dib8000.c 73 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340
  1. /*
  2. * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
  3. *
  4. * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
  5. *
  6. * This program is free software; you can redistribute it and/or
  7. * modify it under the terms of the GNU General Public License as
  8. * published by the Free Software Foundation, version 2.
  9. */
  10. #include <linux/kernel.h>
  11. #include <linux/slab.h>
  12. #include <linux/i2c.h>
  13. #include "dvb_math.h"
  14. #include "dvb_frontend.h"
  15. #include "dib8000.h"
  16. #define LAYER_ALL -1
  17. #define LAYER_A 1
  18. #define LAYER_B 2
  19. #define LAYER_C 3
  20. #define FE_CALLBACK_TIME_NEVER 0xffffffff
  21. static int debug;
  22. module_param(debug, int, 0644);
  23. MODULE_PARM_DESC(debug, "turn on debugging (default: 0)");
  24. #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB8000: "); printk(args); printk("\n"); } } while (0)
  25. #define FE_STATUS_TUNE_FAILED 0
  26. struct i2c_device {
  27. struct i2c_adapter *adap;
  28. u8 addr;
  29. };
  30. struct dib8000_state {
  31. struct dvb_frontend fe;
  32. struct dib8000_config cfg;
  33. struct i2c_device i2c;
  34. struct dibx000_i2c_master i2c_master;
  35. u16 wbd_ref;
  36. u8 current_band;
  37. u32 current_bandwidth;
  38. struct dibx000_agc_config *current_agc;
  39. u32 timf;
  40. u32 timf_default;
  41. u8 div_force_off:1;
  42. u8 div_state:1;
  43. u16 div_sync_wait;
  44. u8 agc_state;
  45. u8 differential_constellation;
  46. u8 diversity_onoff;
  47. s16 ber_monitored_layer;
  48. u16 gpio_dir;
  49. u16 gpio_val;
  50. u16 revision;
  51. u8 isdbt_cfg_loaded;
  52. enum frontend_tune_state tune_state;
  53. u32 status;
  54. };
  55. enum dib8000_power_mode {
  56. DIB8000M_POWER_ALL = 0,
  57. DIB8000M_POWER_INTERFACE_ONLY,
  58. };
  59. static u16 dib8000_i2c_read16(struct i2c_device *i2c, u16 reg)
  60. {
  61. u8 wb[2] = { reg >> 8, reg & 0xff };
  62. u8 rb[2];
  63. struct i2c_msg msg[2] = {
  64. {.addr = i2c->addr >> 1,.flags = 0,.buf = wb,.len = 2},
  65. {.addr = i2c->addr >> 1,.flags = I2C_M_RD,.buf = rb,.len = 2},
  66. };
  67. if (i2c_transfer(i2c->adap, msg, 2) != 2)
  68. dprintk("i2c read error on %d", reg);
  69. return (rb[0] << 8) | rb[1];
  70. }
  71. static u16 dib8000_read_word(struct dib8000_state *state, u16 reg)
  72. {
  73. return dib8000_i2c_read16(&state->i2c, reg);
  74. }
  75. static u32 dib8000_read32(struct dib8000_state *state, u16 reg)
  76. {
  77. u16 rw[2];
  78. rw[0] = dib8000_read_word(state, reg + 0);
  79. rw[1] = dib8000_read_word(state, reg + 1);
  80. return ((rw[0] << 16) | (rw[1]));
  81. }
  82. static int dib8000_i2c_write16(struct i2c_device *i2c, u16 reg, u16 val)
  83. {
  84. u8 b[4] = {
  85. (reg >> 8) & 0xff, reg & 0xff,
  86. (val >> 8) & 0xff, val & 0xff,
  87. };
  88. struct i2c_msg msg = {
  89. .addr = i2c->addr >> 1,.flags = 0,.buf = b,.len = 4
  90. };
  91. return i2c_transfer(i2c->adap, &msg, 1) != 1 ? -EREMOTEIO : 0;
  92. }
  93. static int dib8000_write_word(struct dib8000_state *state, u16 reg, u16 val)
  94. {
  95. return dib8000_i2c_write16(&state->i2c, reg, val);
  96. }
  97. static const int16_t coeff_2k_sb_1seg_dqpsk[8] = {
  98. (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
  99. (920 << 5) | 0x09
  100. };
  101. static const int16_t coeff_2k_sb_1seg[8] = {
  102. (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
  103. };
  104. static const int16_t coeff_2k_sb_3seg_0dqpsk_1dqpsk[8] = {
  105. (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
  106. (-931 << 5) | 0x0f
  107. };
  108. static const int16_t coeff_2k_sb_3seg_0dqpsk[8] = {
  109. (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
  110. (982 << 5) | 0x0c
  111. };
  112. static const int16_t coeff_2k_sb_3seg_1dqpsk[8] = {
  113. (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
  114. (-720 << 5) | 0x0d
  115. };
  116. static const int16_t coeff_2k_sb_3seg[8] = {
  117. (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
  118. (-610 << 5) | 0x0a
  119. };
  120. static const int16_t coeff_4k_sb_1seg_dqpsk[8] = {
  121. (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
  122. (-922 << 5) | 0x0d
  123. };
  124. static const int16_t coeff_4k_sb_1seg[8] = {
  125. (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
  126. (-655 << 5) | 0x0a
  127. };
  128. static const int16_t coeff_4k_sb_3seg_0dqpsk_1dqpsk[8] = {
  129. (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
  130. (-958 << 5) | 0x13
  131. };
  132. static const int16_t coeff_4k_sb_3seg_0dqpsk[8] = {
  133. (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
  134. (-568 << 5) | 0x0f
  135. };
  136. static const int16_t coeff_4k_sb_3seg_1dqpsk[8] = {
  137. (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
  138. (-848 << 5) | 0x13
  139. };
  140. static const int16_t coeff_4k_sb_3seg[8] = {
  141. (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
  142. (-869 << 5) | 0x13
  143. };
  144. static const int16_t coeff_8k_sb_1seg_dqpsk[8] = {
  145. (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
  146. (-598 << 5) | 0x10
  147. };
  148. static const int16_t coeff_8k_sb_1seg[8] = {
  149. (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
  150. (585 << 5) | 0x0f
  151. };
  152. static const int16_t coeff_8k_sb_3seg_0dqpsk_1dqpsk[8] = {
  153. (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
  154. (0 << 5) | 0x14
  155. };
  156. static const int16_t coeff_8k_sb_3seg_0dqpsk[8] = {
  157. (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
  158. (-877 << 5) | 0x15
  159. };
  160. static const int16_t coeff_8k_sb_3seg_1dqpsk[8] = {
  161. (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
  162. (-921 << 5) | 0x14
  163. };
  164. static const int16_t coeff_8k_sb_3seg[8] = {
  165. (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
  166. (690 << 5) | 0x14
  167. };
  168. static const int16_t ana_fe_coeff_3seg[24] = {
  169. 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
  170. };
  171. static const int16_t ana_fe_coeff_1seg[24] = {
  172. 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
  173. };
  174. static const int16_t ana_fe_coeff_13seg[24] = {
  175. 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
  176. };
  177. static u16 fft_to_mode(struct dib8000_state *state)
  178. {
  179. u16 mode;
  180. switch (state->fe.dtv_property_cache.transmission_mode) {
  181. case TRANSMISSION_MODE_2K:
  182. mode = 1;
  183. break;
  184. case TRANSMISSION_MODE_4K:
  185. mode = 2;
  186. break;
  187. default:
  188. case TRANSMISSION_MODE_AUTO:
  189. case TRANSMISSION_MODE_8K:
  190. mode = 3;
  191. break;
  192. }
  193. return mode;
  194. }
  195. static void dib8000_set_acquisition_mode(struct dib8000_state *state)
  196. {
  197. u16 nud = dib8000_read_word(state, 298);
  198. nud |= (1 << 3) | (1 << 0);
  199. dprintk("acquisition mode activated");
  200. dib8000_write_word(state, 298, nud);
  201. }
  202. static int dib8000_set_output_mode(struct dib8000_state *state, int mode)
  203. {
  204. u16 outreg, fifo_threshold, smo_mode, sram = 0x0205; /* by default SDRAM deintlv is enabled */
  205. outreg = 0;
  206. fifo_threshold = 1792;
  207. smo_mode = (dib8000_read_word(state, 299) & 0x0050) | (1 << 1);
  208. dprintk("-I- Setting output mode for demod %p to %d", &state->fe, mode);
  209. switch (mode) {
  210. case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock
  211. outreg = (1 << 10); /* 0x0400 */
  212. break;
  213. case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock
  214. outreg = (1 << 10) | (1 << 6); /* 0x0440 */
  215. break;
  216. case OUTMODE_MPEG2_SERIAL: // STBs with serial input
  217. outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
  218. break;
  219. case OUTMODE_DIVERSITY:
  220. if (state->cfg.hostbus_diversity) {
  221. outreg = (1 << 10) | (4 << 6); /* 0x0500 */
  222. sram &= 0xfdff;
  223. } else
  224. sram |= 0x0c00;
  225. break;
  226. case OUTMODE_MPEG2_FIFO: // e.g. USB feeding
  227. smo_mode |= (3 << 1);
  228. fifo_threshold = 512;
  229. outreg = (1 << 10) | (5 << 6);
  230. break;
  231. case OUTMODE_HIGH_Z: // disable
  232. outreg = 0;
  233. break;
  234. case OUTMODE_ANALOG_ADC:
  235. outreg = (1 << 10) | (3 << 6);
  236. dib8000_set_acquisition_mode(state);
  237. break;
  238. default:
  239. dprintk("Unhandled output_mode passed to be set for demod %p", &state->fe);
  240. return -EINVAL;
  241. }
  242. if (state->cfg.output_mpeg2_in_188_bytes)
  243. smo_mode |= (1 << 5);
  244. dib8000_write_word(state, 299, smo_mode);
  245. dib8000_write_word(state, 300, fifo_threshold); /* synchronous fread */
  246. dib8000_write_word(state, 1286, outreg);
  247. dib8000_write_word(state, 1291, sram);
  248. return 0;
  249. }
  250. static int dib8000_set_diversity_in(struct dvb_frontend *fe, int onoff)
  251. {
  252. struct dib8000_state *state = fe->demodulator_priv;
  253. u16 sync_wait = dib8000_read_word(state, 273) & 0xfff0;
  254. if (!state->differential_constellation) {
  255. dib8000_write_word(state, 272, 1 << 9); //dvsy_off_lmod4 = 1
  256. dib8000_write_word(state, 273, sync_wait | (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
  257. } else {
  258. dib8000_write_word(state, 272, 0); //dvsy_off_lmod4 = 0
  259. dib8000_write_word(state, 273, sync_wait); // sync_enable = 0; comb_mode = 0
  260. }
  261. state->diversity_onoff = onoff;
  262. switch (onoff) {
  263. case 0: /* only use the internal way - not the diversity input */
  264. dib8000_write_word(state, 270, 1);
  265. dib8000_write_word(state, 271, 0);
  266. break;
  267. case 1: /* both ways */
  268. dib8000_write_word(state, 270, 6);
  269. dib8000_write_word(state, 271, 6);
  270. break;
  271. case 2: /* only the diversity input */
  272. dib8000_write_word(state, 270, 0);
  273. dib8000_write_word(state, 271, 1);
  274. break;
  275. }
  276. return 0;
  277. }
  278. static void dib8000_set_power_mode(struct dib8000_state *state, enum dib8000_power_mode mode)
  279. {
  280. /* by default everything is going to be powered off */
  281. u16 reg_774 = 0x3fff, reg_775 = 0xffff, reg_776 = 0xffff,
  282. reg_900 = (dib8000_read_word(state, 900) & 0xfffc) | 0x3, reg_1280 = (dib8000_read_word(state, 1280) & 0x00ff) | 0xff00;
  283. /* now, depending on the requested mode, we power on */
  284. switch (mode) {
  285. /* power up everything in the demod */
  286. case DIB8000M_POWER_ALL:
  287. reg_774 = 0x0000;
  288. reg_775 = 0x0000;
  289. reg_776 = 0x0000;
  290. reg_900 &= 0xfffc;
  291. reg_1280 &= 0x00ff;
  292. break;
  293. case DIB8000M_POWER_INTERFACE_ONLY:
  294. reg_1280 &= 0x00ff;
  295. break;
  296. }
  297. dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x", reg_774, reg_775, reg_776, reg_900, reg_1280);
  298. dib8000_write_word(state, 774, reg_774);
  299. dib8000_write_word(state, 775, reg_775);
  300. dib8000_write_word(state, 776, reg_776);
  301. dib8000_write_word(state, 900, reg_900);
  302. dib8000_write_word(state, 1280, reg_1280);
  303. }
  304. static int dib8000_set_adc_state(struct dib8000_state *state, enum dibx000_adc_states no)
  305. {
  306. int ret = 0;
  307. u16 reg_907 = dib8000_read_word(state, 907), reg_908 = dib8000_read_word(state, 908);
  308. switch (no) {
  309. case DIBX000_SLOW_ADC_ON:
  310. reg_908 |= (1 << 1) | (1 << 0);
  311. ret |= dib8000_write_word(state, 908, reg_908);
  312. reg_908 &= ~(1 << 1);
  313. break;
  314. case DIBX000_SLOW_ADC_OFF:
  315. reg_908 |= (1 << 1) | (1 << 0);
  316. break;
  317. case DIBX000_ADC_ON:
  318. reg_907 &= 0x0fff;
  319. reg_908 &= 0x0003;
  320. break;
  321. case DIBX000_ADC_OFF: // leave the VBG voltage on
  322. reg_907 |= (1 << 14) | (1 << 13) | (1 << 12);
  323. reg_908 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
  324. break;
  325. case DIBX000_VBG_ENABLE:
  326. reg_907 &= ~(1 << 15);
  327. break;
  328. case DIBX000_VBG_DISABLE:
  329. reg_907 |= (1 << 15);
  330. break;
  331. default:
  332. break;
  333. }
  334. ret |= dib8000_write_word(state, 907, reg_907);
  335. ret |= dib8000_write_word(state, 908, reg_908);
  336. return ret;
  337. }
  338. static int dib8000_set_bandwidth(struct dib8000_state *state, u32 bw)
  339. {
  340. u32 timf;
  341. if (bw == 0)
  342. bw = 6000;
  343. if (state->timf == 0) {
  344. dprintk("using default timf");
  345. timf = state->timf_default;
  346. } else {
  347. dprintk("using updated timf");
  348. timf = state->timf;
  349. }
  350. dib8000_write_word(state, 29, (u16) ((timf >> 16) & 0xffff));
  351. dib8000_write_word(state, 30, (u16) ((timf) & 0xffff));
  352. return 0;
  353. }
  354. static int dib8000_sad_calib(struct dib8000_state *state)
  355. {
  356. /* internal */
  357. dib8000_write_word(state, 923, (0 << 1) | (0 << 0));
  358. dib8000_write_word(state, 924, 776); // 0.625*3.3 / 4096
  359. /* do the calibration */
  360. dib8000_write_word(state, 923, (1 << 0));
  361. dib8000_write_word(state, 923, (0 << 0));
  362. msleep(1);
  363. return 0;
  364. }
  365. int dib8000_set_wbd_ref(struct dvb_frontend *fe, u16 value)
  366. {
  367. struct dib8000_state *state = fe->demodulator_priv;
  368. if (value > 4095)
  369. value = 4095;
  370. state->wbd_ref = value;
  371. return dib8000_write_word(state, 106, value);
  372. }
  373. EXPORT_SYMBOL(dib8000_set_wbd_ref);
  374. static void dib8000_reset_pll_common(struct dib8000_state *state, const struct dibx000_bandwidth_config *bw)
  375. {
  376. dprintk("ifreq: %d %x, inversion: %d", bw->ifreq, bw->ifreq, bw->ifreq >> 25);
  377. dib8000_write_word(state, 23, (u16) (((bw->internal * 1000) >> 16) & 0xffff)); /* P_sec_len */
  378. dib8000_write_word(state, 24, (u16) ((bw->internal * 1000) & 0xffff));
  379. dib8000_write_word(state, 27, (u16) ((bw->ifreq >> 16) & 0x01ff));
  380. dib8000_write_word(state, 28, (u16) (bw->ifreq & 0xffff));
  381. dib8000_write_word(state, 26, (u16) ((bw->ifreq >> 25) & 0x0003));
  382. dib8000_write_word(state, 922, bw->sad_cfg);
  383. }
  384. static void dib8000_reset_pll(struct dib8000_state *state)
  385. {
  386. const struct dibx000_bandwidth_config *pll = state->cfg.pll;
  387. u16 clk_cfg1;
  388. // clk_cfg0
  389. dib8000_write_word(state, 901, (pll->pll_prediv << 8) | (pll->pll_ratio << 0));
  390. // clk_cfg1
  391. clk_cfg1 = (1 << 10) | (0 << 9) | (pll->IO_CLK_en_core << 8) |
  392. (pll->bypclk_div << 5) | (pll->enable_refdiv << 4) | (1 << 3) | (pll->pll_range << 1) | (pll->pll_reset << 0);
  393. dib8000_write_word(state, 902, clk_cfg1);
  394. clk_cfg1 = (clk_cfg1 & 0xfff7) | (pll->pll_bypass << 3);
  395. dib8000_write_word(state, 902, clk_cfg1);
  396. dprintk("clk_cfg1: 0x%04x", clk_cfg1); /* 0x507 1 0 1 000 0 0 11 1 */
  397. /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
  398. if (state->cfg.pll->ADClkSrc == 0)
  399. dib8000_write_word(state, 904, (0 << 15) | (0 << 12) | (0 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
  400. else if (state->cfg.refclksel != 0)
  401. dib8000_write_word(state, 904,
  402. (0 << 15) | (1 << 12) | ((state->cfg.refclksel & 0x3) << 10) | (pll->modulo << 8) | (pll->
  403. ADClkSrc << 7) | (0 << 1));
  404. else
  405. dib8000_write_word(state, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll->modulo << 8) | (pll->ADClkSrc << 7) | (0 << 1));
  406. dib8000_reset_pll_common(state, pll);
  407. }
  408. static int dib8000_reset_gpio(struct dib8000_state *st)
  409. {
  410. /* reset the GPIOs */
  411. dib8000_write_word(st, 1029, st->cfg.gpio_dir);
  412. dib8000_write_word(st, 1030, st->cfg.gpio_val);
  413. /* TODO 782 is P_gpio_od */
  414. dib8000_write_word(st, 1032, st->cfg.gpio_pwm_pos);
  415. dib8000_write_word(st, 1037, st->cfg.pwm_freq_div);
  416. return 0;
  417. }
  418. static int dib8000_cfg_gpio(struct dib8000_state *st, u8 num, u8 dir, u8 val)
  419. {
  420. st->cfg.gpio_dir = dib8000_read_word(st, 1029);
  421. st->cfg.gpio_dir &= ~(1 << num); /* reset the direction bit */
  422. st->cfg.gpio_dir |= (dir & 0x1) << num; /* set the new direction */
  423. dib8000_write_word(st, 1029, st->cfg.gpio_dir);
  424. st->cfg.gpio_val = dib8000_read_word(st, 1030);
  425. st->cfg.gpio_val &= ~(1 << num); /* reset the direction bit */
  426. st->cfg.gpio_val |= (val & 0x01) << num; /* set the new value */
  427. dib8000_write_word(st, 1030, st->cfg.gpio_val);
  428. dprintk("gpio dir: %x: gpio val: %x", st->cfg.gpio_dir, st->cfg.gpio_val);
  429. return 0;
  430. }
  431. int dib8000_set_gpio(struct dvb_frontend *fe, u8 num, u8 dir, u8 val)
  432. {
  433. struct dib8000_state *state = fe->demodulator_priv;
  434. return dib8000_cfg_gpio(state, num, dir, val);
  435. }
  436. EXPORT_SYMBOL(dib8000_set_gpio);
  437. static const u16 dib8000_defaults[] = {
  438. /* auto search configuration - lock0 by default waiting
  439. * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
  440. 3, 7,
  441. 0x0004,
  442. 0x0400,
  443. 0x0814,
  444. 12, 11,
  445. 0x001b,
  446. 0x7740,
  447. 0x005b,
  448. 0x8d80,
  449. 0x01c9,
  450. 0xc380,
  451. 0x0000,
  452. 0x0080,
  453. 0x0000,
  454. 0x0090,
  455. 0x0001,
  456. 0xd4c0,
  457. /*1, 32,
  458. 0x6680 // P_corm_thres Lock algorithms configuration */
  459. 11, 80, /* set ADC level to -16 */
  460. (1 << 13) - 825 - 117,
  461. (1 << 13) - 837 - 117,
  462. (1 << 13) - 811 - 117,
  463. (1 << 13) - 766 - 117,
  464. (1 << 13) - 737 - 117,
  465. (1 << 13) - 693 - 117,
  466. (1 << 13) - 648 - 117,
  467. (1 << 13) - 619 - 117,
  468. (1 << 13) - 575 - 117,
  469. (1 << 13) - 531 - 117,
  470. (1 << 13) - 501 - 117,
  471. 4, 108,
  472. 0,
  473. 0,
  474. 0,
  475. 0,
  476. 1, 175,
  477. 0x0410,
  478. 1, 179,
  479. 8192, // P_fft_nb_to_cut
  480. 6, 181,
  481. 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
  482. 0x2800,
  483. 0x2800,
  484. 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
  485. 0x2800,
  486. 0x2800,
  487. 2, 193,
  488. 0x0666, // P_pha3_thres
  489. 0x0000, // P_cti_use_cpe, P_cti_use_prog
  490. 2, 205,
  491. 0x200f, // P_cspu_regul, P_cspu_win_cut
  492. 0x000f, // P_des_shift_work
  493. 5, 215,
  494. 0x023d, // P_adp_regul_cnt
  495. 0x00a4, // P_adp_noise_cnt
  496. 0x00a4, // P_adp_regul_ext
  497. 0x7ff0, // P_adp_noise_ext
  498. 0x3ccc, // P_adp_fil
  499. 1, 230,
  500. 0x0000, // P_2d_byp_ti_num
  501. 1, 263,
  502. 0x800, //P_equal_thres_wgn
  503. 1, 268,
  504. (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
  505. 1, 270,
  506. 0x0001, // P_div_lock0_wait
  507. 1, 285,
  508. 0x0020, //p_fec_
  509. 1, 299,
  510. 0x0062, // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard
  511. 1, 338,
  512. (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
  513. (1 << 10) | // P_ctrl_pre_freq_mode_sat=1
  514. (0 << 9) | // P_ctrl_pre_freq_inh=0
  515. (3 << 5) | // P_ctrl_pre_freq_step=3
  516. (1 << 0), // P_pre_freq_win_len=1
  517. 1, 903,
  518. (0 << 4) | 2, // P_divclksel=0 P_divbitsel=2 (was clk=3,bit=1 for MPW)
  519. 0,
  520. };
  521. static u16 dib8000_identify(struct i2c_device *client)
  522. {
  523. u16 value;
  524. //because of glitches sometimes
  525. value = dib8000_i2c_read16(client, 896);
  526. if ((value = dib8000_i2c_read16(client, 896)) != 0x01b3) {
  527. dprintk("wrong Vendor ID (read=0x%x)", value);
  528. return 0;
  529. }
  530. value = dib8000_i2c_read16(client, 897);
  531. if (value != 0x8000 && value != 0x8001 && value != 0x8002) {
  532. dprintk("wrong Device ID (%x)", value);
  533. return 0;
  534. }
  535. switch (value) {
  536. case 0x8000:
  537. dprintk("found DiB8000A");
  538. break;
  539. case 0x8001:
  540. dprintk("found DiB8000B");
  541. break;
  542. case 0x8002:
  543. dprintk("found DiB8000C");
  544. break;
  545. }
  546. return value;
  547. }
  548. static int dib8000_reset(struct dvb_frontend *fe)
  549. {
  550. struct dib8000_state *state = fe->demodulator_priv;
  551. dib8000_write_word(state, 1287, 0x0003); /* sram lead in, rdy */
  552. if ((state->revision = dib8000_identify(&state->i2c)) == 0)
  553. return -EINVAL;
  554. if (state->revision == 0x8000)
  555. dprintk("error : dib8000 MA not supported");
  556. dibx000_reset_i2c_master(&state->i2c_master);
  557. dib8000_set_power_mode(state, DIB8000M_POWER_ALL);
  558. /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
  559. dib8000_set_adc_state(state, DIBX000_VBG_ENABLE);
  560. /* restart all parts */
  561. dib8000_write_word(state, 770, 0xffff);
  562. dib8000_write_word(state, 771, 0xffff);
  563. dib8000_write_word(state, 772, 0xfffc);
  564. dib8000_write_word(state, 898, 0x000c); // sad
  565. dib8000_write_word(state, 1280, 0x004d);
  566. dib8000_write_word(state, 1281, 0x000c);
  567. dib8000_write_word(state, 770, 0x0000);
  568. dib8000_write_word(state, 771, 0x0000);
  569. dib8000_write_word(state, 772, 0x0000);
  570. dib8000_write_word(state, 898, 0x0004); // sad
  571. dib8000_write_word(state, 1280, 0x0000);
  572. dib8000_write_word(state, 1281, 0x0000);
  573. /* drives */
  574. if (state->cfg.drives)
  575. dib8000_write_word(state, 906, state->cfg.drives);
  576. else {
  577. dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.");
  578. dib8000_write_word(state, 906, 0x2d98); // min drive SDRAM - not optimal - adjust
  579. }
  580. dib8000_reset_pll(state);
  581. if (dib8000_reset_gpio(state) != 0)
  582. dprintk("GPIO reset was not successful.");
  583. if (dib8000_set_output_mode(state, OUTMODE_HIGH_Z) != 0)
  584. dprintk("OUTPUT_MODE could not be resetted.");
  585. state->current_agc = NULL;
  586. // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
  587. /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
  588. if (state->cfg.pll->ifreq == 0)
  589. dib8000_write_word(state, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
  590. else
  591. dib8000_write_word(state, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
  592. {
  593. u16 l = 0, r;
  594. const u16 *n;
  595. n = dib8000_defaults;
  596. l = *n++;
  597. while (l) {
  598. r = *n++;
  599. do {
  600. dib8000_write_word(state, r, *n++);
  601. r++;
  602. } while (--l);
  603. l = *n++;
  604. }
  605. }
  606. state->isdbt_cfg_loaded = 0;
  607. //div_cfg override for special configs
  608. if (state->cfg.div_cfg != 0)
  609. dib8000_write_word(state, 903, state->cfg.div_cfg);
  610. /* unforce divstr regardless whether i2c enumeration was done or not */
  611. dib8000_write_word(state, 1285, dib8000_read_word(state, 1285) & ~(1 << 1));
  612. dib8000_set_bandwidth(state, 6000);
  613. dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON);
  614. dib8000_sad_calib(state);
  615. dib8000_set_adc_state(state, DIBX000_SLOW_ADC_OFF);
  616. dib8000_set_power_mode(state, DIB8000M_POWER_INTERFACE_ONLY);
  617. return 0;
  618. }
  619. static void dib8000_restart_agc(struct dib8000_state *state)
  620. {
  621. // P_restart_iqc & P_restart_agc
  622. dib8000_write_word(state, 770, 0x0a00);
  623. dib8000_write_word(state, 770, 0x0000);
  624. }
  625. static int dib8000_update_lna(struct dib8000_state *state)
  626. {
  627. u16 dyn_gain;
  628. if (state->cfg.update_lna) {
  629. // read dyn_gain here (because it is demod-dependent and not tuner)
  630. dyn_gain = dib8000_read_word(state, 390);
  631. if (state->cfg.update_lna(&state->fe, dyn_gain)) { // LNA has changed
  632. dib8000_restart_agc(state);
  633. return 1;
  634. }
  635. }
  636. return 0;
  637. }
  638. static int dib8000_set_agc_config(struct dib8000_state *state, u8 band)
  639. {
  640. struct dibx000_agc_config *agc = NULL;
  641. int i;
  642. if (state->current_band == band && state->current_agc != NULL)
  643. return 0;
  644. state->current_band = band;
  645. for (i = 0; i < state->cfg.agc_config_count; i++)
  646. if (state->cfg.agc[i].band_caps & band) {
  647. agc = &state->cfg.agc[i];
  648. break;
  649. }
  650. if (agc == NULL) {
  651. dprintk("no valid AGC configuration found for band 0x%02x", band);
  652. return -EINVAL;
  653. }
  654. state->current_agc = agc;
  655. /* AGC */
  656. dib8000_write_word(state, 76, agc->setup);
  657. dib8000_write_word(state, 77, agc->inv_gain);
  658. dib8000_write_word(state, 78, agc->time_stabiliz);
  659. dib8000_write_word(state, 101, (agc->alpha_level << 12) | agc->thlock);
  660. // Demod AGC loop configuration
  661. dib8000_write_word(state, 102, (agc->alpha_mant << 5) | agc->alpha_exp);
  662. dib8000_write_word(state, 103, (agc->beta_mant << 6) | agc->beta_exp);
  663. dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
  664. state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel);
  665. /* AGC continued */
  666. if (state->wbd_ref != 0)
  667. dib8000_write_word(state, 106, state->wbd_ref);
  668. else // use default
  669. dib8000_write_word(state, 106, agc->wbd_ref);
  670. dib8000_write_word(state, 107, (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8));
  671. dib8000_write_word(state, 108, agc->agc1_max);
  672. dib8000_write_word(state, 109, agc->agc1_min);
  673. dib8000_write_word(state, 110, agc->agc2_max);
  674. dib8000_write_word(state, 111, agc->agc2_min);
  675. dib8000_write_word(state, 112, (agc->agc1_pt1 << 8) | agc->agc1_pt2);
  676. dib8000_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2);
  677. dib8000_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2);
  678. dib8000_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2);
  679. dib8000_write_word(state, 75, agc->agc1_pt3);
  680. dib8000_write_word(state, 923, (dib8000_read_word(state, 923) & 0xffe3) | (agc->wbd_inv << 4) | (agc->wbd_sel << 2)); /*LB : 929 -> 923 */
  681. return 0;
  682. }
  683. void dib8000_pwm_agc_reset(struct dvb_frontend *fe)
  684. {
  685. struct dib8000_state *state = fe->demodulator_priv;
  686. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  687. dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000)));
  688. }
  689. EXPORT_SYMBOL(dib8000_pwm_agc_reset);
  690. static int dib8000_agc_soft_split(struct dib8000_state *state)
  691. {
  692. u16 agc, split_offset;
  693. if (!state->current_agc || !state->current_agc->perform_agc_softsplit || state->current_agc->split.max == 0)
  694. return FE_CALLBACK_TIME_NEVER;
  695. // n_agc_global
  696. agc = dib8000_read_word(state, 390);
  697. if (agc > state->current_agc->split.min_thres)
  698. split_offset = state->current_agc->split.min;
  699. else if (agc < state->current_agc->split.max_thres)
  700. split_offset = state->current_agc->split.max;
  701. else
  702. split_offset = state->current_agc->split.max *
  703. (agc - state->current_agc->split.min_thres) / (state->current_agc->split.max_thres - state->current_agc->split.min_thres);
  704. dprintk("AGC split_offset: %d", split_offset);
  705. // P_agc_force_split and P_agc_split_offset
  706. dib8000_write_word(state, 107, (dib8000_read_word(state, 107) & 0xff00) | split_offset);
  707. return 5000;
  708. }
  709. static int dib8000_agc_startup(struct dvb_frontend *fe)
  710. {
  711. struct dib8000_state *state = fe->demodulator_priv;
  712. enum frontend_tune_state *tune_state = &state->tune_state;
  713. int ret = 0;
  714. switch (*tune_state) {
  715. case CT_AGC_START:
  716. // set power-up level: interf+analog+AGC
  717. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  718. if (dib8000_set_agc_config(state, (unsigned char)(BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000))) != 0) {
  719. *tune_state = CT_AGC_STOP;
  720. state->status = FE_STATUS_TUNE_FAILED;
  721. break;
  722. }
  723. ret = 70;
  724. *tune_state = CT_AGC_STEP_0;
  725. break;
  726. case CT_AGC_STEP_0:
  727. //AGC initialization
  728. if (state->cfg.agc_control)
  729. state->cfg.agc_control(&state->fe, 1);
  730. dib8000_restart_agc(state);
  731. // wait AGC rough lock time
  732. ret = 50;
  733. *tune_state = CT_AGC_STEP_1;
  734. break;
  735. case CT_AGC_STEP_1:
  736. // wait AGC accurate lock time
  737. ret = 70;
  738. if (dib8000_update_lna(state))
  739. // wait only AGC rough lock time
  740. ret = 50;
  741. else
  742. *tune_state = CT_AGC_STEP_2;
  743. break;
  744. case CT_AGC_STEP_2:
  745. dib8000_agc_soft_split(state);
  746. if (state->cfg.agc_control)
  747. state->cfg.agc_control(&state->fe, 0);
  748. *tune_state = CT_AGC_STOP;
  749. break;
  750. default:
  751. ret = dib8000_agc_soft_split(state);
  752. break;
  753. }
  754. return ret;
  755. }
  756. static const int32_t lut_1000ln_mant[] =
  757. {
  758. 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
  759. };
  760. int32_t dib8000_get_adc_power(struct dvb_frontend *fe, uint8_t mode)
  761. {
  762. struct dib8000_state *state = fe->demodulator_priv;
  763. uint32_t ix = 0, tmp_val = 0, exp = 0, mant = 0;
  764. int32_t val;
  765. val = dib8000_read32(state, 384);
  766. /* mode = 1 : ln_agcpower calc using mant-exp conversion and mantis look up table */
  767. if (mode) {
  768. tmp_val = val;
  769. while (tmp_val >>= 1)
  770. exp++;
  771. mant = (val * 1000 / (1<<exp));
  772. ix = (uint8_t)((mant-1000)/100); /* index of the LUT */
  773. val = (lut_1000ln_mant[ix] + 693*(exp-20) - 6908); /* 1000 * ln(adcpower_real) ; 693 = 1000ln(2) ; 6908 = 1000*ln(1000) ; 20 comes from adc_real = adc_pow_int / 2**20 */
  774. val = (val*256)/1000;
  775. }
  776. return val;
  777. }
  778. EXPORT_SYMBOL(dib8000_get_adc_power);
  779. static void dib8000_update_timf(struct dib8000_state *state)
  780. {
  781. u32 timf = state->timf = dib8000_read32(state, 435);
  782. dib8000_write_word(state, 29, (u16) (timf >> 16));
  783. dib8000_write_word(state, 30, (u16) (timf & 0xffff));
  784. dprintk("Updated timing frequency: %d (default: %d)", state->timf, state->timf_default);
  785. }
  786. static void dib8000_set_channel(struct dib8000_state *state, u8 seq, u8 autosearching)
  787. {
  788. u16 mode, max_constellation, seg_diff_mask = 0, nbseg_diff = 0;
  789. u8 guard, crate, constellation, timeI;
  790. u8 permu_seg[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
  791. u16 i, coeff[4], P_cfr_left_edge = 0, P_cfr_right_edge = 0, seg_mask13 = 0x1fff; // All 13 segments enabled
  792. const s16 *ncoeff = NULL, *ana_fe;
  793. u16 tmcc_pow = 0;
  794. u16 coff_pow = 0x2800;
  795. u16 init_prbs = 0xfff;
  796. u16 ana_gain = 0;
  797. u16 adc_target_16dB[11] = {
  798. (1 << 13) - 825 - 117,
  799. (1 << 13) - 837 - 117,
  800. (1 << 13) - 811 - 117,
  801. (1 << 13) - 766 - 117,
  802. (1 << 13) - 737 - 117,
  803. (1 << 13) - 693 - 117,
  804. (1 << 13) - 648 - 117,
  805. (1 << 13) - 619 - 117,
  806. (1 << 13) - 575 - 117,
  807. (1 << 13) - 531 - 117,
  808. (1 << 13) - 501 - 117
  809. };
  810. if (state->ber_monitored_layer != LAYER_ALL)
  811. dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & 0x60) | state->ber_monitored_layer);
  812. else
  813. dib8000_write_word(state, 285, dib8000_read_word(state, 285) & 0x60);
  814. i = dib8000_read_word(state, 26) & 1; // P_dds_invspec
  815. dib8000_write_word(state, 26, state->fe.dtv_property_cache.inversion ^ i);
  816. if (state->fe.dtv_property_cache.isdbt_sb_mode) {
  817. //compute new dds_freq for the seg and adjust prbs
  818. int seg_offset =
  819. state->fe.dtv_property_cache.isdbt_sb_segment_idx - (state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) -
  820. (state->fe.dtv_property_cache.isdbt_sb_segment_count % 2);
  821. int clk = state->cfg.pll->internal;
  822. u32 segtodds = ((u32) (430 << 23) / clk) << 3; // segtodds = SegBW / Fclk * pow(2,26)
  823. int dds_offset = seg_offset * segtodds;
  824. int new_dds, sub_channel;
  825. if ((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0) // if even
  826. dds_offset -= (int)(segtodds / 2);
  827. if (state->cfg.pll->ifreq == 0) {
  828. if ((state->fe.dtv_property_cache.inversion ^ i) == 0) {
  829. dib8000_write_word(state, 26, dib8000_read_word(state, 26) | 1);
  830. new_dds = dds_offset;
  831. } else
  832. new_dds = dds_offset;
  833. // We shift tuning frequency if the wanted segment is :
  834. // - the segment of center frequency with an odd total number of segments
  835. // - the segment to the left of center frequency with an even total number of segments
  836. // - the segment to the right of center frequency with an even total number of segments
  837. if ((state->fe.dtv_property_cache.delivery_system == SYS_ISDBT) && (state->fe.dtv_property_cache.isdbt_sb_mode == 1)
  838. &&
  839. (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2)
  840. && (state->fe.dtv_property_cache.isdbt_sb_segment_idx ==
  841. ((state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
  842. || (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
  843. && (state->fe.dtv_property_cache.isdbt_sb_segment_idx == (state->fe.dtv_property_cache.isdbt_sb_segment_count / 2)))
  844. || (((state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) == 0)
  845. && (state->fe.dtv_property_cache.isdbt_sb_segment_idx ==
  846. ((state->fe.dtv_property_cache.isdbt_sb_segment_count / 2) + 1)))
  847. )) {
  848. new_dds -= ((u32) (850 << 22) / clk) << 4; // new_dds = 850 (freq shift in KHz) / Fclk * pow(2,26)
  849. }
  850. } else {
  851. if ((state->fe.dtv_property_cache.inversion ^ i) == 0)
  852. new_dds = state->cfg.pll->ifreq - dds_offset;
  853. else
  854. new_dds = state->cfg.pll->ifreq + dds_offset;
  855. }
  856. dib8000_write_word(state, 27, (u16) ((new_dds >> 16) & 0x01ff));
  857. dib8000_write_word(state, 28, (u16) (new_dds & 0xffff));
  858. if (state->fe.dtv_property_cache.isdbt_sb_segment_count % 2) // if odd
  859. sub_channel = ((state->fe.dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset) + 1) % 41) / 3;
  860. else // if even
  861. sub_channel = ((state->fe.dtv_property_cache.isdbt_sb_subchannel + (3 * seg_offset)) % 41) / 3;
  862. sub_channel -= 6;
  863. if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K
  864. || state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_4K) {
  865. dib8000_write_word(state, 219, dib8000_read_word(state, 219) | 0x1); //adp_pass =1
  866. dib8000_write_word(state, 190, dib8000_read_word(state, 190) | (0x1 << 14)); //pha3_force_pha_shift = 1
  867. } else {
  868. dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); //adp_pass =0
  869. dib8000_write_word(state, 190, dib8000_read_word(state, 190) & 0xbfff); //pha3_force_pha_shift = 0
  870. }
  871. switch (state->fe.dtv_property_cache.transmission_mode) {
  872. case TRANSMISSION_MODE_2K:
  873. switch (sub_channel) {
  874. case -6:
  875. init_prbs = 0x0;
  876. break; // 41, 0, 1
  877. case -5:
  878. init_prbs = 0x423;
  879. break; // 02~04
  880. case -4:
  881. init_prbs = 0x9;
  882. break; // 05~07
  883. case -3:
  884. init_prbs = 0x5C7;
  885. break; // 08~10
  886. case -2:
  887. init_prbs = 0x7A6;
  888. break; // 11~13
  889. case -1:
  890. init_prbs = 0x3D8;
  891. break; // 14~16
  892. case 0:
  893. init_prbs = 0x527;
  894. break; // 17~19
  895. case 1:
  896. init_prbs = 0x7FF;
  897. break; // 20~22
  898. case 2:
  899. init_prbs = 0x79B;
  900. break; // 23~25
  901. case 3:
  902. init_prbs = 0x3D6;
  903. break; // 26~28
  904. case 4:
  905. init_prbs = 0x3A2;
  906. break; // 29~31
  907. case 5:
  908. init_prbs = 0x53B;
  909. break; // 32~34
  910. case 6:
  911. init_prbs = 0x2F4;
  912. break; // 35~37
  913. default:
  914. case 7:
  915. init_prbs = 0x213;
  916. break; // 38~40
  917. }
  918. break;
  919. case TRANSMISSION_MODE_4K:
  920. switch (sub_channel) {
  921. case -6:
  922. init_prbs = 0x0;
  923. break; // 41, 0, 1
  924. case -5:
  925. init_prbs = 0x208;
  926. break; // 02~04
  927. case -4:
  928. init_prbs = 0xC3;
  929. break; // 05~07
  930. case -3:
  931. init_prbs = 0x7B9;
  932. break; // 08~10
  933. case -2:
  934. init_prbs = 0x423;
  935. break; // 11~13
  936. case -1:
  937. init_prbs = 0x5C7;
  938. break; // 14~16
  939. case 0:
  940. init_prbs = 0x3D8;
  941. break; // 17~19
  942. case 1:
  943. init_prbs = 0x7FF;
  944. break; // 20~22
  945. case 2:
  946. init_prbs = 0x3D6;
  947. break; // 23~25
  948. case 3:
  949. init_prbs = 0x53B;
  950. break; // 26~28
  951. case 4:
  952. init_prbs = 0x213;
  953. break; // 29~31
  954. case 5:
  955. init_prbs = 0x29;
  956. break; // 32~34
  957. case 6:
  958. init_prbs = 0xD0;
  959. break; // 35~37
  960. default:
  961. case 7:
  962. init_prbs = 0x48E;
  963. break; // 38~40
  964. }
  965. break;
  966. default:
  967. case TRANSMISSION_MODE_8K:
  968. switch (sub_channel) {
  969. case -6:
  970. init_prbs = 0x0;
  971. break; // 41, 0, 1
  972. case -5:
  973. init_prbs = 0x740;
  974. break; // 02~04
  975. case -4:
  976. init_prbs = 0x069;
  977. break; // 05~07
  978. case -3:
  979. init_prbs = 0x7DD;
  980. break; // 08~10
  981. case -2:
  982. init_prbs = 0x208;
  983. break; // 11~13
  984. case -1:
  985. init_prbs = 0x7B9;
  986. break; // 14~16
  987. case 0:
  988. init_prbs = 0x5C7;
  989. break; // 17~19
  990. case 1:
  991. init_prbs = 0x7FF;
  992. break; // 20~22
  993. case 2:
  994. init_prbs = 0x53B;
  995. break; // 23~25
  996. case 3:
  997. init_prbs = 0x29;
  998. break; // 26~28
  999. case 4:
  1000. init_prbs = 0x48E;
  1001. break; // 29~31
  1002. case 5:
  1003. init_prbs = 0x4C4;
  1004. break; // 32~34
  1005. case 6:
  1006. init_prbs = 0x367;
  1007. break; // 33~37
  1008. default:
  1009. case 7:
  1010. init_prbs = 0x684;
  1011. break; // 38~40
  1012. }
  1013. break;
  1014. }
  1015. } else { // if not state->fe.dtv_property_cache.isdbt_sb_mode
  1016. dib8000_write_word(state, 27, (u16) ((state->cfg.pll->ifreq >> 16) & 0x01ff));
  1017. dib8000_write_word(state, 28, (u16) (state->cfg.pll->ifreq & 0xffff));
  1018. dib8000_write_word(state, 26, (u16) ((state->cfg.pll->ifreq >> 25) & 0x0003));
  1019. }
  1020. /*P_mode == ?? */
  1021. dib8000_write_word(state, 10, (seq << 4));
  1022. // dib8000_write_word(state, 287, (dib8000_read_word(state, 287) & 0xe000) | 0x1000);
  1023. switch (state->fe.dtv_property_cache.guard_interval) {
  1024. case GUARD_INTERVAL_1_32:
  1025. guard = 0;
  1026. break;
  1027. case GUARD_INTERVAL_1_16:
  1028. guard = 1;
  1029. break;
  1030. case GUARD_INTERVAL_1_8:
  1031. guard = 2;
  1032. break;
  1033. case GUARD_INTERVAL_1_4:
  1034. default:
  1035. guard = 3;
  1036. break;
  1037. }
  1038. dib8000_write_word(state, 1, (init_prbs << 2) | (guard & 0x3)); // ADDR 1
  1039. max_constellation = DQPSK;
  1040. for (i = 0; i < 3; i++) {
  1041. switch (state->fe.dtv_property_cache.layer[i].modulation) {
  1042. case DQPSK:
  1043. constellation = 0;
  1044. break;
  1045. case QPSK:
  1046. constellation = 1;
  1047. break;
  1048. case QAM_16:
  1049. constellation = 2;
  1050. break;
  1051. case QAM_64:
  1052. default:
  1053. constellation = 3;
  1054. break;
  1055. }
  1056. switch (state->fe.dtv_property_cache.layer[i].fec) {
  1057. case FEC_1_2:
  1058. crate = 1;
  1059. break;
  1060. case FEC_2_3:
  1061. crate = 2;
  1062. break;
  1063. case FEC_3_4:
  1064. crate = 3;
  1065. break;
  1066. case FEC_5_6:
  1067. crate = 5;
  1068. break;
  1069. case FEC_7_8:
  1070. default:
  1071. crate = 7;
  1072. break;
  1073. }
  1074. if ((state->fe.dtv_property_cache.layer[i].interleaving > 0) &&
  1075. ((state->fe.dtv_property_cache.layer[i].interleaving <= 3) ||
  1076. (state->fe.dtv_property_cache.layer[i].interleaving == 4 && state->fe.dtv_property_cache.isdbt_sb_mode == 1))
  1077. )
  1078. timeI = state->fe.dtv_property_cache.layer[i].interleaving;
  1079. else
  1080. timeI = 0;
  1081. dib8000_write_word(state, 2 + i, (constellation << 10) | ((state->fe.dtv_property_cache.layer[i].segment_count & 0xf) << 6) |
  1082. (crate << 3) | timeI);
  1083. if (state->fe.dtv_property_cache.layer[i].segment_count > 0) {
  1084. switch (max_constellation) {
  1085. case DQPSK:
  1086. case QPSK:
  1087. if (state->fe.dtv_property_cache.layer[i].modulation == QAM_16 ||
  1088. state->fe.dtv_property_cache.layer[i].modulation == QAM_64)
  1089. max_constellation = state->fe.dtv_property_cache.layer[i].modulation;
  1090. break;
  1091. case QAM_16:
  1092. if (state->fe.dtv_property_cache.layer[i].modulation == QAM_64)
  1093. max_constellation = state->fe.dtv_property_cache.layer[i].modulation;
  1094. break;
  1095. }
  1096. }
  1097. }
  1098. mode = fft_to_mode(state);
  1099. //dib8000_write_word(state, 5, 13); /*p_last_seg = 13*/
  1100. dib8000_write_word(state, 274, (dib8000_read_word(state, 274) & 0xffcf) |
  1101. ((state->fe.dtv_property_cache.isdbt_partial_reception & 1) << 5) | ((state->fe.dtv_property_cache.
  1102. isdbt_sb_mode & 1) << 4));
  1103. dprintk("mode = %d ; guard = %d", mode, state->fe.dtv_property_cache.guard_interval);
  1104. /* signal optimization parameter */
  1105. if (state->fe.dtv_property_cache.isdbt_partial_reception) {
  1106. seg_diff_mask = (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) << permu_seg[0];
  1107. for (i = 1; i < 3; i++)
  1108. nbseg_diff +=
  1109. (state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * state->fe.dtv_property_cache.layer[i].segment_count;
  1110. for (i = 0; i < nbseg_diff; i++)
  1111. seg_diff_mask |= 1 << permu_seg[i + 1];
  1112. } else {
  1113. for (i = 0; i < 3; i++)
  1114. nbseg_diff +=
  1115. (state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * state->fe.dtv_property_cache.layer[i].segment_count;
  1116. for (i = 0; i < nbseg_diff; i++)
  1117. seg_diff_mask |= 1 << permu_seg[i];
  1118. }
  1119. dprintk("nbseg_diff = %X (%d)", seg_diff_mask, seg_diff_mask);
  1120. state->differential_constellation = (seg_diff_mask != 0);
  1121. dib8000_set_diversity_in(&state->fe, state->diversity_onoff);
  1122. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) { // ISDB-Tsb
  1123. if (state->fe.dtv_property_cache.isdbt_partial_reception == 1) // 3-segments
  1124. seg_mask13 = 0x00E0;
  1125. else // 1-segment
  1126. seg_mask13 = 0x0040;
  1127. } else
  1128. seg_mask13 = 0x1fff;
  1129. // WRITE: Mode & Diff mask
  1130. dib8000_write_word(state, 0, (mode << 13) | seg_diff_mask);
  1131. if ((seg_diff_mask) || (state->fe.dtv_property_cache.isdbt_sb_mode))
  1132. dib8000_write_word(state, 268, (dib8000_read_word(state, 268) & 0xF9FF) | 0x0200);
  1133. else
  1134. dib8000_write_word(state, 268, (2 << 9) | 39); //init value
  1135. // ---- SMALL ----
  1136. // P_small_seg_diff
  1137. dib8000_write_word(state, 352, seg_diff_mask); // ADDR 352
  1138. dib8000_write_word(state, 353, seg_mask13); // ADDR 353
  1139. /* // P_small_narrow_band=0, P_small_last_seg=13, P_small_offset_num_car=5 */
  1140. // dib8000_write_word(state, 351, (state->fe.dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5 );
  1141. // ---- SMALL ----
  1142. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1143. switch (state->fe.dtv_property_cache.transmission_mode) {
  1144. case TRANSMISSION_MODE_2K:
  1145. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
  1146. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
  1147. ncoeff = coeff_2k_sb_1seg_dqpsk;
  1148. else // QPSK or QAM
  1149. ncoeff = coeff_2k_sb_1seg;
  1150. } else { // 3-segments
  1151. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
  1152. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) // DQPSK on external segments
  1153. ncoeff = coeff_2k_sb_3seg_0dqpsk_1dqpsk;
  1154. else // QPSK or QAM on external segments
  1155. ncoeff = coeff_2k_sb_3seg_0dqpsk;
  1156. } else { // QPSK or QAM on central segment
  1157. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) // DQPSK on external segments
  1158. ncoeff = coeff_2k_sb_3seg_1dqpsk;
  1159. else // QPSK or QAM on external segments
  1160. ncoeff = coeff_2k_sb_3seg;
  1161. }
  1162. }
  1163. break;
  1164. case TRANSMISSION_MODE_4K:
  1165. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
  1166. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
  1167. ncoeff = coeff_4k_sb_1seg_dqpsk;
  1168. else // QPSK or QAM
  1169. ncoeff = coeff_4k_sb_1seg;
  1170. } else { // 3-segments
  1171. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
  1172. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
  1173. ncoeff = coeff_4k_sb_3seg_0dqpsk_1dqpsk;
  1174. } else { // QPSK or QAM on external segments
  1175. ncoeff = coeff_4k_sb_3seg_0dqpsk;
  1176. }
  1177. } else { // QPSK or QAM on central segment
  1178. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
  1179. ncoeff = coeff_4k_sb_3seg_1dqpsk;
  1180. } else // QPSK or QAM on external segments
  1181. ncoeff = coeff_4k_sb_3seg;
  1182. }
  1183. }
  1184. break;
  1185. case TRANSMISSION_MODE_AUTO:
  1186. case TRANSMISSION_MODE_8K:
  1187. default:
  1188. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // 1-seg
  1189. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) // DQPSK
  1190. ncoeff = coeff_8k_sb_1seg_dqpsk;
  1191. else // QPSK or QAM
  1192. ncoeff = coeff_8k_sb_1seg;
  1193. } else { // 3-segments
  1194. if (state->fe.dtv_property_cache.layer[0].modulation == DQPSK) { // DQPSK on central segment
  1195. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
  1196. ncoeff = coeff_8k_sb_3seg_0dqpsk_1dqpsk;
  1197. } else { // QPSK or QAM on external segments
  1198. ncoeff = coeff_8k_sb_3seg_0dqpsk;
  1199. }
  1200. } else { // QPSK or QAM on central segment
  1201. if (state->fe.dtv_property_cache.layer[1].modulation == DQPSK) { // DQPSK on external segments
  1202. ncoeff = coeff_8k_sb_3seg_1dqpsk;
  1203. } else // QPSK or QAM on external segments
  1204. ncoeff = coeff_8k_sb_3seg;
  1205. }
  1206. }
  1207. break;
  1208. }
  1209. for (i = 0; i < 8; i++)
  1210. dib8000_write_word(state, 343 + i, ncoeff[i]);
  1211. }
  1212. // P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5
  1213. dib8000_write_word(state, 351,
  1214. (state->fe.dtv_property_cache.isdbt_sb_mode << 9) | (state->fe.dtv_property_cache.isdbt_sb_mode << 8) | (13 << 4) | 5);
  1215. // ---- COFF ----
  1216. // Carloff, the most robust
  1217. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) { // Sound Broadcasting mode - use both TMCC and AC pilots
  1218. // P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64
  1219. // P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1
  1220. dib8000_write_word(state, 187,
  1221. (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~state->fe.dtv_property_cache.isdbt_partial_reception & 1) << 2)
  1222. | 0x3);
  1223. /* // P_small_coef_ext_enable = 1 */
  1224. /* dib8000_write_word(state, 351, dib8000_read_word(state, 351) | 0x200); */
  1225. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // Sound Broadcasting mode 1 seg
  1226. // P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width= (P_mode == 3) , P_coff_one_seg_sym= (P_mode-1)
  1227. if (mode == 3)
  1228. dib8000_write_word(state, 180, 0x1fcf | ((mode - 1) << 14));
  1229. else
  1230. dib8000_write_word(state, 180, 0x0fcf | ((mode - 1) << 14));
  1231. // P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1,
  1232. // P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4
  1233. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
  1234. // P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
  1235. dib8000_write_word(state, 340, (16 << 6) | (8 << 0));
  1236. // P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
  1237. dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
  1238. // P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
  1239. dib8000_write_word(state, 181, 300);
  1240. dib8000_write_word(state, 182, 150);
  1241. dib8000_write_word(state, 183, 80);
  1242. dib8000_write_word(state, 184, 300);
  1243. dib8000_write_word(state, 185, 150);
  1244. dib8000_write_word(state, 186, 80);
  1245. } else { // Sound Broadcasting mode 3 seg
  1246. // P_coff_one_seg_sym= 1, P_coff_one_seg_width= 1, P_coff_winlen=63, P_coff_thres_lock=15
  1247. /* if (mode == 3) */
  1248. /* dib8000_write_word(state, 180, 0x2fca | ((0) << 14)); */
  1249. /* else */
  1250. /* dib8000_write_word(state, 180, 0x2fca | ((1) << 14)); */
  1251. dib8000_write_word(state, 180, 0x1fcf | (1 << 14));
  1252. // P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1,
  1253. // P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4
  1254. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
  1255. // P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
  1256. dib8000_write_word(state, 340, (16 << 6) | (8 << 0));
  1257. //P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
  1258. dib8000_write_word(state, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
  1259. // P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
  1260. dib8000_write_word(state, 181, 350);
  1261. dib8000_write_word(state, 182, 300);
  1262. dib8000_write_word(state, 183, 250);
  1263. dib8000_write_word(state, 184, 350);
  1264. dib8000_write_word(state, 185, 300);
  1265. dib8000_write_word(state, 186, 250);
  1266. }
  1267. } else if (state->isdbt_cfg_loaded == 0) { // if not Sound Broadcasting mode : put default values for 13 segments
  1268. dib8000_write_word(state, 180, (16 << 6) | 9);
  1269. dib8000_write_word(state, 187, (4 << 12) | (8 << 5) | 0x2);
  1270. coff_pow = 0x2800;
  1271. for (i = 0; i < 6; i++)
  1272. dib8000_write_word(state, 181 + i, coff_pow);
  1273. // P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1,
  1274. // P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1
  1275. dib8000_write_word(state, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
  1276. // P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6
  1277. dib8000_write_word(state, 340, (8 << 6) | (6 << 0));
  1278. // P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1
  1279. dib8000_write_word(state, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
  1280. }
  1281. // ---- FFT ----
  1282. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1 && state->fe.dtv_property_cache.isdbt_partial_reception == 0) // 1-seg
  1283. dib8000_write_word(state, 178, 64); // P_fft_powrange=64
  1284. else
  1285. dib8000_write_word(state, 178, 32); // P_fft_powrange=32
  1286. /* make the cpil_coff_lock more robust but slower p_coff_winlen
  1287. * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
  1288. */
  1289. /* if ( ( nbseg_diff>0)&&(nbseg_diff<13))
  1290. dib8000_write_word(state, 187, (dib8000_read_word(state, 187) & 0xfffb) | (1 << 3)); */
  1291. dib8000_write_word(state, 189, ~seg_mask13 | seg_diff_mask); /* P_lmod4_seg_inh */
  1292. dib8000_write_word(state, 192, ~seg_mask13 | seg_diff_mask); /* P_pha3_seg_inh */
  1293. dib8000_write_word(state, 225, ~seg_mask13 | seg_diff_mask); /* P_tac_seg_inh */
  1294. if ((!state->fe.dtv_property_cache.isdbt_sb_mode) && (state->cfg.pll->ifreq == 0))
  1295. dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask | 0x40); /* P_equal_noise_seg_inh */
  1296. else
  1297. dib8000_write_word(state, 266, ~seg_mask13 | seg_diff_mask); /* P_equal_noise_seg_inh */
  1298. dib8000_write_word(state, 287, ~seg_mask13 | 0x1000); /* P_tmcc_seg_inh */
  1299. //dib8000_write_word(state, 288, ~seg_mask13 | seg_diff_mask); /* P_tmcc_seg_eq_inh */
  1300. if (!autosearching)
  1301. dib8000_write_word(state, 288, (~seg_mask13 | seg_diff_mask) & 0x1fff); /* P_tmcc_seg_eq_inh */
  1302. else
  1303. dib8000_write_word(state, 288, 0x1fff); //disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels.
  1304. dprintk("287 = %X (%d)", ~seg_mask13 | 0x1000, ~seg_mask13 | 0x1000);
  1305. dib8000_write_word(state, 211, seg_mask13 & (~seg_diff_mask)); /* P_des_seg_enabled */
  1306. /* offset loop parameters */
  1307. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1308. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
  1309. /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
  1310. dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x40);
  1311. else // Sound Broadcasting mode 3 seg
  1312. /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
  1313. dib8000_write_word(state, 32, ((10 - mode) << 12) | (6 << 8) | 0x60);
  1314. } else
  1315. // TODO in 13 seg, timf_alpha can always be the same or not ?
  1316. /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
  1317. dib8000_write_word(state, 32, ((9 - mode) << 12) | (6 << 8) | 0x80);
  1318. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1319. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
  1320. /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (11-P_mode) */
  1321. dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (10 - mode));
  1322. else // Sound Broadcasting mode 3 seg
  1323. /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
  1324. dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (9 - mode));
  1325. } else
  1326. /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
  1327. dib8000_write_word(state, 37, (3 << 5) | (0 << 4) | (8 - mode));
  1328. /* P_dvsy_sync_wait - reuse mode */
  1329. switch (state->fe.dtv_property_cache.transmission_mode) {
  1330. case TRANSMISSION_MODE_8K:
  1331. mode = 256;
  1332. break;
  1333. case TRANSMISSION_MODE_4K:
  1334. mode = 128;
  1335. break;
  1336. default:
  1337. case TRANSMISSION_MODE_2K:
  1338. mode = 64;
  1339. break;
  1340. }
  1341. if (state->cfg.diversity_delay == 0)
  1342. mode = (mode * (1 << (guard)) * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo
  1343. else
  1344. mode = (mode * (1 << (guard)) * 3) / 2 + state->cfg.diversity_delay; // add 50% SFN margin + compensate for DVSY-fifo
  1345. mode <<= 4;
  1346. dib8000_write_word(state, 273, (dib8000_read_word(state, 273) & 0x000f) | mode);
  1347. /* channel estimation fine configuration */
  1348. switch (max_constellation) {
  1349. case QAM_64:
  1350. ana_gain = 0x7; // -1 : avoid def_est saturation when ADC target is -16dB
  1351. coeff[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
  1352. coeff[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
  1353. coeff[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
  1354. coeff[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
  1355. //if (!state->cfg.hostbus_diversity) //if diversity, we should prehaps use the configuration of the max_constallation -1
  1356. break;
  1357. case QAM_16:
  1358. ana_gain = 0x7; // -1 : avoid def_est saturation when ADC target is -16dB
  1359. coeff[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
  1360. coeff[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
  1361. coeff[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
  1362. coeff[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
  1363. //if (!((state->cfg.hostbus_diversity) && (max_constellation == QAM_16)))
  1364. break;
  1365. default:
  1366. ana_gain = 0; // 0 : goes along with ADC target at -22dB to keep good mobile performance and lock at sensitivity level
  1367. coeff[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
  1368. coeff[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
  1369. coeff[2] = 0x0333; /* P_adp_regul_ext 0.1 */
  1370. coeff[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
  1371. break;
  1372. }
  1373. for (mode = 0; mode < 4; mode++)
  1374. dib8000_write_word(state, 215 + mode, coeff[mode]);
  1375. // update ana_gain depending on max constellation
  1376. dib8000_write_word(state, 116, ana_gain);
  1377. // update ADC target depending on ana_gain
  1378. if (ana_gain) { // set -16dB ADC target for ana_gain=-1
  1379. for (i = 0; i < 10; i++)
  1380. dib8000_write_word(state, 80 + i, adc_target_16dB[i]);
  1381. } else { // set -22dB ADC target for ana_gain=0
  1382. for (i = 0; i < 10; i++)
  1383. dib8000_write_word(state, 80 + i, adc_target_16dB[i] - 355);
  1384. }
  1385. // ---- ANA_FE ----
  1386. if (state->fe.dtv_property_cache.isdbt_sb_mode) {
  1387. if (state->fe.dtv_property_cache.isdbt_partial_reception == 1) // 3-segments
  1388. ana_fe = ana_fe_coeff_3seg;
  1389. else // 1-segment
  1390. ana_fe = ana_fe_coeff_1seg;
  1391. } else
  1392. ana_fe = ana_fe_coeff_13seg;
  1393. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1 || state->isdbt_cfg_loaded == 0)
  1394. for (mode = 0; mode < 24; mode++)
  1395. dib8000_write_word(state, 117 + mode, ana_fe[mode]);
  1396. // ---- CHAN_BLK ----
  1397. for (i = 0; i < 13; i++) {
  1398. if ((((~seg_diff_mask) >> i) & 1) == 1) {
  1399. P_cfr_left_edge += (1 << i) * ((i == 0) || ((((seg_mask13 & (~seg_diff_mask)) >> (i - 1)) & 1) == 0));
  1400. P_cfr_right_edge += (1 << i) * ((i == 12) || ((((seg_mask13 & (~seg_diff_mask)) >> (i + 1)) & 1) == 0));
  1401. }
  1402. }
  1403. dib8000_write_word(state, 222, P_cfr_left_edge); // P_cfr_left_edge
  1404. dib8000_write_word(state, 223, P_cfr_right_edge); // P_cfr_right_edge
  1405. // "P_cspu_left_edge" not used => do not care
  1406. // "P_cspu_right_edge" not used => do not care
  1407. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) { // ISDB-Tsb
  1408. dib8000_write_word(state, 228, 1); // P_2d_mode_byp=1
  1409. dib8000_write_word(state, 205, dib8000_read_word(state, 205) & 0xfff0); // P_cspu_win_cut = 0
  1410. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0 // 1-segment
  1411. && state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_2K) {
  1412. //dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); // P_adp_pass = 0
  1413. dib8000_write_word(state, 265, 15); // P_equal_noise_sel = 15
  1414. }
  1415. } else if (state->isdbt_cfg_loaded == 0) {
  1416. dib8000_write_word(state, 228, 0); // default value
  1417. dib8000_write_word(state, 265, 31); // default value
  1418. dib8000_write_word(state, 205, 0x200f); // init value
  1419. }
  1420. // ---- TMCC ----
  1421. for (i = 0; i < 3; i++)
  1422. tmcc_pow +=
  1423. (((state->fe.dtv_property_cache.layer[i].modulation == DQPSK) * 4 + 1) * state->fe.dtv_property_cache.layer[i].segment_count);
  1424. // Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9);
  1425. // Threshold is set at 1/4 of max power.
  1426. tmcc_pow *= (1 << (9 - 2));
  1427. dib8000_write_word(state, 290, tmcc_pow); // P_tmcc_dec_thres_2k
  1428. dib8000_write_word(state, 291, tmcc_pow); // P_tmcc_dec_thres_4k
  1429. dib8000_write_word(state, 292, tmcc_pow); // P_tmcc_dec_thres_8k
  1430. //dib8000_write_word(state, 287, (1 << 13) | 0x1000 );
  1431. // ---- PHA3 ----
  1432. if (state->isdbt_cfg_loaded == 0)
  1433. dib8000_write_word(state, 250, 3285); /*p_2d_hspeed_thr0 */
  1434. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1)
  1435. state->isdbt_cfg_loaded = 0;
  1436. else
  1437. state->isdbt_cfg_loaded = 1;
  1438. }
  1439. static int dib8000_autosearch_start(struct dvb_frontend *fe)
  1440. {
  1441. u8 factor;
  1442. u32 value;
  1443. struct dib8000_state *state = fe->demodulator_priv;
  1444. int slist = 0;
  1445. state->fe.dtv_property_cache.inversion = 0;
  1446. if (!state->fe.dtv_property_cache.isdbt_sb_mode)
  1447. state->fe.dtv_property_cache.layer[0].segment_count = 13;
  1448. state->fe.dtv_property_cache.layer[0].modulation = QAM_64;
  1449. state->fe.dtv_property_cache.layer[0].fec = FEC_2_3;
  1450. state->fe.dtv_property_cache.layer[0].interleaving = 0;
  1451. //choose the right list, in sb, always do everything
  1452. if (state->fe.dtv_property_cache.isdbt_sb_mode) {
  1453. state->fe.dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
  1454. state->fe.dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
  1455. slist = 7;
  1456. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13));
  1457. } else {
  1458. if (state->fe.dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) {
  1459. if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) {
  1460. slist = 7;
  1461. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1 to have autosearch start ok with mode2
  1462. } else
  1463. slist = 3;
  1464. } else {
  1465. if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) {
  1466. slist = 2;
  1467. dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1
  1468. } else
  1469. slist = 0;
  1470. }
  1471. if (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO)
  1472. state->fe.dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
  1473. if (state->fe.dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO)
  1474. state->fe.dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
  1475. dprintk("using list for autosearch : %d", slist);
  1476. dib8000_set_channel(state, (unsigned char)slist, 1);
  1477. //dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1
  1478. factor = 1;
  1479. //set lock_mask values
  1480. dib8000_write_word(state, 6, 0x4);
  1481. dib8000_write_word(state, 7, 0x8);
  1482. dib8000_write_word(state, 8, 0x1000);
  1483. //set lock_mask wait time values
  1484. value = 50 * state->cfg.pll->internal * factor;
  1485. dib8000_write_word(state, 11, (u16) ((value >> 16) & 0xffff)); // lock0 wait time
  1486. dib8000_write_word(state, 12, (u16) (value & 0xffff)); // lock0 wait time
  1487. value = 100 * state->cfg.pll->internal * factor;
  1488. dib8000_write_word(state, 13, (u16) ((value >> 16) & 0xffff)); // lock1 wait time
  1489. dib8000_write_word(state, 14, (u16) (value & 0xffff)); // lock1 wait time
  1490. value = 1000 * state->cfg.pll->internal * factor;
  1491. dib8000_write_word(state, 15, (u16) ((value >> 16) & 0xffff)); // lock2 wait time
  1492. dib8000_write_word(state, 16, (u16) (value & 0xffff)); // lock2 wait time
  1493. value = dib8000_read_word(state, 0);
  1494. dib8000_write_word(state, 0, (u16) ((1 << 15) | value));
  1495. dib8000_read_word(state, 1284); // reset the INT. n_irq_pending
  1496. dib8000_write_word(state, 0, (u16) value);
  1497. }
  1498. return 0;
  1499. }
  1500. static int dib8000_autosearch_irq(struct dvb_frontend *fe)
  1501. {
  1502. struct dib8000_state *state = fe->demodulator_priv;
  1503. u16 irq_pending = dib8000_read_word(state, 1284);
  1504. if (irq_pending & 0x1) { // failed
  1505. dprintk("dib8000_autosearch_irq failed");
  1506. return 1;
  1507. }
  1508. if (irq_pending & 0x2) { // succeeded
  1509. dprintk("dib8000_autosearch_irq succeeded");
  1510. return 2;
  1511. }
  1512. return 0; // still pending
  1513. }
  1514. static int dib8000_tune(struct dvb_frontend *fe)
  1515. {
  1516. struct dib8000_state *state = fe->demodulator_priv;
  1517. int ret = 0;
  1518. u16 value, mode = fft_to_mode(state);
  1519. // we are already tuned - just resuming from suspend
  1520. if (state == NULL)
  1521. return -EINVAL;
  1522. dib8000_set_bandwidth(state, state->fe.dtv_property_cache.bandwidth_hz / 1000);
  1523. dib8000_set_channel(state, 0, 0);
  1524. // restart demod
  1525. ret |= dib8000_write_word(state, 770, 0x4000);
  1526. ret |= dib8000_write_word(state, 770, 0x0000);
  1527. msleep(45);
  1528. /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3 */
  1529. /* ret |= dib8000_write_word(state, 29, (0 << 9) | (4 << 5) | (0 << 4) | (3 << 0) ); workaround inh_isi stays at 1 */
  1530. // never achieved a lock before - wait for timfreq to update
  1531. if (state->timf == 0) {
  1532. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1533. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) // Sound Broadcasting mode 1 seg
  1534. msleep(300);
  1535. else // Sound Broadcasting mode 3 seg
  1536. msleep(500);
  1537. } else // 13 seg
  1538. msleep(200);
  1539. }
  1540. //dump_reg(state);
  1541. if (state->fe.dtv_property_cache.isdbt_sb_mode == 1) {
  1542. if (state->fe.dtv_property_cache.isdbt_partial_reception == 0) { // Sound Broadcasting mode 1 seg
  1543. /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40 alpha to check on board */
  1544. dib8000_write_word(state, 32, ((13 - mode) << 12) | (6 << 8) | 0x40);
  1545. //dib8000_write_word(state, 32, (8 << 12) | (6 << 8) | 0x80);
  1546. /* P_ctrl_sfreq_step= (12-P_mode) P_ctrl_sfreq_inh =0 P_ctrl_pha_off_max */
  1547. ret |= dib8000_write_word(state, 37, (12 - mode) | ((5 + mode) << 5));
  1548. } else { // Sound Broadcasting mode 3 seg
  1549. /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 alpha to check on board */
  1550. dib8000_write_word(state, 32, ((12 - mode) << 12) | (6 << 8) | 0x60);
  1551. ret |= dib8000_write_word(state, 37, (11 - mode) | ((5 + mode) << 5));
  1552. }
  1553. } else { // 13 seg
  1554. /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 alpha to check on board */
  1555. dib8000_write_word(state, 32, ((11 - mode) << 12) | (6 << 8) | 0x80);
  1556. ret |= dib8000_write_word(state, 37, (10 - mode) | ((5 + mode) << 5));
  1557. }
  1558. // we achieved a coff_cpil_lock - it's time to update the timf
  1559. if ((dib8000_read_word(state, 568) >> 11) & 0x1)
  1560. dib8000_update_timf(state);
  1561. //now that tune is finished, lock0 should lock on fec_mpeg to output this lock on MP_LOCK. It's changed in autosearch start
  1562. dib8000_write_word(state, 6, 0x200);
  1563. if (state->revision == 0x8002) {
  1564. value = dib8000_read_word(state, 903);
  1565. dib8000_write_word(state, 903, value & ~(1 << 3));
  1566. msleep(1);
  1567. dib8000_write_word(state, 903, value | (1 << 3));
  1568. }
  1569. return ret;
  1570. }
  1571. static int dib8000_wakeup(struct dvb_frontend *fe)
  1572. {
  1573. struct dib8000_state *state = fe->demodulator_priv;
  1574. dib8000_set_power_mode(state, DIB8000M_POWER_ALL);
  1575. dib8000_set_adc_state(state, DIBX000_ADC_ON);
  1576. if (dib8000_set_adc_state(state, DIBX000_SLOW_ADC_ON) != 0)
  1577. dprintk("could not start Slow ADC");
  1578. return 0;
  1579. }
  1580. static int dib8000_sleep(struct dvb_frontend *fe)
  1581. {
  1582. struct dib8000_state *st = fe->demodulator_priv;
  1583. if (1) {
  1584. dib8000_set_output_mode(st, OUTMODE_HIGH_Z);
  1585. dib8000_set_power_mode(st, DIB8000M_POWER_INTERFACE_ONLY);
  1586. return dib8000_set_adc_state(st, DIBX000_SLOW_ADC_OFF) | dib8000_set_adc_state(st, DIBX000_ADC_OFF);
  1587. } else {
  1588. return 0;
  1589. }
  1590. }
  1591. enum frontend_tune_state dib8000_get_tune_state(struct dvb_frontend *fe)
  1592. {
  1593. struct dib8000_state *state = fe->demodulator_priv;
  1594. return state->tune_state;
  1595. }
  1596. EXPORT_SYMBOL(dib8000_get_tune_state);
  1597. int dib8000_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state)
  1598. {
  1599. struct dib8000_state *state = fe->demodulator_priv;
  1600. state->tune_state = tune_state;
  1601. return 0;
  1602. }
  1603. EXPORT_SYMBOL(dib8000_set_tune_state);
  1604. static int dib8000_get_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
  1605. {
  1606. struct dib8000_state *state = fe->demodulator_priv;
  1607. u16 i, val = 0;
  1608. fe->dtv_property_cache.bandwidth_hz = 6000000;
  1609. fe->dtv_property_cache.isdbt_sb_mode = dib8000_read_word(state, 508) & 0x1;
  1610. val = dib8000_read_word(state, 570);
  1611. fe->dtv_property_cache.inversion = (val & 0x40) >> 6;
  1612. switch ((val & 0x30) >> 4) {
  1613. case 1:
  1614. fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_2K;
  1615. break;
  1616. case 3:
  1617. default:
  1618. fe->dtv_property_cache.transmission_mode = TRANSMISSION_MODE_8K;
  1619. break;
  1620. }
  1621. switch (val & 0x3) {
  1622. case 0:
  1623. fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_32;
  1624. dprintk("dib8000_get_frontend GI = 1/32 ");
  1625. break;
  1626. case 1:
  1627. fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_16;
  1628. dprintk("dib8000_get_frontend GI = 1/16 ");
  1629. break;
  1630. case 2:
  1631. dprintk("dib8000_get_frontend GI = 1/8 ");
  1632. fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_8;
  1633. break;
  1634. case 3:
  1635. dprintk("dib8000_get_frontend GI = 1/4 ");
  1636. fe->dtv_property_cache.guard_interval = GUARD_INTERVAL_1_4;
  1637. break;
  1638. }
  1639. val = dib8000_read_word(state, 505);
  1640. fe->dtv_property_cache.isdbt_partial_reception = val & 1;
  1641. dprintk("dib8000_get_frontend : partial_reception = %d ", fe->dtv_property_cache.isdbt_partial_reception);
  1642. for (i = 0; i < 3; i++) {
  1643. val = dib8000_read_word(state, 493 + i);
  1644. fe->dtv_property_cache.layer[i].segment_count = val & 0x0F;
  1645. dprintk("dib8000_get_frontend : Layer %d segments = %d ", i, fe->dtv_property_cache.layer[i].segment_count);
  1646. val = dib8000_read_word(state, 499 + i);
  1647. fe->dtv_property_cache.layer[i].interleaving = val & 0x3;
  1648. dprintk("dib8000_get_frontend : Layer %d time_intlv = %d ", i, fe->dtv_property_cache.layer[i].interleaving);
  1649. val = dib8000_read_word(state, 481 + i);
  1650. switch (val & 0x7) {
  1651. case 1:
  1652. fe->dtv_property_cache.layer[i].fec = FEC_1_2;
  1653. dprintk("dib8000_get_frontend : Layer %d Code Rate = 1/2 ", i);
  1654. break;
  1655. case 2:
  1656. fe->dtv_property_cache.layer[i].fec = FEC_2_3;
  1657. dprintk("dib8000_get_frontend : Layer %d Code Rate = 2/3 ", i);
  1658. break;
  1659. case 3:
  1660. fe->dtv_property_cache.layer[i].fec = FEC_3_4;
  1661. dprintk("dib8000_get_frontend : Layer %d Code Rate = 3/4 ", i);
  1662. break;
  1663. case 5:
  1664. fe->dtv_property_cache.layer[i].fec = FEC_5_6;
  1665. dprintk("dib8000_get_frontend : Layer %d Code Rate = 5/6 ", i);
  1666. break;
  1667. default:
  1668. fe->dtv_property_cache.layer[i].fec = FEC_7_8;
  1669. dprintk("dib8000_get_frontend : Layer %d Code Rate = 7/8 ", i);
  1670. break;
  1671. }
  1672. val = dib8000_read_word(state, 487 + i);
  1673. switch (val & 0x3) {
  1674. case 0:
  1675. dprintk("dib8000_get_frontend : Layer %d DQPSK ", i);
  1676. fe->dtv_property_cache.layer[i].modulation = DQPSK;
  1677. break;
  1678. case 1:
  1679. fe->dtv_property_cache.layer[i].modulation = QPSK;
  1680. dprintk("dib8000_get_frontend : Layer %d QPSK ", i);
  1681. break;
  1682. case 2:
  1683. fe->dtv_property_cache.layer[i].modulation = QAM_16;
  1684. dprintk("dib8000_get_frontend : Layer %d QAM16 ", i);
  1685. break;
  1686. case 3:
  1687. default:
  1688. dprintk("dib8000_get_frontend : Layer %d QAM64 ", i);
  1689. fe->dtv_property_cache.layer[i].modulation = QAM_64;
  1690. break;
  1691. }
  1692. }
  1693. return 0;
  1694. }
  1695. static int dib8000_set_frontend(struct dvb_frontend *fe, struct dvb_frontend_parameters *fep)
  1696. {
  1697. struct dib8000_state *state = fe->demodulator_priv;
  1698. int time, ret;
  1699. fe->dtv_property_cache.delivery_system = SYS_ISDBT;
  1700. dib8000_set_output_mode(state, OUTMODE_HIGH_Z);
  1701. if (fe->ops.tuner_ops.set_params)
  1702. fe->ops.tuner_ops.set_params(fe, fep);
  1703. /* start up the AGC */
  1704. state->tune_state = CT_AGC_START;
  1705. do {
  1706. time = dib8000_agc_startup(fe);
  1707. if (time != FE_CALLBACK_TIME_NEVER)
  1708. msleep(time / 10);
  1709. else
  1710. break;
  1711. } while (state->tune_state != CT_AGC_STOP);
  1712. if (state->fe.dtv_property_cache.frequency == 0) {
  1713. dprintk("dib8000: must at least specify frequency ");
  1714. return 0;
  1715. }
  1716. if (state->fe.dtv_property_cache.bandwidth_hz == 0) {
  1717. dprintk("dib8000: no bandwidth specified, set to default ");
  1718. state->fe.dtv_property_cache.bandwidth_hz = 6000000;
  1719. }
  1720. state->tune_state = CT_DEMOD_START;
  1721. if ((state->fe.dtv_property_cache.delivery_system != SYS_ISDBT) ||
  1722. (state->fe.dtv_property_cache.inversion == INVERSION_AUTO) ||
  1723. (state->fe.dtv_property_cache.transmission_mode == TRANSMISSION_MODE_AUTO) ||
  1724. (state->fe.dtv_property_cache.guard_interval == GUARD_INTERVAL_AUTO) ||
  1725. (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 0)) != 0) &&
  1726. (state->fe.dtv_property_cache.layer[0].segment_count != 0xff) &&
  1727. (state->fe.dtv_property_cache.layer[0].segment_count != 0) &&
  1728. ((state->fe.dtv_property_cache.layer[0].modulation == QAM_AUTO) ||
  1729. (state->fe.dtv_property_cache.layer[0].fec == FEC_AUTO))) ||
  1730. (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 1)) != 0) &&
  1731. (state->fe.dtv_property_cache.layer[1].segment_count != 0xff) &&
  1732. (state->fe.dtv_property_cache.layer[1].segment_count != 0) &&
  1733. ((state->fe.dtv_property_cache.layer[1].modulation == QAM_AUTO) ||
  1734. (state->fe.dtv_property_cache.layer[1].fec == FEC_AUTO))) ||
  1735. (((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 2)) != 0) &&
  1736. (state->fe.dtv_property_cache.layer[2].segment_count != 0xff) &&
  1737. (state->fe.dtv_property_cache.layer[2].segment_count != 0) &&
  1738. ((state->fe.dtv_property_cache.layer[2].modulation == QAM_AUTO) ||
  1739. (state->fe.dtv_property_cache.layer[2].fec == FEC_AUTO))) ||
  1740. (((state->fe.dtv_property_cache.layer[0].segment_count == 0) ||
  1741. ((state->fe.dtv_property_cache.isdbt_layer_enabled & (1 << 0)) == 0)) &&
  1742. ((state->fe.dtv_property_cache.layer[1].segment_count == 0) ||
  1743. ((state->fe.dtv_property_cache.isdbt_layer_enabled & (2 << 0)) == 0)) &&
  1744. ((state->fe.dtv_property_cache.layer[2].segment_count == 0) || ((state->fe.dtv_property_cache.isdbt_layer_enabled & (3 << 0)) == 0)))) {
  1745. int i = 800, found;
  1746. dib8000_set_bandwidth(state, fe->dtv_property_cache.bandwidth_hz / 1000);
  1747. dib8000_autosearch_start(fe);
  1748. do {
  1749. msleep(10);
  1750. found = dib8000_autosearch_irq(fe);
  1751. } while (found == 0 && i--);
  1752. dprintk("Frequency %d Hz, autosearch returns: %d", fep->frequency, found);
  1753. if (found == 0 || found == 1)
  1754. return 0; // no channel found
  1755. dib8000_get_frontend(fe, fep);
  1756. }
  1757. ret = dib8000_tune(fe);
  1758. /* make this a config parameter */
  1759. dib8000_set_output_mode(state, state->cfg.output_mode);
  1760. return ret;
  1761. }
  1762. static int dib8000_read_status(struct dvb_frontend *fe, fe_status_t * stat)
  1763. {
  1764. struct dib8000_state *state = fe->demodulator_priv;
  1765. u16 lock = dib8000_read_word(state, 568);
  1766. *stat = 0;
  1767. if ((lock >> 13) & 1)
  1768. *stat |= FE_HAS_SIGNAL;
  1769. if ((lock >> 8) & 1) /* Equal */
  1770. *stat |= FE_HAS_CARRIER;
  1771. if (((lock >> 1) & 0xf) == 0xf) /* TMCC_SYNC */
  1772. *stat |= FE_HAS_SYNC;
  1773. if (((lock >> 12) & 1) && ((lock >> 5) & 7)) /* FEC MPEG */
  1774. *stat |= FE_HAS_LOCK;
  1775. if ((lock >> 12) & 1) {
  1776. lock = dib8000_read_word(state, 554); /* Viterbi Layer A */
  1777. if (lock & 0x01)
  1778. *stat |= FE_HAS_VITERBI;
  1779. lock = dib8000_read_word(state, 555); /* Viterbi Layer B */
  1780. if (lock & 0x01)
  1781. *stat |= FE_HAS_VITERBI;
  1782. lock = dib8000_read_word(state, 556); /* Viterbi Layer C */
  1783. if (lock & 0x01)
  1784. *stat |= FE_HAS_VITERBI;
  1785. }
  1786. return 0;
  1787. }
  1788. static int dib8000_read_ber(struct dvb_frontend *fe, u32 * ber)
  1789. {
  1790. struct dib8000_state *state = fe->demodulator_priv;
  1791. *ber = (dib8000_read_word(state, 560) << 16) | dib8000_read_word(state, 561); // 13 segments
  1792. return 0;
  1793. }
  1794. static int dib8000_read_unc_blocks(struct dvb_frontend *fe, u32 * unc)
  1795. {
  1796. struct dib8000_state *state = fe->demodulator_priv;
  1797. *unc = dib8000_read_word(state, 565); // packet error on 13 seg
  1798. return 0;
  1799. }
  1800. static int dib8000_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
  1801. {
  1802. struct dib8000_state *state = fe->demodulator_priv;
  1803. u16 val = dib8000_read_word(state, 390);
  1804. *strength = 65535 - val;
  1805. return 0;
  1806. }
  1807. static int dib8000_read_snr(struct dvb_frontend *fe, u16 * snr)
  1808. {
  1809. struct dib8000_state *state = fe->demodulator_priv;
  1810. u16 val;
  1811. s32 signal_mant, signal_exp, noise_mant, noise_exp;
  1812. u32 result = 0;
  1813. val = dib8000_read_word(state, 542);
  1814. noise_mant = (val >> 6) & 0xff;
  1815. noise_exp = (val & 0x3f);
  1816. val = dib8000_read_word(state, 543);
  1817. signal_mant = (val >> 6) & 0xff;
  1818. signal_exp = (val & 0x3f);
  1819. if ((noise_exp & 0x20) != 0)
  1820. noise_exp -= 0x40;
  1821. if ((signal_exp & 0x20) != 0)
  1822. signal_exp -= 0x40;
  1823. if (signal_mant != 0)
  1824. result = intlog10(2) * 10 * signal_exp + 10 * intlog10(signal_mant);
  1825. else
  1826. result = intlog10(2) * 10 * signal_exp - 100;
  1827. if (noise_mant != 0)
  1828. result -= intlog10(2) * 10 * noise_exp + 10 * intlog10(noise_mant);
  1829. else
  1830. result -= intlog10(2) * 10 * noise_exp - 100;
  1831. *snr = result / ((1 << 24) / 10);
  1832. return 0;
  1833. }
  1834. int dib8000_i2c_enumeration(struct i2c_adapter *host, int no_of_demods, u8 default_addr, u8 first_addr)
  1835. {
  1836. int k = 0;
  1837. u8 new_addr = 0;
  1838. struct i2c_device client = {.adap = host };
  1839. for (k = no_of_demods - 1; k >= 0; k--) {
  1840. /* designated i2c address */
  1841. new_addr = first_addr + (k << 1);
  1842. client.addr = new_addr;
  1843. dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
  1844. if (dib8000_identify(&client) == 0) {
  1845. dib8000_i2c_write16(&client, 1287, 0x0003); /* sram lead in, rdy */
  1846. client.addr = default_addr;
  1847. if (dib8000_identify(&client) == 0) {
  1848. dprintk("#%d: not identified", k);
  1849. return -EINVAL;
  1850. }
  1851. }
  1852. /* start diversity to pull_down div_str - just for i2c-enumeration */
  1853. dib8000_i2c_write16(&client, 1286, (1 << 10) | (4 << 6));
  1854. /* set new i2c address and force divstart */
  1855. dib8000_i2c_write16(&client, 1285, (new_addr << 2) | 0x2);
  1856. client.addr = new_addr;
  1857. dib8000_identify(&client);
  1858. dprintk("IC %d initialized (to i2c_address 0x%x)", k, new_addr);
  1859. }
  1860. for (k = 0; k < no_of_demods; k++) {
  1861. new_addr = first_addr | (k << 1);
  1862. client.addr = new_addr;
  1863. // unforce divstr
  1864. dib8000_i2c_write16(&client, 1285, new_addr << 2);
  1865. /* deactivate div - it was just for i2c-enumeration */
  1866. dib8000_i2c_write16(&client, 1286, 0);
  1867. }
  1868. return 0;
  1869. }
  1870. EXPORT_SYMBOL(dib8000_i2c_enumeration);
  1871. static int dib8000_fe_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *tune)
  1872. {
  1873. tune->min_delay_ms = 1000;
  1874. tune->step_size = 0;
  1875. tune->max_drift = 0;
  1876. return 0;
  1877. }
  1878. static void dib8000_release(struct dvb_frontend *fe)
  1879. {
  1880. struct dib8000_state *st = fe->demodulator_priv;
  1881. dibx000_exit_i2c_master(&st->i2c_master);
  1882. kfree(st);
  1883. }
  1884. struct i2c_adapter *dib8000_get_i2c_master(struct dvb_frontend *fe, enum dibx000_i2c_interface intf, int gating)
  1885. {
  1886. struct dib8000_state *st = fe->demodulator_priv;
  1887. return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating);
  1888. }
  1889. EXPORT_SYMBOL(dib8000_get_i2c_master);
  1890. int dib8000_pid_filter_ctrl(struct dvb_frontend *fe, u8 onoff)
  1891. {
  1892. struct dib8000_state *st = fe->demodulator_priv;
  1893. u16 val = dib8000_read_word(st, 299) & 0xffef;
  1894. val |= (onoff & 0x1) << 4;
  1895. dprintk("pid filter enabled %d", onoff);
  1896. return dib8000_write_word(st, 299, val);
  1897. }
  1898. EXPORT_SYMBOL(dib8000_pid_filter_ctrl);
  1899. int dib8000_pid_filter(struct dvb_frontend *fe, u8 id, u16 pid, u8 onoff)
  1900. {
  1901. struct dib8000_state *st = fe->demodulator_priv;
  1902. dprintk("Index %x, PID %d, OnOff %d", id, pid, onoff);
  1903. return dib8000_write_word(st, 305 + id, onoff ? (1 << 13) | pid : 0);
  1904. }
  1905. EXPORT_SYMBOL(dib8000_pid_filter);
  1906. static const struct dvb_frontend_ops dib8000_ops = {
  1907. .info = {
  1908. .name = "DiBcom 8000 ISDB-T",
  1909. .type = FE_OFDM,
  1910. .frequency_min = 44250000,
  1911. .frequency_max = 867250000,
  1912. .frequency_stepsize = 62500,
  1913. .caps = FE_CAN_INVERSION_AUTO |
  1914. FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
  1915. FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
  1916. FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO |
  1917. FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO,
  1918. },
  1919. .release = dib8000_release,
  1920. .init = dib8000_wakeup,
  1921. .sleep = dib8000_sleep,
  1922. .set_frontend = dib8000_set_frontend,
  1923. .get_tune_settings = dib8000_fe_get_tune_settings,
  1924. .get_frontend = dib8000_get_frontend,
  1925. .read_status = dib8000_read_status,
  1926. .read_ber = dib8000_read_ber,
  1927. .read_signal_strength = dib8000_read_signal_strength,
  1928. .read_snr = dib8000_read_snr,
  1929. .read_ucblocks = dib8000_read_unc_blocks,
  1930. };
  1931. struct dvb_frontend *dib8000_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib8000_config *cfg)
  1932. {
  1933. struct dvb_frontend *fe;
  1934. struct dib8000_state *state;
  1935. dprintk("dib8000_attach");
  1936. state = kzalloc(sizeof(struct dib8000_state), GFP_KERNEL);
  1937. if (state == NULL)
  1938. return NULL;
  1939. memcpy(&state->cfg, cfg, sizeof(struct dib8000_config));
  1940. state->i2c.adap = i2c_adap;
  1941. state->i2c.addr = i2c_addr;
  1942. state->gpio_val = cfg->gpio_val;
  1943. state->gpio_dir = cfg->gpio_dir;
  1944. /* Ensure the output mode remains at the previous default if it's
  1945. * not specifically set by the caller.
  1946. */
  1947. if ((state->cfg.output_mode != OUTMODE_MPEG2_SERIAL) && (state->cfg.output_mode != OUTMODE_MPEG2_PAR_GATED_CLK))
  1948. state->cfg.output_mode = OUTMODE_MPEG2_FIFO;
  1949. fe = &state->fe;
  1950. fe->demodulator_priv = state;
  1951. memcpy(&state->fe.ops, &dib8000_ops, sizeof(struct dvb_frontend_ops));
  1952. state->timf_default = cfg->pll->timf;
  1953. if (dib8000_identify(&state->i2c) == 0)
  1954. goto error;
  1955. dibx000_init_i2c_master(&state->i2c_master, DIB8000, state->i2c.adap, state->i2c.addr);
  1956. dib8000_reset(fe);
  1957. dib8000_write_word(state, 285, (dib8000_read_word(state, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
  1958. return fe;
  1959. error:
  1960. kfree(state);
  1961. return NULL;
  1962. }
  1963. EXPORT_SYMBOL(dib8000_attach);
  1964. MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@dibcom.fr, " "Patrick Boettcher <pboettcher@dibcom.fr>");
  1965. MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
  1966. MODULE_LICENSE("GPL");