jz4740_nand.c 13 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516
  1. /*
  2. * Copyright (C) 2009-2010, Lars-Peter Clausen <lars@metafoo.de>
  3. * JZ4740 SoC NAND controller driver
  4. *
  5. * This program is free software; you can redistribute it and/or modify it
  6. * under the terms of the GNU General Public License as published by the
  7. * Free Software Foundation; either version 2 of the License, or (at your
  8. * option) any later version.
  9. *
  10. * You should have received a copy of the GNU General Public License along
  11. * with this program; if not, write to the Free Software Foundation, Inc.,
  12. * 675 Mass Ave, Cambridge, MA 02139, USA.
  13. *
  14. */
  15. #include <linux/ioport.h>
  16. #include <linux/kernel.h>
  17. #include <linux/module.h>
  18. #include <linux/platform_device.h>
  19. #include <linux/slab.h>
  20. #include <linux/mtd/mtd.h>
  21. #include <linux/mtd/nand.h>
  22. #include <linux/mtd/partitions.h>
  23. #include <linux/gpio.h>
  24. #include <asm/mach-jz4740/jz4740_nand.h>
  25. #define JZ_REG_NAND_CTRL 0x50
  26. #define JZ_REG_NAND_ECC_CTRL 0x100
  27. #define JZ_REG_NAND_DATA 0x104
  28. #define JZ_REG_NAND_PAR0 0x108
  29. #define JZ_REG_NAND_PAR1 0x10C
  30. #define JZ_REG_NAND_PAR2 0x110
  31. #define JZ_REG_NAND_IRQ_STAT 0x114
  32. #define JZ_REG_NAND_IRQ_CTRL 0x118
  33. #define JZ_REG_NAND_ERR(x) (0x11C + ((x) << 2))
  34. #define JZ_NAND_ECC_CTRL_PAR_READY BIT(4)
  35. #define JZ_NAND_ECC_CTRL_ENCODING BIT(3)
  36. #define JZ_NAND_ECC_CTRL_RS BIT(2)
  37. #define JZ_NAND_ECC_CTRL_RESET BIT(1)
  38. #define JZ_NAND_ECC_CTRL_ENABLE BIT(0)
  39. #define JZ_NAND_STATUS_ERR_COUNT (BIT(31) | BIT(30) | BIT(29))
  40. #define JZ_NAND_STATUS_PAD_FINISH BIT(4)
  41. #define JZ_NAND_STATUS_DEC_FINISH BIT(3)
  42. #define JZ_NAND_STATUS_ENC_FINISH BIT(2)
  43. #define JZ_NAND_STATUS_UNCOR_ERROR BIT(1)
  44. #define JZ_NAND_STATUS_ERROR BIT(0)
  45. #define JZ_NAND_CTRL_ENABLE_CHIP(x) BIT((x) << 1)
  46. #define JZ_NAND_CTRL_ASSERT_CHIP(x) BIT(((x) << 1) + 1)
  47. #define JZ_NAND_MEM_ADDR_OFFSET 0x10000
  48. #define JZ_NAND_MEM_CMD_OFFSET 0x08000
  49. struct jz_nand {
  50. struct mtd_info mtd;
  51. struct nand_chip chip;
  52. void __iomem *base;
  53. struct resource *mem;
  54. void __iomem *bank_base;
  55. struct resource *bank_mem;
  56. struct jz_nand_platform_data *pdata;
  57. bool is_reading;
  58. };
  59. static inline struct jz_nand *mtd_to_jz_nand(struct mtd_info *mtd)
  60. {
  61. return container_of(mtd, struct jz_nand, mtd);
  62. }
  63. static void jz_nand_cmd_ctrl(struct mtd_info *mtd, int dat, unsigned int ctrl)
  64. {
  65. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  66. struct nand_chip *chip = mtd->priv;
  67. uint32_t reg;
  68. if (ctrl & NAND_CTRL_CHANGE) {
  69. BUG_ON((ctrl & NAND_ALE) && (ctrl & NAND_CLE));
  70. if (ctrl & NAND_ALE)
  71. chip->IO_ADDR_W = nand->bank_base + JZ_NAND_MEM_ADDR_OFFSET;
  72. else if (ctrl & NAND_CLE)
  73. chip->IO_ADDR_W = nand->bank_base + JZ_NAND_MEM_CMD_OFFSET;
  74. else
  75. chip->IO_ADDR_W = nand->bank_base;
  76. reg = readl(nand->base + JZ_REG_NAND_CTRL);
  77. if (ctrl & NAND_NCE)
  78. reg |= JZ_NAND_CTRL_ASSERT_CHIP(0);
  79. else
  80. reg &= ~JZ_NAND_CTRL_ASSERT_CHIP(0);
  81. writel(reg, nand->base + JZ_REG_NAND_CTRL);
  82. }
  83. if (dat != NAND_CMD_NONE)
  84. writeb(dat, chip->IO_ADDR_W);
  85. }
  86. static int jz_nand_dev_ready(struct mtd_info *mtd)
  87. {
  88. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  89. return gpio_get_value_cansleep(nand->pdata->busy_gpio);
  90. }
  91. static void jz_nand_hwctl(struct mtd_info *mtd, int mode)
  92. {
  93. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  94. uint32_t reg;
  95. writel(0, nand->base + JZ_REG_NAND_IRQ_STAT);
  96. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  97. reg |= JZ_NAND_ECC_CTRL_RESET;
  98. reg |= JZ_NAND_ECC_CTRL_ENABLE;
  99. reg |= JZ_NAND_ECC_CTRL_RS;
  100. switch (mode) {
  101. case NAND_ECC_READ:
  102. reg &= ~JZ_NAND_ECC_CTRL_ENCODING;
  103. nand->is_reading = true;
  104. break;
  105. case NAND_ECC_WRITE:
  106. reg |= JZ_NAND_ECC_CTRL_ENCODING;
  107. nand->is_reading = false;
  108. break;
  109. default:
  110. break;
  111. }
  112. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  113. }
  114. static int jz_nand_calculate_ecc_rs(struct mtd_info *mtd, const uint8_t *dat,
  115. uint8_t *ecc_code)
  116. {
  117. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  118. uint32_t reg, status;
  119. int i;
  120. unsigned int timeout = 1000;
  121. static uint8_t empty_block_ecc[] = {0xcd, 0x9d, 0x90, 0x58, 0xf4,
  122. 0x8b, 0xff, 0xb7, 0x6f};
  123. if (nand->is_reading)
  124. return 0;
  125. do {
  126. status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
  127. } while (!(status & JZ_NAND_STATUS_ENC_FINISH) && --timeout);
  128. if (timeout == 0)
  129. return -1;
  130. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  131. reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
  132. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  133. for (i = 0; i < 9; ++i)
  134. ecc_code[i] = readb(nand->base + JZ_REG_NAND_PAR0 + i);
  135. /* If the written data is completly 0xff, we also want to write 0xff as
  136. * ecc, otherwise we will get in trouble when doing subpage writes. */
  137. if (memcmp(ecc_code, empty_block_ecc, 9) == 0)
  138. memset(ecc_code, 0xff, 9);
  139. return 0;
  140. }
  141. static void jz_nand_correct_data(uint8_t *dat, int index, int mask)
  142. {
  143. int offset = index & 0x7;
  144. uint16_t data;
  145. index += (index >> 3);
  146. data = dat[index];
  147. data |= dat[index+1] << 8;
  148. mask ^= (data >> offset) & 0x1ff;
  149. data &= ~(0x1ff << offset);
  150. data |= (mask << offset);
  151. dat[index] = data & 0xff;
  152. dat[index+1] = (data >> 8) & 0xff;
  153. }
  154. static int jz_nand_correct_ecc_rs(struct mtd_info *mtd, uint8_t *dat,
  155. uint8_t *read_ecc, uint8_t *calc_ecc)
  156. {
  157. struct jz_nand *nand = mtd_to_jz_nand(mtd);
  158. int i, error_count, index;
  159. uint32_t reg, status, error;
  160. uint32_t t;
  161. unsigned int timeout = 1000;
  162. t = read_ecc[0];
  163. if (t == 0xff) {
  164. for (i = 1; i < 9; ++i)
  165. t &= read_ecc[i];
  166. t &= dat[0];
  167. t &= dat[nand->chip.ecc.size / 2];
  168. t &= dat[nand->chip.ecc.size - 1];
  169. if (t == 0xff) {
  170. for (i = 1; i < nand->chip.ecc.size - 1; ++i)
  171. t &= dat[i];
  172. if (t == 0xff)
  173. return 0;
  174. }
  175. }
  176. for (i = 0; i < 9; ++i)
  177. writeb(read_ecc[i], nand->base + JZ_REG_NAND_PAR0 + i);
  178. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  179. reg |= JZ_NAND_ECC_CTRL_PAR_READY;
  180. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  181. do {
  182. status = readl(nand->base + JZ_REG_NAND_IRQ_STAT);
  183. } while (!(status & JZ_NAND_STATUS_DEC_FINISH) && --timeout);
  184. if (timeout == 0)
  185. return -1;
  186. reg = readl(nand->base + JZ_REG_NAND_ECC_CTRL);
  187. reg &= ~JZ_NAND_ECC_CTRL_ENABLE;
  188. writel(reg, nand->base + JZ_REG_NAND_ECC_CTRL);
  189. if (status & JZ_NAND_STATUS_ERROR) {
  190. if (status & JZ_NAND_STATUS_UNCOR_ERROR)
  191. return -1;
  192. error_count = (status & JZ_NAND_STATUS_ERR_COUNT) >> 29;
  193. for (i = 0; i < error_count; ++i) {
  194. error = readl(nand->base + JZ_REG_NAND_ERR(i));
  195. index = ((error >> 16) & 0x1ff) - 1;
  196. if (index >= 0 && index < 512)
  197. jz_nand_correct_data(dat, index, error & 0x1ff);
  198. }
  199. return error_count;
  200. }
  201. return 0;
  202. }
  203. /* Copy paste of nand_read_page_hwecc_oob_first except for different eccpos
  204. * handling. The ecc area is for 4k chips 72 bytes long and thus does not fit
  205. * into the eccpos array. */
  206. static int jz_nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
  207. struct nand_chip *chip, uint8_t *buf, int page)
  208. {
  209. int i, eccsize = chip->ecc.size;
  210. int eccbytes = chip->ecc.bytes;
  211. int eccsteps = chip->ecc.steps;
  212. uint8_t *p = buf;
  213. unsigned int ecc_offset = chip->page_shift;
  214. /* Read the OOB area first */
  215. chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
  216. chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
  217. chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
  218. for (i = ecc_offset; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
  219. int stat;
  220. chip->ecc.hwctl(mtd, NAND_ECC_READ);
  221. chip->read_buf(mtd, p, eccsize);
  222. stat = chip->ecc.correct(mtd, p, &chip->oob_poi[i], NULL);
  223. if (stat < 0)
  224. mtd->ecc_stats.failed++;
  225. else
  226. mtd->ecc_stats.corrected += stat;
  227. }
  228. return 0;
  229. }
  230. /* Copy-and-paste of nand_write_page_hwecc with different eccpos handling. */
  231. static void jz_nand_write_page_hwecc(struct mtd_info *mtd,
  232. struct nand_chip *chip, const uint8_t *buf)
  233. {
  234. int i, eccsize = chip->ecc.size;
  235. int eccbytes = chip->ecc.bytes;
  236. int eccsteps = chip->ecc.steps;
  237. const uint8_t *p = buf;
  238. unsigned int ecc_offset = chip->page_shift;
  239. for (i = ecc_offset; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
  240. chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
  241. chip->write_buf(mtd, p, eccsize);
  242. chip->ecc.calculate(mtd, p, &chip->oob_poi[i]);
  243. }
  244. chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
  245. }
  246. #ifdef CONFIG_MTD_CMDLINE_PARTS
  247. static const char *part_probes[] = {"cmdline", NULL};
  248. #endif
  249. static int jz_nand_ioremap_resource(struct platform_device *pdev,
  250. const char *name, struct resource **res, void __iomem **base)
  251. {
  252. int ret;
  253. *res = platform_get_resource_byname(pdev, IORESOURCE_MEM, name);
  254. if (!*res) {
  255. dev_err(&pdev->dev, "Failed to get platform %s memory\n", name);
  256. ret = -ENXIO;
  257. goto err;
  258. }
  259. *res = request_mem_region((*res)->start, resource_size(*res),
  260. pdev->name);
  261. if (!*res) {
  262. dev_err(&pdev->dev, "Failed to request %s memory region\n", name);
  263. ret = -EBUSY;
  264. goto err;
  265. }
  266. *base = ioremap((*res)->start, resource_size(*res));
  267. if (!*base) {
  268. dev_err(&pdev->dev, "Failed to ioremap %s memory region\n", name);
  269. ret = -EBUSY;
  270. goto err_release_mem;
  271. }
  272. return 0;
  273. err_release_mem:
  274. release_mem_region((*res)->start, resource_size(*res));
  275. err:
  276. *res = NULL;
  277. *base = NULL;
  278. return ret;
  279. }
  280. static int __devinit jz_nand_probe(struct platform_device *pdev)
  281. {
  282. int ret;
  283. struct jz_nand *nand;
  284. struct nand_chip *chip;
  285. struct mtd_info *mtd;
  286. struct jz_nand_platform_data *pdata = pdev->dev.platform_data;
  287. #ifdef CONFIG_MTD_PARTITIONS
  288. struct mtd_partition *partition_info;
  289. int num_partitions = 0;
  290. #endif
  291. nand = kzalloc(sizeof(*nand), GFP_KERNEL);
  292. if (!nand) {
  293. dev_err(&pdev->dev, "Failed to allocate device structure.\n");
  294. return -ENOMEM;
  295. }
  296. ret = jz_nand_ioremap_resource(pdev, "mmio", &nand->mem, &nand->base);
  297. if (ret)
  298. goto err_free;
  299. ret = jz_nand_ioremap_resource(pdev, "bank", &nand->bank_mem,
  300. &nand->bank_base);
  301. if (ret)
  302. goto err_iounmap_mmio;
  303. if (pdata && gpio_is_valid(pdata->busy_gpio)) {
  304. ret = gpio_request(pdata->busy_gpio, "NAND busy pin");
  305. if (ret) {
  306. dev_err(&pdev->dev,
  307. "Failed to request busy gpio %d: %d\n",
  308. pdata->busy_gpio, ret);
  309. goto err_iounmap_mem;
  310. }
  311. }
  312. mtd = &nand->mtd;
  313. chip = &nand->chip;
  314. mtd->priv = chip;
  315. mtd->owner = THIS_MODULE;
  316. mtd->name = "jz4740-nand";
  317. chip->ecc.hwctl = jz_nand_hwctl;
  318. chip->ecc.calculate = jz_nand_calculate_ecc_rs;
  319. chip->ecc.correct = jz_nand_correct_ecc_rs;
  320. chip->ecc.mode = NAND_ECC_HW_OOB_FIRST;
  321. chip->ecc.size = 512;
  322. chip->ecc.bytes = 9;
  323. chip->ecc.read_page = jz_nand_read_page_hwecc_oob_first;
  324. chip->ecc.write_page = jz_nand_write_page_hwecc;
  325. if (pdata)
  326. chip->ecc.layout = pdata->ecc_layout;
  327. chip->chip_delay = 50;
  328. chip->cmd_ctrl = jz_nand_cmd_ctrl;
  329. if (pdata && gpio_is_valid(pdata->busy_gpio))
  330. chip->dev_ready = jz_nand_dev_ready;
  331. chip->IO_ADDR_R = nand->bank_base;
  332. chip->IO_ADDR_W = nand->bank_base;
  333. nand->pdata = pdata;
  334. platform_set_drvdata(pdev, nand);
  335. writel(JZ_NAND_CTRL_ENABLE_CHIP(0), nand->base + JZ_REG_NAND_CTRL);
  336. ret = nand_scan_ident(mtd, 1, NULL);
  337. if (ret) {
  338. dev_err(&pdev->dev, "Failed to scan nand\n");
  339. goto err_gpio_free;
  340. }
  341. if (pdata && pdata->ident_callback) {
  342. pdata->ident_callback(pdev, chip, &pdata->partitions,
  343. &pdata->num_partitions);
  344. }
  345. ret = nand_scan_tail(mtd);
  346. if (ret) {
  347. dev_err(&pdev->dev, "Failed to scan nand\n");
  348. goto err_gpio_free;
  349. }
  350. #ifdef CONFIG_MTD_PARTITIONS
  351. #ifdef CONFIG_MTD_CMDLINE_PARTS
  352. num_partitions = parse_mtd_partitions(mtd, part_probes,
  353. &partition_info, 0);
  354. #endif
  355. if (num_partitions <= 0 && pdata) {
  356. num_partitions = pdata->num_partitions;
  357. partition_info = pdata->partitions;
  358. }
  359. if (num_partitions > 0)
  360. ret = add_mtd_partitions(mtd, partition_info, num_partitions);
  361. else
  362. #endif
  363. ret = add_mtd_device(mtd);
  364. if (ret) {
  365. dev_err(&pdev->dev, "Failed to add mtd device\n");
  366. goto err_nand_release;
  367. }
  368. dev_info(&pdev->dev, "Successfully registered JZ4740 NAND driver\n");
  369. return 0;
  370. err_nand_release:
  371. nand_release(&nand->mtd);
  372. err_gpio_free:
  373. platform_set_drvdata(pdev, NULL);
  374. gpio_free(pdata->busy_gpio);
  375. err_iounmap_mem:
  376. iounmap(nand->bank_base);
  377. err_iounmap_mmio:
  378. iounmap(nand->base);
  379. err_free:
  380. kfree(nand);
  381. return ret;
  382. }
  383. static int __devexit jz_nand_remove(struct platform_device *pdev)
  384. {
  385. struct jz_nand *nand = platform_get_drvdata(pdev);
  386. nand_release(&nand->mtd);
  387. /* Deassert and disable all chips */
  388. writel(0, nand->base + JZ_REG_NAND_CTRL);
  389. iounmap(nand->bank_base);
  390. release_mem_region(nand->bank_mem->start, resource_size(nand->bank_mem));
  391. iounmap(nand->base);
  392. release_mem_region(nand->mem->start, resource_size(nand->mem));
  393. platform_set_drvdata(pdev, NULL);
  394. kfree(nand);
  395. return 0;
  396. }
  397. struct platform_driver jz_nand_driver = {
  398. .probe = jz_nand_probe,
  399. .remove = __devexit_p(jz_nand_remove),
  400. .driver = {
  401. .name = "jz4740-nand",
  402. .owner = THIS_MODULE,
  403. },
  404. };
  405. static int __init jz_nand_init(void)
  406. {
  407. return platform_driver_register(&jz_nand_driver);
  408. }
  409. module_init(jz_nand_init);
  410. static void __exit jz_nand_exit(void)
  411. {
  412. platform_driver_unregister(&jz_nand_driver);
  413. }
  414. module_exit(jz_nand_exit);
  415. MODULE_LICENSE("GPL");
  416. MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>");
  417. MODULE_DESCRIPTION("NAND controller driver for JZ4740 SoC");
  418. MODULE_ALIAS("platform:jz4740-nand");