;
  586. if (spi->bits_per_word != 8 && spi->bits_per_word != 16)
  587. return -EINVAL;
  588. /* Only alloc on first setup */
  589. chip = spi_get_ctldata(spi);
  590. if (!chip) {
  591. chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
  592. if (!chip)
  593. return -ENOMEM;
  594. }
  595. /*
  596. * Protocol drivers may change the chip settings, so...
  597. * if chip_info exists, use it
  598. */
  599. chip_info = spi->controller_data;
  600. /* chip_info doesn't always exist */
  601. if (chip_info) {
  602. if (chip_info->cs_control)
  603. chip->cs_control = chip_info->cs_control;
  604. chip->poll_mode = chip_info->poll_mode;
  605. chip->type = chip_info->type;
  606. chip->rx_threshold = 0;
  607. chip->tx_threshold = 0;
  608. chip->enable_dma = chip_info->enable_dma;
  609. }
  610. if (spi->bits_per_word <= 8) {
  611. chip->n_bytes = 1;
  612. chip->dma_width = 1;
  613. chip->read = u8_reader;
  614. chip->write = u8_writer;
  615. } else if (spi->bits_per_word <= 16) {
  616. chip->n_bytes = 2;
  617. chip->dma_width = 2;
  618. chip->read = u16_reader;
  619. chip->write = u16_writer;
  620. } else {
  621. /* Never take >16b case for MRST SPIC */
  622. dev_err(&spi->dev, "invalid wordsize\n");
  623. return -EINVAL;
  624. }
  625. chip->bits_per_word = spi->bits_per_word;
  626. if (!spi->max_speed_hz) {
  627. dev_err(&spi->dev, "No max speed HZ parameter\n");
  628. return -EINVAL;
  629. }
  630. chip->speed_hz = spi->max_speed_hz;
  631. chip->tmode = 0; /* Tx & Rx */
  632. /* Default SPI mode is SCPOL = 0, SCPH = 0 */
  633. chip->cr0 = (chip->bits_per_word - 1)
  634. | (chip->type << SPI_FRF_OFFSET)
  635. | (spi->mode << SPI_MODE_OFFSET)
  636. | (chip->tmode << SPI_TMOD_OFFSET);
  637. spi_set_ctldata(spi, chip);
  638. return 0;
  639. }
  640. static void dw_spi_cleanup(struct spi_device *spi)
  641. {
  642. struct chip_data *chip = spi_get_ctldata(spi);
  643. kfree(chip);
  644. }
  645. static int __devinit init_queue(struct dw_spi *dws)
  646. {
  647. INIT_LIST_HEAD(&dws->queue);
  648. spin_lock_init(&dws->lock);
  649. dws->run = QUEUE_STOPPED;
  650. dws->busy = 0;
  651. tasklet_init(&dws->pump_transfers,
  652. pump_transfers, (unsigned long)dws);
  653. INIT_WORK(&dws->pump_messages, pump_messages);
  654. dws->workqueue = create_singlethread_workqueue(
  655. dev_name(dws->master->dev.parent));
  656. if (dws->workqueue == NULL)
  657. return -EBUSY;
  658. return 0;
  659. }
  660. static int start_queue(struct dw_spi *dws)
  661. {
  662. unsigned long flags;
  663. spin_lock_irqsave(&dws->lock, flags);
  664. if (dws->run == QUEUE_RUNNING || dws->busy) {
  665. spin_unlock_irqrestore(&dws->lock, flags);
  666. return -EBUSY;
  667. }
  668. dws->run = QUEUE_RUNNING;
  669. dws->cur_msg = NULL;
  670. dws->cur_transfer = NULL;
  671. dws->cur_chip = NULL;
  672. dws->prev_chip = NULL;
  673. spin_unlock_irqrestore(&dws->lock, flags);
  674. queue_work(dws->workqueue, &dws->pump_messages);
  675. return 0;
  676. }
  677. static int stop_queue(struct dw_spi *dws)
  678. {
  679. unsigned long flags;
  680. unsigned limit = 50;
  681. int status = 0;
  682. spin_lock_irqsave(&dws->lock, flags);
  683. dws->run = QUEUE_STOPPED;
  684. while (!list_empty(&dws->queue) && dws->busy && limit--) {
  685. spin_unlock_irqrestore(&dws->lock, flags);
  686. msleep(10);
  687. spin_lock_irqsave(&dws->lock, flags);
  688. }
  689. if (!list_empty(&dws->queue) || dws->busy)
  690. status = -EBUSY;
  691. spin_unlock_irqrestore(&dws->lock, flags);
  692. return status;
  693. }
  694. static int destroy_queue(struct dw_spi *dws)
  695. {
  696. int status;
  697. status = stop_queue(dws);
  698. if (status != 0)
  699. return status;
  700. destroy_workqueue(dws->workqueue);
  701. return 0;
  702. }
  703. /* Restart the controller, disable all interrupts, clean rx fifo */
  704. static void spi_hw_init(struct dw_spi *dws)
  705. {
  706. spi_enable_chip(dws, 0);
  707. spi_mask_intr(dws, 0xff);
  708. spi_enable_chip(dws, 1);
  709. flush(dws);
  710. /*
  711. * Try to detect the FIFO depth if not set by interface driver,
  712. * the depth could be from 2 to 256 from HW spec
  713. */
  714. if (!dws->fifo_len) {
  715. u32 fifo;
  716. for (fifo = 2; fifo <= 257; fifo++) {
  717. dw_writew(dws, txfltr, fifo);
  718. if (fifo != dw_readw(dws, txfltr))
  719. break;
  720. }
  721. dws->fifo_len = (fifo == 257) ? 0 : fifo;
  722. dw_writew(dws, txfltr, 0);
  723. }
  724. }
  725. int __devinit dw_spi_add_host(struct dw_spi *dws)
  726. {
  727. struct spi_master *master;
  728. int ret;
  729. BUG_ON(dws == NULL);
  730. master = spi_alloc_master(dws->parent_dev, 0);
  731. if (!master) {
  732. ret = -ENOMEM;
  733. goto exit;
  734. }
  735. dws->master = master;
  736. dws->type = SSI_MOTO_SPI;
  737. dws->prev_chip = NULL;
  738. dws->dma_inited = 0;
  739. dws->dma_addr = (dma_addr_t)(dws->paddr + 0x60);
  740. ret = request_irq(dws->irq, dw_spi_irq, IRQF_SHARED,
  741. "dw_spi", dws);
  742. if (ret < 0) {
  743. dev_err(&master->dev, "can not get IRQ\n");
  744. goto err_free_master;
  745. }
  746. master->mode_bits = SPI_CPOL | SPI_CPHA;
  747. master->bus_num = dws->bus_num;
  748. master->num_chipselect = dws->num_cs;
  749. master->cleanup = dw_spi_cleanup;
  750. master->setup = dw_spi_setup;
  751. master->transfer = dw_spi_transfer;
  752. /* Basic HW init */
  753. spi_hw_init(dws);
  754. if (dws->dma_ops && dws->dma_ops->dma_init) {
  755. ret = dws->dma_ops->dma_init(dws);
  756. if (ret) {
  757. dev_warn(&master->dev, "DMA init failed\n");
  758. dws->dma_inited = 0;
  759. }
  760. }
  761. /* Initial and start queue */
  762. ret = init_queue(dws);
  763. if (ret) {
  764. dev_err(&master->dev, "problem initializing queue\n");
  765. goto err_diable_hw;
  766. }
  767. ret = start_queue(dws);
  768. if (ret) {
  769. dev_err(&master->dev, "problem starting queue\n");
  770. goto err_diable_hw;
  771. }
  772. spi_master_set_devdata(master, dws);
  773. ret = spi_register_master(master);
  774. if (ret) {
  775. dev_err(&master->dev, "problem registering spi master\n");
  776. goto err_queue_alloc;
  777. }
  778. mrst_spi_debugfs_init(dws);
  779. return 0;
  780. err_queue_alloc:
  781. destroy_queue(dws);
  782. if (dws->dma_ops && dws->dma_ops->dma_exit)
  783. dws->dma_ops->dma_exit(dws);
  784. err_diable_hw:
  785. spi_enable_chip(dws, 0);
  786. free_irq(dws->irq, dws);
  787. err_free_master:
  788. spi_master_put(master);
  789. exit:
  790. return ret;
  791. }
  792. EXPORT_SYMBOL_GPL(dw_spi_add_host);
  793. void __devexit dw_spi_remove_host(struct dw_spi *dws)
  794. {
  795. int status = 0;
  796. if (!dws)
  797. return;
  798. mrst_spi_debugfs_remove(dws);
  799. /* Remove the queue */
  800. status = destroy_queue(dws);
  801. if (status != 0)
  802. dev_err(&dws->master->dev, "dw_spi_remove: workqueue will not "
  803. "complete, message memory not freed\n");
  804. if (dws->dma_ops && dws->dma_ops->dma_exit)
  805. dws->dma_ops->dma_exit(dws);
  806. spi_enable_chip(dws, 0);
  807. /* Disable clk */
  808. spi_set_clk(dws, 0);
  809. free_irq(dws->irq, dws);
  810. /* Disconnect from the SPI framework */
  811. spi_unregister_master(dws->master);
  812. }
  813. EXPORT_SYMBOL_GPL(dw_spi_remove_host);
  814. int dw_spi_suspend_host(struct dw_spi *dws)
  815. {
  816. int ret = 0;
  817. ret = stop_queue(dws);
  818. if (ret)
  819. return ret;
  820. spi_enable_chip(dws, 0);
  821. spi_set_clk(dws, 0);
  822. return ret;
  823. }
  824. EXPORT_SYMBOL_GPL(dw_spi_suspend_host);
  825. int dw_spi_resume_host(struct dw_spi *dws)
  826. {
  827. int ret;
  828. spi_hw_init(dws);
  829. ret = start_queue(dws);
  830. if (ret)
  831. dev_err(&dws->master->dev, "fail to start queue (%d)\n", ret);
  832. return ret;
  833. }
  834. EXPORT_SYMBOL_GPL(dw_spi_resume_host);
  835. MODULE_AUTHOR("Feng Tang <feng.tang@intel.com>");
  836. MODULE_DESCRIPTION("Driver for DesignWare SPI controller core");
  837. MODULE_LICENSE("GPL v2");