samsung.c 29 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161
  1. /*
  2. * Samsung S3C64XX/S5PC1XX OneNAND driver
  3. *
  4. * Copyright © 2008-2010 Samsung Electronics
  5. * Kyungmin Park <kyungmin.park@samsung.com>
  6. * Marek Szyprowski <m.szyprowski@samsung.com>
  7. *
  8. * This program is free software; you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License version 2 as
  10. * published by the Free Software Foundation.
  11. *
  12. * Implementation:
  13. * S3C64XX and S5PC100: emulate the pseudo BufferRAM
  14. * S5PC110: use DMA
  15. */
  16. #include <linux/module.h>
  17. #include <linux/platform_device.h>
  18. #include <linux/sched.h>
  19. #include <linux/slab.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/onenand.h>
  22. #include <linux/mtd/partitions.h>
  23. #include <linux/dma-mapping.h>
  24. #include <linux/interrupt.h>
  25. #include <asm/mach/flash.h>
  26. #include <plat/regs-onenand.h>
  27. #include <linux/io.h>
  28. enum soc_type {
  29. TYPE_S3C6400,
  30. TYPE_S3C6410,
  31. TYPE_S5PC100,
  32. TYPE_S5PC110,
  33. };
  34. #define ONENAND_ERASE_STATUS 0x00
  35. #define ONENAND_MULTI_ERASE_SET 0x01
  36. #define ONENAND_ERASE_START 0x03
  37. #define ONENAND_UNLOCK_START 0x08
  38. #define ONENAND_UNLOCK_END 0x09
  39. #define ONENAND_LOCK_START 0x0A
  40. #define ONENAND_LOCK_END 0x0B
  41. #define ONENAND_LOCK_TIGHT_START 0x0C
  42. #define ONENAND_LOCK_TIGHT_END 0x0D
  43. #define ONENAND_UNLOCK_ALL 0x0E
  44. #define ONENAND_OTP_ACCESS 0x12
  45. #define ONENAND_SPARE_ACCESS_ONLY 0x13
  46. #define ONENAND_MAIN_ACCESS_ONLY 0x14
  47. #define ONENAND_ERASE_VERIFY 0x15
  48. #define ONENAND_MAIN_SPARE_ACCESS 0x16
  49. #define ONENAND_PIPELINE_READ 0x4000
  50. #define MAP_00 (0x0)
  51. #define MAP_01 (0x1)
  52. #define MAP_10 (0x2)
  53. #define MAP_11 (0x3)
  54. #define S3C64XX_CMD_MAP_SHIFT 24
  55. #define S5PC100_CMD_MAP_SHIFT 26
  56. #define S3C6400_FBA_SHIFT 10
  57. #define S3C6400_FPA_SHIFT 4
  58. #define S3C6400_FSA_SHIFT 2
  59. #define S3C6410_FBA_SHIFT 12
  60. #define S3C6410_FPA_SHIFT 6
  61. #define S3C6410_FSA_SHIFT 4
  62. #define S5PC100_FBA_SHIFT 13
  63. #define S5PC100_FPA_SHIFT 7
  64. #define S5PC100_FSA_SHIFT 5
  65. /* S5PC110 specific definitions */
  66. #define S5PC110_DMA_SRC_ADDR 0x400
  67. #define S5PC110_DMA_SRC_CFG 0x404
  68. #define S5PC110_DMA_DST_ADDR 0x408
  69. #define S5PC110_DMA_DST_CFG 0x40C
  70. #define S5PC110_DMA_TRANS_SIZE 0x414
  71. #define S5PC110_DMA_TRANS_CMD 0x418
  72. #define S5PC110_DMA_TRANS_STATUS 0x41C
  73. #define S5PC110_DMA_TRANS_DIR 0x420
  74. #define S5PC110_INTC_DMA_CLR 0x1004
  75. #define S5PC110_INTC_ONENAND_CLR 0x1008
  76. #define S5PC110_INTC_DMA_MASK 0x1024
  77. #define S5PC110_INTC_ONENAND_MASK 0x1028
  78. #define S5PC110_INTC_DMA_PEND 0x1044
  79. #define S5PC110_INTC_ONENAND_PEND 0x1048
  80. #define S5PC110_INTC_DMA_STATUS 0x1064
  81. #define S5PC110_INTC_ONENAND_STATUS 0x1068
  82. #define S5PC110_INTC_DMA_TD (1 << 24)
  83. #define S5PC110_INTC_DMA_TE (1 << 16)
  84. #define S5PC110_DMA_CFG_SINGLE (0x0 << 16)
  85. #define S5PC110_DMA_CFG_4BURST (0x2 << 16)
  86. #define S5PC110_DMA_CFG_8BURST (0x3 << 16)
  87. #define S5PC110_DMA_CFG_16BURST (0x4 << 16)
  88. #define S5PC110_DMA_CFG_INC (0x0 << 8)
  89. #define S5PC110_DMA_CFG_CNT (0x1 << 8)
  90. #define S5PC110_DMA_CFG_8BIT (0x0 << 0)
  91. #define S5PC110_DMA_CFG_16BIT (0x1 << 0)
  92. #define S5PC110_DMA_CFG_32BIT (0x2 << 0)
  93. #define S5PC110_DMA_SRC_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  94. S5PC110_DMA_CFG_INC | \
  95. S5PC110_DMA_CFG_16BIT)
  96. #define S5PC110_DMA_DST_CFG_READ (S5PC110_DMA_CFG_16BURST | \
  97. S5PC110_DMA_CFG_INC | \
  98. S5PC110_DMA_CFG_32BIT)
  99. #define S5PC110_DMA_SRC_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  100. S5PC110_DMA_CFG_INC | \
  101. S5PC110_DMA_CFG_32BIT)
  102. #define S5PC110_DMA_DST_CFG_WRITE (S5PC110_DMA_CFG_16BURST | \
  103. S5PC110_DMA_CFG_INC | \
  104. S5PC110_DMA_CFG_16BIT)
  105. #define S5PC110_DMA_TRANS_CMD_TDC (0x1 << 18)
  106. #define S5PC110_DMA_TRANS_CMD_TEC (0x1 << 16)
  107. #define S5PC110_DMA_TRANS_CMD_TR (0x1 << 0)
  108. #define S5PC110_DMA_TRANS_STATUS_TD (0x1 << 18)
  109. #define S5PC110_DMA_TRANS_STATUS_TB (0x1 << 17)
  110. #define S5PC110_DMA_TRANS_STATUS_TE (0x1 << 16)
  111. #define S5PC110_DMA_DIR_READ 0x0
  112. #define S5PC110_DMA_DIR_WRITE 0x1
  113. struct s3c_onenand {
  114. struct mtd_info *mtd;
  115. struct platform_device *pdev;
  116. enum soc_type type;
  117. void __iomem *base;
  118. struct resource *base_res;
  119. void __iomem *ahb_addr;
  120. struct resource *ahb_res;
  121. int bootram_command;
  122. void __iomem *page_buf;
  123. void __iomem *oob_buf;
  124. unsigned int (*mem_addr)(int fba, int fpa, int fsa);
  125. unsigned int (*cmd_map)(unsigned int type, unsigned int val);
  126. void __iomem *dma_addr;
  127. struct resource *dma_res;
  128. unsigned long phys_base;
  129. struct completion complete;
  130. #ifdef CONFIG_MTD_PARTITIONS
  131. struct mtd_partition *parts;
  132. #endif
  133. };
  134. #define CMD_MAP_00(dev, addr) (dev->cmd_map(MAP_00, ((addr) << 1)))
  135. #define CMD_MAP_01(dev, mem_addr) (dev->cmd_map(MAP_01, (mem_addr)))
  136. #define CMD_MAP_10(dev, mem_addr) (dev->cmd_map(MAP_10, (mem_addr)))
  137. #define CMD_MAP_11(dev, addr) (dev->cmd_map(MAP_11, ((addr) << 2)))
  138. static struct s3c_onenand *onenand;
  139. #ifdef CONFIG_MTD_PARTITIONS
  140. static const char *part_probes[] = { "cmdlinepart", NULL, };
  141. #endif
  142. static inline int s3c_read_reg(int offset)
  143. {
  144. return readl(onenand->base + offset);
  145. }
  146. static inline void s3c_write_reg(int value, int offset)
  147. {
  148. writel(value, onenand->base + offset);
  149. }
  150. static inline int s3c_read_cmd(unsigned int cmd)
  151. {
  152. return readl(onenand->ahb_addr + cmd);
  153. }
  154. static inline void s3c_write_cmd(int value, unsigned int cmd)
  155. {
  156. writel(value, onenand->ahb_addr + cmd);
  157. }
  158. #ifdef SAMSUNG_DEBUG
  159. static void s3c_dump_reg(void)
  160. {
  161. int i;
  162. for (i = 0; i < 0x400; i += 0x40) {
  163. printk(KERN_INFO "0x%08X: 0x%08x 0x%08x 0x%08x 0x%08x\n",
  164. (unsigned int) onenand->base + i,
  165. s3c_read_reg(i), s3c_read_reg(i + 0x10),
  166. s3c_read_reg(i + 0x20), s3c_read_reg(i + 0x30));
  167. }
  168. }
  169. #endif
  170. static unsigned int s3c64xx_cmd_map(unsigned type, unsigned val)
  171. {
  172. return (type << S3C64XX_CMD_MAP_SHIFT) | val;
  173. }
  174. static unsigned int s5pc1xx_cmd_map(unsigned type, unsigned val)
  175. {
  176. return (type << S5PC100_CMD_MAP_SHIFT) | val;
  177. }
  178. static unsigned int s3c6400_mem_addr(int fba, int fpa, int fsa)
  179. {
  180. return (fba << S3C6400_FBA_SHIFT) | (fpa << S3C6400_FPA_SHIFT) |
  181. (fsa << S3C6400_FSA_SHIFT);
  182. }
  183. static unsigned int s3c6410_mem_addr(int fba, int fpa, int fsa)
  184. {
  185. return (fba << S3C6410_FBA_SHIFT) | (fpa << S3C6410_FPA_SHIFT) |
  186. (fsa << S3C6410_FSA_SHIFT);
  187. }
  188. static unsigned int s5pc100_mem_addr(int fba, int fpa, int fsa)
  189. {
  190. return (fba << S5PC100_FBA_SHIFT) | (fpa << S5PC100_FPA_SHIFT) |
  191. (fsa << S5PC100_FSA_SHIFT);
  192. }
  193. static void s3c_onenand_reset(void)
  194. {
  195. unsigned long timeout = 0x10000;
  196. int stat;
  197. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  198. while (1 && timeout--) {
  199. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  200. if (stat & RST_CMP)
  201. break;
  202. }
  203. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  204. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  205. /* Clear interrupt */
  206. s3c_write_reg(0x0, INT_ERR_ACK_OFFSET);
  207. /* Clear the ECC status */
  208. s3c_write_reg(0x0, ECC_ERR_STAT_OFFSET);
  209. }
  210. static unsigned short s3c_onenand_readw(void __iomem *addr)
  211. {
  212. struct onenand_chip *this = onenand->mtd->priv;
  213. struct device *dev = &onenand->pdev->dev;
  214. int reg = addr - this->base;
  215. int word_addr = reg >> 1;
  216. int value;
  217. /* It's used for probing time */
  218. switch (reg) {
  219. case ONENAND_REG_MANUFACTURER_ID:
  220. return s3c_read_reg(MANUFACT_ID_OFFSET);
  221. case ONENAND_REG_DEVICE_ID:
  222. return s3c_read_reg(DEVICE_ID_OFFSET);
  223. case ONENAND_REG_VERSION_ID:
  224. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  225. case ONENAND_REG_DATA_BUFFER_SIZE:
  226. return s3c_read_reg(DATA_BUF_SIZE_OFFSET);
  227. case ONENAND_REG_TECHNOLOGY:
  228. return s3c_read_reg(TECH_OFFSET);
  229. case ONENAND_REG_SYS_CFG1:
  230. return s3c_read_reg(MEM_CFG_OFFSET);
  231. /* Used at unlock all status */
  232. case ONENAND_REG_CTRL_STATUS:
  233. return 0;
  234. case ONENAND_REG_WP_STATUS:
  235. return ONENAND_WP_US;
  236. default:
  237. break;
  238. }
  239. /* BootRAM access control */
  240. if ((unsigned int) addr < ONENAND_DATARAM && onenand->bootram_command) {
  241. if (word_addr == 0)
  242. return s3c_read_reg(MANUFACT_ID_OFFSET);
  243. if (word_addr == 1)
  244. return s3c_read_reg(DEVICE_ID_OFFSET);
  245. if (word_addr == 2)
  246. return s3c_read_reg(FLASH_VER_ID_OFFSET);
  247. }
  248. value = s3c_read_cmd(CMD_MAP_11(onenand, word_addr)) & 0xffff;
  249. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  250. word_addr, value);
  251. return value;
  252. }
  253. static void s3c_onenand_writew(unsigned short value, void __iomem *addr)
  254. {
  255. struct onenand_chip *this = onenand->mtd->priv;
  256. struct device *dev = &onenand->pdev->dev;
  257. unsigned int reg = addr - this->base;
  258. unsigned int word_addr = reg >> 1;
  259. /* It's used for probing time */
  260. switch (reg) {
  261. case ONENAND_REG_SYS_CFG1:
  262. s3c_write_reg(value, MEM_CFG_OFFSET);
  263. return;
  264. case ONENAND_REG_START_ADDRESS1:
  265. case ONENAND_REG_START_ADDRESS2:
  266. return;
  267. /* Lock/lock-tight/unlock/unlock_all */
  268. case ONENAND_REG_START_BLOCK_ADDRESS:
  269. return;
  270. default:
  271. break;
  272. }
  273. /* BootRAM access control */
  274. if ((unsigned int)addr < ONENAND_DATARAM) {
  275. if (value == ONENAND_CMD_READID) {
  276. onenand->bootram_command = 1;
  277. return;
  278. }
  279. if (value == ONENAND_CMD_RESET) {
  280. s3c_write_reg(ONENAND_MEM_RESET_COLD, MEM_RESET_OFFSET);
  281. onenand->bootram_command = 0;
  282. return;
  283. }
  284. }
  285. dev_info(dev, "%s: Illegal access at reg 0x%x, value 0x%x\n", __func__,
  286. word_addr, value);
  287. s3c_write_cmd(value, CMD_MAP_11(onenand, word_addr));
  288. }
  289. static int s3c_onenand_wait(struct mtd_info *mtd, int state)
  290. {
  291. struct device *dev = &onenand->pdev->dev;
  292. unsigned int flags = INT_ACT;
  293. unsigned int stat, ecc;
  294. unsigned long timeout;
  295. switch (state) {
  296. case FL_READING:
  297. flags |= BLK_RW_CMP | LOAD_CMP;
  298. break;
  299. case FL_WRITING:
  300. flags |= BLK_RW_CMP | PGM_CMP;
  301. break;
  302. case FL_ERASING:
  303. flags |= BLK_RW_CMP | ERS_CMP;
  304. break;
  305. case FL_LOCKING:
  306. flags |= BLK_RW_CMP;
  307. break;
  308. default:
  309. break;
  310. }
  311. /* The 20 msec is enough */
  312. timeout = jiffies + msecs_to_jiffies(20);
  313. while (time_before(jiffies, timeout)) {
  314. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  315. if (stat & flags)
  316. break;
  317. if (state != FL_READING)
  318. cond_resched();
  319. }
  320. /* To get correct interrupt status in timeout case */
  321. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  322. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  323. /*
  324. * In the Spec. it checks the controller status first
  325. * However if you get the correct information in case of
  326. * power off recovery (POR) test, it should read ECC status first
  327. */
  328. if (stat & LOAD_CMP) {
  329. ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  330. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  331. dev_info(dev, "%s: ECC error = 0x%04x\n", __func__,
  332. ecc);
  333. mtd->ecc_stats.failed++;
  334. return -EBADMSG;
  335. }
  336. }
  337. if (stat & (LOCKED_BLK | ERS_FAIL | PGM_FAIL | LD_FAIL_ECC_ERR)) {
  338. dev_info(dev, "%s: controller error = 0x%04x\n", __func__,
  339. stat);
  340. if (stat & LOCKED_BLK)
  341. dev_info(dev, "%s: it's locked error = 0x%04x\n",
  342. __func__, stat);
  343. return -EIO;
  344. }
  345. return 0;
  346. }
  347. static int s3c_onenand_command(struct mtd_info *mtd, int cmd, loff_t addr,
  348. size_t len)
  349. {
  350. struct onenand_chip *this = mtd->priv;
  351. unsigned int *m, *s;
  352. int fba, fpa, fsa = 0;
  353. unsigned int mem_addr, cmd_map_01, cmd_map_10;
  354. int i, mcount, scount;
  355. int index;
  356. fba = (int) (addr >> this->erase_shift);
  357. fpa = (int) (addr >> this->page_shift);
  358. fpa &= this->page_mask;
  359. mem_addr = onenand->mem_addr(fba, fpa, fsa);
  360. cmd_map_01 = CMD_MAP_01(onenand, mem_addr);
  361. cmd_map_10 = CMD_MAP_10(onenand, mem_addr);
  362. switch (cmd) {
  363. case ONENAND_CMD_READ:
  364. case ONENAND_CMD_READOOB:
  365. case ONENAND_CMD_BUFFERRAM:
  366. ONENAND_SET_NEXT_BUFFERRAM(this);
  367. default:
  368. break;
  369. }
  370. index = ONENAND_CURRENT_BUFFERRAM(this);
  371. /*
  372. * Emulate Two BufferRAMs and access with 4 bytes pointer
  373. */
  374. m = (unsigned int *) onenand->page_buf;
  375. s = (unsigned int *) onenand->oob_buf;
  376. if (index) {
  377. m += (this->writesize >> 2);
  378. s += (mtd->oobsize >> 2);
  379. }
  380. mcount = mtd->writesize >> 2;
  381. scount = mtd->oobsize >> 2;
  382. switch (cmd) {
  383. case ONENAND_CMD_READ:
  384. /* Main */
  385. for (i = 0; i < mcount; i++)
  386. *m++ = s3c_read_cmd(cmd_map_01);
  387. return 0;
  388. case ONENAND_CMD_READOOB:
  389. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  390. /* Main */
  391. for (i = 0; i < mcount; i++)
  392. *m++ = s3c_read_cmd(cmd_map_01);
  393. /* Spare */
  394. for (i = 0; i < scount; i++)
  395. *s++ = s3c_read_cmd(cmd_map_01);
  396. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  397. return 0;
  398. case ONENAND_CMD_PROG:
  399. /* Main */
  400. for (i = 0; i < mcount; i++)
  401. s3c_write_cmd(*m++, cmd_map_01);
  402. return 0;
  403. case ONENAND_CMD_PROGOOB:
  404. s3c_write_reg(TSRF, TRANS_SPARE_OFFSET);
  405. /* Main - dummy write */
  406. for (i = 0; i < mcount; i++)
  407. s3c_write_cmd(0xffffffff, cmd_map_01);
  408. /* Spare */
  409. for (i = 0; i < scount; i++)
  410. s3c_write_cmd(*s++, cmd_map_01);
  411. s3c_write_reg(0, TRANS_SPARE_OFFSET);
  412. return 0;
  413. case ONENAND_CMD_UNLOCK_ALL:
  414. s3c_write_cmd(ONENAND_UNLOCK_ALL, cmd_map_10);
  415. return 0;
  416. case ONENAND_CMD_ERASE:
  417. s3c_write_cmd(ONENAND_ERASE_START, cmd_map_10);
  418. return 0;
  419. default:
  420. break;
  421. }
  422. return 0;
  423. }
  424. static unsigned char *s3c_get_bufferram(struct mtd_info *mtd, int area)
  425. {
  426. struct onenand_chip *this = mtd->priv;
  427. int index = ONENAND_CURRENT_BUFFERRAM(this);
  428. unsigned char *p;
  429. if (area == ONENAND_DATARAM) {
  430. p = (unsigned char *) onenand->page_buf;
  431. if (index == 1)
  432. p += this->writesize;
  433. } else {
  434. p = (unsigned char *) onenand->oob_buf;
  435. if (index == 1)
  436. p += mtd->oobsize;
  437. }
  438. return p;
  439. }
  440. static int onenand_read_bufferram(struct mtd_info *mtd, int area,
  441. unsigned char *buffer, int offset,
  442. size_t count)
  443. {
  444. unsigned char *p;
  445. p = s3c_get_bufferram(mtd, area);
  446. memcpy(buffer, p + offset, count);
  447. return 0;
  448. }
  449. static int onenand_write_bufferram(struct mtd_info *mtd, int area,
  450. const unsigned char *buffer, int offset,
  451. size_t count)
  452. {
  453. unsigned char *p;
  454. p = s3c_get_bufferram(mtd, area);
  455. memcpy(p + offset, buffer, count);
  456. return 0;
  457. }
  458. static int (*s5pc110_dma_ops)(void *dst, void *src, size_t count, int direction);
  459. static int s5pc110_dma_poll(void *dst, void *src, size_t count, int direction)
  460. {
  461. void __iomem *base = onenand->dma_addr;
  462. int status;
  463. unsigned long timeout;
  464. writel(src, base + S5PC110_DMA_SRC_ADDR);
  465. writel(dst, base + S5PC110_DMA_DST_ADDR);
  466. if (direction == S5PC110_DMA_DIR_READ) {
  467. writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
  468. writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
  469. } else {
  470. writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
  471. writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
  472. }
  473. writel(count, base + S5PC110_DMA_TRANS_SIZE);
  474. writel(direction, base + S5PC110_DMA_TRANS_DIR);
  475. writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
  476. /*
  477. * There's no exact timeout values at Spec.
  478. * In real case it takes under 1 msec.
  479. * So 20 msecs are enough.
  480. */
  481. timeout = jiffies + msecs_to_jiffies(20);
  482. do {
  483. status = readl(base + S5PC110_DMA_TRANS_STATUS);
  484. if (status & S5PC110_DMA_TRANS_STATUS_TE) {
  485. writel(S5PC110_DMA_TRANS_CMD_TEC,
  486. base + S5PC110_DMA_TRANS_CMD);
  487. return -EIO;
  488. }
  489. } while (!(status & S5PC110_DMA_TRANS_STATUS_TD) &&
  490. time_before(jiffies, timeout));
  491. writel(S5PC110_DMA_TRANS_CMD_TDC, base + S5PC110_DMA_TRANS_CMD);
  492. return 0;
  493. }
  494. static irqreturn_t s5pc110_onenand_irq(int irq, void *data)
  495. {
  496. void __iomem *base = onenand->dma_addr;
  497. int status, cmd = 0;
  498. status = readl(base + S5PC110_INTC_DMA_STATUS);
  499. if (likely(status & S5PC110_INTC_DMA_TD))
  500. cmd = S5PC110_DMA_TRANS_CMD_TDC;
  501. if (unlikely(status & S5PC110_INTC_DMA_TE))
  502. cmd = S5PC110_DMA_TRANS_CMD_TEC;
  503. writel(cmd, base + S5PC110_DMA_TRANS_CMD);
  504. writel(status, base + S5PC110_INTC_DMA_CLR);
  505. if (!onenand->complete.done)
  506. complete(&onenand->complete);
  507. return IRQ_HANDLED;
  508. }
  509. static int s5pc110_dma_irq(void *dst, void *src, size_t count, int direction)
  510. {
  511. void __iomem *base = onenand->dma_addr;
  512. int status;
  513. status = readl(base + S5PC110_INTC_DMA_MASK);
  514. if (status) {
  515. status &= ~(S5PC110_INTC_DMA_TD | S5PC110_INTC_DMA_TE);
  516. writel(status, base + S5PC110_INTC_DMA_MASK);
  517. }
  518. writel(src, base + S5PC110_DMA_SRC_ADDR);
  519. writel(dst, base + S5PC110_DMA_DST_ADDR);
  520. if (direction == S5PC110_DMA_DIR_READ) {
  521. writel(S5PC110_DMA_SRC_CFG_READ, base + S5PC110_DMA_SRC_CFG);
  522. writel(S5PC110_DMA_DST_CFG_READ, base + S5PC110_DMA_DST_CFG);
  523. } else {
  524. writel(S5PC110_DMA_SRC_CFG_WRITE, base + S5PC110_DMA_SRC_CFG);
  525. writel(S5PC110_DMA_DST_CFG_WRITE, base + S5PC110_DMA_DST_CFG);
  526. }
  527. writel(count, base + S5PC110_DMA_TRANS_SIZE);
  528. writel(direction, base + S5PC110_DMA_TRANS_DIR);
  529. writel(S5PC110_DMA_TRANS_CMD_TR, base + S5PC110_DMA_TRANS_CMD);
  530. wait_for_completion_timeout(&onenand->complete, msecs_to_jiffies(20));
  531. return 0;
  532. }
  533. static int s5pc110_read_bufferram(struct mtd_info *mtd, int area,
  534. unsigned char *buffer, int offset, size_t count)
  535. {
  536. struct onenand_chip *this = mtd->priv;
  537. void __iomem *p;
  538. void *buf = (void *) buffer;
  539. dma_addr_t dma_src, dma_dst;
  540. int err, page_dma = 0;
  541. struct device *dev = &onenand->pdev->dev;
  542. p = this->base + area;
  543. if (ONENAND_CURRENT_BUFFERRAM(this)) {
  544. if (area == ONENAND_DATARAM)
  545. p += this->writesize;
  546. else
  547. p += mtd->oobsize;
  548. }
  549. if (offset & 3 || (size_t) buf & 3 ||
  550. !onenand->dma_addr || count != mtd->writesize)
  551. goto normal;
  552. /* Handle vmalloc address */
  553. if (buf >= high_memory) {
  554. struct page *page;
  555. if (((size_t) buf & PAGE_MASK) !=
  556. ((size_t) (buf + count - 1) & PAGE_MASK))
  557. goto normal;
  558. page = vmalloc_to_page(buf);
  559. if (!page)
  560. goto normal;
  561. page_dma = 1;
  562. /* DMA routine */
  563. dma_src = onenand->phys_base + (p - this->base);
  564. dma_dst = dma_map_page(dev, page, 0, count, DMA_FROM_DEVICE);
  565. } else {
  566. /* DMA routine */
  567. dma_src = onenand->phys_base + (p - this->base);
  568. dma_dst = dma_map_single(dev, buf, count, DMA_FROM_DEVICE);
  569. }
  570. if (dma_mapping_error(dev, dma_dst)) {
  571. dev_err(dev, "Couldn't map a %d byte buffer for DMA\n", count);
  572. goto normal;
  573. }
  574. err = s5pc110_dma_ops((void *) dma_dst, (void *) dma_src,
  575. count, S5PC110_DMA_DIR_READ);
  576. if (page_dma)
  577. dma_unmap_page(dev, dma_dst, count, DMA_FROM_DEVICE);
  578. else
  579. dma_unmap_single(dev, dma_dst, count, DMA_FROM_DEVICE);
  580. if (!err)
  581. return 0;
  582. normal:
  583. if (count != mtd->writesize) {
  584. /* Copy the bufferram to memory to prevent unaligned access */
  585. memcpy(this->page_buf, p, mtd->writesize);
  586. p = this->page_buf + offset;
  587. }
  588. memcpy(buffer, p, count);
  589. return 0;
  590. }
  591. static int s5pc110_chip_probe(struct mtd_info *mtd)
  592. {
  593. /* Now just return 0 */
  594. return 0;
  595. }
  596. static int s3c_onenand_bbt_wait(struct mtd_info *mtd, int state)
  597. {
  598. unsigned int flags = INT_ACT | LOAD_CMP;
  599. unsigned int stat;
  600. unsigned long timeout;
  601. /* The 20 msec is enough */
  602. timeout = jiffies + msecs_to_jiffies(20);
  603. while (time_before(jiffies, timeout)) {
  604. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  605. if (stat & flags)
  606. break;
  607. }
  608. /* To get correct interrupt status in timeout case */
  609. stat = s3c_read_reg(INT_ERR_STAT_OFFSET);
  610. s3c_write_reg(stat, INT_ERR_ACK_OFFSET);
  611. if (stat & LD_FAIL_ECC_ERR) {
  612. s3c_onenand_reset();
  613. return ONENAND_BBT_READ_ERROR;
  614. }
  615. if (stat & LOAD_CMP) {
  616. int ecc = s3c_read_reg(ECC_ERR_STAT_OFFSET);
  617. if (ecc & ONENAND_ECC_4BIT_UNCORRECTABLE) {
  618. s3c_onenand_reset();
  619. return ONENAND_BBT_READ_ERROR;
  620. }
  621. }
  622. return 0;
  623. }
  624. static void s3c_onenand_check_lock_status(struct mtd_info *mtd)
  625. {
  626. struct onenand_chip *this = mtd->priv;
  627. struct device *dev = &onenand->pdev->dev;
  628. unsigned int block, end;
  629. int tmp;
  630. end = this->chipsize >> this->erase_shift;
  631. for (block = 0; block < end; block++) {
  632. unsigned int mem_addr = onenand->mem_addr(block, 0, 0);
  633. tmp = s3c_read_cmd(CMD_MAP_01(onenand, mem_addr));
  634. if (s3c_read_reg(INT_ERR_STAT_OFFSET) & LOCKED_BLK) {
  635. dev_err(dev, "block %d is write-protected!\n", block);
  636. s3c_write_reg(LOCKED_BLK, INT_ERR_ACK_OFFSET);
  637. }
  638. }
  639. }
  640. static void s3c_onenand_do_lock_cmd(struct mtd_info *mtd, loff_t ofs,
  641. size_t len, int cmd)
  642. {
  643. struct onenand_chip *this = mtd->priv;
  644. int start, end, start_mem_addr, end_mem_addr;
  645. start = ofs >> this->erase_shift;
  646. start_mem_addr = onenand->mem_addr(start, 0, 0);
  647. end = start + (len >> this->erase_shift) - 1;
  648. end_mem_addr = onenand->mem_addr(end, 0, 0);
  649. if (cmd == ONENAND_CMD_LOCK) {
  650. s3c_write_cmd(ONENAND_LOCK_START, CMD_MAP_10(onenand,
  651. start_mem_addr));
  652. s3c_write_cmd(ONENAND_LOCK_END, CMD_MAP_10(onenand,
  653. end_mem_addr));
  654. } else {
  655. s3c_write_cmd(ONENAND_UNLOCK_START, CMD_MAP_10(onenand,
  656. start_mem_addr));
  657. s3c_write_cmd(ONENAND_UNLOCK_END, CMD_MAP_10(onenand,
  658. end_mem_addr));
  659. }
  660. this->wait(mtd, FL_LOCKING);
  661. }
  662. static void s3c_unlock_all(struct mtd_info *mtd)
  663. {
  664. struct onenand_chip *this = mtd->priv;
  665. loff_t ofs = 0;
  666. size_t len = this->chipsize;
  667. if (this->options & ONENAND_HAS_UNLOCK_ALL) {
  668. /* Write unlock command */
  669. this->command(mtd, ONENAND_CMD_UNLOCK_ALL, 0, 0);
  670. /* No need to check return value */
  671. this->wait(mtd, FL_LOCKING);
  672. /* Workaround for all block unlock in DDP */
  673. if (!ONENAND_IS_DDP(this)) {
  674. s3c_onenand_check_lock_status(mtd);
  675. return;
  676. }
  677. /* All blocks on another chip */
  678. ofs = this->chipsize >> 1;
  679. len = this->chipsize >> 1;
  680. }
  681. s3c_onenand_do_lock_cmd(mtd, ofs, len, ONENAND_CMD_UNLOCK);
  682. s3c_onenand_check_lock_status(mtd);
  683. }
  684. static void s3c_onenand_setup(struct mtd_info *mtd)
  685. {
  686. struct onenand_chip *this = mtd->priv;
  687. onenand->mtd = mtd;
  688. if (onenand->type == TYPE_S3C6400) {
  689. onenand->mem_addr = s3c6400_mem_addr;
  690. onenand->cmd_map = s3c64xx_cmd_map;
  691. } else if (onenand->type == TYPE_S3C6410) {
  692. onenand->mem_addr = s3c6410_mem_addr;
  693. onenand->cmd_map = s3c64xx_cmd_map;
  694. } else if (onenand->type == TYPE_S5PC100) {
  695. onenand->mem_addr = s5pc100_mem_addr;
  696. onenand->cmd_map = s5pc1xx_cmd_map;
  697. } else if (onenand->type == TYPE_S5PC110) {
  698. /* Use generic onenand functions */
  699. this->read_bufferram = s5pc110_read_bufferram;
  700. this->chip_probe = s5pc110_chip_probe;
  701. return;
  702. } else {
  703. BUG();
  704. }
  705. this->read_word = s3c_onenand_readw;
  706. this->write_word = s3c_onenand_writew;
  707. this->wait = s3c_onenand_wait;
  708. this->bbt_wait = s3c_onenand_bbt_wait;
  709. this->unlock_all = s3c_unlock_all;
  710. this->command = s3c_onenand_command;
  711. this->read_bufferram = onenand_read_bufferram;
  712. this->write_bufferram = onenand_write_bufferram;
  713. }
  714. static int s3c_onenand_probe(struct platform_device *pdev)
  715. {
  716. struct onenand_platform_data *pdata;
  717. struct onenand_chip *this;
  718. struct mtd_info *mtd;
  719. struct resource *r;
  720. int size, err;
  721. pdata = pdev->dev.platform_data;
  722. /* No need to check pdata. the platform data is optional */
  723. size = sizeof(struct mtd_info) + sizeof(struct onenand_chip);
  724. mtd = kzalloc(size, GFP_KERNEL);
  725. if (!mtd) {
  726. dev_err(&pdev->dev, "failed to allocate memory\n");
  727. return -ENOMEM;
  728. }
  729. onenand = kzalloc(sizeof(struct s3c_onenand), GFP_KERNEL);
  730. if (!onenand) {
  731. err = -ENOMEM;
  732. goto onenand_fail;
  733. }
  734. this = (struct onenand_chip *) &mtd[1];
  735. mtd->priv = this;
  736. mtd->dev.parent = &pdev->dev;
  737. mtd->owner = THIS_MODULE;
  738. onenand->pdev = pdev;
  739. onenand->type = platform_get_device_id(pdev)->driver_data;
  740. s3c_onenand_setup(mtd);
  741. r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
  742. if (!r) {
  743. dev_err(&pdev->dev, "no memory resource defined\n");
  744. return -ENOENT;
  745. goto ahb_resource_failed;
  746. }
  747. onenand->base_res = request_mem_region(r->start, resource_size(r),
  748. pdev->name);
  749. if (!onenand->base_res) {
  750. dev_err(&pdev->dev, "failed to request memory resource\n");
  751. err = -EBUSY;
  752. goto resource_failed;
  753. }
  754. onenand->base = ioremap(r->start, resource_size(r));
  755. if (!onenand->base) {
  756. dev_err(&pdev->dev, "failed to map memory resource\n");
  757. err = -EFAULT;
  758. goto ioremap_failed;
  759. }
  760. /* Set onenand_chip also */
  761. this->base = onenand->base;
  762. /* Use runtime badblock check */
  763. this->options |= ONENAND_SKIP_UNLOCK_CHECK;
  764. if (onenand->type != TYPE_S5PC110) {
  765. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  766. if (!r) {
  767. dev_err(&pdev->dev, "no buffer memory resource defined\n");
  768. return -ENOENT;
  769. goto ahb_resource_failed;
  770. }
  771. onenand->ahb_res = request_mem_region(r->start, resource_size(r),
  772. pdev->name);
  773. if (!onenand->ahb_res) {
  774. dev_err(&pdev->dev, "failed to request buffer memory resource\n");
  775. err = -EBUSY;
  776. goto ahb_resource_failed;
  777. }
  778. onenand->ahb_addr = ioremap(r->start, resource_size(r));
  779. if (!onenand->ahb_addr) {
  780. dev_err(&pdev->dev, "failed to map buffer memory resource\n");
  781. err = -EINVAL;
  782. goto ahb_ioremap_failed;
  783. }
  784. /* Allocate 4KiB BufferRAM */
  785. onenand->page_buf = kzalloc(SZ_4K, GFP_KERNEL);
  786. if (!onenand->page_buf) {
  787. err = -ENOMEM;
  788. goto page_buf_fail;
  789. }
  790. /* Allocate 128 SpareRAM */
  791. onenand->oob_buf = kzalloc(128, GFP_KERNEL);
  792. if (!onenand->oob_buf) {
  793. err = -ENOMEM;
  794. goto oob_buf_fail;
  795. }
  796. /* S3C doesn't handle subpage write */
  797. mtd->subpage_sft = 0;
  798. this->subpagesize = mtd->writesize;
  799. } else { /* S5PC110 */
  800. r = platform_get_resource(pdev, IORESOURCE_MEM, 1);
  801. if (!r) {
  802. dev_err(&pdev->dev, "no dma memory resource defined\n");
  803. return -ENOENT;
  804. goto dma_resource_failed;
  805. }
  806. onenand->dma_res = request_mem_region(r->start, resource_size(r),
  807. pdev->name);
  808. if (!onenand->dma_res) {
  809. dev_err(&pdev->dev, "failed to request dma memory resource\n");
  810. err = -EBUSY;
  811. goto dma_resource_failed;
  812. }
  813. onenand->dma_addr = ioremap(r->start, resource_size(r));
  814. if (!onenand->dma_addr) {
  815. dev_err(&pdev->dev, "failed to map dma memory resource\n");
  816. err = -EINVAL;
  817. goto dma_ioremap_failed;
  818. }
  819. onenand->phys_base = onenand->base_res->start;
  820. s5pc110_dma_ops = s5pc110_dma_poll;
  821. /* Interrupt support */
  822. r = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
  823. if (r) {
  824. init_completion(&onenand->complete);
  825. s5pc110_dma_ops = s5pc110_dma_irq;
  826. err = request_irq(r->start, s5pc110_onenand_irq,
  827. IRQF_SHARED, "onenand", &onenand);
  828. if (err) {
  829. dev_err(&pdev->dev, "failed to get irq\n");
  830. goto scan_failed;
  831. }
  832. }
  833. }
  834. if (onenand_scan(mtd, 1)) {
  835. err = -EFAULT;
  836. goto scan_failed;
  837. }
  838. if (onenand->type != TYPE_S5PC110) {
  839. /* S3C doesn't handle subpage write */
  840. mtd->subpage_sft = 0;
  841. this->subpagesize = mtd->writesize;
  842. }
  843. if (s3c_read_reg(MEM_CFG_OFFSET) & ONENAND_SYS_CFG1_SYNC_READ)
  844. dev_info(&onenand->pdev->dev, "OneNAND Sync. Burst Read enabled\n");
  845. #ifdef CONFIG_MTD_PARTITIONS
  846. err = parse_mtd_partitions(mtd, part_probes, &onenand->parts, 0);
  847. if (err > 0)
  848. add_mtd_partitions(mtd, onenand->parts, err);
  849. else if (err <= 0 && pdata && pdata->parts)
  850. add_mtd_partitions(mtd, pdata->parts, pdata->nr_parts);
  851. else
  852. #endif
  853. err = add_mtd_device(mtd);
  854. platform_set_drvdata(pdev, mtd);
  855. return 0;
  856. scan_failed:
  857. if (onenand->dma_addr)
  858. iounmap(onenand->dma_addr);
  859. dma_ioremap_failed:
  860. if (onenand->dma_res)
  861. release_mem_region(onenand->dma_res->start,
  862. resource_size(onenand->dma_res));
  863. kfree(onenand->oob_buf);
  864. oob_buf_fail:
  865. kfree(onenand->page_buf);
  866. page_buf_fail:
  867. if (onenand->ahb_addr)
  868. iounmap(onenand->ahb_addr);
  869. ahb_ioremap_failed:
  870. if (onenand->ahb_res)
  871. release_mem_region(onenand->ahb_res->start,
  872. resource_size(onenand->ahb_res));
  873. dma_resource_failed:
  874. ahb_resource_failed:
  875. iounmap(onenand->base);
  876. ioremap_failed:
  877. if (onenand->base_res)
  878. release_mem_region(onenand->base_res->start,
  879. resource_size(onenand->base_res));
  880. resource_failed:
  881. kfree(onenand);
  882. onenand_fail:
  883. kfree(mtd);
  884. return err;
  885. }
  886. static int __devexit s3c_onenand_remove(struct platform_device *pdev)
  887. {
  888. struct mtd_info *mtd = platform_get_drvdata(pdev);
  889. onenand_release(mtd);
  890. if (onenand->ahb_addr)
  891. iounmap(onenand->ahb_addr);
  892. if (onenand->ahb_res)
  893. release_mem_region(onenand->ahb_res->start,
  894. resource_size(onenand->ahb_res));
  895. if (onenand->dma_addr)
  896. iounmap(onenand->dma_addr);
  897. if (onenand->dma_res)
  898. release_mem_region(onenand->dma_res->start,
  899. resource_size(onenand->dma_res));
  900. iounmap(onenand->base);
  901. release_mem_region(onenand->base_res->start,
  902. resource_size(onenand->base_res));
  903. platform_set_drvdata(pdev, NULL);
  904. kfree(onenand->oob_buf);
  905. kfree(onenand->page_buf);
  906. kfree(onenand);
  907. kfree(mtd);
  908. return 0;
  909. }
  910. static int s3c_pm_ops_suspend(struct device *dev)
  911. {
  912. struct platform_device *pdev = to_platform_device(dev);
  913. struct mtd_info *mtd = platform_get_drvdata(pdev);
  914. struct onenand_chip *this = mtd->priv;
  915. this->wait(mtd, FL_PM_SUSPENDED);
  916. return 0;
  917. }
  918. static int s3c_pm_ops_resume(struct device *dev)
  919. {
  920. struct platform_device *pdev = to_platform_device(dev);
  921. struct mtd_info *mtd = platform_get_drvdata(pdev);
  922. struct onenand_chip *this = mtd->priv;
  923. this->unlock_all(mtd);
  924. return 0;
  925. }
  926. static const struct dev_pm_ops s3c_pm_ops = {
  927. .suspend = s3c_pm_ops_suspend,
  928. .resume = s3c_pm_ops_resume,
  929. };
  930. static struct platform_device_id s3c_onenand_driver_ids[] = {
  931. {
  932. .name = "s3c6400-onenand",
  933. .driver_data = TYPE_S3C6400,
  934. }, {
  935. .name = "s3c6410-onenand",
  936. .driver_data = TYPE_S3C6410,
  937. }, {
  938. .name = "s5pc100-onenand",
  939. .driver_data = TYPE_S5PC100,
  940. }, {
  941. .name = "s5pc110-onenand",
  942. .driver_data = TYPE_S5PC110,
  943. }, { },
  944. };
  945. MODULE_DEVICE_TABLE(platform, s3c_onenand_driver_ids);
  946. static struct platform_driver s3c_onenand_driver = {
  947. .driver = {
  948. .name = "samsung-onenand",
  949. .pm = &s3c_pm_ops,
  950. },
  951. .id_table = s3c_onenand_driver_ids,
  952. .probe = s3c_onenand_probe,
  953. .remove = __devexit_p(s3c_onenand_remove),
  954. };
  955. static int __init s3c_onenand_init(void)
  956. {
  957. return platform_driver_register(&s3c_onenand_driver);
  958. }
  959. static void __exit s3c_onenand_exit(void)
  960. {
  961. platform_driver_unregister(&s3c_onenand_driver);
  962. }
  963. module_init(s3c_onenand_init);
  964. module_exit(s3c_onenand_exit);
  965. MODULE_LICENSE("GPL");
  966. MODULE_AUTHOR("Kyungmin Park <kyungmin.park@samsung.com>");
  967. MODULE_DESCRIPTION("Samsung OneNAND controller support");