rtc-cmos.c 30 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213
  1. /*
  2. * RTC class driver for "CMOS RTC": PCs, ACPI, etc
  3. *
  4. * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
  5. * Copyright (C) 2006 David Brownell (convert to new framework)
  6. *
  7. * This program is free software; you can redistribute it and/or
  8. * modify it under the terms of the GNU General Public License
  9. * as published by the Free Software Foundation; either version
  10. * 2 of the License, or (at your option) any later version.
  11. */
  12. /*
  13. * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  14. * That defined the register interface now provided by all PCs, some
  15. * non-PC systems, and incorporated into ACPI. Modern PC chipsets
  16. * integrate an MC146818 clone in their southbridge, and boards use
  17. * that instead of discrete clones like the DS12887 or M48T86. There
  18. * are also clones that connect using the LPC bus.
  19. *
  20. * That register API is also used directly by various other drivers
  21. * (notably for integrated NVRAM), infrastructure (x86 has code to
  22. * bypass the RTC framework, directly reading the RTC during boot
  23. * and updating minutes/seconds for systems using NTP synch) and
  24. * utilities (like userspace 'hwclock', if no /dev node exists).
  25. *
  26. * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  27. * interrupts disabled, holding the global rtc_lock, to exclude those
  28. * other drivers and utilities on correctly configured systems.
  29. */
  30. #include <linux/kernel.h>
  31. #include <linux/module.h>
  32. #include <linux/init.h>
  33. #include <linux/interrupt.h>
  34. #include <linux/spinlock.h>
  35. #include <linux/platform_device.h>
  36. #include <linux/mod_devicetable.h>
  37. #include <linux/log2.h>
  38. /* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  39. #include <asm-generic/rtc.h>
  40. struct cmos_rtc {
  41. struct rtc_device *rtc;
  42. struct device *dev;
  43. int irq;
  44. struct resource *iomem;
  45. void (*wake_on)(struct device *);
  46. void (*wake_off)(struct device *);
  47. u8 enabled_wake;
  48. u8 suspend_ctrl;
  49. /* newer hardware extends the original register set */
  50. u8 day_alrm;
  51. u8 mon_alrm;
  52. u8 century;
  53. };
  54. /* both platform and pnp busses use negative numbers for invalid irqs */
  55. #define is_valid_irq(n) ((n) > 0)
  56. static const char driver_name[] = "rtc_cmos";
  57. /* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  58. * always mask it against the irq enable bits in RTC_CONTROL. Bit values
  59. * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  60. */
  61. #define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
  62. static inline int is_intr(u8 rtc_intr)
  63. {
  64. if (!(rtc_intr & RTC_IRQF))
  65. return 0;
  66. return rtc_intr & RTC_IRQMASK;
  67. }
  68. /*----------------------------------------------------------------*/
  69. /* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  70. * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  71. * used in a broken "legacy replacement" mode. The breakage includes
  72. * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  73. * other (better) use.
  74. *
  75. * When that broken mode is in use, platform glue provides a partial
  76. * emulation of hardware RTC IRQ facilities using HPET #1. We don't
  77. * want to use HPET for anything except those IRQs though...
  78. */
  79. #ifdef CONFIG_HPET_EMULATE_RTC
  80. #include <asm/hpet.h>
  81. #else
  82. static inline int is_hpet_enabled(void)
  83. {
  84. return 0;
  85. }
  86. static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
  87. {
  88. return 0;
  89. }
  90. static inline int hpet_set_rtc_irq_bit(unsigned long mask)
  91. {
  92. return 0;
  93. }
  94. static inline int
  95. hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
  96. {
  97. return 0;
  98. }
  99. static inline int hpet_set_periodic_freq(unsigned long freq)
  100. {
  101. return 0;
  102. }
  103. static inline int hpet_rtc_dropped_irq(void)
  104. {
  105. return 0;
  106. }
  107. static inline int hpet_rtc_timer_init(void)
  108. {
  109. return 0;
  110. }
  111. extern irq_handler_t hpet_rtc_interrupt;
  112. static inline int hpet_register_irq_handler(irq_handler_t handler)
  113. {
  114. return 0;
  115. }
  116. static inline int hpet_unregister_irq_handler(irq_handler_t handler)
  117. {
  118. return 0;
  119. }
  120. #endif
  121. /*----------------------------------------------------------------*/
  122. #ifdef RTC_PORT
  123. /* Most newer x86 systems have two register banks, the first used
  124. * for RTC and NVRAM and the second only for NVRAM. Caller must
  125. * own rtc_lock ... and we won't worry about access during NMI.
  126. */
  127. #define can_bank2 true
  128. static inline unsigned char cmos_read_bank2(unsigned char addr)
  129. {
  130. outb(addr, RTC_PORT(2));
  131. return inb(RTC_PORT(3));
  132. }
  133. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  134. {
  135. outb(addr, RTC_PORT(2));
  136. outb(val, RTC_PORT(2));
  137. }
  138. #else
  139. #define can_bank2 false
  140. static inline unsigned char cmos_read_bank2(unsigned char addr)
  141. {
  142. return 0;
  143. }
  144. static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
  145. {
  146. }
  147. #endif
  148. /*----------------------------------------------------------------*/
  149. static int cmos_read_time(struct device *dev, struct rtc_time *t)
  150. {
  151. /* REVISIT: if the clock has a "century" register, use
  152. * that instead of the heuristic in get_rtc_time().
  153. * That'll make Y3K compatility (year > 2070) easy!
  154. */
  155. get_rtc_time(t);
  156. return 0;
  157. }
  158. static int cmos_set_time(struct device *dev, struct rtc_time *t)
  159. {
  160. /* REVISIT: set the "century" register if available
  161. *
  162. * NOTE: this ignores the issue whereby updating the seconds
  163. * takes effect exactly 500ms after we write the register.
  164. * (Also queueing and other delays before we get this far.)
  165. */
  166. return set_rtc_time(t);
  167. }
  168. static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
  169. {
  170. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  171. unsigned char rtc_control;
  172. if (!is_valid_irq(cmos->irq))
  173. return -EIO;
  174. /* Basic alarms only support hour, minute, and seconds fields.
  175. * Some also support day and month, for alarms up to a year in
  176. * the future.
  177. */
  178. t->time.tm_mday = -1;
  179. t->time.tm_mon = -1;
  180. spin_lock_irq(&rtc_lock);
  181. t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
  182. t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
  183. t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
  184. if (cmos->day_alrm) {
  185. /* ignore upper bits on readback per ACPI spec */
  186. t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
  187. if (!t->time.tm_mday)
  188. t->time.tm_mday = -1;
  189. if (cmos->mon_alrm) {
  190. t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
  191. if (!t->time.tm_mon)
  192. t->time.tm_mon = -1;
  193. }
  194. }
  195. rtc_control = CMOS_READ(RTC_CONTROL);
  196. spin_unlock_irq(&rtc_lock);
  197. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  198. if (((unsigned)t->time.tm_sec) < 0x60)
  199. t->time.tm_sec = bcd2bin(t->time.tm_sec);
  200. else
  201. t->time.tm_sec = -1;
  202. if (((unsigned)t->time.tm_min) < 0x60)
  203. t->time.tm_min = bcd2bin(t->time.tm_min);
  204. else
  205. t->time.tm_min = -1;
  206. if (((unsigned)t->time.tm_hour) < 0x24)
  207. t->time.tm_hour = bcd2bin(t->time.tm_hour);
  208. else
  209. t->time.tm_hour = -1;
  210. if (cmos->day_alrm) {
  211. if (((unsigned)t->time.tm_mday) <= 0x31)
  212. t->time.tm_mday = bcd2bin(t->time.tm_mday);
  213. else
  214. t->time.tm_mday = -1;
  215. if (cmos->mon_alrm) {
  216. if (((unsigned)t->time.tm_mon) <= 0x12)
  217. t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
  218. else
  219. t->time.tm_mon = -1;
  220. }
  221. }
  222. }
  223. t->time.tm_year = -1;
  224. t->enabled = !!(rtc_control & RTC_AIE);
  225. t->pending = 0;
  226. return 0;
  227. }
  228. static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
  229. {
  230. unsigned char rtc_intr;
  231. /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
  232. * allegedly some older rtcs need that to handle irqs properly
  233. */
  234. rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
  235. if (is_hpet_enabled())
  236. return;
  237. rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  238. if (is_intr(rtc_intr))
  239. rtc_update_irq(cmos->rtc, 1, rtc_intr);
  240. }
  241. static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
  242. {
  243. unsigned char rtc_control;
  244. /* flush any pending IRQ status, notably for update irqs,
  245. * before we enable new IRQs
  246. */
  247. rtc_control = CMOS_READ(RTC_CONTROL);
  248. cmos_checkintr(cmos, rtc_control);
  249. rtc_control |= mask;
  250. CMOS_WRITE(rtc_control, RTC_CONTROL);
  251. hpet_set_rtc_irq_bit(mask);
  252. cmos_checkintr(cmos, rtc_control);
  253. }
  254. static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
  255. {
  256. unsigned char rtc_control;
  257. rtc_control = CMOS_READ(RTC_CONTROL);
  258. rtc_control &= ~mask;
  259. CMOS_WRITE(rtc_control, RTC_CONTROL);
  260. hpet_mask_rtc_irq_bit(mask);
  261. cmos_checkintr(cmos, rtc_control);
  262. }
  263. static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
  264. {
  265. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  266. unsigned char mon, mday, hrs, min, sec, rtc_control;
  267. if (!is_valid_irq(cmos->irq))
  268. return -EIO;
  269. mon = t->time.tm_mon + 1;
  270. mday = t->time.tm_mday;
  271. hrs = t->time.tm_hour;
  272. min = t->time.tm_min;
  273. sec = t->time.tm_sec;
  274. rtc_control = CMOS_READ(RTC_CONTROL);
  275. if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
  276. /* Writing 0xff means "don't care" or "match all". */
  277. mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
  278. mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
  279. hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
  280. min = (min < 60) ? bin2bcd(min) : 0xff;
  281. sec = (sec < 60) ? bin2bcd(sec) : 0xff;
  282. }
  283. spin_lock_irq(&rtc_lock);
  284. /* next rtc irq must not be from previous alarm setting */
  285. cmos_irq_disable(cmos, RTC_AIE);
  286. /* update alarm */
  287. CMOS_WRITE(hrs, RTC_HOURS_ALARM);
  288. CMOS_WRITE(min, RTC_MINUTES_ALARM);
  289. CMOS_WRITE(sec, RTC_SECONDS_ALARM);
  290. /* the system may support an "enhanced" alarm */
  291. if (cmos->day_alrm) {
  292. CMOS_WRITE(mday, cmos->day_alrm);
  293. if (cmos->mon_alrm)
  294. CMOS_WRITE(mon, cmos->mon_alrm);
  295. }
  296. /* FIXME the HPET alarm glue currently ignores day_alrm
  297. * and mon_alrm ...
  298. */
  299. hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
  300. if (t->enabled)
  301. cmos_irq_enable(cmos, RTC_AIE);
  302. spin_unlock_irq(&rtc_lock);
  303. return 0;
  304. }
  305. static int cmos_irq_set_freq(struct device *dev, int freq)
  306. {
  307. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  308. int f;
  309. unsigned long flags;
  310. if (!is_valid_irq(cmos->irq))
  311. return -ENXIO;
  312. if (!is_power_of_2(freq))
  313. return -EINVAL;
  314. /* 0 = no irqs; 1 = 2^15 Hz ... 15 = 2^0 Hz */
  315. f = ffs(freq);
  316. if (f-- > 16)
  317. return -EINVAL;
  318. f = 16 - f;
  319. spin_lock_irqsave(&rtc_lock, flags);
  320. hpet_set_periodic_freq(freq);
  321. CMOS_WRITE(RTC_REF_CLCK_32KHZ | f, RTC_FREQ_SELECT);
  322. spin_unlock_irqrestore(&rtc_lock, flags);
  323. return 0;
  324. }
  325. static int cmos_irq_set_state(struct device *dev, int enabled)
  326. {
  327. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  328. unsigned long flags;
  329. if (!is_valid_irq(cmos->irq))
  330. return -ENXIO;
  331. spin_lock_irqsave(&rtc_lock, flags);
  332. if (enabled)
  333. cmos_irq_enable(cmos, RTC_PIE);
  334. else
  335. cmos_irq_disable(cmos, RTC_PIE);
  336. spin_unlock_irqrestore(&rtc_lock, flags);
  337. return 0;
  338. }
  339. static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
  340. {
  341. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  342. unsigned long flags;
  343. if (!is_valid_irq(cmos->irq))
  344. return -EINVAL;
  345. spin_lock_irqsave(&rtc_lock, flags);
  346. if (enabled)
  347. cmos_irq_enable(cmos, RTC_AIE);
  348. else
  349. cmos_irq_disable(cmos, RTC_AIE);
  350. spin_unlock_irqrestore(&rtc_lock, flags);
  351. return 0;
  352. }
  353. static int cmos_update_irq_enable(struct device *dev, unsigned int enabled)
  354. {
  355. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  356. unsigned long flags;
  357. if (!is_valid_irq(cmos->irq))
  358. return -EINVAL;
  359. spin_lock_irqsave(&rtc_lock, flags);
  360. if (enabled)
  361. cmos_irq_enable(cmos, RTC_UIE);
  362. else
  363. cmos_irq_disable(cmos, RTC_UIE);
  364. spin_unlock_irqrestore(&rtc_lock, flags);
  365. return 0;
  366. }
  367. #if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
  368. static int cmos_procfs(struct device *dev, struct seq_file *seq)
  369. {
  370. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  371. unsigned char rtc_control, valid;
  372. spin_lock_irq(&rtc_lock);
  373. rtc_control = CMOS_READ(RTC_CONTROL);
  374. valid = CMOS_READ(RTC_VALID);
  375. spin_unlock_irq(&rtc_lock);
  376. /* NOTE: at least ICH6 reports battery status using a different
  377. * (non-RTC) bit; and SQWE is ignored on many current systems.
  378. */
  379. return seq_printf(seq,
  380. "periodic_IRQ\t: %s\n"
  381. "update_IRQ\t: %s\n"
  382. "HPET_emulated\t: %s\n"
  383. // "square_wave\t: %s\n"
  384. "BCD\t\t: %s\n"
  385. "DST_enable\t: %s\n"
  386. "periodic_freq\t: %d\n"
  387. "batt_status\t: %s\n",
  388. (rtc_control & RTC_PIE) ? "yes" : "no",
  389. (rtc_control & RTC_UIE) ? "yes" : "no",
  390. is_hpet_enabled() ? "yes" : "no",
  391. // (rtc_control & RTC_SQWE) ? "yes" : "no",
  392. (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
  393. (rtc_control & RTC_DST_EN) ? "yes" : "no",
  394. cmos->rtc->irq_freq,
  395. (valid & RTC_VRT) ? "okay" : "dead");
  396. }
  397. #else
  398. #define cmos_procfs NULL
  399. #endif
  400. static const struct rtc_class_ops cmos_rtc_ops = {
  401. .read_time = cmos_read_time,
  402. .set_time = cmos_set_time,
  403. .read_alarm = cmos_read_alarm,
  404. .set_alarm = cmos_set_alarm,
  405. .proc = cmos_procfs,
  406. .irq_set_freq = cmos_irq_set_freq,
  407. .irq_set_state = cmos_irq_set_state,
  408. .alarm_irq_enable = cmos_alarm_irq_enable,
  409. .update_irq_enable = cmos_update_irq_enable,
  410. };
  411. /*----------------------------------------------------------------*/
  412. /*
  413. * All these chips have at least 64 bytes of address space, shared by
  414. * RTC registers and NVRAM. Most of those bytes of NVRAM are used
  415. * by boot firmware. Modern chips have 128 or 256 bytes.
  416. */
  417. #define NVRAM_OFFSET (RTC_REG_D + 1)
  418. static ssize_t
  419. cmos_nvram_read(struct file *filp, struct kobject *kobj,
  420. struct bin_attribute *attr,
  421. char *buf, loff_t off, size_t count)
  422. {
  423. int retval;
  424. if (unlikely(off >= attr->size))
  425. return 0;
  426. if (unlikely(off < 0))
  427. return -EINVAL;
  428. if ((off + count) > attr->size)
  429. count = attr->size - off;
  430. off += NVRAM_OFFSET;
  431. spin_lock_irq(&rtc_lock);
  432. for (retval = 0; count; count--, off++, retval++) {
  433. if (off < 128)
  434. *buf++ = CMOS_READ(off);
  435. else if (can_bank2)
  436. *buf++ = cmos_read_bank2(off);
  437. else
  438. break;
  439. }
  440. spin_unlock_irq(&rtc_lock);
  441. return retval;
  442. }
  443. static ssize_t
  444. cmos_nvram_write(struct file *filp, struct kobject *kobj,
  445. struct bin_attribute *attr,
  446. char *buf, loff_t off, size_t count)
  447. {
  448. struct cmos_rtc *cmos;
  449. int retval;
  450. cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
  451. if (unlikely(off >= attr->size))
  452. return -EFBIG;
  453. if (unlikely(off < 0))
  454. return -EINVAL;
  455. if ((off + count) > attr->size)
  456. count = attr->size - off;
  457. /* NOTE: on at least PCs and Ataris, the boot firmware uses a
  458. * checksum on part of the NVRAM data. That's currently ignored
  459. * here. If userspace is smart enough to know what fields of
  460. * NVRAM to update, updating checksums is also part of its job.
  461. */
  462. off += NVRAM_OFFSET;
  463. spin_lock_irq(&rtc_lock);
  464. for (retval = 0; count; count--, off++, retval++) {
  465. /* don't trash RTC registers */
  466. if (off == cmos->day_alrm
  467. || off == cmos->mon_alrm
  468. || off == cmos->century)
  469. buf++;
  470. else if (off < 128)
  471. CMOS_WRITE(*buf++, off);
  472. else if (can_bank2)
  473. cmos_write_bank2(*buf++, off);
  474. else
  475. break;
  476. }
  477. spin_unlock_irq(&rtc_lock);
  478. return retval;
  479. }
  480. static struct bin_attribute nvram = {
  481. .attr = {
  482. .name = "nvram",
  483. .mode = S_IRUGO | S_IWUSR,
  484. },
  485. .read = cmos_nvram_read,
  486. .write = cmos_nvram_write,
  487. /* size gets set up later */
  488. };
  489. /*----------------------------------------------------------------*/
  490. static struct cmos_rtc cmos_rtc;
  491. static irqreturn_t cmos_interrupt(int irq, void *p)
  492. {
  493. u8 irqstat;
  494. u8 rtc_control;
  495. spin_lock(&rtc_lock);
  496. /* When the HPET interrupt handler calls us, the interrupt
  497. * status is passed as arg1 instead of the irq number. But
  498. * always clear irq status, even when HPET is in the way.
  499. *
  500. * Note that HPET and RTC are almost certainly out of phase,
  501. * giving different IRQ status ...
  502. */
  503. irqstat = CMOS_READ(RTC_INTR_FLAGS);
  504. rtc_control = CMOS_READ(RTC_CONTROL);
  505. if (is_hpet_enabled())
  506. irqstat = (unsigned long)irq & 0xF0;
  507. irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
  508. /* All Linux RTC alarms should be treated as if they were oneshot.
  509. * Similar code may be needed in system wakeup paths, in case the
  510. * alarm woke the system.
  511. */
  512. if (irqstat & RTC_AIE) {
  513. rtc_control &= ~RTC_AIE;
  514. CMOS_WRITE(rtc_control, RTC_CONTROL);
  515. hpet_mask_rtc_irq_bit(RTC_AIE);
  516. CMOS_READ(RTC_INTR_FLAGS);
  517. }
  518. spin_unlock(&rtc_lock);
  519. if (is_intr(irqstat)) {
  520. rtc_update_irq(p, 1, irqstat);
  521. return IRQ_HANDLED;
  522. } else
  523. return IRQ_NONE;
  524. }
  525. #ifdef CONFIG_PNP
  526. #define INITSECTION
  527. #else
  528. #define INITSECTION __init
  529. #endif
  530. static int INITSECTION
  531. cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
  532. {
  533. struct cmos_rtc_board_info *info = dev->platform_data;
  534. int retval = 0;
  535. unsigned char rtc_control;
  536. unsigned address_space;
  537. /* there can be only one ... */
  538. if (cmos_rtc.dev)
  539. return -EBUSY;
  540. if (!ports)
  541. return -ENODEV;
  542. /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
  543. *
  544. * REVISIT non-x86 systems may instead use memory space resources
  545. * (needing ioremap etc), not i/o space resources like this ...
  546. */
  547. ports = request_region(ports->start,
  548. ports->end + 1 - ports->start,
  549. driver_name);
  550. if (!ports) {
  551. dev_dbg(dev, "i/o registers already in use\n");
  552. return -EBUSY;
  553. }
  554. cmos_rtc.irq = rtc_irq;
  555. cmos_rtc.iomem = ports;
  556. /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
  557. * driver did, but don't reject unknown configs. Old hardware
  558. * won't address 128 bytes. Newer chips have multiple banks,
  559. * though they may not be listed in one I/O resource.
  560. */
  561. #if defined(CONFIG_ATARI)
  562. address_space = 64;
  563. #elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
  564. || defined(__sparc__) || defined(__mips__) \
  565. || defined(__powerpc__)
  566. address_space = 128;
  567. #else
  568. #warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
  569. address_space = 128;
  570. #endif
  571. if (can_bank2 && ports->end > (ports->start + 1))
  572. address_space = 256;
  573. /* For ACPI systems extension info comes from the FADT. On others,
  574. * board specific setup provides it as appropriate. Systems where
  575. * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
  576. * some almost-clones) can provide hooks to make that behave.
  577. *
  578. * Note that ACPI doesn't preclude putting these registers into
  579. * "extended" areas of the chip, including some that we won't yet
  580. * expect CMOS_READ and friends to handle.
  581. */
  582. if (info) {
  583. if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
  584. cmos_rtc.day_alrm = info->rtc_day_alarm;
  585. if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
  586. cmos_rtc.mon_alrm = info->rtc_mon_alarm;
  587. if (info->rtc_century && info->rtc_century < 128)
  588. cmos_rtc.century = info->rtc_century;
  589. if (info->wake_on && info->wake_off) {
  590. cmos_rtc.wake_on = info->wake_on;
  591. cmos_rtc.wake_off = info->wake_off;
  592. }
  593. }
  594. cmos_rtc.dev = dev;
  595. dev_set_drvdata(dev, &cmos_rtc);
  596. cmos_rtc.rtc = rtc_device_register(driver_name, dev,
  597. &cmos_rtc_ops, THIS_MODULE);
  598. if (IS_ERR(cmos_rtc.rtc)) {
  599. retval = PTR_ERR(cmos_rtc.rtc);
  600. goto cleanup0;
  601. }
  602. rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
  603. spin_lock_irq(&rtc_lock);
  604. /* force periodic irq to CMOS reset default of 1024Hz;
  605. *
  606. * REVISIT it's been reported that at least one x86_64 ALI mobo
  607. * doesn't use 32KHz here ... for portability we might need to
  608. * do something about other clock frequencies.
  609. */
  610. cmos_rtc.rtc->irq_freq = 1024;
  611. hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
  612. CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
  613. /* disable irqs */
  614. cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
  615. rtc_control = CMOS_READ(RTC_CONTROL);
  616. spin_unlock_irq(&rtc_lock);
  617. /* FIXME:
  618. * <asm-generic/rtc.h> doesn't know 12-hour mode either.
  619. */
  620. if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
  621. dev_warn(dev, "only 24-hr supported\n");
  622. retval = -ENXIO;
  623. goto cleanup1;
  624. }
  625. if (is_valid_irq(rtc_irq)) {
  626. irq_handler_t rtc_cmos_int_handler;
  627. if (is_hpet_enabled()) {
  628. int err;
  629. rtc_cmos_int_handler = hpet_rtc_interrupt;
  630. err = hpet_register_irq_handler(cmos_interrupt);
  631. if (err != 0) {
  632. printk(KERN_WARNING "hpet_register_irq_handler "
  633. " failed in rtc_init().");
  634. goto cleanup1;
  635. }
  636. } else
  637. rtc_cmos_int_handler = cmos_interrupt;
  638. retval = request_irq(rtc_irq, rtc_cmos_int_handler,
  639. IRQF_DISABLED, dev_name(&cmos_rtc.rtc->dev),
  640. cmos_rtc.rtc);
  641. if (retval < 0) {
  642. dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
  643. goto cleanup1;
  644. }
  645. }
  646. hpet_rtc_timer_init();
  647. /* export at least the first block of NVRAM */
  648. nvram.size = address_space - NVRAM_OFFSET;
  649. retval = sysfs_create_bin_file(&dev->kobj, &nvram);
  650. if (retval < 0) {
  651. dev_dbg(dev, "can't create nvram file? %d\n", retval);
  652. goto cleanup2;
  653. }
  654. pr_info("%s: %s%s, %zd bytes nvram%s\n",
  655. dev_name(&cmos_rtc.rtc->dev),
  656. !is_valid_irq(rtc_irq) ? "no alarms" :
  657. cmos_rtc.mon_alrm ? "alarms up to one year" :
  658. cmos_rtc.day_alrm ? "alarms up to one month" :
  659. "alarms up to one day",
  660. cmos_rtc.century ? ", y3k" : "",
  661. nvram.size,
  662. is_hpet_enabled() ? ", hpet irqs" : "");
  663. return 0;
  664. cleanup2:
  665. if (is_valid_irq(rtc_irq))
  666. free_irq(rtc_irq, cmos_rtc.rtc);
  667. cleanup1:
  668. cmos_rtc.dev = NULL;
  669. rtc_device_unregister(cmos_rtc.rtc);
  670. cleanup0:
  671. release_region(ports->start, ports->end + 1 - ports->start);
  672. return retval;
  673. }
  674. static void cmos_do_shutdown(void)
  675. {
  676. spin_lock_irq(&rtc_lock);
  677. cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
  678. spin_unlock_irq(&rtc_lock);
  679. }
  680. static void __exit cmos_do_remove(struct device *dev)
  681. {
  682. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  683. struct resource *ports;
  684. cmos_do_shutdown();
  685. sysfs_remove_bin_file(&dev->kobj, &nvram);
  686. if (is_valid_irq(cmos->irq)) {
  687. free_irq(cmos->irq, cmos->rtc);
  688. hpet_unregister_irq_handler(cmos_interrupt);
  689. }
  690. rtc_device_unregister(cmos->rtc);
  691. cmos->rtc = NULL;
  692. ports = cmos->iomem;
  693. release_region(ports->start, ports->end + 1 - ports->start);
  694. cmos->iomem = NULL;
  695. cmos->dev = NULL;
  696. dev_set_drvdata(dev, NULL);
  697. }
  698. #ifdef CONFIG_PM
  699. static int cmos_suspend(struct device *dev, pm_message_t mesg)
  700. {
  701. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  702. unsigned char tmp;
  703. /* only the alarm might be a wakeup event source */
  704. spin_lock_irq(&rtc_lock);
  705. cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
  706. if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
  707. unsigned char mask;
  708. if (device_may_wakeup(dev))
  709. mask = RTC_IRQMASK & ~RTC_AIE;
  710. else
  711. mask = RTC_IRQMASK;
  712. tmp &= ~mask;
  713. CMOS_WRITE(tmp, RTC_CONTROL);
  714. /* shut down hpet emulation - we don't need it for alarm */
  715. hpet_mask_rtc_irq_bit(RTC_PIE|RTC_AIE|RTC_UIE);
  716. cmos_checkintr(cmos, tmp);
  717. }
  718. spin_unlock_irq(&rtc_lock);
  719. if (tmp & RTC_AIE) {
  720. cmos->enabled_wake = 1;
  721. if (cmos->wake_on)
  722. cmos->wake_on(dev);
  723. else
  724. enable_irq_wake(cmos->irq);
  725. }
  726. pr_debug("%s: suspend%s, ctrl %02x\n",
  727. dev_name(&cmos_rtc.rtc->dev),
  728. (tmp & RTC_AIE) ? ", alarm may wake" : "",
  729. tmp);
  730. return 0;
  731. }
  732. /* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
  733. * after a detour through G3 "mechanical off", although the ACPI spec
  734. * says wakeup should only work from G1/S4 "hibernate". To most users,
  735. * distinctions between S4 and S5 are pointless. So when the hardware
  736. * allows, don't draw that distinction.
  737. */
  738. static inline int cmos_poweroff(struct device *dev)
  739. {
  740. return cmos_suspend(dev, PMSG_HIBERNATE);
  741. }
  742. static int cmos_resume(struct device *dev)
  743. {
  744. struct cmos_rtc *cmos = dev_get_drvdata(dev);
  745. unsigned char tmp = cmos->suspend_ctrl;
  746. /* re-enable any irqs previously active */
  747. if (tmp & RTC_IRQMASK) {
  748. unsigned char mask;
  749. if (cmos->enabled_wake) {
  750. if (cmos->wake_off)
  751. cmos->wake_off(dev);
  752. else
  753. disable_irq_wake(cmos->irq);
  754. cmos->enabled_wake = 0;
  755. }
  756. spin_lock_irq(&rtc_lock);
  757. do {
  758. CMOS_WRITE(tmp, RTC_CONTROL);
  759. hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
  760. mask = CMOS_READ(RTC_INTR_FLAGS);
  761. mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
  762. if (!is_hpet_enabled() || !is_intr(mask))
  763. break;
  764. /* force one-shot behavior if HPET blocked
  765. * the wake alarm's irq
  766. */
  767. rtc_update_irq(cmos->rtc, 1, mask);
  768. tmp &= ~RTC_AIE;
  769. hpet_mask_rtc_irq_bit(RTC_AIE);
  770. } while (mask & RTC_AIE);
  771. spin_unlock_irq(&rtc_lock);
  772. }
  773. pr_debug("%s: resume, ctrl %02x\n",
  774. dev_name(&cmos_rtc.rtc->dev),
  775. tmp);
  776. return 0;
  777. }
  778. #else
  779. #define cmos_suspend NULL
  780. #define cmos_resume NULL
  781. static inline int cmos_poweroff(struct device *dev)
  782. {
  783. return -ENOSYS;
  784. }
  785. #endif
  786. /*----------------------------------------------------------------*/
  787. /* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
  788. * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
  789. * probably list them in similar PNPBIOS tables; so PNP is more common.
  790. *
  791. * We don't use legacy "poke at the hardware" probing. Ancient PCs that
  792. * predate even PNPBIOS should set up platform_bus devices.
  793. */
  794. #ifdef CONFIG_ACPI
  795. #include <linux/acpi.h>
  796. static u32 rtc_handler(void *context)
  797. {
  798. acpi_clear_event(ACPI_EVENT_RTC);
  799. acpi_disable_event(ACPI_EVENT_RTC, 0);
  800. return ACPI_INTERRUPT_HANDLED;
  801. }
  802. static inline void rtc_wake_setup(void)
  803. {
  804. acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, NULL);
  805. /*
  806. * After the RTC handler is installed, the Fixed_RTC event should
  807. * be disabled. Only when the RTC alarm is set will it be enabled.
  808. */
  809. acpi_clear_event(ACPI_EVENT_RTC);
  810. acpi_disable_event(ACPI_EVENT_RTC, 0);
  811. }
  812. static void rtc_wake_on(struct device *dev)
  813. {
  814. acpi_clear_event(ACPI_EVENT_RTC);
  815. acpi_enable_event(ACPI_EVENT_RTC, 0);
  816. }
  817. static void rtc_wake_off(struct device *dev)
  818. {
  819. acpi_disable_event(ACPI_EVENT_RTC, 0);
  820. }
  821. /* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
  822. * its device node and pass extra config data. This helps its driver use
  823. * capabilities that the now-obsolete mc146818 didn't have, and informs it
  824. * that this board's RTC is wakeup-capable (per ACPI spec).
  825. */
  826. static struct cmos_rtc_board_info acpi_rtc_info;
  827. static void __devinit
  828. cmos_wake_setup(struct device *dev)
  829. {
  830. if (acpi_disabled)
  831. return;
  832. rtc_wake_setup();
  833. acpi_rtc_info.wake_on = rtc_wake_on;
  834. acpi_rtc_info.wake_off = rtc_wake_off;
  835. /* workaround bug in some ACPI tables */
  836. if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
  837. dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
  838. acpi_gbl_FADT.month_alarm);
  839. acpi_gbl_FADT.month_alarm = 0;
  840. }
  841. acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
  842. acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
  843. acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
  844. /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
  845. if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
  846. dev_info(dev, "RTC can wake from S4\n");
  847. dev->platform_data = &acpi_rtc_info;
  848. /* RTC always wakes from S1/S2/S3, and often S4/STD */
  849. device_init_wakeup(dev, 1);
  850. }
  851. #else
  852. static void __devinit
  853. cmos_wake_setup(struct device *dev)
  854. {
  855. }
  856. #endif
  857. #ifdef CONFIG_PNP
  858. #include <linux/pnp.h>
  859. static int __devinit
  860. cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
  861. {
  862. cmos_wake_setup(&pnp->dev);
  863. if (pnp_port_start(pnp,0) == 0x70 && !pnp_irq_valid(pnp,0))
  864. /* Some machines contain a PNP entry for the RTC, but
  865. * don't define the IRQ. It should always be safe to
  866. * hardcode it in these cases
  867. */
  868. return cmos_do_probe(&pnp->dev,
  869. pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
  870. else
  871. return cmos_do_probe(&pnp->dev,
  872. pnp_get_resource(pnp, IORESOURCE_IO, 0),
  873. pnp_irq(pnp, 0));
  874. }
  875. static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
  876. {
  877. cmos_do_remove(&pnp->dev);
  878. }
  879. #ifdef CONFIG_PM
  880. static int cmos_pnp_suspend(struct pnp_dev *pnp, pm_message_t mesg)
  881. {
  882. return cmos_suspend(&pnp->dev, mesg);
  883. }
  884. static int cmos_pnp_resume(struct pnp_dev *pnp)
  885. {
  886. return cmos_resume(&pnp->dev);
  887. }
  888. #else
  889. #define cmos_pnp_suspend NULL
  890. #define cmos_pnp_resume NULL
  891. #endif
  892. static void cmos_pnp_shutdown(struct pnp_dev *pnp)
  893. {
  894. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pnp->dev))
  895. return;
  896. cmos_do_shutdown();
  897. }
  898. static const struct pnp_device_id rtc_ids[] = {
  899. { .id = "PNP0b00", },
  900. { .id = "PNP0b01", },
  901. { .id = "PNP0b02", },
  902. { },
  903. };
  904. MODULE_DEVICE_TABLE(pnp, rtc_ids);
  905. static struct pnp_driver cmos_pnp_driver = {
  906. .name = (char *) driver_name,
  907. .id_table = rtc_ids,
  908. .probe = cmos_pnp_probe,
  909. .remove = __exit_p(cmos_pnp_remove),
  910. .shutdown = cmos_pnp_shutdown,
  911. /* flag ensures resume() gets called, and stops syslog spam */
  912. .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
  913. .suspend = cmos_pnp_suspend,
  914. .resume = cmos_pnp_resume,
  915. };
  916. #endif /* CONFIG_PNP */
  917. /*----------------------------------------------------------------*/
  918. /* Platform setup should have set up an RTC device, when PNP is
  919. * unavailable ... this could happen even on (older) PCs.
  920. */
  921. static int __init cmos_platform_probe(struct platform_device *pdev)
  922. {
  923. cmos_wake_setup(&pdev->dev);
  924. return cmos_do_probe(&pdev->dev,
  925. platform_get_resource(pdev, IORESOURCE_IO, 0),
  926. platform_get_irq(pdev, 0));
  927. }
  928. static int __exit cmos_platform_remove(struct platform_device *pdev)
  929. {
  930. cmos_do_remove(&pdev->dev);
  931. return 0;
  932. }
  933. static void cmos_platform_shutdown(struct platform_device *pdev)
  934. {
  935. if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(&pdev->dev))
  936. return;
  937. cmos_do_shutdown();
  938. }
  939. /* work with hotplug and coldplug */
  940. MODULE_ALIAS("platform:rtc_cmos");
  941. static struct platform_driver cmos_platform_driver = {
  942. .remove = __exit_p(cmos_platform_remove),
  943. .shutdown = cmos_platform_shutdown,
  944. .driver = {
  945. .name = (char *) driver_name,
  946. .suspend = cmos_suspend,
  947. .resume = cmos_resume,
  948. }
  949. };
  950. #ifdef CONFIG_PNP
  951. static bool pnp_driver_registered;
  952. #endif
  953. static bool platform_driver_registered;
  954. static int __init cmos_init(void)
  955. {
  956. int retval = 0;
  957. #ifdef CONFIG_PNP
  958. retval = pnp_register_driver(&cmos_pnp_driver);
  959. if (retval == 0)
  960. pnp_driver_registered = true;
  961. #endif
  962. if (!cmos_rtc.dev) {
  963. retval = platform_driver_probe(&cmos_platform_driver,
  964. cmos_platform_probe);
  965. if (retval == 0)
  966. platform_driver_registered = true;
  967. }
  968. if (retval == 0)
  969. return 0;
  970. #ifdef CONFIG_PNP
  971. if (pnp_driver_registered)
  972. pnp_unregister_driver(&cmos_pnp_driver);
  973. #endif
  974. return retval;
  975. }
  976. module_init(cmos_init);
  977. static void __exit cmos_exit(void)
  978. {
  979. #ifdef CONFIG_PNP
  980. if (pnp_driver_registered)
  981. pnp_unregister_driver(&cmos_pnp_driver);
  982. #endif
  983. if (platform_driver_registered)
  984. platform_driver_unregister(&cmos_platform_driver);
  985. }
  986. module_exit(cmos_exit);
  987. MODULE_AUTHOR("David Brownell");
  988. MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
  989. MODULE_LICENSE("GPL");