addr.c 11 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456
  1. /*
  2. * Copyright (c) 2005 Voltaire Inc. All rights reserved.
  3. * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
  4. * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
  5. * Copyright (c) 2005 Intel Corporation. All rights reserved.
  6. *
  7. * This software is available to you under a choice of one of two
  8. * licenses. You may choose to be licensed under the terms of the GNU
  9. * General Public License (GPL) Version 2, available from the file
  10. * COPYING in the main directory of this source tree, or the
  11. * OpenIB.org BSD license below:
  12. *
  13. * Redistribution and use in source and binary forms, with or
  14. * without modification, are permitted provided that the following
  15. * conditions are met:
  16. *
  17. * - Redistributions of source code must retain the above
  18. * copyright notice, this list of conditions and the following
  19. * disclaimer.
  20. *
  21. * - Redistributions in binary form must reproduce the above
  22. * copyright notice, this list of conditions and the following
  23. * disclaimer in the documentation and/or other materials
  24. * provided with the distribution.
  25. *
  26. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  27. * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  28. * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  29. * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  30. * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  31. * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  32. * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  33. * SOFTWARE.
  34. */
  35. #include <linux/mutex.h>
  36. #include <linux/inetdevice.h>
  37. #include <linux/slab.h>
  38. #include <linux/workqueue.h>
  39. #include <net/arp.h>
  40. #include <net/neighbour.h>
  41. #include <net/route.h>
  42. #include <net/netevent.h>
  43. #include <net/addrconf.h>
  44. #include <net/ip6_route.h>
  45. #include <rdma/ib_addr.h>
  46. MODULE_AUTHOR("Sean Hefty");
  47. MODULE_DESCRIPTION("IB Address Translation");
  48. MODULE_LICENSE("Dual BSD/GPL");
  49. struct addr_req {
  50. struct list_head list;
  51. struct sockaddr_storage src_addr;
  52. struct sockaddr_storage dst_addr;
  53. struct rdma_dev_addr *addr;
  54. struct rdma_addr_client *client;
  55. void *context;
  56. void (*callback)(int status, struct sockaddr *src_addr,
  57. struct rdma_dev_addr *addr, void *context);
  58. unsigned long timeout;
  59. int status;
  60. };
  61. static void process_req(struct work_struct *work);
  62. static DEFINE_MUTEX(lock);
  63. static LIST_HEAD(req_list);
  64. static DECLARE_DELAYED_WORK(work, process_req);
  65. static struct workqueue_struct *addr_wq;
  66. void rdma_addr_register_client(struct rdma_addr_client *client)
  67. {
  68. atomic_set(&client->refcount, 1);
  69. init_completion(&client->comp);
  70. }
  71. EXPORT_SYMBOL(rdma_addr_register_client);
  72. static inline void put_client(struct rdma_addr_client *client)
  73. {
  74. if (atomic_dec_and_test(&client->refcount))
  75. complete(&client->comp);
  76. }
  77. void rdma_addr_unregister_client(struct rdma_addr_client *client)
  78. {
  79. put_client(client);
  80. wait_for_completion(&client->comp);
  81. }
  82. EXPORT_SYMBOL(rdma_addr_unregister_client);
  83. int rdma_copy_addr(struct rdma_dev_addr *dev_addr, struct net_device *dev,
  84. const unsigned char *dst_dev_addr)
  85. {
  86. dev_addr->dev_type = dev->type;
  87. memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
  88. memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
  89. if (dst_dev_addr)
  90. memcpy(dev_addr->dst_dev_addr, dst_dev_addr, MAX_ADDR_LEN);
  91. dev_addr->bound_dev_if = dev->ifindex;
  92. return 0;
  93. }
  94. EXPORT_SYMBOL(rdma_copy_addr);
  95. int rdma_translate_ip(struct sockaddr *addr, struct rdma_dev_addr *dev_addr)
  96. {
  97. struct net_device *dev;
  98. int ret = -EADDRNOTAVAIL;
  99. if (dev_addr->bound_dev_if) {
  100. dev = dev_get_by_index(&init_net, dev_addr->bound_dev_if);
  101. if (!dev)
  102. return -ENODEV;
  103. ret = rdma_copy_addr(dev_addr, dev, NULL);
  104. dev_put(dev);
  105. return ret;
  106. }
  107. switch (addr->sa_family) {
  108. case AF_INET:
  109. dev = ip_dev_find(&init_net,
  110. ((struct sockaddr_in *) addr)->sin_addr.s_addr);
  111. if (!dev)
  112. return ret;
  113. ret = rdma_copy_addr(dev_addr, dev, NULL);
  114. dev_put(dev);
  115. break;
  116. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  117. case AF_INET6:
  118. rcu_read_lock();
  119. for_each_netdev_rcu(&init_net, dev) {
  120. if (ipv6_chk_addr(&init_net,
  121. &((struct sockaddr_in6 *) addr)->sin6_addr,
  122. dev, 1)) {
  123. ret = rdma_copy_addr(dev_addr, dev, NULL);
  124. break;
  125. }
  126. }
  127. rcu_read_unlock();
  128. break;
  129. #endif
  130. }
  131. return ret;
  132. }
  133. EXPORT_SYMBOL(rdma_translate_ip);
  134. static void set_timeout(unsigned long time)
  135. {
  136. unsigned long delay;
  137. cancel_delayed_work(&work);
  138. delay = time - jiffies;
  139. if ((long)delay <= 0)
  140. delay = 1;
  141. queue_delayed_work(addr_wq, &work, delay);
  142. }
  143. static void queue_req(struct addr_req *req)
  144. {
  145. struct addr_req *temp_req;
  146. mutex_lock(&lock);
  147. list_for_each_entry_reverse(temp_req, &req_list, list) {
  148. if (time_after_eq(req->timeout, temp_req->timeout))
  149. break;
  150. }
  151. list_add(&req->list, &temp_req->list);
  152. if (req_list.next == &req->list)
  153. set_timeout(req->timeout);
  154. mutex_unlock(&lock);
  155. }
  156. static int addr4_resolve(struct sockaddr_in *src_in,
  157. struct sockaddr_in *dst_in,
  158. struct rdma_dev_addr *addr)
  159. {
  160. __be32 src_ip = src_in->sin_addr.s_addr;
  161. __be32 dst_ip = dst_in->sin_addr.s_addr;
  162. struct flowi fl;
  163. struct rtable *rt;
  164. struct neighbour *neigh;
  165. int ret;
  166. memset(&fl, 0, sizeof fl);
  167. fl.nl_u.ip4_u.daddr = dst_ip;
  168. fl.nl_u.ip4_u.saddr = src_ip;
  169. fl.oif = addr->bound_dev_if;
  170. ret = ip_route_output_key(&init_net, &rt, &fl);
  171. if (ret)
  172. goto out;
  173. src_in->sin_family = AF_INET;
  174. src_in->sin_addr.s_addr = rt->rt_src;
  175. if (rt->dst.dev->flags & IFF_LOOPBACK) {
  176. ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
  177. if (!ret)
  178. memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
  179. goto put;
  180. }
  181. /* If the device does ARP internally, return 'done' */
  182. if (rt->dst.dev->flags & IFF_NOARP) {
  183. rdma_copy_addr(addr, rt->dst.dev, NULL);
  184. goto put;
  185. }
  186. neigh = neigh_lookup(&arp_tbl, &rt->rt_gateway, rt->dst.dev);
  187. if (!neigh || !(neigh->nud_state & NUD_VALID)) {
  188. neigh_event_send(rt->dst.neighbour, NULL);
  189. ret = -ENODATA;
  190. if (neigh)
  191. goto release;
  192. goto put;
  193. }
  194. ret = rdma_copy_addr(addr, neigh->dev, neigh->ha);
  195. release:
  196. neigh_release(neigh);
  197. put:
  198. ip_rt_put(rt);
  199. out:
  200. return ret;
  201. }
  202. #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
  203. static int addr6_resolve(struct sockaddr_in6 *src_in,
  204. struct sockaddr_in6 *dst_in,
  205. struct rdma_dev_addr *addr)
  206. {
  207. struct flowi fl;
  208. struct neighbour *neigh;
  209. struct dst_entry *dst;
  210. int ret;
  211. memset(&fl, 0, sizeof fl);
  212. ipv6_addr_copy(&fl.fl6_dst, &dst_in->sin6_addr);
  213. ipv6_addr_copy(&fl.fl6_src, &src_in->sin6_addr);
  214. fl.oif = addr->bound_dev_if;
  215. dst = ip6_route_output(&init_net, NULL, &fl);
  216. if ((ret = dst->error))
  217. goto put;
  218. if (ipv6_addr_any(&fl.fl6_src)) {
  219. ret = ipv6_dev_get_saddr(&init_net, ip6_dst_idev(dst)->dev,
  220. &fl.fl6_dst, 0, &fl.fl6_src);
  221. if (ret)
  222. goto put;
  223. src_in->sin6_family = AF_INET6;
  224. ipv6_addr_copy(&src_in->sin6_addr, &fl.fl6_src);
  225. }
  226. if (dst->dev->flags & IFF_LOOPBACK) {
  227. ret = rdma_translate_ip((struct sockaddr *) dst_in, addr);
  228. if (!ret)
  229. memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
  230. goto put;
  231. }
  232. /* If the device does ARP internally, return 'done' */
  233. if (dst->dev->flags & IFF_NOARP) {
  234. ret = rdma_copy_addr(addr, dst->dev, NULL);
  235. goto put;
  236. }
  237. neigh = dst->neighbour;
  238. if (!neigh || !(neigh->nud_state & NUD_VALID)) {
  239. neigh_event_send(dst->neighbour, NULL);
  240. ret = -ENODATA;
  241. goto put;
  242. }
  243. ret = rdma_copy_addr(addr, dst->dev, neigh->ha);
  244. put:
  245. dst_release(dst);
  246. return ret;
  247. }
  248. #else
  249. static int addr6_resolve(struct sockaddr_in6 *src_in,
  250. struct sockaddr_in6 *dst_in,
  251. struct rdma_dev_addr *addr)
  252. {
  253. return -EADDRNOTAVAIL;
  254. }
  255. #endif
  256. static int addr_resolve(struct sockaddr *src_in,
  257. struct sockaddr *dst_in,
  258. struct rdma_dev_addr *addr)
  259. {
  260. if (src_in->sa_family == AF_INET) {
  261. return addr4_resolve((struct sockaddr_in *) src_in,
  262. (struct sockaddr_in *) dst_in, addr);
  263. } else
  264. return addr6_resolve((struct sockaddr_in6 *) src_in,
  265. (struct sockaddr_in6 *) dst_in, addr);
  266. }
  267. static void process_req(struct work_struct *work)
  268. {
  269. struct addr_req *req, *temp_req;
  270. struct sockaddr *src_in, *dst_in;
  271. struct list_head done_list;
  272. INIT_LIST_HEAD(&done_list);
  273. mutex_lock(&lock);
  274. list_for_each_entry_safe(req, temp_req, &req_list, list) {
  275. if (req->status == -ENODATA) {
  276. src_in = (struct sockaddr *) &req->src_addr;
  277. dst_in = (struct sockaddr *) &req->dst_addr;
  278. req->status = addr_resolve(src_in, dst_in, req->addr);
  279. if (req->status && time_after_eq(jiffies, req->timeout))
  280. req->status = -ETIMEDOUT;
  281. else if (req->status == -ENODATA)
  282. continue;
  283. }
  284. list_move_tail(&req->list, &done_list);
  285. }
  286. if (!list_empty(&req_list)) {
  287. req = list_entry(req_list.next, struct addr_req, list);
  288. set_timeout(req->timeout);
  289. }
  290. mutex_unlock(&lock);
  291. list_for_each_entry_safe(req, temp_req, &done_list, list) {
  292. list_del(&req->list);
  293. req->callback(req->status, (struct sockaddr *) &req->src_addr,
  294. req->addr, req->context);
  295. put_client(req->client);
  296. kfree(req);
  297. }
  298. }
  299. int rdma_resolve_ip(struct rdma_addr_client *client,
  300. struct sockaddr *src_addr, struct sockaddr *dst_addr,
  301. struct rdma_dev_addr *addr, int timeout_ms,
  302. void (*callback)(int status, struct sockaddr *src_addr,
  303. struct rdma_dev_addr *addr, void *context),
  304. void *context)
  305. {
  306. struct sockaddr *src_in, *dst_in;
  307. struct addr_req *req;
  308. int ret = 0;
  309. req = kzalloc(sizeof *req, GFP_KERNEL);
  310. if (!req)
  311. return -ENOMEM;
  312. src_in = (struct sockaddr *) &req->src_addr;
  313. dst_in = (struct sockaddr *) &req->dst_addr;
  314. if (src_addr) {
  315. if (src_addr->sa_family != dst_addr->sa_family) {
  316. ret = -EINVAL;
  317. goto err;
  318. }
  319. memcpy(src_in, src_addr, ip_addr_size(src_addr));
  320. } else {
  321. src_in->sa_family = dst_addr->sa_family;
  322. }
  323. memcpy(dst_in, dst_addr, ip_addr_size(dst_addr));
  324. req->addr = addr;
  325. req->callback = callback;
  326. req->context = context;
  327. req->client = client;
  328. atomic_inc(&client->refcount);
  329. req->status = addr_resolve(src_in, dst_in, addr);
  330. switch (req->status) {
  331. case 0:
  332. req->timeout = jiffies;
  333. queue_req(req);
  334. break;
  335. case -ENODATA:
  336. req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
  337. queue_req(req);
  338. break;
  339. default:
  340. ret = req->status;
  341. atomic_dec(&client->refcount);
  342. goto err;
  343. }
  344. return ret;
  345. err:
  346. kfree(req);
  347. return ret;
  348. }
  349. EXPORT_SYMBOL(rdma_resolve_ip);
  350. void rdma_addr_cancel(struct rdma_dev_addr *addr)
  351. {
  352. struct addr_req *req, *temp_req;
  353. mutex_lock(&lock);
  354. list_for_each_entry_safe(req, temp_req, &req_list, list) {
  355. if (req->addr == addr) {
  356. req->status = -ECANCELED;
  357. req->timeout = jiffies;
  358. list_move(&req->list, &req_list);
  359. set_timeout(req->timeout);
  360. break;
  361. }
  362. }
  363. mutex_unlock(&lock);
  364. }
  365. EXPORT_SYMBOL(rdma_addr_cancel);
  366. static int netevent_callback(struct notifier_block *self, unsigned long event,
  367. void *ctx)
  368. {
  369. if (event == NETEVENT_NEIGH_UPDATE) {
  370. struct neighbour *neigh = ctx;
  371. if (neigh->nud_state & NUD_VALID) {
  372. set_timeout(jiffies);
  373. }
  374. }
  375. return 0;
  376. }
  377. static struct notifier_block nb = {
  378. .notifier_call = netevent_callback
  379. };
  380. static int __init addr_init(void)
  381. {
  382. addr_wq = create_singlethread_workqueue("ib_addr");
  383. if (!addr_wq)
  384. return -ENOMEM;
  385. register_netevent_notifier(&nb);
  386. return 0;
  387. }
  388. static void __exit addr_cleanup(void)
  389. {
  390. unregister_netevent_notifier(&nb);
  391. destroy_workqueue(addr_wq);
  392. }
  393. module_init(addr_init);
  394. module_exit(addr_cleanup);