io.c 41 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383
  1. /*
  2. * Copyright (c) International Business Machines Corp., 2006
  3. * Copyright (c) Nokia Corporation, 2006, 2007
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License as published by
  7. * the Free Software Foundation; either version 2 of the License, or
  8. * (at your option) any later version.
  9. *
  10. * This program is distributed in the hope that it will be useful,
  11. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  13. * the GNU General Public License for more details.
  14. *
  15. * You should have received a copy of the GNU General Public License
  16. * along with this program; if not, write to the Free Software
  17. * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  18. *
  19. * Author: Artem Bityutskiy (Битюцкий Артём)
  20. */
  21. /*
  22. * UBI input/output sub-system.
  23. *
  24. * This sub-system provides a uniform way to work with all kinds of the
  25. * underlying MTD devices. It also implements handy functions for reading and
  26. * writing UBI headers.
  27. *
  28. * We are trying to have a paranoid mindset and not to trust to what we read
  29. * from the flash media in order to be more secure and robust. So this
  30. * sub-system validates every single header it reads from the flash media.
  31. *
  32. * Some words about how the eraseblock headers are stored.
  33. *
  34. * The erase counter header is always stored at offset zero. By default, the
  35. * VID header is stored after the EC header at the closest aligned offset
  36. * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
  37. * header at the closest aligned offset. But this default layout may be
  38. * changed. For example, for different reasons (e.g., optimization) UBI may be
  39. * asked to put the VID header at further offset, and even at an unaligned
  40. * offset. Of course, if the offset of the VID header is unaligned, UBI adds
  41. * proper padding in front of it. Data offset may also be changed but it has to
  42. * be aligned.
  43. *
  44. * About minimal I/O units. In general, UBI assumes flash device model where
  45. * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
  46. * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
  47. * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
  48. * (smaller) minimal I/O unit size for EC and VID headers to make it possible
  49. * to do different optimizations.
  50. *
  51. * This is extremely useful in case of NAND flashes which admit of several
  52. * write operations to one NAND page. In this case UBI can fit EC and VID
  53. * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
  54. * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
  55. * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
  56. * users.
  57. *
  58. * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
  59. * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
  60. * headers.
  61. *
  62. * Q: why not just to treat sub-page as a minimal I/O unit of this flash
  63. * device, e.g., make @ubi->min_io_size = 512 in the example above?
  64. *
  65. * A: because when writing a sub-page, MTD still writes a full 2K page but the
  66. * bytes which are not relevant to the sub-page are 0xFF. So, basically,
  67. * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
  68. * Thus, we prefer to use sub-pages only for EC and VID headers.
  69. *
  70. * As it was noted above, the VID header may start at a non-aligned offset.
  71. * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
  72. * the VID header may reside at offset 1984 which is the last 64 bytes of the
  73. * last sub-page (EC header is always at offset zero). This causes some
  74. * difficulties when reading and writing VID headers.
  75. *
  76. * Suppose we have a 64-byte buffer and we read a VID header at it. We change
  77. * the data and want to write this VID header out. As we can only write in
  78. * 512-byte chunks, we have to allocate one more buffer and copy our VID header
  79. * to offset 448 of this buffer.
  80. *
  81. * The I/O sub-system does the following trick in order to avoid this extra
  82. * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
  83. * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
  84. * When the VID header is being written out, it shifts the VID header pointer
  85. * back and writes the whole sub-page.
  86. */
  87. #include <linux/crc32.h>
  88. #include <linux/err.h>
  89. #include <linux/slab.h>
  90. #include "ubi.h"
  91. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  92. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum);
  93. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum);
  94. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  95. const struct ubi_ec_hdr *ec_hdr);
  96. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum);
  97. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  98. const struct ubi_vid_hdr *vid_hdr);
  99. #else
  100. #define paranoid_check_not_bad(ubi, pnum) 0
  101. #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
  102. #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
  103. #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
  104. #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
  105. #endif
  106. /**
  107. * ubi_io_read - read data from a physical eraseblock.
  108. * @ubi: UBI device description object
  109. * @buf: buffer where to store the read data
  110. * @pnum: physical eraseblock number to read from
  111. * @offset: offset within the physical eraseblock from where to read
  112. * @len: how many bytes to read
  113. *
  114. * This function reads data from offset @offset of physical eraseblock @pnum
  115. * and stores the read data in the @buf buffer. The following return codes are
  116. * possible:
  117. *
  118. * o %0 if all the requested data were successfully read;
  119. * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
  120. * correctable bit-flips were detected; this is harmless but may indicate
  121. * that this eraseblock may become bad soon (but do not have to);
  122. * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
  123. * example it can be an ECC error in case of NAND; this most probably means
  124. * that the data is corrupted;
  125. * o %-EIO if some I/O error occurred;
  126. * o other negative error codes in case of other errors.
  127. */
  128. int ubi_io_read(const struct ubi_device *ubi, void *buf, int pnum, int offset,
  129. int len)
  130. {
  131. int err, retries = 0;
  132. size_t read;
  133. loff_t addr;
  134. dbg_io("read %d bytes from PEB %d:%d", len, pnum, offset);
  135. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  136. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  137. ubi_assert(len > 0);
  138. err = paranoid_check_not_bad(ubi, pnum);
  139. if (err)
  140. return err;
  141. addr = (loff_t)pnum * ubi->peb_size + offset;
  142. retry:
  143. err = ubi->mtd->read(ubi->mtd, addr, len, &read, buf);
  144. if (err) {
  145. const char *errstr = (err == -EBADMSG) ? " (ECC error)" : "";
  146. if (err == -EUCLEAN) {
  147. /*
  148. * -EUCLEAN is reported if there was a bit-flip which
  149. * was corrected, so this is harmless.
  150. *
  151. * We do not report about it here unless debugging is
  152. * enabled. A corresponding message will be printed
  153. * later, when it is has been scrubbed.
  154. */
  155. dbg_msg("fixable bit-flip detected at PEB %d", pnum);
  156. ubi_assert(len == read);
  157. return UBI_IO_BITFLIPS;
  158. }
  159. if (read != len && retries++ < UBI_IO_RETRIES) {
  160. dbg_io("error %d%s while reading %d bytes from PEB %d:%d,"
  161. " read only %zd bytes, retry",
  162. err, errstr, len, pnum, offset, read);
  163. yield();
  164. goto retry;
  165. }
  166. ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
  167. "read %zd bytes", err, errstr, len, pnum, offset, read);
  168. ubi_dbg_dump_stack();
  169. /*
  170. * The driver should never return -EBADMSG if it failed to read
  171. * all the requested data. But some buggy drivers might do
  172. * this, so we change it to -EIO.
  173. */
  174. if (read != len && err == -EBADMSG) {
  175. ubi_assert(0);
  176. err = -EIO;
  177. }
  178. } else {
  179. ubi_assert(len == read);
  180. if (ubi_dbg_is_bitflip()) {
  181. dbg_gen("bit-flip (emulated)");
  182. err = UBI_IO_BITFLIPS;
  183. }
  184. }
  185. return err;
  186. }
  187. /**
  188. * ubi_io_write - write data to a physical eraseblock.
  189. * @ubi: UBI device description object
  190. * @buf: buffer with the data to write
  191. * @pnum: physical eraseblock number to write to
  192. * @offset: offset within the physical eraseblock where to write
  193. * @len: how many bytes to write
  194. *
  195. * This function writes @len bytes of data from buffer @buf to offset @offset
  196. * of physical eraseblock @pnum. If all the data were successfully written,
  197. * zero is returned. If an error occurred, this function returns a negative
  198. * error code. If %-EIO is returned, the physical eraseblock most probably went
  199. * bad.
  200. *
  201. * Note, in case of an error, it is possible that something was still written
  202. * to the flash media, but may be some garbage.
  203. */
  204. int ubi_io_write(struct ubi_device *ubi, const void *buf, int pnum, int offset,
  205. int len)
  206. {
  207. int err;
  208. size_t written;
  209. loff_t addr;
  210. dbg_io("write %d bytes to PEB %d:%d", len, pnum, offset);
  211. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  212. ubi_assert(offset >= 0 && offset + len <= ubi->peb_size);
  213. ubi_assert(offset % ubi->hdrs_min_io_size == 0);
  214. ubi_assert(len > 0 && len % ubi->hdrs_min_io_size == 0);
  215. if (ubi->ro_mode) {
  216. ubi_err("read-only mode");
  217. return -EROFS;
  218. }
  219. /* The below has to be compiled out if paranoid checks are disabled */
  220. err = paranoid_check_not_bad(ubi, pnum);
  221. if (err)
  222. return err;
  223. /* The area we are writing to has to contain all 0xFF bytes */
  224. err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
  225. if (err)
  226. return err;
  227. if (offset >= ubi->leb_start) {
  228. /*
  229. * We write to the data area of the physical eraseblock. Make
  230. * sure it has valid EC and VID headers.
  231. */
  232. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  233. if (err)
  234. return err;
  235. err = paranoid_check_peb_vid_hdr(ubi, pnum);
  236. if (err)
  237. return err;
  238. }
  239. if (ubi_dbg_is_write_failure()) {
  240. dbg_err("cannot write %d bytes to PEB %d:%d "
  241. "(emulated)", len, pnum, offset);
  242. ubi_dbg_dump_stack();
  243. return -EIO;
  244. }
  245. addr = (loff_t)pnum * ubi->peb_size + offset;
  246. err = ubi->mtd->write(ubi->mtd, addr, len, &written, buf);
  247. if (err) {
  248. ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
  249. "%zd bytes", err, len, pnum, offset, written);
  250. ubi_dbg_dump_stack();
  251. ubi_dbg_dump_flash(ubi, pnum, offset, len);
  252. } else
  253. ubi_assert(written == len);
  254. if (!err) {
  255. err = ubi_dbg_check_write(ubi, buf, pnum, offset, len);
  256. if (err)
  257. return err;
  258. /*
  259. * Since we always write sequentially, the rest of the PEB has
  260. * to contain only 0xFF bytes.
  261. */
  262. offset += len;
  263. len = ubi->peb_size - offset;
  264. if (len)
  265. err = ubi_dbg_check_all_ff(ubi, pnum, offset, len);
  266. }
  267. return err;
  268. }
  269. /**
  270. * erase_callback - MTD erasure call-back.
  271. * @ei: MTD erase information object.
  272. *
  273. * Note, even though MTD erase interface is asynchronous, all the current
  274. * implementations are synchronous anyway.
  275. */
  276. static void erase_callback(struct erase_info *ei)
  277. {
  278. wake_up_interruptible((wait_queue_head_t *)ei->priv);
  279. }
  280. /**
  281. * do_sync_erase - synchronously erase a physical eraseblock.
  282. * @ubi: UBI device description object
  283. * @pnum: the physical eraseblock number to erase
  284. *
  285. * This function synchronously erases physical eraseblock @pnum and returns
  286. * zero in case of success and a negative error code in case of failure. If
  287. * %-EIO is returned, the physical eraseblock most probably went bad.
  288. */
  289. static int do_sync_erase(struct ubi_device *ubi, int pnum)
  290. {
  291. int err, retries = 0;
  292. struct erase_info ei;
  293. wait_queue_head_t wq;
  294. dbg_io("erase PEB %d", pnum);
  295. retry:
  296. init_waitqueue_head(&wq);
  297. memset(&ei, 0, sizeof(struct erase_info));
  298. ei.mtd = ubi->mtd;
  299. ei.addr = (loff_t)pnum * ubi->peb_size;
  300. ei.len = ubi->peb_size;
  301. ei.callback = erase_callback;
  302. ei.priv = (unsigned long)&wq;
  303. err = ubi->mtd->erase(ubi->mtd, &ei);
  304. if (err) {
  305. if (retries++ < UBI_IO_RETRIES) {
  306. dbg_io("error %d while erasing PEB %d, retry",
  307. err, pnum);
  308. yield();
  309. goto retry;
  310. }
  311. ubi_err("cannot erase PEB %d, error %d", pnum, err);
  312. ubi_dbg_dump_stack();
  313. return err;
  314. }
  315. err = wait_event_interruptible(wq, ei.state == MTD_ERASE_DONE ||
  316. ei.state == MTD_ERASE_FAILED);
  317. if (err) {
  318. ubi_err("interrupted PEB %d erasure", pnum);
  319. return -EINTR;
  320. }
  321. if (ei.state == MTD_ERASE_FAILED) {
  322. if (retries++ < UBI_IO_RETRIES) {
  323. dbg_io("error while erasing PEB %d, retry", pnum);
  324. yield();
  325. goto retry;
  326. }
  327. ubi_err("cannot erase PEB %d", pnum);
  328. ubi_dbg_dump_stack();
  329. return -EIO;
  330. }
  331. err = ubi_dbg_check_all_ff(ubi, pnum, 0, ubi->peb_size);
  332. if (err)
  333. return err;
  334. if (ubi_dbg_is_erase_failure() && !err) {
  335. dbg_err("cannot erase PEB %d (emulated)", pnum);
  336. return -EIO;
  337. }
  338. return 0;
  339. }
  340. /* Patterns to write to a physical eraseblock when torturing it */
  341. static uint8_t patterns[] = {0xa5, 0x5a, 0x0};
  342. /**
  343. * torture_peb - test a supposedly bad physical eraseblock.
  344. * @ubi: UBI device description object
  345. * @pnum: the physical eraseblock number to test
  346. *
  347. * This function returns %-EIO if the physical eraseblock did not pass the
  348. * test, a positive number of erase operations done if the test was
  349. * successfully passed, and other negative error codes in case of other errors.
  350. */
  351. static int torture_peb(struct ubi_device *ubi, int pnum)
  352. {
  353. int err, i, patt_count;
  354. ubi_msg("run torture test for PEB %d", pnum);
  355. patt_count = ARRAY_SIZE(patterns);
  356. ubi_assert(patt_count > 0);
  357. mutex_lock(&ubi->buf_mutex);
  358. for (i = 0; i < patt_count; i++) {
  359. err = do_sync_erase(ubi, pnum);
  360. if (err)
  361. goto out;
  362. /* Make sure the PEB contains only 0xFF bytes */
  363. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  364. if (err)
  365. goto out;
  366. err = ubi_check_pattern(ubi->peb_buf1, 0xFF, ubi->peb_size);
  367. if (err == 0) {
  368. ubi_err("erased PEB %d, but a non-0xFF byte found",
  369. pnum);
  370. err = -EIO;
  371. goto out;
  372. }
  373. /* Write a pattern and check it */
  374. memset(ubi->peb_buf1, patterns[i], ubi->peb_size);
  375. err = ubi_io_write(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  376. if (err)
  377. goto out;
  378. memset(ubi->peb_buf1, ~patterns[i], ubi->peb_size);
  379. err = ubi_io_read(ubi, ubi->peb_buf1, pnum, 0, ubi->peb_size);
  380. if (err)
  381. goto out;
  382. err = ubi_check_pattern(ubi->peb_buf1, patterns[i],
  383. ubi->peb_size);
  384. if (err == 0) {
  385. ubi_err("pattern %x checking failed for PEB %d",
  386. patterns[i], pnum);
  387. err = -EIO;
  388. goto out;
  389. }
  390. }
  391. err = patt_count;
  392. ubi_msg("PEB %d passed torture test, do not mark it a bad", pnum);
  393. out:
  394. mutex_unlock(&ubi->buf_mutex);
  395. if (err == UBI_IO_BITFLIPS || err == -EBADMSG) {
  396. /*
  397. * If a bit-flip or data integrity error was detected, the test
  398. * has not passed because it happened on a freshly erased
  399. * physical eraseblock which means something is wrong with it.
  400. */
  401. ubi_err("read problems on freshly erased PEB %d, must be bad",
  402. pnum);
  403. err = -EIO;
  404. }
  405. return err;
  406. }
  407. /**
  408. * nor_erase_prepare - prepare a NOR flash PEB for erasure.
  409. * @ubi: UBI device description object
  410. * @pnum: physical eraseblock number to prepare
  411. *
  412. * NOR flash, or at least some of them, have peculiar embedded PEB erasure
  413. * algorithm: the PEB is first filled with zeroes, then it is erased. And
  414. * filling with zeroes starts from the end of the PEB. This was observed with
  415. * Spansion S29GL512N NOR flash.
  416. *
  417. * This means that in case of a power cut we may end up with intact data at the
  418. * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
  419. * EC and VID headers are OK, but a large chunk of data at the end of PEB is
  420. * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
  421. * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
  422. *
  423. * This function is called before erasing NOR PEBs and it zeroes out EC and VID
  424. * magic numbers in order to invalidate them and prevent the failures. Returns
  425. * zero in case of success and a negative error code in case of failure.
  426. */
  427. static int nor_erase_prepare(struct ubi_device *ubi, int pnum)
  428. {
  429. int err, err1;
  430. size_t written;
  431. loff_t addr;
  432. uint32_t data = 0;
  433. struct ubi_vid_hdr vid_hdr;
  434. /*
  435. * It is important to first invalidate the EC header, and then the VID
  436. * header. Otherwise a power cut may lead to valid EC header and
  437. * invalid VID header, in which case UBI will treat this PEB as
  438. * corrupted and will try to preserve it, and print scary warnings (see
  439. * the header comment in scan.c for more information).
  440. */
  441. addr = (loff_t)pnum * ubi->peb_size;
  442. err = ubi->mtd->write(ubi->mtd, addr, 4, &written, (void *)&data);
  443. if (!err) {
  444. addr += ubi->vid_hdr_aloffset;
  445. err = ubi->mtd->write(ubi->mtd, addr, 4, &written,
  446. (void *)&data);
  447. if (!err)
  448. return 0;
  449. }
  450. /*
  451. * We failed to write to the media. This was observed with Spansion
  452. * S29GL512N NOR flash. Most probably the previously eraseblock erasure
  453. * was interrupted at a very inappropriate moment, so it became
  454. * unwritable. In this case we probably anyway have garbage in this
  455. * PEB.
  456. */
  457. err1 = ubi_io_read_vid_hdr(ubi, pnum, &vid_hdr, 0);
  458. if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR) {
  459. struct ubi_ec_hdr ec_hdr;
  460. err1 = ubi_io_read_ec_hdr(ubi, pnum, &ec_hdr, 0);
  461. if (err1 == UBI_IO_BAD_HDR_EBADMSG || err1 == UBI_IO_BAD_HDR)
  462. /*
  463. * Both VID and EC headers are corrupted, so we can
  464. * safely erase this PEB and not afraid that it will be
  465. * treated as a valid PEB in case of an unclean reboot.
  466. */
  467. return 0;
  468. }
  469. /*
  470. * The PEB contains a valid VID header, but we cannot invalidate it.
  471. * Supposedly the flash media or the driver is screwed up, so return an
  472. * error.
  473. */
  474. ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
  475. pnum, err, err1);
  476. ubi_dbg_dump_flash(ubi, pnum, 0, ubi->peb_size);
  477. return -EIO;
  478. }
  479. /**
  480. * ubi_io_sync_erase - synchronously erase a physical eraseblock.
  481. * @ubi: UBI device description object
  482. * @pnum: physical eraseblock number to erase
  483. * @torture: if this physical eraseblock has to be tortured
  484. *
  485. * This function synchronously erases physical eraseblock @pnum. If @torture
  486. * flag is not zero, the physical eraseblock is checked by means of writing
  487. * different patterns to it and reading them back. If the torturing is enabled,
  488. * the physical eraseblock is erased more than once.
  489. *
  490. * This function returns the number of erasures made in case of success, %-EIO
  491. * if the erasure failed or the torturing test failed, and other negative error
  492. * codes in case of other errors. Note, %-EIO means that the physical
  493. * eraseblock is bad.
  494. */
  495. int ubi_io_sync_erase(struct ubi_device *ubi, int pnum, int torture)
  496. {
  497. int err, ret = 0;
  498. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  499. err = paranoid_check_not_bad(ubi, pnum);
  500. if (err != 0)
  501. return err;
  502. if (ubi->ro_mode) {
  503. ubi_err("read-only mode");
  504. return -EROFS;
  505. }
  506. if (ubi->nor_flash) {
  507. err = nor_erase_prepare(ubi, pnum);
  508. if (err)
  509. return err;
  510. }
  511. if (torture) {
  512. ret = torture_peb(ubi, pnum);
  513. if (ret < 0)
  514. return ret;
  515. }
  516. err = do_sync_erase(ubi, pnum);
  517. if (err)
  518. return err;
  519. return ret + 1;
  520. }
  521. /**
  522. * ubi_io_is_bad - check if a physical eraseblock is bad.
  523. * @ubi: UBI device description object
  524. * @pnum: the physical eraseblock number to check
  525. *
  526. * This function returns a positive number if the physical eraseblock is bad,
  527. * zero if not, and a negative error code if an error occurred.
  528. */
  529. int ubi_io_is_bad(const struct ubi_device *ubi, int pnum)
  530. {
  531. struct mtd_info *mtd = ubi->mtd;
  532. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  533. if (ubi->bad_allowed) {
  534. int ret;
  535. ret = mtd->block_isbad(mtd, (loff_t)pnum * ubi->peb_size);
  536. if (ret < 0)
  537. ubi_err("error %d while checking if PEB %d is bad",
  538. ret, pnum);
  539. else if (ret)
  540. dbg_io("PEB %d is bad", pnum);
  541. return ret;
  542. }
  543. return 0;
  544. }
  545. /**
  546. * ubi_io_mark_bad - mark a physical eraseblock as bad.
  547. * @ubi: UBI device description object
  548. * @pnum: the physical eraseblock number to mark
  549. *
  550. * This function returns zero in case of success and a negative error code in
  551. * case of failure.
  552. */
  553. int ubi_io_mark_bad(const struct ubi_device *ubi, int pnum)
  554. {
  555. int err;
  556. struct mtd_info *mtd = ubi->mtd;
  557. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  558. if (ubi->ro_mode) {
  559. ubi_err("read-only mode");
  560. return -EROFS;
  561. }
  562. if (!ubi->bad_allowed)
  563. return 0;
  564. err = mtd->block_markbad(mtd, (loff_t)pnum * ubi->peb_size);
  565. if (err)
  566. ubi_err("cannot mark PEB %d bad, error %d", pnum, err);
  567. return err;
  568. }
  569. /**
  570. * validate_ec_hdr - validate an erase counter header.
  571. * @ubi: UBI device description object
  572. * @ec_hdr: the erase counter header to check
  573. *
  574. * This function returns zero if the erase counter header is OK, and %1 if
  575. * not.
  576. */
  577. static int validate_ec_hdr(const struct ubi_device *ubi,
  578. const struct ubi_ec_hdr *ec_hdr)
  579. {
  580. long long ec;
  581. int vid_hdr_offset, leb_start;
  582. ec = be64_to_cpu(ec_hdr->ec);
  583. vid_hdr_offset = be32_to_cpu(ec_hdr->vid_hdr_offset);
  584. leb_start = be32_to_cpu(ec_hdr->data_offset);
  585. if (ec_hdr->version != UBI_VERSION) {
  586. ubi_err("node with incompatible UBI version found: "
  587. "this UBI version is %d, image version is %d",
  588. UBI_VERSION, (int)ec_hdr->version);
  589. goto bad;
  590. }
  591. if (vid_hdr_offset != ubi->vid_hdr_offset) {
  592. ubi_err("bad VID header offset %d, expected %d",
  593. vid_hdr_offset, ubi->vid_hdr_offset);
  594. goto bad;
  595. }
  596. if (leb_start != ubi->leb_start) {
  597. ubi_err("bad data offset %d, expected %d",
  598. leb_start, ubi->leb_start);
  599. goto bad;
  600. }
  601. if (ec < 0 || ec > UBI_MAX_ERASECOUNTER) {
  602. ubi_err("bad erase counter %lld", ec);
  603. goto bad;
  604. }
  605. return 0;
  606. bad:
  607. ubi_err("bad EC header");
  608. ubi_dbg_dump_ec_hdr(ec_hdr);
  609. ubi_dbg_dump_stack();
  610. return 1;
  611. }
  612. /**
  613. * ubi_io_read_ec_hdr - read and check an erase counter header.
  614. * @ubi: UBI device description object
  615. * @pnum: physical eraseblock to read from
  616. * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
  617. * header
  618. * @verbose: be verbose if the header is corrupted or was not found
  619. *
  620. * This function reads erase counter header from physical eraseblock @pnum and
  621. * stores it in @ec_hdr. This function also checks CRC checksum of the read
  622. * erase counter header. The following codes may be returned:
  623. *
  624. * o %0 if the CRC checksum is correct and the header was successfully read;
  625. * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
  626. * and corrected by the flash driver; this is harmless but may indicate that
  627. * this eraseblock may become bad soon (but may be not);
  628. * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
  629. * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
  630. * a data integrity error (uncorrectable ECC error in case of NAND);
  631. * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
  632. * o a negative error code in case of failure.
  633. */
  634. int ubi_io_read_ec_hdr(struct ubi_device *ubi, int pnum,
  635. struct ubi_ec_hdr *ec_hdr, int verbose)
  636. {
  637. int err, read_err;
  638. uint32_t crc, magic, hdr_crc;
  639. dbg_io("read EC header from PEB %d", pnum);
  640. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  641. read_err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  642. if (read_err) {
  643. if (read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
  644. return read_err;
  645. /*
  646. * We read all the data, but either a correctable bit-flip
  647. * occurred, or MTD reported a data integrity error
  648. * (uncorrectable ECC error in case of NAND). The former is
  649. * harmless, the later may mean that the read data is
  650. * corrupted. But we have a CRC check-sum and we will detect
  651. * this. If the EC header is still OK, we just report this as
  652. * there was a bit-flip, to force scrubbing.
  653. */
  654. }
  655. magic = be32_to_cpu(ec_hdr->magic);
  656. if (magic != UBI_EC_HDR_MAGIC) {
  657. if (read_err == -EBADMSG)
  658. return UBI_IO_BAD_HDR_EBADMSG;
  659. /*
  660. * The magic field is wrong. Let's check if we have read all
  661. * 0xFF. If yes, this physical eraseblock is assumed to be
  662. * empty.
  663. */
  664. if (ubi_check_pattern(ec_hdr, 0xFF, UBI_EC_HDR_SIZE)) {
  665. /* The physical eraseblock is supposedly empty */
  666. if (verbose)
  667. ubi_warn("no EC header found at PEB %d, "
  668. "only 0xFF bytes", pnum);
  669. else if (UBI_IO_DEBUG)
  670. dbg_msg("no EC header found at PEB %d, "
  671. "only 0xFF bytes", pnum);
  672. if (!read_err)
  673. return UBI_IO_FF;
  674. else
  675. return UBI_IO_FF_BITFLIPS;
  676. }
  677. /*
  678. * This is not a valid erase counter header, and these are not
  679. * 0xFF bytes. Report that the header is corrupted.
  680. */
  681. if (verbose) {
  682. ubi_warn("bad magic number at PEB %d: %08x instead of "
  683. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  684. ubi_dbg_dump_ec_hdr(ec_hdr);
  685. } else if (UBI_IO_DEBUG)
  686. dbg_msg("bad magic number at PEB %d: %08x instead of "
  687. "%08x", pnum, magic, UBI_EC_HDR_MAGIC);
  688. return UBI_IO_BAD_HDR;
  689. }
  690. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  691. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  692. if (hdr_crc != crc) {
  693. if (verbose) {
  694. ubi_warn("bad EC header CRC at PEB %d, calculated "
  695. "%#08x, read %#08x", pnum, crc, hdr_crc);
  696. ubi_dbg_dump_ec_hdr(ec_hdr);
  697. } else if (UBI_IO_DEBUG)
  698. dbg_msg("bad EC header CRC at PEB %d, calculated "
  699. "%#08x, read %#08x", pnum, crc, hdr_crc);
  700. if (!read_err)
  701. return UBI_IO_BAD_HDR;
  702. else
  703. return UBI_IO_BAD_HDR_EBADMSG;
  704. }
  705. /* And of course validate what has just been read from the media */
  706. err = validate_ec_hdr(ubi, ec_hdr);
  707. if (err) {
  708. ubi_err("validation failed for PEB %d", pnum);
  709. return -EINVAL;
  710. }
  711. /*
  712. * If there was %-EBADMSG, but the header CRC is still OK, report about
  713. * a bit-flip to force scrubbing on this PEB.
  714. */
  715. return read_err ? UBI_IO_BITFLIPS : 0;
  716. }
  717. /**
  718. * ubi_io_write_ec_hdr - write an erase counter header.
  719. * @ubi: UBI device description object
  720. * @pnum: physical eraseblock to write to
  721. * @ec_hdr: the erase counter header to write
  722. *
  723. * This function writes erase counter header described by @ec_hdr to physical
  724. * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
  725. * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
  726. * field.
  727. *
  728. * This function returns zero in case of success and a negative error code in
  729. * case of failure. If %-EIO is returned, the physical eraseblock most probably
  730. * went bad.
  731. */
  732. int ubi_io_write_ec_hdr(struct ubi_device *ubi, int pnum,
  733. struct ubi_ec_hdr *ec_hdr)
  734. {
  735. int err;
  736. uint32_t crc;
  737. dbg_io("write EC header to PEB %d", pnum);
  738. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  739. ec_hdr->magic = cpu_to_be32(UBI_EC_HDR_MAGIC);
  740. ec_hdr->version = UBI_VERSION;
  741. ec_hdr->vid_hdr_offset = cpu_to_be32(ubi->vid_hdr_offset);
  742. ec_hdr->data_offset = cpu_to_be32(ubi->leb_start);
  743. ec_hdr->image_seq = cpu_to_be32(ubi->image_seq);
  744. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  745. ec_hdr->hdr_crc = cpu_to_be32(crc);
  746. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  747. if (err)
  748. return err;
  749. err = ubi_io_write(ubi, ec_hdr, pnum, 0, ubi->ec_hdr_alsize);
  750. return err;
  751. }
  752. /**
  753. * validate_vid_hdr - validate a volume identifier header.
  754. * @ubi: UBI device description object
  755. * @vid_hdr: the volume identifier header to check
  756. *
  757. * This function checks that data stored in the volume identifier header
  758. * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
  759. */
  760. static int validate_vid_hdr(const struct ubi_device *ubi,
  761. const struct ubi_vid_hdr *vid_hdr)
  762. {
  763. int vol_type = vid_hdr->vol_type;
  764. int copy_flag = vid_hdr->copy_flag;
  765. int vol_id = be32_to_cpu(vid_hdr->vol_id);
  766. int lnum = be32_to_cpu(vid_hdr->lnum);
  767. int compat = vid_hdr->compat;
  768. int data_size = be32_to_cpu(vid_hdr->data_size);
  769. int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
  770. int data_pad = be32_to_cpu(vid_hdr->data_pad);
  771. int data_crc = be32_to_cpu(vid_hdr->data_crc);
  772. int usable_leb_size = ubi->leb_size - data_pad;
  773. if (copy_flag != 0 && copy_flag != 1) {
  774. dbg_err("bad copy_flag");
  775. goto bad;
  776. }
  777. if (vol_id < 0 || lnum < 0 || data_size < 0 || used_ebs < 0 ||
  778. data_pad < 0) {
  779. dbg_err("negative values");
  780. goto bad;
  781. }
  782. if (vol_id >= UBI_MAX_VOLUMES && vol_id < UBI_INTERNAL_VOL_START) {
  783. dbg_err("bad vol_id");
  784. goto bad;
  785. }
  786. if (vol_id < UBI_INTERNAL_VOL_START && compat != 0) {
  787. dbg_err("bad compat");
  788. goto bad;
  789. }
  790. if (vol_id >= UBI_INTERNAL_VOL_START && compat != UBI_COMPAT_DELETE &&
  791. compat != UBI_COMPAT_RO && compat != UBI_COMPAT_PRESERVE &&
  792. compat != UBI_COMPAT_REJECT) {
  793. dbg_err("bad compat");
  794. goto bad;
  795. }
  796. if (vol_type != UBI_VID_DYNAMIC && vol_type != UBI_VID_STATIC) {
  797. dbg_err("bad vol_type");
  798. goto bad;
  799. }
  800. if (data_pad >= ubi->leb_size / 2) {
  801. dbg_err("bad data_pad");
  802. goto bad;
  803. }
  804. if (vol_type == UBI_VID_STATIC) {
  805. /*
  806. * Although from high-level point of view static volumes may
  807. * contain zero bytes of data, but no VID headers can contain
  808. * zero at these fields, because they empty volumes do not have
  809. * mapped logical eraseblocks.
  810. */
  811. if (used_ebs == 0) {
  812. dbg_err("zero used_ebs");
  813. goto bad;
  814. }
  815. if (data_size == 0) {
  816. dbg_err("zero data_size");
  817. goto bad;
  818. }
  819. if (lnum < used_ebs - 1) {
  820. if (data_size != usable_leb_size) {
  821. dbg_err("bad data_size");
  822. goto bad;
  823. }
  824. } else if (lnum == used_ebs - 1) {
  825. if (data_size == 0) {
  826. dbg_err("bad data_size at last LEB");
  827. goto bad;
  828. }
  829. } else {
  830. dbg_err("too high lnum");
  831. goto bad;
  832. }
  833. } else {
  834. if (copy_flag == 0) {
  835. if (data_crc != 0) {
  836. dbg_err("non-zero data CRC");
  837. goto bad;
  838. }
  839. if (data_size != 0) {
  840. dbg_err("non-zero data_size");
  841. goto bad;
  842. }
  843. } else {
  844. if (data_size == 0) {
  845. dbg_err("zero data_size of copy");
  846. goto bad;
  847. }
  848. }
  849. if (used_ebs != 0) {
  850. dbg_err("bad used_ebs");
  851. goto bad;
  852. }
  853. }
  854. return 0;
  855. bad:
  856. ubi_err("bad VID header");
  857. ubi_dbg_dump_vid_hdr(vid_hdr);
  858. ubi_dbg_dump_stack();
  859. return 1;
  860. }
  861. /**
  862. * ubi_io_read_vid_hdr - read and check a volume identifier header.
  863. * @ubi: UBI device description object
  864. * @pnum: physical eraseblock number to read from
  865. * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
  866. * identifier header
  867. * @verbose: be verbose if the header is corrupted or wasn't found
  868. *
  869. * This function reads the volume identifier header from physical eraseblock
  870. * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
  871. * volume identifier header. The error codes are the same as in
  872. * 'ubi_io_read_ec_hdr()'.
  873. *
  874. * Note, the implementation of this function is also very similar to
  875. * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
  876. */
  877. int ubi_io_read_vid_hdr(struct ubi_device *ubi, int pnum,
  878. struct ubi_vid_hdr *vid_hdr, int verbose)
  879. {
  880. int err, read_err;
  881. uint32_t crc, magic, hdr_crc;
  882. void *p;
  883. dbg_io("read VID header from PEB %d", pnum);
  884. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  885. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  886. read_err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  887. ubi->vid_hdr_alsize);
  888. if (read_err && read_err != UBI_IO_BITFLIPS && read_err != -EBADMSG)
  889. return read_err;
  890. magic = be32_to_cpu(vid_hdr->magic);
  891. if (magic != UBI_VID_HDR_MAGIC) {
  892. if (read_err == -EBADMSG)
  893. return UBI_IO_BAD_HDR_EBADMSG;
  894. if (ubi_check_pattern(vid_hdr, 0xFF, UBI_VID_HDR_SIZE)) {
  895. if (verbose)
  896. ubi_warn("no VID header found at PEB %d, "
  897. "only 0xFF bytes", pnum);
  898. else if (UBI_IO_DEBUG)
  899. dbg_msg("no VID header found at PEB %d, "
  900. "only 0xFF bytes", pnum);
  901. if (!read_err)
  902. return UBI_IO_FF;
  903. else
  904. return UBI_IO_FF_BITFLIPS;
  905. }
  906. if (verbose) {
  907. ubi_warn("bad magic number at PEB %d: %08x instead of "
  908. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  909. ubi_dbg_dump_vid_hdr(vid_hdr);
  910. } else if (UBI_IO_DEBUG)
  911. dbg_msg("bad magic number at PEB %d: %08x instead of "
  912. "%08x", pnum, magic, UBI_VID_HDR_MAGIC);
  913. return UBI_IO_BAD_HDR;
  914. }
  915. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  916. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  917. if (hdr_crc != crc) {
  918. if (verbose) {
  919. ubi_warn("bad CRC at PEB %d, calculated %#08x, "
  920. "read %#08x", pnum, crc, hdr_crc);
  921. ubi_dbg_dump_vid_hdr(vid_hdr);
  922. } else if (UBI_IO_DEBUG)
  923. dbg_msg("bad CRC at PEB %d, calculated %#08x, "
  924. "read %#08x", pnum, crc, hdr_crc);
  925. if (!read_err)
  926. return UBI_IO_BAD_HDR;
  927. else
  928. return UBI_IO_BAD_HDR_EBADMSG;
  929. }
  930. err = validate_vid_hdr(ubi, vid_hdr);
  931. if (err) {
  932. ubi_err("validation failed for PEB %d", pnum);
  933. return -EINVAL;
  934. }
  935. return read_err ? UBI_IO_BITFLIPS : 0;
  936. }
  937. /**
  938. * ubi_io_write_vid_hdr - write a volume identifier header.
  939. * @ubi: UBI device description object
  940. * @pnum: the physical eraseblock number to write to
  941. * @vid_hdr: the volume identifier header to write
  942. *
  943. * This function writes the volume identifier header described by @vid_hdr to
  944. * physical eraseblock @pnum. This function automatically fills the
  945. * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
  946. * header CRC checksum and stores it at vid_hdr->hdr_crc.
  947. *
  948. * This function returns zero in case of success and a negative error code in
  949. * case of failure. If %-EIO is returned, the physical eraseblock probably went
  950. * bad.
  951. */
  952. int ubi_io_write_vid_hdr(struct ubi_device *ubi, int pnum,
  953. struct ubi_vid_hdr *vid_hdr)
  954. {
  955. int err;
  956. uint32_t crc;
  957. void *p;
  958. dbg_io("write VID header to PEB %d", pnum);
  959. ubi_assert(pnum >= 0 && pnum < ubi->peb_count);
  960. err = paranoid_check_peb_ec_hdr(ubi, pnum);
  961. if (err)
  962. return err;
  963. vid_hdr->magic = cpu_to_be32(UBI_VID_HDR_MAGIC);
  964. vid_hdr->version = UBI_VERSION;
  965. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_VID_HDR_SIZE_CRC);
  966. vid_hdr->hdr_crc = cpu_to_be32(crc);
  967. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  968. if (err)
  969. return err;
  970. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  971. err = ubi_io_write(ubi, p, pnum, ubi->vid_hdr_aloffset,
  972. ubi->vid_hdr_alsize);
  973. return err;
  974. }
  975. #ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
  976. /**
  977. * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
  978. * @ubi: UBI device description object
  979. * @pnum: physical eraseblock number to check
  980. *
  981. * This function returns zero if the physical eraseblock is good, %-EINVAL if
  982. * it is bad and a negative error code if an error occurred.
  983. */
  984. static int paranoid_check_not_bad(const struct ubi_device *ubi, int pnum)
  985. {
  986. int err;
  987. err = ubi_io_is_bad(ubi, pnum);
  988. if (!err)
  989. return err;
  990. ubi_err("paranoid check failed for PEB %d", pnum);
  991. ubi_dbg_dump_stack();
  992. return err > 0 ? -EINVAL : err;
  993. }
  994. /**
  995. * paranoid_check_ec_hdr - check if an erase counter header is all right.
  996. * @ubi: UBI device description object
  997. * @pnum: physical eraseblock number the erase counter header belongs to
  998. * @ec_hdr: the erase counter header to check
  999. *
  1000. * This function returns zero if the erase counter header contains valid
  1001. * values, and %-EINVAL if not.
  1002. */
  1003. static int paranoid_check_ec_hdr(const struct ubi_device *ubi, int pnum,
  1004. const struct ubi_ec_hdr *ec_hdr)
  1005. {
  1006. int err;
  1007. uint32_t magic;
  1008. magic = be32_to_cpu(ec_hdr->magic);
  1009. if (magic != UBI_EC_HDR_MAGIC) {
  1010. ubi_err("bad magic %#08x, must be %#08x",
  1011. magic, UBI_EC_HDR_MAGIC);
  1012. goto fail;
  1013. }
  1014. err = validate_ec_hdr(ubi, ec_hdr);
  1015. if (err) {
  1016. ubi_err("paranoid check failed for PEB %d", pnum);
  1017. goto fail;
  1018. }
  1019. return 0;
  1020. fail:
  1021. ubi_dbg_dump_ec_hdr(ec_hdr);
  1022. ubi_dbg_dump_stack();
  1023. return -EINVAL;
  1024. }
  1025. /**
  1026. * paranoid_check_peb_ec_hdr - check erase counter header.
  1027. * @ubi: UBI device description object
  1028. * @pnum: the physical eraseblock number to check
  1029. *
  1030. * This function returns zero if the erase counter header is all right and and
  1031. * a negative error code if not or if an error occurred.
  1032. */
  1033. static int paranoid_check_peb_ec_hdr(const struct ubi_device *ubi, int pnum)
  1034. {
  1035. int err;
  1036. uint32_t crc, hdr_crc;
  1037. struct ubi_ec_hdr *ec_hdr;
  1038. ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_NOFS);
  1039. if (!ec_hdr)
  1040. return -ENOMEM;
  1041. err = ubi_io_read(ubi, ec_hdr, pnum, 0, UBI_EC_HDR_SIZE);
  1042. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1043. goto exit;
  1044. crc = crc32(UBI_CRC32_INIT, ec_hdr, UBI_EC_HDR_SIZE_CRC);
  1045. hdr_crc = be32_to_cpu(ec_hdr->hdr_crc);
  1046. if (hdr_crc != crc) {
  1047. ubi_err("bad CRC, calculated %#08x, read %#08x", crc, hdr_crc);
  1048. ubi_err("paranoid check failed for PEB %d", pnum);
  1049. ubi_dbg_dump_ec_hdr(ec_hdr);
  1050. ubi_dbg_dump_stack();
  1051. err = -EINVAL;
  1052. goto exit;
  1053. }
  1054. err = paranoid_check_ec_hdr(ubi, pnum, ec_hdr);
  1055. exit:
  1056. kfree(ec_hdr);
  1057. return err;
  1058. }
  1059. /**
  1060. * paranoid_check_vid_hdr - check that a volume identifier header is all right.
  1061. * @ubi: UBI device description object
  1062. * @pnum: physical eraseblock number the volume identifier header belongs to
  1063. * @vid_hdr: the volume identifier header to check
  1064. *
  1065. * This function returns zero if the volume identifier header is all right, and
  1066. * %-EINVAL if not.
  1067. */
  1068. static int paranoid_check_vid_hdr(const struct ubi_device *ubi, int pnum,
  1069. const struct ubi_vid_hdr *vid_hdr)
  1070. {
  1071. int err;
  1072. uint32_t magic;
  1073. magic = be32_to_cpu(vid_hdr->magic);
  1074. if (magic != UBI_VID_HDR_MAGIC) {
  1075. ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
  1076. magic, pnum, UBI_VID_HDR_MAGIC);
  1077. goto fail;
  1078. }
  1079. err = validate_vid_hdr(ubi, vid_hdr);
  1080. if (err) {
  1081. ubi_err("paranoid check failed for PEB %d", pnum);
  1082. goto fail;
  1083. }
  1084. return err;
  1085. fail:
  1086. ubi_err("paranoid check failed for PEB %d", pnum);
  1087. ubi_dbg_dump_vid_hdr(vid_hdr);
  1088. ubi_dbg_dump_stack();
  1089. return -EINVAL;
  1090. }
  1091. /**
  1092. * paranoid_check_peb_vid_hdr - check volume identifier header.
  1093. * @ubi: UBI device description object
  1094. * @pnum: the physical eraseblock number to check
  1095. *
  1096. * This function returns zero if the volume identifier header is all right,
  1097. * and a negative error code if not or if an error occurred.
  1098. */
  1099. static int paranoid_check_peb_vid_hdr(const struct ubi_device *ubi, int pnum)
  1100. {
  1101. int err;
  1102. uint32_t crc, hdr_crc;
  1103. struct ubi_vid_hdr *vid_hdr;
  1104. void *p;
  1105. vid_hdr = ubi_zalloc_vid_hdr(ubi, GFP_NOFS);
  1106. if (!vid_hdr)
  1107. return -ENOMEM;
  1108. p = (char *)vid_hdr - ubi->vid_hdr_shift;
  1109. err = ubi_io_read(ubi, p, pnum, ubi->vid_hdr_aloffset,
  1110. ubi->vid_hdr_alsize);
  1111. if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
  1112. goto exit;
  1113. crc = crc32(UBI_CRC32_INIT, vid_hdr, UBI_EC_HDR_SIZE_CRC);
  1114. hdr_crc = be32_to_cpu(vid_hdr->hdr_crc);
  1115. if (hdr_crc != crc) {
  1116. ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
  1117. "read %#08x", pnum, crc, hdr_crc);
  1118. ubi_err("paranoid check failed for PEB %d", pnum);
  1119. ubi_dbg_dump_vid_hdr(vid_hdr);
  1120. ubi_dbg_dump_stack();
  1121. err = -EINVAL;
  1122. goto exit;
  1123. }
  1124. err = paranoid_check_vid_hdr(ubi, pnum, vid_hdr);
  1125. exit:
  1126. ubi_free_vid_hdr(ubi, vid_hdr);
  1127. return err;
  1128. }
  1129. /**
  1130. * ubi_dbg_check_write - make sure write succeeded.
  1131. * @ubi: UBI device description object
  1132. * @buf: buffer with data which were written
  1133. * @pnum: physical eraseblock number the data were written to
  1134. * @offset: offset within the physical eraseblock the data were written to
  1135. * @len: how many bytes were written
  1136. *
  1137. * This functions reads data which were recently written and compares it with
  1138. * the original data buffer - the data have to match. Returns zero if the data
  1139. * match and a negative error code if not or in case of failure.
  1140. */
  1141. int ubi_dbg_check_write(struct ubi_device *ubi, const void *buf, int pnum,
  1142. int offset, int len)
  1143. {
  1144. int err, i;
  1145. mutex_lock(&ubi->dbg_buf_mutex);
  1146. err = ubi_io_read(ubi, ubi->dbg_peb_buf, pnum, offset, len);
  1147. if (err)
  1148. goto out_unlock;
  1149. for (i = 0; i < len; i++) {
  1150. uint8_t c = ((uint8_t *)buf)[i];
  1151. uint8_t c1 = ((uint8_t *)ubi->dbg_peb_buf)[i];
  1152. int dump_len;
  1153. if (c == c1)
  1154. continue;
  1155. ubi_err("paranoid check failed for PEB %d:%d, len %d",
  1156. pnum, offset, len);
  1157. ubi_msg("data differ at position %d", i);
  1158. dump_len = max_t(int, 128, len - i);
  1159. ubi_msg("hex dump of the original buffer from %d to %d",
  1160. i, i + dump_len);
  1161. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1162. buf + i, dump_len, 1);
  1163. ubi_msg("hex dump of the read buffer from %d to %d",
  1164. i, i + dump_len);
  1165. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1166. ubi->dbg_peb_buf + i, dump_len, 1);
  1167. ubi_dbg_dump_stack();
  1168. err = -EINVAL;
  1169. goto out_unlock;
  1170. }
  1171. mutex_unlock(&ubi->dbg_buf_mutex);
  1172. return 0;
  1173. out_unlock:
  1174. mutex_unlock(&ubi->dbg_buf_mutex);
  1175. return err;
  1176. }
  1177. /**
  1178. * ubi_dbg_check_all_ff - check that a region of flash is empty.
  1179. * @ubi: UBI device description object
  1180. * @pnum: the physical eraseblock number to check
  1181. * @offset: the starting offset within the physical eraseblock to check
  1182. * @len: the length of the region to check
  1183. *
  1184. * This function returns zero if only 0xFF bytes are present at offset
  1185. * @offset of the physical eraseblock @pnum, and a negative error code if not
  1186. * or if an error occurred.
  1187. */
  1188. int ubi_dbg_check_all_ff(struct ubi_device *ubi, int pnum, int offset, int len)
  1189. {
  1190. size_t read;
  1191. int err;
  1192. loff_t addr = (loff_t)pnum * ubi->peb_size + offset;
  1193. mutex_lock(&ubi->dbg_buf_mutex);
  1194. err = ubi->mtd->read(ubi->mtd, addr, len, &read, ubi->dbg_peb_buf);
  1195. if (err && err != -EUCLEAN) {
  1196. ubi_err("error %d while reading %d bytes from PEB %d:%d, "
  1197. "read %zd bytes", err, len, pnum, offset, read);
  1198. goto error;
  1199. }
  1200. err = ubi_check_pattern(ubi->dbg_peb_buf, 0xFF, len);
  1201. if (err == 0) {
  1202. ubi_err("flash region at PEB %d:%d, length %d does not "
  1203. "contain all 0xFF bytes", pnum, offset, len);
  1204. goto fail;
  1205. }
  1206. mutex_unlock(&ubi->dbg_buf_mutex);
  1207. return 0;
  1208. fail:
  1209. ubi_err("paranoid check failed for PEB %d", pnum);
  1210. ubi_msg("hex dump of the %d-%d region", offset, offset + len);
  1211. print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
  1212. ubi->dbg_peb_buf, len, 1);
  1213. err = -EINVAL;
  1214. error:
  1215. ubi_dbg_dump_stack();
  1216. mutex_unlock(&ubi->dbg_buf_mutex);
  1217. return err;
  1218. }
  1219. #endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */